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Objective: This study aimed to compare the performance of machine learning
models in predicting low multiplier DRGs for advanced lung cancer, and to
identify the optimal algorithm along with key influencing factors.

Methods: Prediction models for low multiplier DRGs in advanced lung cancer
were developed using four machine learning algorithms: logistic regression,
hybrid naive Bayes, support vector machine (SVM), and random forest. Model
performance was evaluated, and key contributing features were identified.
Results: The random forest algorithm achieved the highest AUC, accuracy, and
precision across all three ER group, indicating robust performance. Second,
cost-related features and length of hospital stay (LoS) reflecting “resource
consumption” contributed significantly more to the low multiplier DRGs
prediction than demographic factors such as gender and age.

Conclusion: Based on comorbidity severity, the DRG classification for advanced
lung cancer patients receiving internal medicine treatment under ER1 appeared
reasonably structured and provided a valid basis for subgroup comparisons.
Additionally, according to the predictive model's findings, potential signs of
upcoding and intentional underuse of reimbursable medications were observed,
highlighting the need to monitor examination fee reductions across ER1
subgroups and to track medication costs in ER11 throughout the hospital stay.
Lastly, in predicting low multiplier DRGs, larger datasets improve model stability.
Model choice should align with the analytical goal: Random Forest offers higher
precision and robustness, while logistic regression or SVM may be preferred for
higher recall.

KEYWORDS

machine learning, advanced lung cancer, low multiplier DRGs, prediction model,
upcoding

1 Introduction

The DRG-based medical insurance payment system has increasingly been adopted
worldwide to address rising hospital costs, rather than relying on cost-based payments (1-3).
At its core, the DRG payment method introduces the concept of social average cost, calculated
from large-scale historical healthcare data (4). Under this system, patients classified in the
same diagnosis group are reimbursed based on the average treatment cost across all medical
institutions within a specific region or district. Low multiplier cases refer to those with medical
expenses lower than the average cost of a given DRG group. If the DRG payment amount
remains fixed, hospitals may profit from such cases. In contrast, high multiplier cases have
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medical expenses exceeding the average cost of the DRG group. If
payments continue to be based on the standard DRG amount,
hospitals or physicians may have to bear financial losses (5).

DRGs and their associated bundled metrics, such as high and low
multiplier cases and the case-mix index, play a central role in hospital
operations and financial performance. Therefore, accurate grouping is
essential. According to the U.S. MS-DRG and Chinas CHS-DRG
coding guidelines, the core principles guiding DRG categorization
include: cases with varying disease types should be classified
separately; patients diagnosed with the same condition but undergoing
different treatments should be assigned to distinct groups; and even
among patients with identical diagnoses and treatment approaches,
individual attributes—such as age, gender, and the presence of
comorbidities or complications—necessitate further subdivision (6, 7).

When DRGs are accurately classified, it becomes easier to identify
cases of high or low multiplier. Traditionally, the assignment of DRGs
has been a labor-intensive manual process, typically performed by
coding specialists after a patient’s discharge. For financial gain,
hospitals may sometimes engage in fraudulent practices by
intentionally upcoding DRG assignments (8), which can lead to low
multiplier cases, as the inflated DRG weight does not match actual
treatment costs. The phenomenon of upcoding has been reported in
many countries (8-10). A RAND review summarized the key
characteristics of studies on upcoding practices in provider settings.
Most of the included articles were published after 2015 (62%), and the
majority were conducted in the United States (59%). Of the 13 studies
that investigated upcoding for individual admissions or visits, most
did so by validating the accuracy of a coding intensity measure
compared with specific indicators of severity of a patient’s admission,
usually from administrative claims data (11). Apart from upcoding,
even when accurately assigned to a DRG group, hospitals or doctors
may still seek to maximize profits by intentionally withholding
necessary treatments (12). Both of these practices can contribute to
the emergence of low multiplier DRG cases (12). Mostly, when
regulatory authorities or payers attempt to monitor such behaviors,
they often rely on manual sampling methods. However, this manual
inspection method is time-consuming, labor-intensive, and
significantly influenced by the subjective judgments and random
errors of the inspectors, making proactive control challenging. A
U.S. study suggested future work should investigate further the
potential role of technological change in estimating the extent of
upcoding (13). It is precisely for the above purpose; this study tried to
use machine learning to distinguish between normal and abnormal
medical behaviors based on key factors or characteristics affecting
DRG low-multiplicity.

Machine learning techniques have recently been applied to a wide
range of healthcare applications (14). In healthcare, machine learning
has been employed to address classification tasks, develop predictive
models, and identify high-risk patients. In both academic and applied
researches, the automatic grouping or coding of DRGs—i.e., assigning
cases to appropriate DRG categories based on medical records—has
become the mainstream research focus. For example, a study proposed
a data-driven grouping approach optimized through machine learning
algorithms, demonstrating that, when appropriate algorithms are
selected, data-based grouping can achieve classification performance
comparable to traditional expert-defined grouping methods (14).
Furthermore, Wang et al. introduced DRG-LLaMA, a state-of-the-art
large language model (LLM) fine-tuned on clinical notes to improve
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DRG assignment. Their results indicated that DRG-LLaMA
outperformed previously established models in DRG prediction
accuracy (15).

