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Introduction: Meteorological factors and air pollutants are two important 
factors affecting hospitalisation for coronary heart disease. This study aims to 
investigate the effects of meteorological factors and air pollutants on the risk of 
coronary heart disease hospitalisation and their interactions in rural areas with 
heavy particulate matter pollution at the edge of the desert in southern Xinjiang.

Methods: In this study, patients with coronary heart disease who were hospitalized 
in Tangyi Town, Tumushuke City, Xinjiang Province, were selected as the study 
subjects, and the lagged effects of meteorological factors and air pollutants on 
the risk of coronary heart disease hospitalisation and their interactions were 
analysed by combining the distributional lag nonlinear model and the quasi-
Poisson regression model.

Results: The results showed that the associations between meteorological 
factors and air pollutant concentrations with the risk of coronary heart disease 
hospitalisation both showed non-linear and lagged effects. There was an 
antagonistic effect between mean daily temperature and PM2.5 and PM10 on the 
effect of coronary heart disease hospitalisation, with RERIs of −0.73 (95% CI: 
−2.63, −0.04), and −1.14 (95% CI: −1.93, −0.60), respectively. The relative risk 
of coronary heart disease hospitalisation in the low-temperature, high PM10 
concentration environment was 1.53 (95% CI: 1.09, 2.13). The risk of hospitalization 
for coronary heart disease is increased by 30 and 19% in environments with low 
humidity and high PM2.5 and PM10 concentrations, respectively. There are also 
interactions between particulate matter and gaseous pollutants and between 
different gaseous pollutants.

Discussion: This study suggests the need to necessity of management of 
multiple air pollutants and response to climate change, as well as the importance 
of implementing targeted preventive and control measures by the relevant 
authorities in according to meteorological and air pollution conditions, which 
can effectively reduce the hospitalization rate of patients with coronary heart 
disease.
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1 Introduction

Coronary heart disease (CHD) is a cardiovascular disease caused 
by coronary atherosclerosis leading to coronary artery stenosis or 
blockage, which ultimately causes myocardial ischemia or hypoxia (1). 
According to the Global Burden of Disease (GBD) statistics, CHD is 
the leading cause of death in the world, with 9 million deaths 
worldwide (2, 3). The China Cardiovascular Health and Disease 
Report shows that the number of people suffering from CHD in China 
is 11.39 million, making it one of the main causes of death among 
residents. Meteorological factors and air pollutants are two important 
factors affecting CHD (4). A large number of studies are exploring the 
environmental factors related to CHD including meteorological 
factors and air pollutants. For example, a national study in China 
found that a 10% increase in ambient humidity during the summer 
months increased the risk of Cardiovascular Diseases (CVD) by 17%; 
further subgrouping of ambient humidity during the summer months 
showed a “U” shaped effect, meaning that both dry and wet 
environments may increase the risk of CVD (5). Miao’s findings 
suggest that the risk of acute myocardial infarction(AMI) increases 
progressively with decreasing temperature, especially at extremely 
cold temperatures (−2°C), an environment in which the cumulative 
Relative Risk(RR) for AMI at a lag of 30 days is 4.66 (1.76, 12.30), but 
a peak in RR was observed at approximately 24°C as the temperature 
increased (6). Wang’s study found that the risk of CVD hospitalization 
increased by 2.3 and 0.8% for each 10 μg/m3 increase in PM2.5 and 
PM10 concentrations, respectively. Both PM2.5 and PM10 had a 
cumulative lag effect on the number of CVD hospitalizations, with a 
7-day cumulative RR of 1.115 for PM2.5 and a 3-day cumulative RR of 
1.015 for PM10 (7). Li’s study analyzed the effects of various pollutants 
and meteorological conditions on CHD, and found that for every 
10 μg/m3 increase in PM10, NO2, and SO2 concentrations, the risk of 
death from CHD increased by 0.4, 1.1, and 1.5%, respectively. Heat 
wave and cold wave events increased the risk of CHD death by 20.2 
and 19.9%, respectively. In addition, there was a synergistic effect 
between heat waves and PM10, which increased the risk of CHD death 
by an additional 37% (8). These studies have demonstrated that the 
effects of meteorological factors and air pollutants on CHD have not 
only acute effects, but also non-linear and lagged effects, and that the 
effects of different meteorological factors and air pollutants vary in 
different areas. Our study area is located at the edge of the Tarim Basin 
in southwestern Xinjiang, where the diurnal temperature difference is 
large and severely affected by particulate matter. Currently, there are 
few studies on the effects of meteorological factors and air pollutants 
on CHD in rural areas of southern Xinjiang. Previous studies have 
mostly used generalized additive model, with little analysis of lagged 
effects. Compared with generalized additive model, distributed lag 
nonlinear models (DLNM) can better utilize cross-basis functions to 
add lag dimensions to the exposure-effect relationship and 

simultaneously evaluate the lag effects and nonlinear effects of 
exposure factors (9). Therefore, this study used DLNM to assess the 
effects of short-term exposure to meteorological factors and air 
pollutants on the risk of CHD hospitalization in rural areas of 
southern Xinjiang, and to provide a scientific basis for further 
assessment of the health effects of meteorological factors and 
air pollutants.

