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Objective: This study aimed to compare the performance of machine learning 
models in predicting low multiplier DRGs for advanced lung cancer, and to 
identify the optimal algorithm along with key influencing factors.
Methods: Prediction models for low multiplier DRGs in advanced lung cancer 
were developed using four machine learning algorithms: logistic regression, 
hybrid naive Bayes, support vector machine (SVM), and random forest. Model 
performance was evaluated, and key contributing features were identified.
Results: The random forest algorithm achieved the highest AUC, accuracy, and 
precision across all three ER group, indicating robust performance. Second, 
cost-related features and length of hospital stay (LoS) reflecting “resource 
consumption” contributed significantly more to the low multiplier DRGs 
prediction than demographic factors such as gender and age.
Conclusion: Based on comorbidity severity, the DRG classification for advanced 
lung cancer patients receiving internal medicine treatment under ER1 appeared 
reasonably structured and provided a valid basis for subgroup comparisons. 
Additionally, according to the predictive model’s findings, potential signs of 
upcoding and intentional underuse of reimbursable medications were observed, 
highlighting the need to monitor examination fee reductions across ER1 
subgroups and to track medication costs in ER11 throughout the hospital stay. 
Lastly, in predicting low multiplier DRGs, larger datasets improve model stability. 
Model choice should align with the analytical goal: Random Forest offers higher 
precision and robustness, while logistic regression or SVM may be preferred for 
higher recall.
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1 Introduction

The DRG-based medical insurance payment system has increasingly been adopted 
worldwide to address rising hospital costs, rather than relying on cost-based payments (1–3). 
At its core, the DRG payment method introduces the concept of social average cost, calculated 
from large-scale historical healthcare data (4). Under this system, patients classified in the 
same diagnosis group are reimbursed based on the average treatment cost across all medical 
institutions within a specific region or district. Low multiplier cases refer to those with medical 
expenses lower than the average cost of a given DRG group. If the DRG payment amount 
remains fixed, hospitals may profit from such cases. In contrast, high multiplier cases have 
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medical expenses exceeding the average cost of the DRG group. If 
payments continue to be  based on the standard DRG amount, 
hospitals or physicians may have to bear financial losses (5).

DRGs and their associated bundled metrics, such as high and low 
multiplier cases and the case-mix index, play a central role in hospital 
operations and financial performance. Therefore, accurate grouping is 
essential. According to the U.S. MS-DRG and China’s CHS-DRG 
coding guidelines, the core principles guiding DRG categorization 
include: cases with varying disease types should be  classified 
separately; patients diagnosed with the same condition but undergoing 
different treatments should be assigned to distinct groups; and even 
among patients with identical diagnoses and treatment approaches, 
individual attributes—such as age, gender, and the presence of 
comorbidities or complications—necessitate further subdivision (6, 7).

When DRGs are accurately classified, it becomes easier to identify 
cases of high or low multiplier. Traditionally, the assignment of DRGs 
has been a labor-intensive manual process, typically performed by 
coding specialists after a patient’s discharge. For financial gain, 
hospitals may sometimes engage in fraudulent practices by 
intentionally upcoding DRG assignments (8), which can lead to low 
multiplier cases, as the inflated DRG weight does not match actual 
treatment costs. The phenomenon of upcoding has been reported in 
many countries (8–10). A RAND review summarized the key 
characteristics of studies on upcoding practices in provider settings. 
Most of the included articles were published after 2015 (62%), and the 
majority were conducted in the United States (59%). Of the 13 studies 
that investigated upcoding for individual admissions or visits, most 
did so by validating the accuracy of a coding intensity measure 
compared with specific indicators of severity of a patient’s admission, 
usually from administrative claims data (11). Apart from upcoding, 
even when accurately assigned to a DRG group, hospitals or doctors 
may still seek to maximize profits by intentionally withholding 
necessary treatments (12). Both of these practices can contribute to 
the emergence of low multiplier DRG cases (12). Mostly, when 
regulatory authorities or payers attempt to monitor such behaviors, 
they often rely on manual sampling methods. However, this manual 
inspection method is time-consuming, labor-intensive, and 
significantly influenced by the subjective judgments and random 
errors of the inspectors, making proactive control challenging. A 
U.S. study suggested future work should investigate further the 
potential role of technological change in estimating the extent of 
upcoding (13). It is precisely for the above purpose; this study tried to 
use machine learning to distinguish between normal and abnormal 
medical behaviors based on key factors or characteristics affecting 
DRG low-multiplicity.

Machine learning techniques have recently been applied to a wide 
range of healthcare applications (14). In healthcare, machine learning 
has been employed to address classification tasks, develop predictive 
models, and identify high-risk patients. In both academic and applied 
researches, the automatic grouping or coding of DRGs—i.e., assigning 
cases to appropriate DRG categories based on medical records—has 
become the mainstream research focus. For example, a study proposed 
a data-driven grouping approach optimized through machine learning 
algorithms, demonstrating that, when appropriate algorithms are 
selected, data-based grouping can achieve classification performance 
comparable to traditional expert-defined grouping methods (14). 
Furthermore, Wang et al. introduced DRG-LLaMA, a state-of-the-art 
large language model (LLM) fine-tuned on clinical notes to improve 

DRG assignment. Their results indicated that DRG-LLaMA 
outperformed previously established models in DRG prediction 
accuracy (15).