In contrast, studies related to DRG-based cost prediction and
automatic cost classification remain relatively limited. This is largely due
to the sensitive nature of cost data, which makes it difficult to access, as
well as the complexity of factors influencing healthcare costs. On the
contrary, automatic DRG grouping is more feasible because it typically
relies on structured data from the discharge summary. Nonetheless,
some key studies on automatic cost prediction based on DRGs have
begun to emerge. Studies have leveraged deep learning and natural
language processing (NLP) models to improve early cost estimation
accuracy. For instance, Liu et al. employed NLP models to predict
DRGs and the corresponding case mix index (CMI) using clinical notes
and structured ICU data, in order to estimate hospital costs in an acute
care setting. Their method demonstrated high predictive accuracy, with
an absolute CMI error of less than 2.5% (16). In addition, many
researchers applied machine learning algorithms such as random
forests, support vector machines and neural network to predict medical
expenses, with random forests yielding the highest accuracy (17-19).

Due to the numerous DRG disease groups for various conditions,
this study focused solely on advanced primary lung cancer. Studies
from many countries showed that most newly diagnosed lung cancer
cases are at an advanced stage, including stage IIT and IV disease, most
of which is inoperable and can only be treated with medical or radiation
therapy (20, 21). The most common type of lung cancer is non-small
cell lung cancer (NSCLC) (20). In recent years, the treatment landscape
for NSCLC has undergone a paradigm shift from chemotherapy to
targeted therapies and immune checkpoint inhibitors (ICIs) (22). In the
U. S., the total costs of NSCLC have been increasing, mainly driven by
outpatient costs for systemic therapy, which might reflect the greater
use of ICIs for advanced NSCLC (22). A study from Mexico found that
patients with stage IV NSCLC showed considerable variation in active
treatment regimens (21). In addition, data from China showed that
among 174 primary lung cancer patients admitted to a hospital in 2019,
medication use was assessed, revealing that an unreasonably high
proportion—83.9%—of treatment plans were considered inappropriate.
Only 28 medical records, or 16.1%, had rational anti-cancer drug
treatment plans. Furthermore, the incidence of adverse drug reactions
(ADRs) was 32.2%, with chemotherapy-induced ADRs occurring in
44.4% of cases and targeted therapy-induced ADRs occurring in 7.14%
(23). In recent years, with the increasing variability and complexity in
the treatment of advanced non-surgical lung cancer, concerns have
emerged that hospitals may intentionally reduce inpatient costs to
avoid losses under the DRG payment system. Meanwhile, they may
also increase unnecessary treatments requiring out-of-pocket
payments, thereby adding to patients’ financial burden (12). These
behaviors may ultimately lead to low multiplier DRGs.

In China, according to version 1.0 of the CHS-DRG, patients
with primary lung cancer receiving internal medicine treatment are
classified under Major Diagnostic Category (MDC) E (Respiratory
System Diseases and Disorders). The core disease-related grouping
(ADRG) codes for this category include ER11, ER13, and ER15,
where “R” denotes the internal medicine section. ER11 refers to
respiratory system neoplasms with major complications or
comorbidities, ER13 refers to moderate cases with some
complications or comorbidities, and ER15 refers to cases without
major complications or comorbidities. Additionally, this grouping
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encompasses diagnoses coded as C33-C34, representing different
locations of malignant lung tumors, along with other diagnoses
indicating (severe) complications or comorbidities, and specific
treatments such as targeted therapy and palliative care (7). However,
this classification primarily reflects the “clinical process” aspect of
DRG grouping and does not adequately address “resource
consumption” (e.g., medications, supplies, length of stay, readmission
rates) or “patient characteristics” (e.g., age, gender) (7).

First, this study aimed to utilize the CHS-DRG grouping scheme
to qualitatively classify advanced primary lung cancer cases treated
with internal medicine. Subsequently, machine learning classification
models were developed to predict DRG multiplier associated with
the average cost of a given DRG group. By analyzing sample data, the
study sought to identify potential relationships between patient
characteristics and DRG multiplier, providing a quantitative basis
for scientific DRG supervision. Four machine learning models—
logistic regression, naive bayes, support vector machine, and random
forest—were employed for classification. The performance of these
models was evaluated and compared based on accuracy, sensitivity,
specificity, and the area under the receiver operating characteristic
(ROC) curve. The objective was to determine the most suitable
model for predicting DRG multiplier within DRG groups related to
advanced primary lung cancer. Ultimately, the study aimed to
facilitate intelligent monitoring of upcoding and inappropriate
treatments, particularly the under-provision of care within
insurance-covered services, thereby addressing issues associated
with low multiplier DRGs.

2 Construction of machine learning
models

2.1 Algorithm descriptions

In this study, four machine learning models were selected
for analysis:

1. Random forest algorithm

Random forest, introduced by Breiman (24), is an
ensemble learning method that builds a collection of
decision trees using random subsets of features and
training data (bagging). Each tree makes a prediction, and
the final classification result is determined by majority
voting. This approach reduces overfitting risk and
improves generalization.

Random forest is particularly effective in handling
structured data with complex, nonlinear interactions
among features. It is robust to outliers, can model feature
importance, and performs well even without extensive
feature engineering. Random forest has consistently
demonstrated strong predictive performance in numerous
studies related to medical cost estimation (17-19).