2 Methods and materials

2.1 Data source

This study obtained daily CHD hospitalization case data from 
January 1, 2016 to December 31, 2022 in Tangyi Town, Tumushuke 
City, Xinjiang Province (Figure 1). The case information included 
hospitalization date, disease diagnosis code (ICD-10), disease 
diagnosis name, gender and age. The main hospitalization diagnosis 
was CHD (ICD-10: I25.1), and 882 hospitalized cases with a disease 
diagnosis of CHD were included in the analysis.

Pollutant data were obtained based on the China Big Data 
Seamless Ground particulate matter (PM2.5, PM10), nitrogen dioxide 
(NO2), sulfur dioxide (SO2) dataset and China Seamless Ground 
Maximum 8-h Sliding Average Ozone (O3_8h) dataset obtained from 
Wei (10–14); meteorological data were obtained based on the Third 
Pole Region Temperature, Precipitation, Specific Humidity, Wind 
Speed, and Air Pressure dataset obtained from Yang (15). All of the 
above meteorological and pollutant data are open access. This study 
began downloading these data on November 30, 2024. ArcGis 10.8 
was utilized to convert the above data into raster format data and to 
extract meteorological and pollutant concentration daily average data 
for Tangyi Town, Tumushuke City, Xinjiang Province, according to 
the administrative division area.

The study was approved by the Ethics Review Committee of the 
First Affiliated Hospital of Shihezi University School of Medicine 
(shz2010LL01). All experimental protocols involving human data 
were in accordance with the Declaration of Helsinki.

2.2 Statistical analysis

The statistical descriptions of daily mean temperature, relative 
humidity, and air pollutant concentrations (PM2.5, PM10, NO2, SO2, O3) 
were performed using a variety of methods, such as mean and standard 
deviation, percentile (P25, P50, P75), maximum versus minimum, and the 
number of days and multiples of pollutant concentration exceedances. To 
examine the relationship between meteorological variables and pollutant 
variables, Spearman’s correlation analysis was utilized. Chi-square test was 
used to statistically analyze the number of CHD hospitalizations by 
gender, age, and seasonal subgroups. Distributed lag nonlinear models 
(DLNM) were used to estimate the independent effects of daily mean 
temperature, relative humidity, and pollutant concentration on CHD, 
with subgroup analyses based on gender and age. In order to visualize the 
lagged effects of meteorological factors and pollutant concentrations, 
we also plotted three-dimensional and contour plots. In order to better 
understand the interaction effects between variables, we categorized these 
variables into binary variables by using the point of the minimum relative 
risk value of the exposure effect curves for mean daily temperature, 

Abbreviations: CHD, Coronary heart disease; GBD, Global burden of disease; RR, 

Relative risk; IRR, Interaction relative risk; RERI, Relative excess risk of interaction; 

DLNM, Distributed lag nonlinear model; ED, Days of exceedance; MEF, Maximum 

Exceedance Factor; RH, Relative humidity; PM2.5, Particulate matter with 

aerodynamic diameters ≤ 2.5 μm; PM10, Particulate matter with aerodynamic 

diameters ≤ 10 μm; SO2, Sulfur dioxide; NO2, Nitrogen dioxide; O3, Ozone; O3_8h, 

Daily Maximum 8-h Average Ozone; SD, Standard deviation.
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relative humidity, and pollutants as the threshold point. Quasi-Poisson 
regression models were then used to estimate the interactions between 
these variables.

2.3 Distributed lag nonlinear model (DLNM)

The DLNM model allows for simultaneous consideration of 
nonlinear and lagged effects of the exposure variable on the outcome 
variable by constructing a cross-basis function (9), and quasi-Poisson 
regression allows for consideration of over-discrete types of data. 
Hence, the DLNM model for estimating the effects of meteorological 
factors and pollutant concentrations on CHD hospitalization is 
as follows:

	 ( )µ−~Yt Quasi Poisson t 	 (1)

	 ( ) ( ) ( )µ α= + + + +log 1 ,t cb Xt ns Time df DOWt Holidayt	 (2)

In Equation 1, Yt represents the number of hospitalized cases of 
CHD on day t; μt represents the expected number of CHD 
hospitalizations on day t. In Equation 2, α1 is the intercept; Xt 
represents the variables on day t, including mean temperature, relative 
humidity, PM2.5, PM10, NO2, SO2, and O3; cb(Xt) was applied to capture 
the relationship between daily meteorological factors or daily pollutant 
concentrations (Xt) and the risk of CHD hospitalization. We used the 
natural spline functions (“ns”) in controlling the confounding of long-
time trend. Based on previous literature, the maximum lag period 
considered in this analysis is 7 days. The degree of freedom (df) to 

control long-term trends is 6 (16). DOWt and Holidayt were applied to 
control for week effects and holiday effects, respectively.

2.4 Interaction analysis

The quasi-Poisson regression model was employed to analyze the 
interaction of meteorological factors with pollutants and between 
pollutants (16, 17). Prior to the interaction analysis, we conducted a 
Spearman’s correlation analysis among all meteorological and 
pollutant variables to assess their interrelationships. Variables with a 
Spearman’s correlation coefficient greater than 0.8 in absolute value 
were considered highly correlated and were excluded from the 
interaction analysis to avoid multicollinearity issues. Daily mean 
temperature, relative humidity and pollutant variables were 
categorized based on the exposure-effect curves obtained from the 
DLNM model. The turning point of the curve or the point of 
the lowest risk effect value was chosen as the threshold point at which 
the variables were binary categorized. The lowest risk point 
corresponds to the lowest level of disease risk on the exposure-effect 
curve, and using this point as the threshold allows for a better 
understanding of the interaction effects between variables. For the 
meteorological and pollutant variables, we define T = 0 if the value of 
the variable is less than or equal to the value at the threshold point, 
and T = 1 if it exceeds the threshold point. The interaction model is 
then constructed as Equations 3, 4:

