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Is vigorous physical activity
effective for preventing kidney
stones?
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Background: With a high rate of occurrence and recurrence, kidney stones
represent a common urological issue that poses a substantial burden on
public health infrastructures globally. While prior research has linked poor
diet and lifestyle to a heightened susceptibility to kidney stones, the impact
of daily vigorous physical activity (VPA) duration on kidney stone incidence
remains under-investigated.
Materials and methods: Utilizing data from the NHANES database covering the
years 2007 to 2020, this study undertakes a large-scale cross-sectional analysis
of adults with full records of daily VPA and kidney stone history. Daily VPA time
was calculated by summing the VPA duration (in minutes) from typical work
and recreational activities. To analyze the association between VPA time and
kidney stone prevalence, logistic regression was used, with a focus on potential
non-linear relationships. A piecewise linear model estimated threshold effects,
accompanied by subgroup and interaction analyses.
Results: Of the 12,128 participants in this analysis, 1,021 (8.41%) had previously
experienced kidney stones. Findings indicated a positive correlation between the
duration of daily VPA and kidney stone prevalence. In the analysis of VPA time
divided into quartiles, the highest quartile exhibited a 1.49-fold increase in kidney
stone prevalence vs. the lowest quartile (OR = 1.49, 95% CI: 1.21–1.83, P for
trend<0.001). A smoothing curve fit showed a significant non-linear relationship
between VPA time and kidney stones prevalence (P for non-linearity = 0.0007).
Piecewise linear regression indicated a VPA threshold of 240 min, after which
kidney stone prevalence increased by 0.3% for each additional minute of daily
VPA (OR = 1.003, 95% CI: 1.000–1.006), up to 360 min, at which point the
prevalence plateaued.
Conclusion: This study suggests that VPA is associated with an increased risk of
kidney stones, as longer daily VPA duration corresponds to a higher prevalence
of kidney stones. This increase in prevalence may be related to the higher urine
specific gravity caused by prolonged VPA. To strengthen these findings, future
prospective cohort studies are recommended.

KEYWORDS

daily vigorous physical activity time, kidney stones, National Health and Nutrition
Examination Survey (NHANES), moisture, logistic regression

Introduction

Globally, kidney stones are a common urological issue, characterized by high rates of
incidence and recurrence, which heavily impact public health systems in many nations
(1). About 10% of men and 7% of women in the U.S. will encounter kidney stones over
the course of their lifetime (2). In China, kidney stone prevalence is also rising, with rates
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of 7%−9% observed in economically developed eastern regions (3).
Although the direct mortality rate of kidney stones is low, severe
complications such as urinary tract infections and kidney damage
can be fatal (4). Furthermore, the recurrent nature of kidney stones
imposes substantial medical costs, including diagnostics, surgical
treatments, and long-term medication (5, 6). Evidence suggests that
annual U.S. healthcare expenses for kidney stones top $2 billion,
creating a notable strain on healthcare systems (7). As a result, a
clear understanding of the causes and contributors to kidney stones
is critical for preventing the disease.

Moderate exercise has a protective effect against kidney stones
(8). However, since the physiological pathways triggered by VPA
and moderate exercise are significantly different (9), the impact
on kidney stones cannot be simply understood as the effect of
exercise on stones. Vigorous physical activity (VPA) is typically
defined as physical activity that significantly elevates heart and
respiratory rates, often reaching 70%−85% or more of maximum
heart rate. VPA is widely endorsed for its various health benefits
(10). Research shows that regular VPA can improve cardiovascular
function, increase cardiac output, and enhance circulation, helping
reduce the risks of heart disease, hypertension, and stroke
(11). Additionally, VPA significantly boosts energy expenditure,
promoting fat burning, which supports body fat reduction and
healthy weight maintenance (12). VPA has also been associated
with improved insulin sensitivity, reducing the risk of insulin
resistance (13). VPA can further alleviate symptoms of depression
and anxiety, enhancing mental health (14), VPA also contributes
to enhancing muscle strength and bone health (15). Despite
these benefits, VPA carries certain potential drawbacks and risks.
For individuals lacking conditioning, VPA may cause significant
increases in heart rate and blood pressure, potentially leading to
arrhythmia or even sudden cardiac arrest (16). Overloading the
body with VPA, without proper warm-up or recovery, may result
in common injuries, such as muscle strains, sprains, and joint pain
(17, 18). Although VPA helps reduce stress and anxiety, excessive
VPA may increase psychological stress (19). Thus, it is important
to understand how VPA affects specific diseases to better guide
exercise recommendations.