2. Naive bayes algorithm

The naive bayes classifier is a probabilistic model based on
Bayes’ theorem, which assumes conditional independence
among features given the class label. The advantage of
Gaussian Naive Bayes probability prediction is that, it is
computationally efficient and can handle large data sets
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with high dimensionality. Data of mixed data values is also
handled efficiently (25). Clinically, Naive Bayes aids in
disease prediction by evaluating the likelihood of
diagnoses based on symptoms, test results, or patient
demographics, using the probability of each category to
make a classification. Additionally, the probabilistic
outputs of Naive Bayes provide valuable prediction
confidence levels, supporting critical decision-making in
healthcare (26).
In this study, we adopted a hybrid naive bayes algorithm,
which integrates different modeling strategies for
continuous and categorical variables. Continuous
variables, such as total cost or LoS, are assumed to follow
a Gaussian distribution and are modeled using the
Gaussian Naive Bayes subcomponent. This involves
estimating the mean and standard deviation for each class,
and computing likelihoods under the normal distribution
assumption. On the other hand, categorical variables, such
as gender or ICD codes, are treated as discrete features and
modeled using the Categorical Naive Bayes framework,
depending on the encoding strategy. This hybrid approach
preserves the original information without discretization
and is well-suited to heterogeneous medical cost dataset.
3. Support vector machine (SVM) algorithm
The Support Vector Machine (SVM), proposed by Cortes
and Vapnik in 1995 (27), is a powerful classification
technique that seeks to find the optimal hyperplane that
separates classes in the feature space. By using kernel
functions, SVMs can handle both linear and nonlinear
decision boundaries, making them highly adaptable.
SVMs are considered highly effective when combined with
Principal Component Analysis (PCA) for feature
reduction. And SVMs are well-suited for classification
tasks with clear class boundaries and relatively few outliers.
For instance, Kuo et al. employed SVMs to predict
mortality rates among hospitalized motorcycle riders (28).
4. Logistic regression algorithm
Logistic regression is a widely used classification model
that estimates the probability of a binary outcome based
on one or more input features. It models the log-odds of
the response variable as a linear combination of the input
features and employs the logistic (sigmoid) function to
constrain output values between 0 and 1.
This algorithm is especially appropriate for structured and
interpretable classification tasks, particularly when the
input features have a roughly linear relationship with the
log-odds of the target. In medical research, logistic
regression is extensively used to predict disease occurrence,
treatment outcomes, and survival probabilities (29). The
above four machine learning classifiers were implemented
and compared within the Python 3.13.1 environment.

2.2 Data source and preprocessing
This study utilized data from the medical insurance management

system of a tertiary general hospital in Zhejiang Province. A total of
12,640 inpatient cases of internal medicine hospitalizations for lung
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cancer were collected between January 1, 2022, and December 31,
2024. The collected data included patient demographics (age and
gender), primary diagnosis and corresponding ICD codes, length of
hospital stay (LoS), and detailed hospitalization costs.

According to the CHS-DRG, the dataset was curated and
subjected to the following preprocessing steps to yield a final cohort
of 2,324 cases: including 631 cases of ER11 (respiratory system tumor
with serious complications or comorbidities), 1,305 cases of ER13
(respiratory system tumor with general complications or
comorbidities), and 388 cases of ER15 (respiratory system tumor
without complications or comorbidities).

1. Duplicate removal: eliminated redundant records from
the dataset.

2. Handling missing data: retrieved missing information from
patient records where possible; cases with unresolvable missing
data were excluded.

3. Adjustment for medical price index: normalized all cost data
from 2022 to 2024 to the 2024 baseline, accounting for medical
price inflation.

4. Exclusion of self-pay cases: removed cases involving self-paying
patients, focusing the study on DRG cases covered by
medical insurance.

2.3 Descriptive statistical analysis

Data were analyzed using Python version 3.13.1. Categorical
variables were summarized using frequencies and percentages, while
continuous variables were described using median, IQR/Median and
Skewness. Differences in medication costs, material costs, blood costs,
inspection and examination fees, and LoS among the ER11, ER13, and
ER15 groups were assessed using Kruskal-Wallis H test. A p-value of
less than 0.05 was considered statistically significant.

Table 1 presented the results, indicating that the proportion of
male patients was significantly higher than that of female patients
across the ER11, ER13, and ER15 groups. This finding aligned with
data from the National Cancer Center’s “China Cancer Statistics

10.3389/fpubh.2025.1614938

Report,” which reported that, as of July 2024, approximately
70-75% of lung cancer patients in China were male, and 25-30%
were female (30). The gender distribution in our study’s ER groups
was similar, with a slightly higher proportion of females in the
ER15 group.