	 ( )µ−~Yt Quasi Poisson t 	 (3)

FIGURE 1

Geographic location of Tangyi Township, Tumushuke City, Xinjiang Province, China. Data source for desert distribution layer: Wang et al. (44) 1:100,000 
desert dataset, National Tibetan Plateau Data Center.
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	 ( ) α= + + + ∗log Yt A B A B	 (4)

where α is the intercept; When analyzing the interaction between 
meteorological factors and air pollutants, A represents meteorological 
factors and B represents air pollutants; when analyzing the interaction 
between air pollutants, A and B represent two different air pollutants, 
both of which are dichotomous variables; and A*B is the interaction 
term. The relative risks (RRs) associated with A, B and A*B were obtained 
from Equation 4, namely, RR10, RR01 and RR11, respectively. From the 
model, we can obtain the relative risk (RR) values for RR10, RR01, and 
RR11. These values are used to calculate the interaction relative risk (IRR), 
as well as the relative excess risk due to interaction (RERI) along with its 
corresponding 95% confidence interval (CI). These measures are utilized 
to evaluate the potential interaction effect. The formula for calculating 
IRR and RERI, along with their 95% CI, is as Equations 5, 6:

	 ( )= ×11 01 10IRR RR / RR RR 	 (5)

	 = − − +11 01 10RERI RR RR RR 1	 (6)

A significant interaction is observed when the 95% CI of the IRR 
does not include 1 or when the 95% CI of the RERI does not include 
0. Specifically, if IRR > 1 or RERI>0, it indicates a synergistic 
interaction, suggesting that the combined effect of meteorological 
factor and air pollution or the combined effect between air pollutants 
is greater than their individual effects alone. On the other hand, if 
IRR < 1 or RERI < 0, it indicates an antagonistic interaction.

2.5 Sensitivity analysis

Sensitivity analysis based on the Bayesian Information Criterion 
was conducted to determine the df controlling the long-term trends. 
In addition, the exposure-effect curves of meteorological factors and 
air pollutants on CHD hospitalization were all univariate analysis 
results. The exposure response curves of daily meteorological factors 
and air pollutions to CHD hospitalization, respectively, were 
univariate analyses. By controlling for confounding analysis, when 
analyzing one variable (temperature, relative humidity or pollutions), 
all the others were taken as confounding control to analyze whether 
the pre- and post-differences were small.

The “dlnm”, “splines” and “mgcv” packages in R software (V.4.4.2) 
were used to conduct all the analyses.

3 Results

3.1 Descriptive statistics

A total of 882 cases were hospitalized for CHD from 2016 to 2022. 
The age < 65 years group had the highest percentage of cases (58.6%). 
In addition, spring was the season with the highest number of CHD 
admissions. There were statistically significant differences in the 
gender, age and season groups of the cases (p < 0.05) (Table  1). 
Spearman’s rank correlation coefficients between meteorological 
factors and air pollutants are shown in Table 2.

The average concentrations of PM2.5, PM10, SO2, NO2, and O3_8h 
were measured as 78.8 μg/m3, 274.9 μg/m3, 11.4 μg/m3, 19.6 μg/m3, and 
100.3 μg/m3, respectively. The secondary maximum concentration limits 
for PM2.5, PM10, SO2, NO2, and O3_8h were 75, 150, 150, 80, and 160 μg/
m3, respectively. PM2.5 and PM10 were the pollutants with the most 
serious exceedance days and maximum exceedance multiples, with 
maximum exceedance multiples of 8.2 and 16.3, respectively (Table 3).

3.2 Association between meteorological 
factors, air pollutants and the risk of 
hospitalization for CHD

Figure 2 shows cumulative exposure-effect curves for the effects 
of meteorological factors and air pollutants on CHD with a 7-day lag. 
Both lower and higher temperatures and relative humidity increased 
the risk of CHD hospitalization, with the RR for temperature being 

TABLE 2  Spearman’s rank correlation coefficients for meteorological factors and air pollutants, 2016–2022.

Variable Temperature Relative humidity O3 NO2 SO2 PM2.5 PM10

Temperature 1

Relative humidity −0.987* 1

O3 0.895* −0.902* 1

NO2 −0.503* 0.505* −0.610* 1

SO2 −0.577* 0.552* −0.457* 0.188* 1

PM2.5 −0.316* 0.277* −0.390* 0.173* 0.091* 1

PM10 −0.081* 0.034 −0.155* 0.001 −0.159* 0.866* 1

*Represents statistical significance (p < 0.05).
PM2.5, Particulate matter with aerodynamic diameters ≤ 2.5 μm; PM10, Particulate matter with aerodynamic diameters ≤ 10 μm; NO2, Nitrogen dioxide; SO2, Sulfur dioxide; O3, Ozone.

TABLE 1  Description of CHD hospitalization cases, 2016–2022.