In contrast, studies related to DRG-based cost prediction and 
automatic cost classification remain relatively limited. This is largely due 
to the sensitive nature of cost data, which makes it difficult to access, as 
well as the complexity of factors influencing healthcare costs. On the 
contrary, automatic DRG grouping is more feasible because it typically 
relies on structured data from the discharge summary. Nonetheless, 
some key studies on automatic cost prediction based on DRGs have 
begun to emerge. Studies have leveraged deep learning and natural 
language processing (NLP) models to improve early cost estimation 
accuracy. For instance, Liu et  al. employed NLP models to predict 
DRGs and the corresponding case mix index (CMI) using clinical notes 
and structured ICU data, in order to estimate hospital costs in an acute 
care setting. Their method demonstrated high predictive accuracy, with 
an absolute CMI error of less than 2.5% (16). In addition, many 
researchers applied machine learning algorithms such as random 
forests, support vector machines and neural network to predict medical 
expenses, with random forests yielding the highest accuracy (17–19).

Due to the numerous DRG disease groups for various conditions, 
this study focused solely on advanced primary lung cancer. Studies 
from many countries showed that most newly diagnosed lung cancer 
cases are at an advanced stage, including stage III and IV disease, most 
of which is inoperable and can only be treated with medical or radiation 
therapy (20, 21). The most common type of lung cancer is non-small 
cell lung cancer (NSCLC) (20). In recent years, the treatment landscape 
for NSCLC has undergone a paradigm shift from chemotherapy to 
targeted therapies and immune checkpoint inhibitors (ICIs) (22). In the 
U. S., the total costs of NSCLC have been increasing, mainly driven by 
outpatient costs for systemic therapy, which might reflect the greater 
use of ICIs for advanced NSCLC (22). A study from Mexico found that 
patients with stage IV NSCLC showed considerable variation in active 
treatment regimens (21). In addition, data from China showed that 
among 174 primary lung cancer patients admitted to a hospital in 2019, 
medication use was assessed, revealing that an unreasonably high 
proportion—83.9%—of treatment plans were considered inappropriate. 
Only 28 medical records, or 16.1%, had rational anti-cancer drug 
treatment plans. Furthermore, the incidence of adverse drug reactions 
(ADRs) was 32.2%, with chemotherapy-induced ADRs occurring in 
44.4% of cases and targeted therapy-induced ADRs occurring in 7.14% 
(23). In recent years, with the increasing variability and complexity in 
the treatment of advanced non-surgical lung cancer, concerns have 
emerged that hospitals may intentionally reduce inpatient costs to 
avoid losses under the DRG payment system. Meanwhile, they may 
also increase unnecessary treatments requiring out-of-pocket 
payments, thereby adding to patients’ financial burden (12). These 
behaviors may ultimately lead to low multiplier DRGs.

In China, according to version 1.0 of the CHS-DRG, patients 
with primary lung cancer receiving internal medicine treatment are 
classified under Major Diagnostic Category (MDC) E (Respiratory 
System Diseases and Disorders). The core disease-related grouping 
(ADRG) codes for this category include ER11, ER13, and ER15, 
where “R” denotes the internal medicine section. ER11 refers to 
respiratory system neoplasms with major complications or 
comorbidities, ER13 refers to moderate cases with some 
complications or comorbidities, and ER15 refers to cases without 
major complications or comorbidities. Additionally, this grouping 
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encompasses diagnoses coded as C33-C34, representing different 
locations of malignant lung tumors, along with other diagnoses 
indicating (severe) complications or comorbidities, and specific 
treatments such as targeted therapy and palliative care (7). However, 
this classification primarily reflects the “clinical process” aspect of 
DRG grouping and does not adequately address “resource 
consumption” (e.g., medications, supplies, length of stay, readmission 
rates) or “patient characteristics” (e.g., age, gender) (7).

First, this study aimed to utilize the CHS-DRG grouping scheme 
to qualitatively classify advanced primary lung cancer cases treated 
with internal medicine. Subsequently, machine learning classification 
models were developed to predict DRG multiplier associated with 
the average cost of a given DRG group. By analyzing sample data, the 
study sought to identify potential relationships between patient 
characteristics and DRG multiplier, providing a quantitative basis 
for scientific DRG supervision. Four machine learning models—
logistic regression, naive bayes, support vector machine, and random 
forest—were employed for classification. The performance of these 
models was evaluated and compared based on accuracy, sensitivity, 
specificity, and the area under the receiver operating characteristic 
(ROC) curve. The objective was to determine the most suitable 
model for predicting DRG multiplier within DRG groups related to 
advanced primary lung cancer. Ultimately, the study aimed to 
facilitate intelligent monitoring of upcoding and inappropriate 
treatments, particularly the under-provision of care within 
insurance-covered services, thereby addressing issues associated 
with low multiplier DRGs.

2 Construction of machine learning 
models

2.1 Algorithm descriptions

In this study, four machine learning models were selected 
for analysis:

	 1.	 Random forest algorithm
Random forest, introduced by Breiman (24), is an 
ensemble learning method that builds a collection of 
decision trees using random subsets of features and 
training data (bagging). Each tree makes a prediction, and 
the final classification result is determined by majority 
voting. This approach reduces overfitting risk and 
improves generalization.
Random forest is particularly effective in handling 
structured data with complex, nonlinear interactions 
among features. It is robust to outliers, can model feature 
importance, and performs well even without extensive 
feature engineering. Random forest has consistently 
demonstrated strong predictive performance in numerous 
studies related to medical cost estimation (17–19).