The aforementioned report also indicated that individuals aged
50-70 constitute approximately 60-70% of lung cancer cases, while
those under 40 account for about 5-10% (30). See Table 1 in our study,
cases under 50 years old were rare, and the number of cases under 60
was lower than those aged 60 to 74. Therefore, we categorized patients
accordingly. Post-categorization, it was observed that in the ER11 and
ER13 groups, patient numbers increased with age, with those aged 75
and above comprising over half of the cases, and the ER15 group had
a smaller proportion of patients aged 75 and above (15.9%). This
discrepancy between the report and our study may stem from regional
differences; the national report reflects data across China, whereas our
study focuses on Zhejiang Province. Notably, in 2019, Zhejiang’s
average life expectancy was 79.1 years, among the highest nationwide
(31). Consequently, the higher proportion of patients aged 75 and
above in the ER11 and ER13 groups may be attributable to this
increased longevity. Additionally, the higher proportion of patients
aged 75 and above in the ER11 and ER13 groups may be explained by
the greater prevalence of comorbidities and complications in this
age group.

In our study, among the three groups of ER cases, the proportion
of patients with ICD main diagnostic code C34.900x001 (lung
malignant tumor) exceeded 50%, while the proportion of patients
with C34.900x006 (bilateral lung malignant tumor) was very small
(Table 1), and the proportions of patients diagnosed with C34.900x004
(malignant neoplasm of the left lung) and C34.900x005 (malignant
neoplasm of the right lung) were moderate. As also shown in Table 1,
the proportion of high multiplier DRG cases remained consistently
low across all three groups—7.6% in ER11 (48 cases), 1.8% in ER13
(24 cases), and 7.4% in ER15 (29 cases).

Then, according to many studies, inpatient cost data mostly
exhibit a right-skewed distribution (32, 33). Therefore, we conducted
a skewness analysis on the distributions of various cost-related
variables and LoS in ER11, ER13, and ER15. All of these variables

TABLE 1 Frequency and Proportion of Categorical Variables Among ER Patient Groups.

Variable Category ER11 Proportion ER13 Proportion ER15 Proportion
Frequency of ER11 Frequency of ER13 Frequency of ER15
Male 491 77.8% 936 71.7% 245 63.1%
Gender
Female 140 22.2% 369 28.3% 143 36.9%
<60 years 130 20.6% 272 20.8% 131 33.8%
Age 60-74 years 162 25.7% 304 23.3% 195 50.3%
>75 years 339 53.7% 729 55.9% 62 15.9%
C34.900x001 385 61.0% 814 62.4% 219 56.4%
ICD Pri
rimary €34.900x004 101 16.1% 226 17.3% 74 19.1%
Diagnosis
C34.900x005 141 22.3% 264 20.3% 95 24.5%
Code
C34.900x006 4 0.6% 1 0 0 0
High 48 7.6% 24 1.8% 29 7.4%
DRG
Low 103 16.3% 246 18.9% 78 20.2%
Multipliers
Normal 480 76.1% 1,035 79.3% 281 72.4%
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demonstrated significant right-skewness. A skewness value greater
than +1 was considered to indicate significant right-skewness
(Tables 2-6). Also, the Figure 1 below presents a visualization analysis
of the probability distributions for selected data from the three groups
as examples.

Because the data are right-skewed, this study used the more
robust variability measure, IQR/Median, to assess relative dispersion.
The median and IQR/Median for medication costs, material costs,
blood costs, inspection and examination fees, and LoS across the
ER11, ER13, and ER15 groups are presented in the below tables. An
IQR/Median value greater than 1.0 indicates that the data are highly
dispersed, with a large relative variability; a value between 0.3 and
1.0 suggests moderate dispersion, with a medium level of relative
variability. Notably, each ER group, the IQR/Median values for
medication costs, material costs, blood costs, and LoS exceed or
equal 1, indicating high dispersion and significant individual
variability in these expenses. In contrast, only the IQR/Median values
for inspection and examination fees are below 1, suggesting greater
consistency within the indicator. Subsequent the Kruskal-Wallis H
test revealed statistically significant differences among the ER groups
in terms of medication costs, material costs, blood costs, inspection
and examination fees, and LoS (p <0.001). Further pairwise
comparisons using Dunn’s post hoc test revealed that, except for the
difference in material costs between groups ER13 and ER15, which
was not statistically significant (p =0.483), all other indicators
showed significant differences among the three ER groups
(p < 0.001). These findings underscore the effectiveness of the DRG
classification system (ER11, 13, 15) in differentiating patient groups
(Tables 2-6).

2.4 Construction and results of predictive
models

This study utilized data from patient groups ER11, ER13, and
ERI15, incorporating categorical variables (age, gender, primary ICD
diagnosis and corresponding codes) and continuous variables
(medication costs, material costs, blood costs, inspection and
examination fees, and length of hospital stay) as feature variables. The
DRG cases with low or normal multiplicity served as the target
variable. Originally, the total sample sizes of the three groups—ERI11,
ER13, and ER15—were 631, 1,305, and 388, respectively. After
excluding the high multiplier DRG cases, the remaining samples—
including only normal and low multiplier DRGs—were reduced to
583, 1,281, and 359, respectively.

Four machine learning algorithms were employed to develop
models capable of predicting DRG cases. The performance of these
algorithms in predicting DRG cases was compared to identify the
optimal predictive model and to explore factors influencing the target

10.3389/fpubh.2025.1614938

variable. The goal was to provide decision support for early
intervention and prevention of abnormal medical processes.