Characteristic Frequency Rate (%) χ2 p

Sex group

Male 411 46.7
8.2 0.004

Female 471 53.4

Age group

Age < 65 517 58.6
6.5 0.008

Age ≥ 65 365 41.4

Season group

Spring 268 30.4

20.6 <0.001
Summer 221 25.1

Autumn 195 22.1

Winter 198 22.4

https://doi.org/10.3389/fpubh.2025.1615288
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Han et al.� 10.3389/fpubh.2025.1615288

Frontiers in Public Health 05 frontiersin.org

TABLE 3  Description of meteorological factors and air pollutants, 2016–2022.

Variable Mean SD Min Median (P25, P75) Max ED MEF

Meteorological factors

Mean temperature (°C) 10.8 11.2 12.2 13.2(0.0,20.6) 29.7 – –

Relative humidity (%) 15.2 9.1 4.6 11.3(7.9,21.7) 46.2 – –

Air pollution

PM2.5(μg/m3) 78.8 67.2 14.1 60.8(43.2,83.8) 613.2 844 8.2

PM10(μg/m3) 274.9 248.9 40.2 195.6(136.4,293.0) 2444.1 1760 16.3

NO2(μg/m3) 19.6 7.2 8.3 17.6(14.6,22.4) 54.6 0 0

SO2(μg/m3) 11.4 5.2 4.8 10.1(7.6,13.3) 45.7 0 0

O3_8h(μg/m3) 100.3 25.3 45.8 102.5(78.9,120.0) 158.0 0 0

Px, the Xth percentile of the data; PM2.5, Particulate matter with aerodynamic diameters ≤ 2.5 μm; PM10, Particulate matter with aerodynamic diameters ≤ 10 μm; NO2, Nitrogen dioxide; SO2, 
Sulfur dioxide; O3_8h, Maximum 8-h Sliding Average Ozone; SD, standard deviation; ED, Exceedance Days; MEF, Maximum Exceedance Factor.

FIGURE 2

Cumulative exposure-effect curves of the effects of meteorological factors and air pollutants on CHD with a 7-day lag. (A) Temperature, 
(B) Relative humidity, (C) PM2.5: Particulate matter with aerodynamic diameters ≤ 2.5 μm, (D) PM10: Particulate matter with aerodynamic 
diameters ≤ 10 μm, (E) SO2: Sulfur dioxide, (F) NO2: Nitrogen dioxide, (G) O3: Ozone.
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greatest at 12.8°C (RR = 1.52, 95% CI: 1.14, 2.01) and for relative 
humidity at 11% (RR = 1.46, 95% CI: 1.15, 1.85). The risk of CHD 
hospitalization increased significantly with higher PM2.5, PM10 
concentrations. The lowest risk points of the exposure-effect curves 
for mean daily temperature, relative humidity, PM2.5, PM10, NO2, SO2, 
and O3 were at −1°C, 24%, 50 μg/m3, 156 μg/m3, 16 μg/m3, 11 μg/m3, 
and 111 μg/m3, respectively, and the variables were categorized in a 
binary fashion at these points.

The three-dimensional plots showed that the associations of daily 
mean temperature, relative humidity and pollutant concentrations 
with CHD all had nonlinear and lagged effects. However, different 
pollutants had different trends and showed different effects at different 
lag days (Figure 3).

In order to visualize the lagged effects of meteorological factors 
and air pollutants, we further plotted the contour plots of the effects 
of meteorological factors and air pollutants on CHD with a lag of 
7 days. The contour plots suggest that lower temperature and higher 
relative humidity may also exhibit varying lag effects on CHD. In 
addition, different pollutants also have different lag effects (Figure 4).

3.3 Subgroup analysis

Gender subgroup analyses showed that for males, the risk of CHD 
hospitalization increased with decreasing temperature, peaking at 
approximately 12°C with a RR of 1.46 (95% CI: 0.97, 2.19), but the 
effect was not statistically significant. The effect on CHD 
hospitalization tended to increase and then decrease with decreasing 
relative humidity, peaking at 12% relative humidity with an RR of 1.47 
(95% CI: 1.03, 2.00), and higher relative humidity did not have a 
significant effect on hospitalization but tended to increase. The effects 
of PM2.5, PM10, SO2, NO2, and O3 on CHD in males increased and then 
decreased, but none of these effects were significant. In females, the 
effect of temperature on CHD hospitalization showed a decreasing 
and then increasing trend, with a non-significant effect at low 
temperatures, peaking at approximately 15°C with an RR of 1.67 (95% 
CI: 1.16, 2.41), and the effect of relative humidity was similar to that 
of males, peaking at 10% relative humidity with an RR of 1.55 (95% 
CI: 1.12, 2.14). The effects of PM2.5 and PM10 concentrations on the 
risk of CHD hospitalization showed a “U” shaped trend, whereas the 

FIGURE 3

Three-dimensional plots of the association between meteorological factors and air pollutants and CHD with a 7-day lag. (A) Temperature, (B) Relative 
humidity, (C) PM2.5: Particulate matter with aerodynamic diameters ≤ 2.5 μm, (D) PM10: Particulate matter with aerodynamic diameters ≤ 10 μm, (E) SO2: 
Sulfur dioxide, (F) NO2: Nitrogen dioxide, (G) O3: Ozone.
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effects of SO2 and NO2 on CHD in females showed a decreasing trend, 
and the effect of O3 showed an inverted “U” shaped trend (Figures 5, 6).