	 2.	 Naive bayes algorithm
The naive bayes classifier is a probabilistic model based on 
Bayes’ theorem, which assumes conditional independence 
among features given the class label. The advantage of 
Gaussian Naïve Bayes probability prediction is that, it is 
computationally efficient and can handle large data sets 

with high dimensionality. Data of mixed data values is also 
handled efficiently (25). Clinically, Naïve Bayes aids in 
disease prediction by evaluating the likelihood of 
diagnoses based on symptoms, test results, or patient 
demographics, using the probability of each category to 
make a classification. Additionally, the probabilistic 
outputs of Naïve Bayes provide valuable prediction 
confidence levels, supporting critical decision-making in 
healthcare (26).
In this study, we adopted a hybrid naive bayes algorithm, 
which integrates different modeling strategies for 
continuous and categorical variables. Continuous 
variables, such as total cost or LoS, are assumed to follow 
a Gaussian distribution and are modeled using the 
Gaussian Naive Bayes subcomponent. This involves 
estimating the mean and standard deviation for each class, 
and computing likelihoods under the normal distribution 
assumption. On the other hand, categorical variables, such 
as gender or ICD codes, are treated as discrete features and 
modeled using the Categorical Naive Bayes framework, 
depending on the encoding strategy. This hybrid approach 
preserves the original information without discretization 
and is well-suited to heterogeneous medical cost dataset.

	 3.	 Support vector machine (SVM) algorithm
The Support Vector Machine (SVM), proposed by Cortes 
and Vapnik in 1995 (27), is a powerful classification 
technique that seeks to find the optimal hyperplane that 
separates classes in the feature space. By using kernel 
functions, SVMs can handle both linear and nonlinear 
decision boundaries, making them highly adaptable.
SVMs are considered highly effective when combined with 
Principal Component Analysis (PCA) for feature 
reduction. And SVMs are well-suited for classification 
tasks with clear class boundaries and relatively few outliers. 
For instance, Kuo et  al. employed SVMs to predict 
mortality rates among hospitalized motorcycle riders (28).

	 4.	 Logistic regression algorithm
Logistic regression is a widely used classification model 
that estimates the probability of a binary outcome based 
on one or more input features. It models the log-odds of 
the response variable as a linear combination of the input 
features and employs the logistic (sigmoid) function to 
constrain output values between 0 and 1.
This algorithm is especially appropriate for structured and 
interpretable classification tasks, particularly when the 
input features have a roughly linear relationship with the 
log-odds of the target. In medical research, logistic 
regression is extensively used to predict disease occurrence, 
treatment outcomes, and survival probabilities (29). The 
above four machine learning classifiers were implemented 
and compared within the Python 3.13.1 environment.

2.2 Data source and preprocessing

This study utilized data from the medical insurance management 
system of a tertiary general hospital in Zhejiang Province. A total of 
12,640 inpatient cases of internal medicine hospitalizations for lung 
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cancer were collected between January 1, 2022, and December 31, 
2024. The collected data included patient demographics (age and 
gender), primary diagnosis and corresponding ICD codes, length of 
hospital stay (LoS), and detailed hospitalization costs.

According to the CHS-DRG, the dataset was curated and 
subjected to the following preprocessing steps to yield a final cohort 
of 2,324 cases: including 631 cases of ER11 (respiratory system tumor 
with serious complications or comorbidities), 1,305 cases of ER13 
(respiratory system tumor with general complications or 
comorbidities), and 388 cases of ER15 (respiratory system tumor 
without complications or comorbidities).

	 1.	 Duplicate removal: eliminated redundant records from 
the dataset.

	 2.	 Handling missing data: retrieved missing information from 
patient records where possible; cases with unresolvable missing 
data were excluded.

	 3.	 Adjustment for medical price index: normalized all cost data 
from 2022 to 2024 to the 2024 baseline, accounting for medical 
price inflation.

	 4.	 Exclusion of self-pay cases: removed cases involving self-paying 
patients, focusing the study on DRG cases covered by 
medical insurance.

2.3 Descriptive statistical analysis

Data were analyzed using Python version 3.13.1. Categorical 
variables were summarized using frequencies and percentages, while 
continuous variables were described using median, IQR/Median and 
Skewness. Differences in medication costs, material costs, blood costs, 
inspection and examination fees, and LoS among the ER11, ER13, and 
ER15 groups were assessed using Kruskal-Wallis H test. A p-value of 
less than 0.05 was considered statistically significant.

Table 1 presented the results, indicating that the proportion of 
male patients was significantly higher than that of female patients 
across the ER11, ER13, and ER15 groups. This finding aligned with 
data from the National Cancer Center’s “China Cancer Statistics 

Report,” which reported that, as of July 2024, approximately 
70–75% of lung cancer patients in China were male, and 25–30% 
were female (30). The gender distribution in our study’s ER groups 
was similar, with a slightly higher proportion of females in the 
ER15 group.

The aforementioned report also indicated that individuals aged 
50–70 constitute approximately 60–70% of lung cancer cases, while 
those under 40 account for about 5–10% (30). See Table 1 in our study, 
cases under 50 years old were rare, and the number of cases under 60 
was lower than those aged 60 to 74. Therefore, we categorized patients 
accordingly. Post-categorization, it was observed that in the ER11 and 
ER13 groups, patient numbers increased with age, with those aged 75 
and above comprising over half of the cases, and the ER15 group had 
a smaller proportion of patients aged 75 and above (15.9%). This 
discrepancy between the report and our study may stem from regional 
differences; the national report reflects data across China, whereas our 
study focuses on Zhejiang Province. Notably, in 2019, Zhejiang’s 
average life expectancy was 79.1 years, among the highest nationwide 
(31). Consequently, the higher proportion of patients aged 75 and 
above in the ER11 and ER13 groups may be  attributable to this 
increased longevity. Additionally, the higher proportion of patients 
aged 75 and above in the ER11 and ER13 groups may be explained by 
the greater prevalence of comorbidities and complications in this 
age group.