2.4.1 Data and model preparation

Initially, since many feature variables—especially cost-related
ones—exhibit clear right-skewed distributions, such skewness may
affect machine learning model performance by distorting feature
weight learning and other behaviors. Therefore, we first identified all
skewed features, and applied a logarithmic transformation using
NumPy’s np.loglp function to those with a skewness greater than +1
to make their distributions more normal-like. After that, the feature
variables underwent normalization, scaling the data to a [0, 1] range.
Subsequently, data from the ER11, ER13, and ER15 groups were
randomly shuffled and partitioned. The experimental method used in
this study was 5-fold cross-validation, more precisely, stratified 5-fold
cross-validation. The dataset was only split into training and validation
sets, without a separate test set. This decision was made for several
reasons: the three groups in the dataset contain relatively limited
samples—583, 1,281, and 359 cases, respectively. Further splitting out
a test set would have significantly affected the representativeness of the
data. Moreover, the purpose of this study is a comparative analysis of
different models, rather than the deployment of a final predictive
model. Therefore, omitting a test set is acceptable under such research
goals, as supported by relevant literature (34, 35).

While using a separate test set is indeed helpful for evaluating a
model’s generalization ability on unseen data, our cross-validation
design took a different approach. To reduce the risk of overfitting and
prevent potential validation leakage during cross-validation, we chose
to use fixed (default) hyperparameters instead of performing grid
search over a predefined set of values. This approach ensures that no
fold is indirectly optimized during the tuning process, thus providing
a more reliable estimate of model generalization performance.

In our implementation, several key hyperparameters were either
explicitly specified or used with their default values to ensure
reproducibility and robustness. For the Random Forest classifier,
we set random_state = 42 to ensure reproducibility. The number of
trees (n_estimators) was left at the default value of 100.

For the naive bayes classifier, model evaluation was performed
using a fixed random seed (random_state = 42). For classification,
we applied a hybrid naive bayes approach using GaussianNB and
CategoricalNB, both with default hyperparameters, including variance
smoothing (1e-9) and Laplace smoothing (alpha = 1.0), respectively.

For the logistic regression classifier, the model is configured with
random_state = 42 and max_iter = 500, while other hyperparameters
such as penalty, solver, and C remain at their default settings.

For the support vector machine (SVM) classifier, the model is an
SVM (SVC) with kernel = “rbf” and random_state = 42.

Additionally, an analysis of the class label distributions in the
ERI11, ER13, and ER15 groups revealed that the ratios of normal to

TABLE 2 Median, IQR/Median, and Skewness of medication costs among ER patient groups.

Number of Median IQR / Median Skewness
cases
ER11 631 2454.2 1.9 9.9 338.329 <0.001
ER13 1,305 822.7 1.7 7.2 ‘ ‘
ER15 388 439.4 2.7 4.2 ‘ ‘
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TABLE 3 Median, IQR/Median, and Skewness of material costs among ER patient groups.

10.3389/fpubh.2025.1614938

Number of Median IQR/Median Skewness
cases
ERI1 631 691.9 13 6.9 43.930 <0.001
ERI13 1,305 516.1 1.0 65 ‘ ‘
ERI5 388 440.4 1.1 39 ‘ ‘

TABLE 4 Median, IQR/Median, and Skewness of blood costs among ER patient groups.

Number of Median IQR/Median Skewness
cases
ERI1 631 24547 2.0 9.9 343.180 <0.001
ERI13 1,305 782.5 17 7.6 ‘ ‘
ERI15 388 438.4 25 44 ‘ ‘

TABLE 5 Median, IQR/Median, and Skewness of inspection and examination fees among ER patient groups.

Number of Median IQR/Median Skewness
cases
ER11 631 6990.4 0.8 3.1 136.889 <0.001
ER13 1,305 5498.4 08 17 ‘ ‘
ERI15 388 3985.4 0.7 1.6 ‘ ‘

TABLE 6 Median, IQR/Median, and Skewness of length of stay (LoS) among ER patient groups.

Number of Median IQR/Median Skewness
cases
ERI1 631 6.0 1.0 10.5 306.305 <0.001
ER13 1,305 40 1.0 2.9 ‘ ‘
ERI5 388 2.0 1.5 27 ‘ ‘

low DRG multipliers were approximately 4.7:1, 4.2:1, and 3.6:1,
respectively. To mitigate the impact of class imbalance, the stratified
k-fold cross-validation and the compute_sample_weight function
from Python’s scikit-learn library was utilized. The core idea of the
stratified k-fold cross-validation is to ensure that the proportion of
each class in every fold remains consistent with the overall class
distribution of the dataset during the splitting process. And the
compute_sample_weight function calculates sample weights inversely
proportional to class frequencies, assigning higher weights to minority
class samples, thereby enabling the model to focus more on these
underrepresented cases.

2.4.2 Model evaluation metrics

The influencing factors for predicting the DRG multiplier were
identified based on the importance rankings of various indicators. In
5-fold cross-validation, the data was divided into 5 subsets (folds). The
models were trained on four subsets and validated on the remaining
one. This process was repeated five times. For each iteration, a set of
evaluation metrics—including Accuracy, Precision, Recall, F1-score,
and AUC (Area Under the ROC Curve)—was computed. The final
performance evaluation was obtained by averaging each of these
metrics across the five folds. Corresponding standard deviations were
also calculated to reflect the stability of model performance across
folds. Specifically: the accuracy measures the models’ overall ability to
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correctly classify both ‘low multiplier’ and ‘normal multiplier’ cases;
The precision indicates the proportion of cases predicted as low
multiplier’ that are indeed ‘low multiplier’ cases; The recall (sensitivity)
reflects the proportion of actual low multiplier’ cases that were
correctly identified by the models. AUC represents the area under the
ROC curve, illustrating the trade-off between sensitivity (recall) and
the false positive rate, a higher AUC indicates better model performance.