Age subgroup analyses showed a U-shaped trend in the effect of 
PM2.5 concentration and relative humidity on the risk of CHD 
hospitalization in all age groups. The effect of lower relative humidity 
on the risk of CHD hospitalization peaked at 12% for all age groups. 
For the lower age groups (age < 65 years), different trends were 
observed for different pollutants, with a “U” shaped effect for PM10, 
with the risk of CHD hospitalization gradually increasing with 
increasing PM10 concentrations at higher concentrations, but not 
significantly at lower concentrations. The effect of temperature on 
CHD showed a similar U-shaped trend, with an increased risk of CHD 
hospitalization at both lower (approximately −10°C) and intermediate 
temperatures (10°C-20°C) and a peak RR at 13°C. The effect of SO2 
showed a gradual decrease with decreasing concentration. The effects 
of NO2 and O3 on CHD showed an inverted “U” shaped trend. In the 
older age group (age ≥ 65 years), the effects of the other variables were 
not significant, except for the change in PM2.5 concentration, which had 
a significant effect on the risk of hospitalization for CHD. However, it 
is worth noting that the risk of hospitalization for CHD tended to 

increase at moderate temperatures (10°C-20°C) or with an increase in 
the concentration of PM10 (Figures 7, 8).

The results of the three-dimensional and contour plots of the 
gender and age subgroup analyses showed that there was a lagged 
effect of different meteorological factors and air pollutants on the risk 
of hospitalization for CHD in different gender and age groups 
(Supplementary Figures S1–S8).

3.4 Interaction analysis

Table 4 shows the interactions between meteorological factors and 
air pollutants, and between individual air pollutants on the risk of 
CHD hospitalization. There is a significant interaction between 
temperature and some pollutants, including PM2.5, PM10 and NO2. The 
corresponding IRRs and 95% CIs were estimated to be 0.53 (95% CI: 
0.24, 0.83) and 0.36 (95% CI: 0.27, 0.47) and 0.24 (95% CI: 0.12, 0.35), 
respectively. The RERIs and 95% CIs were calculated to be −0.73 (95% 
CI: −2.63, −0.04) and −1.14 (95% CI: −1.93, −0.60) and −1.59 (95% 
CI: −3.80, −0.59), respectively, indicating an antagonistic effect 

FIGURE 4

Contour plots of the effects of meteorological factors and air pollutants on CHD with a lag of 7 days. (A) Temperature, (B) Relative humidity, (C) PM2.5: 
Particulate matter with aerodynamic diameters ≤ 2.5 μm, (D) PM10: Particulate matter with aerodynamic diameters ≤ 10 μm, (E) SO2: Sulfur dioxide, 
(F) NO2: Nitrogen dioxide, (G) O3: Ozone.
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between temperature and PM2.5, PM10 and NO2. However, we found 
that the risk of CHD hospitalization was increased only at low 
temperatures (<−1°C) with high PM10 concentrations (≥156 μg/m3) 
(RR = 1.53, 95% CI: 1.09, 2.13), and the antagonistic effect between 
temperature and PM2.5 was not significant. There was also an 
interaction of relative humidity with PM2.5, PM10 and NO2. The 
corresponding IRRs and 95% CIs were estimated to be 0.83 (95% CI: 
0.80, 0.94) and 1.37 (95% CI: 1.27, 1.52) and 1.36 (95% CI: 1.30, 1.69), 
respectively. The RERIs and 95% CIs were calculated to be −0.24 (95% 
CI: −0.30, −0.05) and 0.28 (95% CI: 0.26, 0.37) and 0.29 (95% CI: 0.20, 
0.46), respectively, which indicated that there was an antagonistic 
effect of relative humidity on PM2.5 and a synergistic effect on PM10 
and NO2. Similarly, we found that the risk of hospitalization for CHD 
was increased only in environments with low relative humidity and 

high concentrations of PM2.5 (p < 0.05). Interaction analysis between 
air pollutants showed synergistic interactions between O3 and NO2 
and SO2, and between SO2 and PM10. However, the risk of CHD 
hospitalization was decreased at low O3 and high SO2 concentrations, 
with a RR of 0.80 (95% CI: 0.66, 0.96). In addition, there was no 
interaction between NO2 and PM2.5 and PM10, while antagonistic 
interactions were observed for the remaining pollutants.

3.5 Sensitivity analysis

We estimated the BIC and AOE of the model when controlling for 
different degrees of freedom for the long-term trend. At a df of 6, the 
BIC and AOE values of the model were more desirable, and thus the 

FIGURE 5

Cumulative exposure-effect curves of the effects of meteorological factors and air pollutants on CHD in male with a 7-day lag. (A) Temperature, 
(B) Relative humidity, (C) PM2.5: Particulate matter with aerodynamic diameters ≤ 2.5 μm, (D) PM10: Particulate matter with aerodynamic 
diameters ≤ 10 μm, (E) SO2: Sulfur dioxide, (F) NO2: Nitrogen dioxide, (G) O3: Ozone.
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model was chosen to control for the long-term trend at a degree of 
freedom of 6. In addition, the differences between the model before 
and after model adjustments were smaller when analyzing a single 
variable (either the meteorological factor or the air pollutant) while 
controlling for the remaining variables as confounders 
(Supplementary Figures S9, S10).

4 Discussion

This study investigated the individual and interactive effects of 
meteorological factors and air pollutants on CHD. The DLNM model 
was used to estimate the associations of meteorological factors and air 
pollutants with CHD hospitalization. The results showed that 
meteorological factors and air pollutants had nonlinear and lagged 
effects on the risk of CHD hospitalization, and the magnitude of this 
effect varied by gender and age. The interaction results indicated that 

the risk of CHD hospitalization was increased under conditions of low 
temperature with high concentrations of PM10.