A considerable amount of research has explored the link
between physical activity and kidney stones. Many studies have
indicated that physical activity may protect against kidney stones
(8, 20–22), while a sedentary lifestyle has been identified as
a risk factor (23). Given the dual effects of VPA, focusing
solely on whether physical activity affects kidney stones may be
insufficient. Previous studies have not directly investigated the
possible influence of VPA on the formation of urinary stones.
Considering this, the study aims to evaluate the relationship of daily
VPA time to kidney stones prevalence in U.S. adults, with data
from NHANES.

Methods

Study population

This study sourced data from NHANES, a series of national
surveys by the U.S. NCHS that aims to assess the health

of U.S. citizens. NHANES employs a complex, multistage
sampling approach (sampling counties, segments, households, and
individuals), ensuring the U.S. population is well-represented. The
NCHS Ethics Review Board approved NHANES, with informed
consent obtained from all participants.

All study methods strictly adhered to relevant guidelines
and regulations. For this specific study, we collected data from
66,148 participants across six consecutive NHANES cycles (2007–
2020.03). Specific exclusion criteria were applied: (1) participants
lacking kidney stone outcome data (n = 27,819); (2) individuals
missing moisture or VPA data (n = 25,827); and (3) pregnant
participants (n = 375). After careful data screening, 12,128
participants were selected for further analysis, with the participant
selection process illustrated in Figure 1.

Definition of kidney stones and VPA

The KIQ026 question in the Kidney Conditions-Urology
survey was used to determine the presence of kidney stones in the
questionnaire data. Those who affirmed having kidney stones by
answering “yes” to the question, “Do you have kidney stones?” were
defined as having a history of the condition.

In NHANES, participants answered a questionnaire on physical
activity, based on the Global Physical Activity Questionnaire
(GPAQ) (24), which recorded details about the type, frequency,
and duration of their activities in the past 30 days. VPA was
defined by responses to the Questionnaire, which collected data
on the duration of vigorous physical activities lasting 10 min or
more, including both work and recreational activities that elevate
heart rate or breathing. METs (metabolic equivalents) were used
to quantify energy expenditure, with 1 MET representing 3.5 ml
O2·kg−1·min−1. Both vigorous work and recreational activities
were assigned 8.0 METs, and the daily VPA time was determined
by summing the durations of these activities.

Covariates

Based on previous literature and biological considerations,
we included a wide range of covariates known to influence
kidney stones’ outcomes. The covariates included gender, age,
race/ethnicity, education level, poverty index ratio (PIR), and
body mass index (BMI) hypertension, diabetes, smoking status,
alcohol intake (yes/no), moisture, blood urea nitrogen, creatinine,
uric acid, eGFR, total calcium, moderate physical activity time,
and sedentary time. Participants were categorized by BMI: <24
kg/m2 as normal weight, 24–28 kg/m2 as overweight, and ≥28
kg/m2 as obese. Smoking status was obtained through household
interviews and classified as “never,” “current,” “sometimes,” or
“past.” The moisture refers to the sum of water consumed directly
as drinking water and the water content in food and non-water
beverages (25), calculated as the average of values from the first
and second dietary interviews. The blood urea nitrogen, creatinine,
uric acid, and total calcium levels are derived from the standard
biochemical overview section of laboratory data. The estimated
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FIGURE 1

Flowchart depicting participant selection in the study. NHANES, National Health and Nutrition Examination Survey.

glomerular filtration rate (eGFR) is calculated using the following
equation (26):

eGFR = 141×min(Scr/α, 1)β×max(Scr/α, 1)−1.209×0.993age×γ

× 1.159(if black).

Where:

• For males: α = 0.9, β =−0.411, γ = 1
• For females: α = 0.7, β =−0.329, γ = 1.018

Moderate physical activity time equaled the sum of moderate
work time, moderate recreational activity time, and walking or
cycling time. Detailed measurements of these variables can be
found at www.cdc.gov/nchs/nhanes/.