In our study, among the three groups of ER cases, the proportion 
of patients with ICD main diagnostic code C34.900×001 (lung 
malignant tumor) exceeded 50%, while the proportion of patients 
with C34.900×006 (bilateral lung malignant tumor) was very small 
(Table 1), and the proportions of patients diagnosed with C34.900×004 
(malignant neoplasm of the left lung) and C34.900×005 (malignant 
neoplasm of the right lung) were moderate. As also shown in Table 1, 
the proportion of high multiplier DRG cases remained consistently 
low across all three groups—7.6% in ER11 (48 cases), 1.8% in ER13 
(24 cases), and 7.4% in ER15 (29 cases).

Then, according to many studies, inpatient cost data mostly 
exhibit a right-skewed distribution (32, 33). Therefore, we conducted 
a skewness analysis on the distributions of various cost-related 
variables and LoS in ER11, ER13, and ER15. All of these variables 

TABLE 1  Frequency and Proportion of Categorical Variables Among ER Patient Groups.

Variable Category ER11 
Frequency

Proportion 
of ER11

ER13 
Frequency

Proportion 
of ER13

ER15 
Frequency

Proportion 
of ER15

Gender
Male 491 77.8% 936 71.7% 245 63.1%

Female 140 22.2% 369 28.3% 143 36.9%

Age

<60 years 130 20.6% 272 20.8% 131 33.8%

60–74 years 162 25.7% 304 23.3% 195 50.3%

≥75 years 339 53.7% 729 55.9% 62 15.9%

ICD Primary 

Diagnosis 

Code

C34.900×001 385 61.0% 814 62.4% 219 56.4%

C34.900×004 101 16.1% 226 17.3% 74 19.1%

C34.900×005 141 22.3% 264 20.3% 95 24.5%

C34.900×006 4 0.6% 1 0 0 0

DRG 

Multipliers

High 48 7.6% 24 1.8% 29 7.4%

Low 103 16.3% 246 18.9% 78 20.2%

Normal 480 76.1% 1,035 79.3% 281 72.4%
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demonstrated significant right-skewness. A skewness value greater 
than +1 was considered to indicate significant right-skewness 
(Tables 2–6). Also, the Figure 1 below presents a visualization analysis 
of the probability distributions for selected data from the three groups 
as examples.

Because the data are right-skewed, this study used the more 
robust variability measure, IQR/Median, to assess relative dispersion. 
The median and IQR/Median for medication costs, material costs, 
blood costs, inspection and examination fees, and LoS across the 
ER11, ER13, and ER15 groups are presented in the below tables. An 
IQR/Median value greater than 1.0 indicates that the data are highly 
dispersed, with a large relative variability; a value between 0.3 and 
1.0 suggests moderate dispersion, with a medium level of relative 
variability. Notably, each ER group, the IQR/Median values for 
medication costs, material costs, blood costs, and LoS exceed or 
equal 1, indicating high dispersion and significant individual 
variability in these expenses. In contrast, only the IQR/Median values 
for inspection and examination fees are below 1, suggesting greater 
consistency within the indicator. Subsequent the Kruskal-Wallis H 
test revealed statistically significant differences among the ER groups 
in terms of medication costs, material costs, blood costs, inspection 
and examination fees, and LoS (p < 0.001). Further pairwise 
comparisons using Dunn’s post hoc test revealed that, except for the 
difference in material costs between groups ER13 and ER15, which 
was not statistically significant (p = 0.483), all other indicators 
showed significant differences among the three ER groups 
(p < 0.001). These findings underscore the effectiveness of the DRG 
classification system (ER11, 13, 15) in differentiating patient groups 
(Tables 2–6).

2.4 Construction and results of predictive 
models

This study utilized data from patient groups ER11, ER13, and 
ER15, incorporating categorical variables (age, gender, primary ICD 
diagnosis and corresponding codes) and continuous variables 
(medication costs, material costs, blood costs, inspection and 
examination fees, and length of hospital stay) as feature variables. The 
DRG cases with low or normal multiplicity served as the target 
variable. Originally, the total sample sizes of the three groups—ER11, 
ER13, and ER15—were 631, 1,305, and 388, respectively. After 
excluding the high multiplier DRG cases, the remaining samples—
including only normal and low multiplier DRGs—were reduced to 
583, 1,281, and 359, respectively.

Four machine learning algorithms were employed to develop 
models capable of predicting DRG cases. The performance of these 
algorithms in predicting DRG cases was compared to identify the 
optimal predictive model and to explore factors influencing the target 

variable. The goal was to provide decision support for early 
intervention and prevention of abnormal medical processes.