The commonly used evaluation metrics, along with their formulas
and explanations, are presented below (Equation 1).

Accurac —& (1)
4 TP+TN +FP+FN

Accuracy is the most intuitive classification metric. It represents
the proportion of correctly classified samples out of the total number
of samples (Equation 2).

Precision = T—P (2)
TP+ FP

Precision refers to the proportion of true positive samples among
all samples that are predicted as positive. A higher precision indicates
that the model is more accurate in identifying positive cases
(Equation 3).
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Probability distribution plots of selected costs and LoS in ER11, ER13 and ER15.

TP

TP+ FN

Recall = (3)

Recall (also known as sensitivity) is the proportion of actual
positive samples that are correctly identified by the model. A higher
recall means the model can detect more of the actual positive cases
(Equation 4).

Precisionx Recall

(4)

Fl—score=2x——m————
Precision+ Recall

F1-score is the harmonic mean of precision and recall. It balances
both precision and recall, making it especially useful when there is an
imbalance between them. A higher F1-score indicates better overall
performance of the model.

The components of the confusion matrix are defined as follows:
TP (True Positive) refers to the number of positive samples correctly
predicted as positive; TN (True Negative) is the number of negative
samples correctly predicted as negative; FP (False Positive) denotes the
number of negative samples incorrectly predicted as positive; and FN
(False Negative) represents the number of positive samples incorrectly
predicted as negative.

2.4.3 Comparison of predictive model performance
ROC curves for the four models across the ER11, ER13, and ER15
groups were presented in Figures 2-4. The results were largely
consistent across these groups. The areas under the ROC curves of the
three hybrid bayesian models were the smallest, indicating the worst
predictive performance. Except for a slightly lower performance in the
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ER15 group, the random forest model outperformed both the logistic
regression and support vector machine models, indicating superior
predictive performance. In addition, it can be seen that the ROC
curves of the ER13 group were the smoothest, while the ER15 group
were the most curved. ER13 had the largest sample size while ER15
had the smallest, indicating that the larger the sample size, the better
the model generalization, and the more stable the prediction. In
general, all four models performed well across the three ER groups,
with AUCs greater than 0.9.

Additionally, as shown in Tables 7-9, the random forest model
performed best in terms of accuracy, precision and AUC, making it
suitable for precise prediction of low-multiplicity cases. However, it
should be noted that the recall varied substantially, with somewhat
high standard deviations. Logistic regression and support vector
machine models achieved higher recall, enabling better coverage of
low-multiplicity cases and making them suitable for scenarios where
minimizing missed diagnoses is critical, though at the cost of slightly
lower precision. The overall performance of the naive bayes model was
relatively weaker, particularly in terms of precision, suggesting it may
not be suitable for use on its own for this task.

From the perspective of variance, the random forest model
exhibited the smallest overall standard deviation, with virtually no
fluctuation in AUC, making it the most stable and robust model,
suitable for generalization. In contrast, the naive bayes models showed
the largest variability, with relatively high variance across all metrics,
indicating the weakest robustness. Logistic regression and support
vector machines fell in between, demonstrating moderate stability.

Among the three datasets—ER11, ER13, and ER15—the random
forest model performed best on ER13, achieving the highest accuracy
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(95.47%) and consistently high AUC, suggesting the strongest model
performance on this dataset. On the other hand, all models performed
relatively poorly on ER15, with the random forest showing a notably
lower recall (as low as 0.729), indicating that this dataset or its samples
may be more difficult to classify. This may be related to sample size:
ER13 had the largest number of samples, while ER15 had the fewest,
suggesting that larger datasets may lead to better model performance.

2.4.4 Feature importance analysis

Feature importance ranking of various indicators was organized
for the random forest model constructed in the three groups, as shown
in Figures 5-7. It can be observed firstly, variables such as medication
costs, material costs, blood costs, inspection and examination fees,
and length of hospital stay contributed significantly to the construction
of each model; Secondly, age, gender, and the main diagnostic and
coding features of ICD contributed less to the development of the
algorithm models.

3 Discussion

DRG is a valuable tool for reducing healthcare costs and
improving hospital quality and efficiency. The system is
technically and administratively complex, and its actual
performance depends on organizational behavior. Successful
implementation of the DRG/case-mix system requires continuous
evidence-based evaluation and monitoring of healthcare services
(36). Since the implementation of DRG systems, many countries
have reported the phenomenon of discretionary DRG coding by
hospitals. A study in Indonesia suggested that narrowing the price
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differences between DRG groups may help reduce such
discretionary coding to some extent (10). In the United States,
research showed that the estimated effects of upcoding are not
only statistically significant but also economically substantial.
Using the most conservative estimates of upcoding, a 3% markup
was observed as a result of the MS-DRG system. In 2008, hospital
healthcare expenditures in the U. S. totaled approximately $730
billion. Based on the 3% lower-bound estimate, this implies that
around $20 billion in excess payments could be attributed to
upcoding (13).