Changes in temperature may be a risk factor for cardiovascular 
disease development and mortality. The cumulative exposure-effect 
curves of meteorological factors and CHD hospitalization in this study 
showed that both high and low temperature environments increased 
the risk of CHD hospitalization, especially in females and those 
younger than 65 years. This is consistent with the results of previous 
studies (18–23). Under high temperature conditions, the body 
regulates body temperature through sweating, and heat exposure of 
the skin leads to vasodilation, increased cardiac output, and increased 
cardiac load, which may affect CHD patients and thus lead to an 
increase in CHD hospitalization under high temperature (24). The low 
temperature environment will reduce the body heat dissipation 
through vasoconstriction, but the blood viscosity of the body will 
increase in the low temperature environment, and the imbalance 
between myocardial oxygen supply and oxygen demand will also lead 

FIGURE 6

Cumulative exposure-effect curves of the effects of meteorological factors and air pollutants on CHD in female with a 7-day lag. (A) Temperature, 
(B) Relative humidity, (C) PM2.5: Particulate matter with aerodynamic diameters ≤ 2.5μm, (D) PM10: Particulate matter with aerodynamic 
diameters ≤ 10 μm, (E) SO2: Sulfur dioxide, (F) NO2: Nitrogen dioxide, (G) O3: Ozone.
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to an increased risk of hospitalization for CHD (25, 26). In addition, 
it has been shown that inflammatory factors correlate with the 
development of CHD, and heat waves induce increased levels of 
inflammatory markers, accelerating atherosclerosis and thrombosis 
(27). Our study also found that the effect of temperature on the risk of 
CHD hospitalization was not significant in the exposure-response 
curves for males and the higher age group. This may be because the 
exact timing of the lagged effect may vary by subgroup, and the 
cumulative 7-day time window may not adequately capture the critical 
time point of the health effects of temperature change, resulting in a 
nonsignificant overall effect. The lagged effect found in the contour 
plots results further suggests that the effect of temperature change on 
the risk of CHD hospitalization may need to be captured by more 
refined analytical methods.

According to the Global Burden of Disease (GBD) estimates, 
environmental pollution was responsible for approximately 9 million 
deaths worldwide in 2019, with more than half of these deaths 

attributed to CVD (3). The present study found that PM2.5 and PM10 
increase the risk of CHD even when cumulative exposures with a 7-day 
lag are considered. Numerous studies have shown that PM2.5 and PM10 
can increase the risk of CHD by inducing adverse physiologic responses 
in the body and thus increasing the risk of CHD (26, 28–30).

However, conclusions regarding the effects of gaseous pollutants 
on CHD are currently inconsistent. For example, a Canadian study 
showed that NO2 exposure led to an increased number of emergency 
department visits for CHD with a ER of 5.9% (95% CI: 2.1 to 9.9%) 
(31). In contrast, Xie’s study found no significant association between 
NO₂ exposure and the number of coronary emergency department 
visits, but there was a positive correlation between SO2 exposure and 
the number of coronary emergency department visits, although this 
correlation was not statistically significant (32). Another study showed 
that high levels of SO2 increased the number of CHD visits with a ER 
of 5.02% (95% CI: 2.23–7.88%), whereas O3 exposure was negatively 
correlated with the number of visits (33). Lin’s study, on the other 

FIGURE 7

Cumulative exposure-effect curves of the effects of meteorological factors and air pollutants on CHD at age < 65 years with a 7-day lag. 
(A) Temperature, (B) Relative humidity, (C) PM2.5: Particulate matter with aerodynamic diameters ≤ 2.5 μm, (D) PM10: Particulate matter with 
aerodynamic diameters ≤ 10 μm, (E) SO2: Sulfur dioxide, (F) NO2: Nitrogen dioxide, (G) O3: Ozone.
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hand, found that O3 exposure increased the number of CHD 
visits (34).

The cumulative exposure curves in this study showed that NO2, 
SO2 and O3 had a protective effect on CHD. This may be due to the 
fact that the present study area is located in southwestern Xinjiang, 
China, where the levels of these pollutants are well below the national 
standard limits. In addition, the contour plots in this study showed 
that there was a lagged effect of NO2, SO2, and O3 on the risk of 
hospitalization for CHD, and this lagged effect was observed in 
different gender and age groups, while the cumulative exposure curves 
failed to capture the critical time points, which may have masked part 
of the effect. However, the specific mechanisms underlying the effects 
of various air pollutants on CHD are still not fully understood. Future 
studies need to further explore the potential pathways through which 
air pollutants affect CHD in order to provide a basis for effective 
public health policies.