2.4.1 Data and model preparation
Initially, since many feature variables—especially cost-related 

ones—exhibit clear right-skewed distributions, such skewness may 
affect machine learning model performance by distorting feature 
weight learning and other behaviors. Therefore, we first identified all 
skewed features, and applied a logarithmic transformation using 
NumPy’s np.log1p function to those with a skewness greater than ±1 
to make their distributions more normal-like. After that, the feature 
variables underwent normalization, scaling the data to a [0, 1] range. 
Subsequently, data from the ER11, ER13, and ER15 groups were 
randomly shuffled and partitioned. The experimental method used in 
this study was 5-fold cross-validation, more precisely, stratified 5-fold 
cross-validation. The dataset was only split into training and validation 
sets, without a separate test set. This decision was made for several 
reasons: the three groups in the dataset contain relatively limited 
samples—583, 1,281, and 359 cases, respectively. Further splitting out 
a test set would have significantly affected the representativeness of the 
data. Moreover, the purpose of this study is a comparative analysis of 
different models, rather than the deployment of a final predictive 
model. Therefore, omitting a test set is acceptable under such research 
goals, as supported by relevant literature (34, 35).

While using a separate test set is indeed helpful for evaluating a 
model’s generalization ability on unseen data, our cross-validation 
design took a different approach. To reduce the risk of overfitting and 
prevent potential validation leakage during cross-validation, we chose 
to use fixed (default) hyperparameters instead of performing grid 
search over a predefined set of values. This approach ensures that no 
fold is indirectly optimized during the tuning process, thus providing 
a more reliable estimate of model generalization performance.

In our implementation, several key hyperparameters were either 
explicitly specified or used with their default values to ensure 
reproducibility and robustness. For the Random Forest classifier, 
we set random_state = 42 to ensure reproducibility. The number of 
trees (n_estimators) was left at the default value of 100.

For the naive bayes classifier, model evaluation was performed 
using a fixed random seed (random_state = 42). For classification, 
we applied a hybrid naive bayes approach using GaussianNB and 
CategoricalNB, both with default hyperparameters, including variance 
smoothing (1e-9) and Laplace smoothing (alpha = 1.0), respectively.

For the logistic regression classifier, the model is configured with 
random_state = 42 and max_iter = 500, while other hyperparameters 
such as penalty, solver, and C remain at their default settings.

For the support vector machine (SVM) classifier, the model is an 
SVM (SVC) with kernel = “rbf ” and random_state = 42.

Additionally, an analysis of the class label distributions in the 
ER11, ER13, and ER15 groups revealed that the ratios of normal to 

TABLE 2  Median, IQR/Median, and Skewness of medication costs among ER patient groups.

Groups Number of 
cases

Median IQR / Median Skewness H p

ER11 631 2454.2 1.9 9.9 338.329 <0.001

ER13 1,305 822.7 1.7 7.2

ER15 388 439.4 2.7 4.2
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low DRG multipliers were approximately 4.7:1, 4.2:1, and 3.6:1, 
respectively. To mitigate the impact of class imbalance, the stratified 
k-fold cross-validation and the compute_sample_weight function 
from Python’s scikit-learn library was utilized. The core idea of the 
stratified k-fold cross-validation is to ensure that the proportion of 
each class in every fold remains consistent with the overall class 
distribution of the dataset during the splitting process. And the 
compute_sample_weight function calculates sample weights inversely 
proportional to class frequencies, assigning higher weights to minority 
class samples, thereby enabling the model to focus more on these 
underrepresented cases.

2.4.2 Model evaluation metrics
The influencing factors for predicting the DRG multiplier were 

identified based on the importance rankings of various indicators. In 
5-fold cross-validation, the data was divided into 5 subsets (folds). The 
models were trained on four subsets and validated on the remaining 
one. This process was repeated five times. For each iteration, a set of 
evaluation metrics—including Accuracy, Precision, Recall, F1-score, 
and AUC (Area Under the ROC Curve)—was computed. The final 
performance evaluation was obtained by averaging each of these 
metrics across the five folds. Corresponding standard deviations were 
also calculated to reflect the stability of model performance across 
folds. Specifically: the accuracy measures the models’ overall ability to 

correctly classify both ‘low multiplier’ and ‘normal multiplier’ cases; 
The precision indicates the proportion of cases predicted as ‘low 
multiplier’ that are indeed ‘low multiplier’ cases; The recall (sensitivity) 
reflects the proportion of actual ‘low multiplier’ cases that were 
correctly identified by the models. AUC represents the area under the 
ROC curve, illustrating the trade-off between sensitivity (recall) and 
the false positive rate, a higher AUC indicates better model performance.

The commonly used evaluation metrics, along with their formulas 
and explanations, are presented below (Equation 1).

	
+

=
+ + +

TP TNAccuracy
TP TN FP FN 	

(1)

Accuracy is the most intuitive classification metric. It represents 
the proportion of correctly classified samples out of the total number 
of samples (Equation 2).

	
=

+
TPPrecision

TP FP 	
(2)

Precision refers to the proportion of true positive samples among 
all samples that are predicted as positive. A higher precision indicates 
that the model is more accurate in identifying positive cases 
(Equation 3).

TABLE 3  Median, IQR/Median, and Skewness of material costs among ER patient groups.

Groups Number of 
cases

Median IQR/Median Skewness H p

ER11 631 691.9 1.3 6.9 43.930 <0.001

ER13 1,305 516.1 1.0 6.5

ER15 388 440.4 1.1 3.9

TABLE 4  Median, IQR/Median, and Skewness of blood costs among ER patient groups.

Groups Number of 
cases

Median IQR/Median Skewness H p

ER11 631 2454.7 2.0 9.9 343.180 <0.001

ER13 1,305 782.5 1.7 7.6

ER15 388 438.4 2.5 4.4

TABLE 5  Median, IQR/Median, and Skewness of inspection and examination fees among ER patient groups.