Statistical analysis

Statistical analyses were carried out in accordance with CDC
guidelines, applying NHANES sampling weights and considering
complex, multistage cluster design. Continuous variables were
reported as means with standard deviations (SD), and categorical
variables as proportions. Weighted t-tests and chi-square tests
were used to evaluate differences between participants with and
without kidney stones. To evaluate how daily VPA time relates to
kidney stone prevalence, we used multivariable logistic regression

models (Models 1 and 2), to calculate odds ratios (ORs) and 95%
confidence intervals (CIs). In Model 1, adjustments were made
for gender, age, and ethnicity. Model 2 was adjusted for gender,
age, ethnicity, education level, PIR, BMI, hypertension, diabetes,
smoking, alcohol intake, moisture, blood urea nitrogen, creatinine,
uric acid, eGFR, total calcium, moderate physical activity time,
and sedentary time. The non-linear relationship between daily
VPA time and kidney stone prevalence was also assessed using
smooth curve fitting, and a two-segment linear regression model
was applied to estimate the inflection point. Subgroup analyses
were performed, with gender, age, BMI, hypertension, and diabetes
treated as potential effect modifiers. Likelihood ratio tests were
used to introduce and evaluate interaction terms to quantify
heterogeneity. Missing values were imputed using the median
for continuous variables or the mode for categorical variables. R
(version 4.4.1) and Empower software (www.empowerstats.com;
X&Y Solutions, Inc., Boston,) were applied to perform statistical
analyses, we considered a P-value of less than 0.05 to be
statistically significant.

Results

Baseline characteristics of participants

A total of 12,128 participants were included in this study,
of whom 1,021 (8.41%) had a history of kidney stones. After
weighting, 67.52% of the included participants were male and
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TABLE 1 Baseline of weighted characteristics of participants with and without history of kidney stone: NHANES survey 2007–2020.03.

Characteristics Participants without
kidney stone

Participants with
kidney stone

Standardize diff. P-value

N 11,107 1,021

Age (mean ± SD) 41.29 ± 14.90 48.55 ± 14.63 0.51 (0.45, 0.58) <0.001

Sex, n (weighted %) 0.09 (0.03, 0.16) 0.004

Male 6,882 60.61%) 679 (67.52%)

Female 4,225 (39.39%) 342 (32.48%)

Hypertension, n (weighted %) 0.37 (0.30, 0.43) <0.001

No 8,322 (78.22%) 591 (61.96%)

Yes 2,785 (21.78%) 430 (38.04%)

Diabetes, n (weighted %) 0.30 (0.23, 0.36) <0.001

No 10,013 (93.38%) 813 (84.20%)

Yes 1,094 (6.62%) 208(15.80%)

BMI, n (weighted %) 0.29 (0.23, 0.36) <0.001

≤24 2,894 (27.96%) 161 (15.41%)

>24, ≤28 3,100 (29.81%) 262 (27.37%)

>28 5,060 (42.22%) 596 (57.22%)

Moisture (gm), n (weighted %) 0.06 (-0.00, 0.13) 0.348

≤1,000 161 (0.99%) 12 (0.79%)

>1,000, ≤3,000 6,053 (49.46%) 563 (50.16%)

>3,000, ≤5,000 3,911 (39.33%) 371 (41.67%)

>5,000 982 (10.21%) 75 (7.37%)

Uric acid (mg/dL), n (weighted %) 0.09 (0.03, 0.16) 0.042

0.8–4.5 2,746 (24.98%) 234 (22.17%)

4.6–5.4 2,666 (24.95%) 235 (23.74%)

5.49–6.2 2,789 (24.35%) 243 (25.04%)

6.3–13.3 2,906 (25.73%) 309 (29.05%)

eGFR [mL/(min. 1.73 m2)], n (weighted %) 0.25 (0.18, 0.31) <0.001

45.05–83.56 2,674 (24.88%) 356 (35.54%)

83.57–103.99 2,789 (27.45%) 245 (26.34%)

104–120.35 2,815 (24.84%) 217 (21.72%)

120.36–206.35 2,829 (22.83%) 203 (16.41%)

32.48% were female. Table 1 displays the weighted distribution
of covariates among individuals with and without kidney stone
history. Age (P < 0.001), gender (P = 0.004), race/ethnicity (P
< 0.001), smoking status (P < 0.001), hypertension (P < 0.001),
diabetes (P < 0.001), BMI (P < 0.001), blood urea nitrogen (P <

0.001), creatinine (P = 0.001), uric acid (P = 0.042), eGFR (P <

0.001), total calcium (P = 0.002), and moderate physical activity
(P = 0.0395) were all significantly associated with the presence
of kidney stones. Kidney stone sufferers were typically older,
male, non-Hispanic White, and had higher incidences of smoking,
hypertension, diabetes, higher BMI, poor kidney function, and
more time on moderate physical activity. However, kidney stone
status was not significantly associated with education level, PIR,
alcohol intake, moisture, or sedentary time (all P > 0.05). Table 2

describes differences in exposure variables between participants
with and without kidney stones; those with a history of kidney
stones had a higher mean VPA time (166.42 ± 147.60 min)
than those without (147.23 ± 139.00 min, P < 0.001). Quartile
comparisons of VPA revealed that those who had kidney stones
typically spent more time on daily VPA.