Our study found an interaction between meteorological factors 
and air pollutants through interaction analysis. In low-temperature 

environments, high concentrations of PM2.5 and PM10 increased the 
risk of CHD hospitalization. This may be due to the fact that when the 
ambient temperature is low, especially when the height of the 
atmospheric boundary layer is low, air mobility is reduced and PM2.5 
and PM10 are more likely to accumulate in the near-surface layer, 
resulting in elevated concentrations. This accumulation effect 
increases the exposure of the population to PM2.5 and exacerbates its 
health hazards (35). In low relative humidity environments, high 
concentrations of PM2.5 and PM10 also increase the risk of 
hospitalization for CHD. These results are consistent with previous 
studies. For example, Wu’s study noted that high concentrations of 
PM2.5 and PM10 increased the risk of CHD hospitalization by 23.9, 
23.3%, respectively, under low temperature conditions (25). The effect 
of pollutants on CHD hospitalisation was more pronounced at high 
relative humidity than at low relative humidity (36). This interaction 
between meteorological factors and pollutants may be due to the fact 
that high humidity increases the solubility of pollutants and the 
hygroscopicity of particulate matter, thus exacerbating the toxicity of 

FIGURE 8

Cumulative exposure-effect curves of the effects of meteorological factors and air pollutants on CHD at age ≥ 65 years with a 7-day lag. 
(A) Temperature, (B) Relative humidity, (C) PM2.5: Particulate matter with aerodynamic diameters ≤ 2.5μm, (D) PM10: Particulate matter with 
aerodynamic diameters ≤ 10μm, (E) SO2: Sulfur dioxide, (F) NO2: Nitrogen dioxide, (G) O3: Ozone.
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TABLE 4  Interaction analysis between meteorological factors and air pollutants on CHD hospitalization.

Variable Regressors RR(95%CI) P IRR(95%CI) RERI(95%CI)

Temperature, PM2.5 T = 1, PM2.5 = 1 0.95(0.50,1.83) 0.887 0.53(0.24,0.83) −0.73(−2.63,-0.04)

T = 0, PM2.5 = 1 1.35(0.72,2.55) 0.355

T = 1, PM2.5 = 0 1.34(0.72,2.50) 0.363

Temperature, PM10 T = 1, PM10 = 1 0.77(0.53,1.11) 0.158 0.36(0.27,0.47) −1.14(−1.93,-0.60)

T = 0, PM10 = 1 1.53(1.09,2.13) 0.014

T = 1, PM10 = 0 1.38(1.03,1.87) 0.034

Temperature, NO2 T = 1, NO2 = 1 0.59(0.33,1.59) 0.077 0.24(0.12,0.35) −1.59(−3.80,-0.59)

T = 0, NO2 = 1 1.42(0.81,2.49) 0.219

T = 1, NO2 = 0 1.76(1.02,3.05) 0.043

Temperature, SO2 T = 1, SO2 = 1 1.15(0.71,1.85) 0.566 1.45(0.91,2.05) 0.36(−0.02,0.52)

T = 0, SO2 = 1 0.80(0.51,1.26) 0.336

T = 1, SO2 = 0 0.99(0.65,1.51) 0.959

Relative humidity, PM2.5 RH = 1, PM2.5 = 1 0.90(0.48,1.68) 0.738 0.83(0.80,0.94) −0.24(−0.30,-0.05)

RH = 0, PM2.5 = 1 1.30(1.11,1.52) 0.001

RH = 1, PM2.5 = 0 0.84(0.46,1.52) 0.563

Relative humidity, PM10 RH = 1, PM10 = 1 1.21(0.83,1.76) 0.430 1.37(1.27,1.52) 0.28(0.26,0.37)

RH = 0, PM10 = 1 1.19(1.01,1.40) 0.036

RH = 1, PM10 = 0 0.74(0.55,1.01) 0.052

Relative humidity, NO2 RH = 1, NO2 = 1 1.02(0.57,1.84) 0.937 1.36(1.30,1.69) 0.29(0.20,0.46)

RH = 0, NO2 = 1 0.89(0.67,1.02) 0.169

RH = 1, NO2 = 0 0.85(0.75,1.05) 0.552

Relative humidity, SO2 RH = 1, SO2 = 1 0.89(0.56,1.43) 0.629 1.01(0.93,1.19) 0.12(−0.07,0.18)

RH = 0, SO2 = 1 0.93(0.78,1.11) 0.411

RH = 1, SO2 = 0 0.95(0.63,1.44) 0.813

PM2.5, NO2 PM2.5 = 1, NO2 = 1 1.06(0.79,1.42) 0.703 1.10(0.94,1.30) 0.06(−0.09,0.20)

PM2.5 = 0, NO2 = 1 0.80(0.63,1.02) 0.072

PM2.5 = 1, NO2 = 0 1.20(0.97,1.49) 0.102

PM2.5, SO2 PM2.5 = 1, SO2 = 1 0.90(0.65,1.24) 0.506 0.77(0.67,0.90) −0.31(−0.51,-0.11)

PM2.5 = 0, SO2 = 1 0.87(0.66,1.17) 0.358

PM2.5 = 1, SO2 = 0 1.33(1.11,1.59) 0.003

PM2.5, O3 PM2.5 = 1, O3 = 1 1.05(0.73,1.43) 0.752 0.82(0.70,0.95) −0.22(−0.56,-0.04)

PM2.5 = 0, O3 = 1 1.06(0.83,1.35) 0.752

PM2.5 = 1, O3 = 0 1.22(0.98,1.51) 0.081

PM10, NO2 PM10 = 1, NO2 = 1 1.10(0.82,1.48) 0.512 1.17(0.99,1.37) 0.13(−0.01,0.24)

PM10 = 0, NO2 = 1 0.80(0.64,1.02) 0.069

PM10 = 1, NO2 = 0 1.17(0.94,1.46) 0.153

PM10, SO2 PM10 = 1, SO2 = 1 1.20(0.89,1.62) 0.226 1.38(1.20,1.59) 0.29(0.25,0.35)