Groups Number of 
cases

Median IQR/Median Skewness H p

ER11 631 6990.4 0.8 3.1 136.889 <0.001

ER13 1,305 5498.4 0.8 1.7

ER15 388 3985.4 0.7 1.6

TABLE 6  Median, IQR/Median, and Skewness of length of stay (LoS) among ER patient groups.

Groups Number of 
cases

Median IQR/Median Skewness H p

ER11 631 6.0 1.0 10.5 306.305 <0.001

ER13 1,305 4.0 1.0 2.9

ER15 388 2.0 1.5 2.7
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=

+
TPRecall

TP FN 	
(3)

Recall (also known as sensitivity) is the proportion of actual 
positive samples that are correctly identified by the model. A higher 
recall means the model can detect more of the actual positive cases 
(Equation 4).

	
×

− = ×
+

1 2 Precision RecallF score
Precision Recall 	

(4)

F1-score is the harmonic mean of precision and recall. It balances 
both precision and recall, making it especially useful when there is an 
imbalance between them. A higher F1-score indicates better overall 
performance of the model.

The components of the confusion matrix are defined as follows: 
TP (True Positive) refers to the number of positive samples correctly 
predicted as positive; TN (True Negative) is the number of negative 
samples correctly predicted as negative; FP (False Positive) denotes the 
number of negative samples incorrectly predicted as positive; and FN 
(False Negative) represents the number of positive samples incorrectly 
predicted as negative.

2.4.3 Comparison of predictive model performance
ROC curves for the four models across the ER11, ER13, and ER15 

groups were presented in Figures  2–4. The results were largely 
consistent across these groups. The areas under the ROC curves of the 
three hybrid bayesian models were the smallest, indicating the worst 
predictive performance. Except for a slightly lower performance in the 

ER15 group, the random forest model outperformed both the logistic 
regression and support vector machine models, indicating superior 
predictive performance. In addition, it can be  seen that the ROC 
curves of the ER13 group were the smoothest, while the ER15 group 
were the most curved. ER13 had the largest sample size while ER15 
had the smallest, indicating that the larger the sample size, the better 
the model generalization, and the more stable the prediction. In 
general, all four models performed well across the three ER groups, 
with AUCs greater than 0.9.

Additionally, as shown in Tables 7–9, the random forest model 
performed best in terms of accuracy, precision and AUC, making it 
suitable for precise prediction of low-multiplicity cases. However, it 
should be noted that the recall varied substantially, with somewhat 
high standard deviations. Logistic regression and support vector 
machine models achieved higher recall, enabling better coverage of 
low-multiplicity cases and making them suitable for scenarios where 
minimizing missed diagnoses is critical, though at the cost of slightly 
lower precision. The overall performance of the naive bayes model was 
relatively weaker, particularly in terms of precision, suggesting it may 
not be suitable for use on its own for this task.

From the perspective of variance, the random forest model 
exhibited the smallest overall standard deviation, with virtually no 
fluctuation in AUC, making it the most stable and robust model, 
suitable for generalization. In contrast, the naive bayes models showed 
the largest variability, with relatively high variance across all metrics, 
indicating the weakest robustness. Logistic regression and support 
vector machines fell in between, demonstrating moderate stability.

Among the three datasets—ER11, ER13, and ER15—the random 
forest model performed best on ER13, achieving the highest accuracy 

FIGURE 1

Probability distribution plots of selected costs and LoS in ER11, ER13 and ER15.
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(95.47%) and consistently high AUC, suggesting the strongest model 
performance on this dataset. On the other hand, all models performed 
relatively poorly on ER15, with the random forest showing a notably 
lower recall (as low as 0.729), indicating that this dataset or its samples 
may be more difficult to classify. This may be related to sample size: 
ER13 had the largest number of samples, while ER15 had the fewest, 
suggesting that larger datasets may lead to better model performance.

2.4.4 Feature importance analysis
Feature importance ranking of various indicators was organized 

for the random forest model constructed in the three groups, as shown 
in Figures 5–7. It can be observed firstly, variables such as medication 
costs, material costs, blood costs, inspection and examination fees, 
and length of hospital stay contributed significantly to the construction 
of each model; Secondly, age, gender, and the main diagnostic and 
coding features of ICD contributed less to the development of the 
algorithm models.

3 Discussion

DRG is a valuable tool for reducing healthcare costs and 
improving hospital quality and efficiency. The system is 
technically and administratively complex, and its actual 
performance depends on organizational behavior. Successful 
implementation of the DRG/case-mix system requires continuous 
evidence-based evaluation and monitoring of healthcare services 
(36). Since the implementation of DRG systems, many countries 
have reported the phenomenon of discretionary DRG coding by 
hospitals. A study in Indonesia suggested that narrowing the price 

differences between DRG groups may help reduce such 
discretionary coding to some extent (10). In the United States, 
research showed that the estimated effects of upcoding are not 
only statistically significant but also economically substantial. 
Using the most conservative estimates of upcoding, a 3% markup 
was observed as a result of the MS-DRG system. In 2008, hospital 
healthcare expenditures in the U. S. totaled approximately $730 
billion. Based on the 3% lower-bound estimate, this implies that 
around $20 billion in excess payments could be  attributed to 
upcoding (13).