Among the many DRG disease groups, this study selected
advanced primary lung cancer receiving internal medicine treatments
as the research focus because treatment approaches—such as targeted
and immunotherapy—are evolving rapidly and lack standardized
protocols. This creates challenges for DRG-based payment systems in
effectively regulating non-standard medical practices. As previously
mentioned, these discretionary and non-standard medical practices
are likely to result in low multiplier DRGs. This study aimed to develop
machine learning models capable of automatically predicting whether
a given DRG group falls under low multiplier cases, thereby laying the
groundwork for pre- and mid-process supervision of DRG-based
payment during hospitalization. Currently, very few studies have been
found that use machine learning to predict or automatically classify
DRG multiplicity. A study from Switzerland, similar to ours, applied
Random Forest and LASSO-regularized logistic regression to identify
variables that predict high-profit and/or high-deficit DRGs. The
researchers found that oncological cases were well-funded under the
2012 Swiss DRG system. In particular, a high PCCL (Patient Clinical
Complexity Level) score often resulted in classification into a more
highly remunerated DRG. As a result, variables such as leukemia and
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FIGURE 3
ROC curve of the prediction models for ‘low-multiplicity cases’ in the ER13 group.

the PCCL score were identified as important predictors of high-profit
cases (37).

In this study, descriptive statistical analyses indicated that the
demographic distribution (gender, age) of the three selected sample
groups aligned closely with the population of advanced lung cancer
patients, suggesting that the samples were representative. Furthermore,
the Kruskal-Wallis H test showed significant differences in cost-
related variables and LoS between the three ER groups. This indicates
that version 1.0 of the CHS-DRG classification — particularly its
categorization of diagnostic terms and the severity of associated
complications — is reasonably designed for advanced lung cancer
cases, providing a solid foundation for developing machine learning
prediction its models. Additionally, the proportion of high multiplier
DRG cases was relatively low across all three groups, suggesting that
low multiplier DRG cases are more prevalent. Supporting this,
literature reported that low multiplier cases are predominantly found
in categories like neurological diseases (MDCB) and respiratory
diseases (MDCE), with annual growth rates of 8.14 and 26.15%,
respectively (12).

Besides, based on the values of IQR/Median, within each ER
group, the distributions of medication, material, blood costs are
relatively dispersed, indicating considerable variability among
patients. In contrast, inspection and examination fees exhibited more
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centralized distributions, reflecting higher uniformity and
standardization within these groups. This suggests that, within each
ER group, medication, material and blood costs are key variables for
monitoring potentially inappropriate medical practices.

Moreover, the feature importance of predictive models revealed
that variables reflecting “resource consumption”—such as medication
costs, material costs, blood costs, inspection and examination fees,
and LoS—significantly contribute to the construction of model across
all three ER groups. It suggests that these variables have a substantial
impact on DRG multiplier payment. Following these, count variables
like age, gender, and ICD primary diagnosis codes play a secondary
or minor role.

It is also important to emphasize that across all three ER groups,
inspection and examination fees consistently show a high level of
importance in contributing to the “low multiplier cases,” which may
be related to upcoding practices. According to version 1.0 of the
CHS-DRG system, in addition to classification under ER1, patients
with advanced lung cancer receiving internal medicine treatments
may also be grouped under RE1 (malignant proliferative diseases
treated with chemotherapy and/or targeted or biological therapies) or
RU2 (malignant proliferative diseases treated with immunotherapy).
Based on data from the hospital we observed, the RW (Relative
Weight) values for ER11, RE11, and RU21 (with the second digit “1”
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TABLE 7 Performance evaluation metrics of prediction models for low multiplier cases in the ER11 group.

Accuracy

(standard
deviation)

Precision
(standard
deviation)

Recall (standard
deviation)

F1 Score
(standard
deviation)

AUC (standard
deviation)

Hybrid Bayesian 0.8507 (0.0203) 0.7528 (0.0816) 0.8352 (0.0712) 0.7898 (0.0642) 0.9673 (0.0121)
Random Forest 0.9314 (0.0093) 0.9249 (0.0253) 0.8357 (0.0647) 0.8770 (0.0417) 0.9939 (0.0029)
Logistic Regression 0.8971 (0.0123) 0.7589 (0.0370) 0.9419 (0.0367) 0.8403 (0.0350) 0.9807 (0.0089)

SVM

0.8936 (0.0318)

0.7187 (0.0631)

0.9514 (0.0437)

0.8183 (0.0545)

0.9817 (0.0103)

TABLE 8 Performance evaluation metrics of prediction models for low multiplier cases in the ER13 group.

Accuracy

(standard
deviation)

Precision
(standard
deviation)

Recall (standard
deviation)

F1 Score
(standard
deviation)

AUC (standard
deviation)

Hybrid Bayesian

0.8915 (0.0211)

0.6576 (0.0476)

0.9227 (0.0240)

0.7668 (0.0349)

0.9542 (0.0152)

Random Forest

0.9547 (0.0153)

0.9050 (0.0293)

0.8540 (0.0623)

0.8780 (0.0429)

0.9907 (0.0046)

Logistic Regression

0.9290 (0.0197)

0.7470 (0.0503)

0.9593 (0.0224)

0.8394 (0.0393)

0.9814 (0.0075)

SVM

0.9399 (0.0112)

0.7839 (0.0327)

0.9513 (0.0276)

0.8590 (0.0239)

0.9910 (0.0047)

TABLE 9 Performance evaluation metrics of prediction models for low multiplier cases in the ER15 group.