PM10 = 0, SO2 = 1 0.75(0.58,0.96) 0.023

PM10 = 1, SO2 = 0 1.16(0.96,1.41) 0.122

PM10, O3 PM10 = 1, O3 = 1 0.77(0.57,1.03) 0.078 0.44(0.38,0.51) −0.88(−1.27,-0.56)

PM10 = 0, O3 = 1 1.24(0.98,1.56) 0.074

PM10 = 1, O3 = 0 1.41(1.15,1.73) 0.001

(Continued)
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air pollutants (37). In turn, high concentrations of pollutants further 
exacerbate oxidative stress through direct stimulation of the 
respiratory tract and cardiovascular system and damage to endothelial 
cells, which leads to impaired vasodilatory function affecting 
autonomic regulation and aggravating the burden on the 
cardiovascular system (8, 37, 38). Our study also found an interaction 
between pollutants. Exposure to high concentrations of PM10 and SO2 
also increased the risk of CHD hospitalisation. This is consistent with 
the results of most previous studies (39–41). Both airborne particulate 
matter and gaseous pollutants induce adverse physiologic responses 
in the body, and simultaneous exposure to both can exacerbate 
damage to the body, thus further exacerbating the risk of CHD. It was 
also found that there was also a synergistic interaction between 
gaseous pollutants and that concurrent exposure increased the risk of 
CHD hospitalisation. This is consistent with previous findings (41, 
42). In addition to triggering metabolic disorders in the respiratory 
and cardiovascular systems of the body, combined pollutant exposure 
can also trigger metabolic disorders such as insulin resistance and 
dyslipidaemia, which can further exacerbate the risk of cardiovascular 
disease (43).

This study has some limitations. Firstly, the environmental 
variables in our study were obtained through monitoring stations and 
cannot accurately reflect individual exposure levels, resulting in 
potential bias in the results. Secondly, this study is not a community-
based study, and we  are studying a population in a rural area of 
southern Xinjiang. The geographic specificity of the study area and the 
unique living and dietary habits of this population mean that the 
results may be influenced by specific environmental or population 
characteristics, which limits the generalizability of the results and 
makes it possible that the results may not be directly generalizable to 
other different communities or populations. Third, this study is 
essentially an ecological study and cannot confirm the causal 
relationship between meteorological factors and air pollutants and 
CHD. Fourth, the small number of hospitalizations included in this 
study may have had an impact on the statistical reliability of the 
overall results, especially when the data were further subdivided into 
subgroups. Future studies with larger samples and in more areas are 
needed to verify the association between meteorological factors and 
air pollutants on CHD. Finally, it is worth noting that although the 
COVID-19 pandemic was covered during the period of this study, 
we believe that its impact on this study was minimal. Strict control 

measures, inherently low population density, and predominantly agro-
pastoralist production practices in the study area limited its spread. 
These factors effectively minimized the potential interference of 
COVID-19-related confounding factors with the study results.

5 Conclusion

In this study, the cumulative lagged effects of individual 
meteorological factors or air pollutants on the risk of CHD hospitalization 
and the interactions between the variables were simultaneously analyzed 
using a time-series DLNM model. The results of the study indicate that 
changes in meteorological conditions and high concentrations of 
airborne particulate matter may increase the risk of hospitalization for 
CHD in the heavily particulate-polluted rural areas of southern Xinjiang. 
Low-temperature or low-humidity environments accompanied by high 
concentrations of particulate matter may be key to the increased risk of 
hospitalization for CHD. There are also different interactions between 
gaseous pollutants and particulate matter. It is worth noting that high 
concentrations of SO2 may increase the risk of hospitalization for CHD 
even when airborne particulate matter concentrations are low. The 
results of this study emphasize the importance of relevant departments 
implementing targeted prevention and control measures based on 
meteorological and air pollution conditions. By doing so, we  can 
effectively reduce the hospitalization rate among CHD patients and 
alleviate the burden of this disease.
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TABLE 4  (Continued)

Variable Regressors RR(95%CI) P IRR(95%CI) RERI(95%CI)

NO2, SO2 NO2 = 1, O2 = 1 1.21(0.89,1.64) 0.232 1.83(1.60,2.13) 0.58(0.57,0.61)

NO2 = 0, SO2 = 1 0.80(0.62,1.03) 0.080

NO2 = 1, SO2 = 0 0.83(0.68,1.01) 0.055

NO2, O3 NO2 = 1, O3 = 1 1.05(0.78,1.41) 0.751 1.35(1.19,1.52) 0.29(0.23,0.35)

NO2 = 0, O3 = 1 0.94(0.76,1.17) 0.564

NO2 = 1, O3 = 0 0.83(0.68,1.01) 0.061

O3, SO2 O3 = 1, SO2 = 1 1.22(0.86,1.73) 0.260 1.73(1.68.1.75) 0.54(0.46,0.69)

O3 = 0, SO2 = 1 0.80(0.66,0.96) 0.017

O3 = 1, SO2 = 0 0.89(0.74,1.06) 0.200

T, Temperature; RH, Relative humidity; PM2.5, Particulate matter with aerodynamic diameters ≤ 2.5 μm; PM10, Particulate matter with aerodynamic diameters≤10 μm; NO2, Nitrogen dioxide; 
SO2, Sulfur dioxide; O3, Ozone; P, p value; RR, Relative risk; IRR, Interaction relative risk; RERI, Relative excess risk of interaction.
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