Among the many DRG disease groups, this study selected 
advanced primary lung cancer receiving internal medicine treatments 
as the research focus because treatment approaches—such as targeted 
and immunotherapy—are evolving rapidly and lack standardized 
protocols. This creates challenges for DRG-based payment systems in 
effectively regulating non-standard medical practices. As previously 
mentioned, these discretionary and non-standard medical practices 
are likely to result in low multiplier DRGs. This study aimed to develop 
machine learning models capable of automatically predicting whether 
a given DRG group falls under low multiplier cases, thereby laying the 
groundwork for pre- and mid-process supervision of DRG-based 
payment during hospitalization. Currently, very few studies have been 
found that use machine learning to predict or automatically classify 
DRG multiplicity. A study from Switzerland, similar to ours, applied 
Random Forest and LASSO-regularized logistic regression to identify 
variables that predict high-profit and/or high-deficit DRGs. The 
researchers found that oncological cases were well-funded under the 
2012 Swiss DRG system. In particular, a high PCCL (Patient Clinical 
Complexity Level) score often resulted in classification into a more 
highly remunerated DRG. As a result, variables such as leukemia and 

FIGURE 2

ROC curve of the prediction models for ‘low-multiplicity cases’ in the ER11 group.
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the PCCL score were identified as important predictors of high-profit 
cases (37).

In this study, descriptive statistical analyses indicated that the 
demographic distribution (gender, age) of the three selected sample 
groups aligned closely with the population of advanced lung cancer 
patients, suggesting that the samples were representative. Furthermore, 
the Kruskal-Wallis H test showed significant differences in cost-
related variables and LoS between the three ER groups. This indicates 
that version 1.0 of the CHS-DRG classification — particularly its 
categorization of diagnostic terms and the severity of associated 
complications — is reasonably designed for advanced lung cancer 
cases, providing a solid foundation for developing machine learning 
prediction its models. Additionally, the proportion of high multiplier 
DRG cases was relatively low across all three groups, suggesting that 
low multiplier DRG cases are more prevalent. Supporting this, 
literature reported that low multiplier cases are predominantly found 
in categories like neurological diseases (MDCB) and respiratory 
diseases (MDCE), with annual growth rates of 8.14 and 26.15%, 
respectively (12).

Besides, based on the values of IQR/Median, within each ER 
group, the distributions of medication, material, blood costs are 
relatively dispersed, indicating considerable variability among 
patients. In contrast, inspection and examination fees exhibited more 

centralized distributions, reflecting higher uniformity and 
standardization within these groups. This suggests that, within each 
ER group, medication, material and blood costs are key variables for 
monitoring potentially inappropriate medical practices.

Moreover, the feature importance of predictive models revealed 
that variables reflecting “resource consumption”—such as medication 
costs, material costs, blood costs, inspection and examination fees, 
and LoS—significantly contribute to the construction of model across 
all three ER groups. It suggests that these variables have a substantial 
impact on DRG multiplier payment. Following these, count variables 
like age, gender, and ICD primary diagnosis codes play a secondary 
or minor role.

It is also important to emphasize that across all three ER groups, 
inspection and examination fees consistently show a high level of 
importance in contributing to the “low multiplier cases,” which may 
be  related to upcoding practices. According to version 1.0 of the 
CHS-DRG system, in addition to classification under ER1, patients 
with advanced lung cancer receiving internal medicine treatments 
may also be grouped under RE1 (malignant proliferative diseases 
treated with chemotherapy and/or targeted or biological therapies) or 
RU2 (malignant proliferative diseases treated with immunotherapy). 
Based on data from the hospital we  observed, the RW (Relative 
Weight) values for ER11, RE11, and RU21 (with the second digit “1” 

FIGURE 3

ROC curve of the prediction models for ‘low-multiplicity cases’ in the ER13 group.
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FIGURE 4

ROC curve of the prediction models for ‘low-multiplicity cases’ in the ER15 group.

TABLE 7  Performance evaluation metrics of prediction models for low multiplier cases in the ER11 group.

Model Accuracy 
(standard 
deviation)

Precision 
(standard 
deviation)

Recall (standard 
deviation)

F1 Score 
(standard 
deviation)

AUC (standard 
deviation)

Hybrid Bayesian 0.8507 (0.0203) 0.7528 (0.0816) 0.8352 (0.0712) 0.7898 (0.0642) 0.9673 (0.0121)

Random Forest 0.9314 (0.0093) 0.9249 (0.0253) 0.8357 (0.0647) 0.8770 (0.0417) 0.9939 (0.0029)

Logistic Regression 0.8971 (0.0123) 0.7589 (0.0370) 0.9419 (0.0367) 0.8403 (0.0350) 0.9807 (0.0089)

SVM 0.8936 (0.0318) 0.7187 (0.0631) 0.9514 (0.0437) 0.8183 (0.0545) 0.9817 (0.0103)

TABLE 8  Performance evaluation metrics of prediction models for low multiplier cases in the ER13 group.

Model Accuracy 
(standard 
deviation)

Precision 
(standard 
deviation)

Recall (standard 
deviation)

F1 Score 
(standard 
deviation)

AUC (standard 
deviation)

Hybrid Bayesian 0.8915 (0.0211) 0.6576 (0.0476) 0.9227 (0.0240) 0.7668 (0.0349) 0.9542 (0.0152)

Random Forest 0.9547 (0.0153) 0.9050 (0.0293) 0.8540 (0.0623) 0.8780 (0.0429) 0.9907 (0.0046)

Logistic Regression 0.9290 (0.0197) 0.7470 (0.0503) 0.9593 (0.0224) 0.8394 (0.0393) 0.9814 (0.0075)

SVM 0.9399 (0.0112) 0.7839 (0.0327) 0.9513 (0.0276) 0.8590 (0.0239) 0.9910 (0.0047)

TABLE 9  Performance evaluation metrics of prediction models for low multiplier cases in the ER15 group.