Accuracy

(standard
deviation)

Precision
(standard
deviation)

Recall (standard
deviation)

F1 Score
(standard
deviation)

AUC (standard
deviation)

Hybrid Bayesian 0.8441 (0.0317) 0.6097 (0.0560) 0.8450 (0.0884) 0.7034 (0.0388) 0.9283 (0.0228)
Random Forest 0.9248 (0.0206) 0.9072 (0.0517) 0.7292 (0.1012) 0.8039 (0.0717) 0.9710 (0.0192)
Logistic Regression 0.9110 (0.0356) 0.7591 (0.1052) 0.9083 (0.0687) 0.8198 (0.0550) 0.9757 (0.0102)
SVM 0.8887 (0.0289) 0.6791 (0.0511) 0.9350 (0.0578) 0.7859 (0.0482) 0.9670 (0.0167)
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indicating the presence of major complications or comorbidities) are
1.24, 0.78, and 0.72, respectively. The highest RW for ER11 suggests
that this group receives the most intensive treatment and incurs the
highest level of costs compared to the other two. In contrast, patients
classified under RE1 and RU2 are often readmitted for short-term
chemotherapy or immunotherapy, and therefore do not require
comprehensive re-examinations during hospitalization. If cases that
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should have been assigned to RE1 or RU2 are instead placed under
ER1 due to upcoding motives, they may undergo fewer inspection and
examination fees than truly appropriate ER1 cases. This reduction in
examinations could lead to lower multiplier DRGs. In this study,
we also interviewed several physicians at the hospital. Some admitted
that, when filling out diagnostic information, there is a possibility of
deliberately assigning patients to more “complicated” DRG groups.
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This is similar to findings from a Norwegian study, which described
such behavior as “a deliberate and systematic shift in a hospital’s
reported case mix in order to improve reimbursement (9).”

Additionally, in the ER11 group, which includes cases with severe
complications or comorbidities, medication costs have the greatest
impact on lower multiplier DRGs. Thus, when DRG classification is
accurate, doctors or hospitals, in order to retain a surplus from
medical insurance payments, may shift part of the medication
treatment to services, resulting in lower
multiplier DRGs.

Finally, the observed differences in the performance of the four

out-of-pocket

machine learning models can be largely attributed to their inherent
algorithmic characteristics. The random forest model consistently
outperformed the others across the ER11, ER13, and ER15 groups
in terms of AUC, accuracy, and precision, particularly excelling in
the ER13 dataset where the sample size was the largest. This is likely
due to its ensemble structure and robustness against overfitting, as
well as its ability to handle complex feature interactions and
non-linear relationships. However, its recall exhibited noticeable
variability, indicating some instability in identifying low-multiplicity
cases under different data splits. In contrast, logistic regression and
support vector machine (SVM) models achieved higher recall,
making them more suitable for scenarios where minimizing missed
diagnoses is a priority, such as pre-claim review or clinical warning
systems. Their performance reflects their tendency to classify more
instances as positive, thus improving coverage at the cost of lower
precision. On the other hand, Naive Bayes models demonstrated the
weakest overall performance, particularly in terms of precision and
robustness. This is largely due to their underlying assumption of
feature independence, which often does not hold in complex
healthcare datasets. As a result, their predictive power can be limited
in certain clinical contexts, highlighting the need for feature
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engineering or hybrid modeling approaches to enhance accuracy.
Additionally, the models performed best on the ER13 group and
worst on ER15, which may be explained by the differences in sample
size. ER13 had the largest number of cases, allowing better
generalization and smoother ROC curves, whereas ER15 had the
fewest to lower recall and more

samples, leading

volatile performance.

4 Conclusion

Firstly, regarding differences in treatment costs and length of stay
(LoS), the DRG cdlassification of advanced primary lung cancer
patients receiving internal medicine treatment under ER1—based on
the severity of comorbidities or complications—appears relatively
reasonable and can serve as a basis for comparing DRG-based
payment systems across groups.

In addition, based on the findings of this study, during
hospitalization for the three ERI subgroups, particular attention
should be paid to whether there is a noticeable reduction in inspection
and examination fees, which may indicate upcoding. Other, in the
ERI11 group, where patients have severe complications, medication
treatment should also be closely monitored to prevent intentional
underuse of reimbursable drugs.

Lastly, in models for low multiplier DRG prediction, the results
suggest that larger datasets tend to enhance model stability and
performance. Moreover, model selection should be purpose-driven:
Random Forest is preferable for high precision and robustness, while
logistic regression or SVM is more suitable when high recall is
required. By applying machine learning models to automatically
predict low multiplier DRG cases, potential signs of inappropriate
medical behaviors can be identified, enabling early intervention and
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supporting the transition from retrospective reimbursement to a
DRG-based prospective payment system.
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