Model Accuracy 
(standard 
deviation)

Precision 
(standard 
deviation)

Recall (standard 
deviation)

F1 Score 
(standard 
deviation)

AUC (standard 
deviation)

Hybrid Bayesian 0.8441 (0.0317) 0.6097 (0.0560) 0.8450 (0.0884) 0.7034 (0.0388) 0.9283 (0.0228)

Random Forest 0.9248 (0.0206) 0.9072 (0.0517) 0.7292 (0.1012) 0.8039 (0.0717) 0.9710 (0.0192)

Logistic Regression 0.9110 (0.0356) 0.7591 (0.1052) 0.9083 (0.0687) 0.8198 (0.0550) 0.9757 (0.0102)

SVM 0.8887 (0.0289) 0.6791 (0.0511) 0.9350 (0.0578) 0.7859 (0.0482) 0.9670 (0.0167)
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indicating the presence of major complications or comorbidities) are 
1.24, 0.78, and 0.72, respectively. The highest RW for ER11 suggests 
that this group receives the most intensive treatment and incurs the 
highest level of costs compared to the other two. In contrast, patients 
classified under RE1 and RU2 are often readmitted for short-term 
chemotherapy or immunotherapy, and therefore do not require 
comprehensive re-examinations during hospitalization. If cases that 

should have been assigned to RE1 or RU2 are instead placed under 
ER1 due to upcoding motives, they may undergo fewer inspection and 
examination fees than truly appropriate ER1 cases. This reduction in 
examinations could lead to lower multiplier DRGs. In this study, 
we also interviewed several physicians at the hospital. Some admitted 
that, when filling out diagnostic information, there is a possibility of 
deliberately assigning patients to more “complicated” DRG groups. 

FIGURE 5

Feature importance ranking of the random forest prediction model in the ER11 group.

FIGURE 6

Feature importance ranking of the random forest prediction model in the ER13 group.
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This is similar to findings from a Norwegian study, which described 
such behavior as “a deliberate and systematic shift in a hospital’s 
reported case mix in order to improve reimbursement (9).”

Additionally, in the ER11 group, which includes cases with severe 
complications or comorbidities, medication costs have the greatest 
impact on lower multiplier DRGs. Thus, when DRG classification is 
accurate, doctors or hospitals, in order to retain a surplus from 
medical insurance payments, may shift part of the medication 
treatment to out-of-pocket services, resulting in lower 
multiplier DRGs.

Finally, the observed differences in the performance of the four 
machine learning models can be largely attributed to their inherent 
algorithmic characteristics. The random forest model consistently 
outperformed the others across the ER11, ER13, and ER15 groups 
in terms of AUC, accuracy, and precision, particularly excelling in 
the ER13 dataset where the sample size was the largest. This is likely 
due to its ensemble structure and robustness against overfitting, as 
well as its ability to handle complex feature interactions and 
non-linear relationships. However, its recall exhibited noticeable 
variability, indicating some instability in identifying low-multiplicity 
cases under different data splits. In contrast, logistic regression and 
support vector machine (SVM) models achieved higher recall, 
making them more suitable for scenarios where minimizing missed 
diagnoses is a priority, such as pre-claim review or clinical warning 
systems. Their performance reflects their tendency to classify more 
instances as positive, thus improving coverage at the cost of lower 
precision. On the other hand, Naive Bayes models demonstrated the 
weakest overall performance, particularly in terms of precision and 
robustness. This is largely due to their underlying assumption of 
feature independence, which often does not hold in complex 
healthcare datasets. As a result, their predictive power can be limited 
in certain clinical contexts, highlighting the need for feature 

engineering or hybrid modeling approaches to enhance accuracy. 
Additionally, the models performed best on the ER13 group and 
worst on ER15, which may be explained by the differences in sample 
size. ER13 had the largest number of cases, allowing better 
generalization and smoother ROC curves, whereas ER15 had the 
fewest samples, leading to lower recall and more 
volatile performance.

4 Conclusion

Firstly, regarding differences in treatment costs and length of stay 
(LoS), the DRG classification of advanced primary lung cancer 
patients receiving internal medicine treatment under ER1—based on 
the severity of comorbidities or complications—appears relatively 
reasonable and can serve as a basis for comparing DRG-based 
payment systems across groups.

In addition, based on the findings of this study, during 
hospitalization for the three ER1 subgroups, particular attention 
should be paid to whether there is a noticeable reduction in inspection 
and examination fees, which may indicate upcoding. Other, in the 
ER11 group, where patients have severe complications, medication 
treatment should also be closely monitored to prevent intentional 
underuse of reimbursable drugs.

Lastly, in models for low multiplier DRG prediction, the results 
suggest that larger datasets tend to enhance model stability and 
performance. Moreover, model selection should be purpose-driven: 
Random Forest is preferable for high precision and robustness, while 
logistic regression or SVM is more suitable when high recall is 
required. By applying machine learning models to automatically 
predict low multiplier DRG cases, potential signs of inappropriate 
medical behaviors can be identified, enabling early intervention and 

FIGURE 7

Feature importance ranking of the random forest prediction model in the ER15 group.

https://doi.org/10.3389/fpubh.2025.1614938
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu and Zhang� 10.3389/fpubh.2025.1614938

Frontiers in Public Health 13 frontiersin.org

supporting the transition from retrospective reimbursement to a 
DRG-based prospective payment system.
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