Logistic regression analysis and smooth
curve fitting of kidney stone prevalence

Table 3 shows the association between VPA and kidney stone
prevalence. Results indicate that an increase in daily VPA time
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TABLE 2 Quartile of vigorous physical activity between stones and non-stone group.

Characteristics Participants without
kidney stone

Participants with kidney
stone

Standardize
diff.

P-value

N (%) 11,107 (91.58%) 1,021 (8.49%)

VPA (min, mean + SD) 147.23 ± 139.00 166.42 ± 147.60 0.13 (0.07, 0.20) <0.001

VPA quartile (min) N (%) N (%) 0.15 (0.09, 0.22) <0.001

Q1 10–55 (min) 2,726 (24.54%) 220 (21.55%) – –

Q2 60–102 (min) 2,869 (25.83%) 232 (22.72%) – –

Q3 105–230 (min) 2,765 (24.89%) 250 (24.49%) – –

Q4 240–480 (min) 2,747 (24.73%) 319 (31.24%) – –

TABLE 3 OR (95 % CI) of prevalence rate of kidney stones by quartile of
various physical activity.

Characteristics Prevalence rate of kidney stones

Model Adjust I Adjust II

VPA (min) OR
(95%CI)

P-
value

OR
(95%CI)

P-
value

Q1 1.0 1.0

Q2 1.05
(0.86, 1.28)

0.624 1.11
(0.91, 1.36)

0.645

Q3 1.13
(0.93, 1.37)

0.218 1.16
(0.95, 1.43)

0.174

Q4 1.48
(1.22, 1.78)

<0.001 1.49
(1.21, 1.83)

<0.001

P-value for VPA
group trend

p < 0.001 p < 0.001

Results in the table: OR (95%CI) P-value.
Adjust I model adjust for: Age; Sex, Ethnicity. Adjust II model adjust for: Age; Sex; Ethnicity;
Edu; PIR; Smoke; Alcohol drinking; Hypertension; Diabetes; BMI, Moisture intake., Moderate
physical activity, Sedentary activity, blood urea nitrogen, creatinine, uric acid, eGFR and
total calcium.

corresponded with a higher prevalence of kidney stones. When
daily VPA time was divided into quartiles, multivariable logistic
analysis of the fully adjusted model indicated that VPA was a risk
factor for kidney stones; compared to the lowest quartile, kidney
stone prevalence increased as daily VPA time rose. Participants in
the top quartile of VPA showed a kidney stone prevalence that was
1.49 times greater than those in the bottom quartile (OR = 1.49,
95% CI: 1.21–1.83; P for trend < 0.001). To further clarify the
association between daily VPA time and kidney stone prevalence,
we used smooth curve fitting (Figure 2). After excluding extreme
values (daily VPA time <5% and >95%), smooth curve fitting
showed a significant non-linear trend between VPA and kidney
stone prevalence (P for non-linear trend = 0.0007).

As daily VPA time increased, kidney stone prevalence rose
gradually until reaching a threshold where prevalence sharply
increased. Using a two-segment linear regression model, we
calculated a VPA threshold (K) of 240 min (Table 4). With
increasing duration of daily vigorous physical activity (VPA),
the prevalence of kidney stones gradually rises, followed by a
sharp increase after reaching the threshold of 240 min. Before
the threshold (≤240 min), VPA duration was not significantly

associated with kidney stone prevalence (OR = 1.001, 95% CI:
1.000–1.002); however, beyond this threshold, each additional
minute of VPA was significantly associated with a higher prevalence
(OR = 1.003, 95% CI: 1.000–1.006), and this trend plateaued after
approximately 360 min.

Subgroup analysis

We divided daily VPA time into two segments based on
the inflection point, with the first segment as the reference
group, to conduct subgroup analyses examining the stability
of the relationship between daily VPA time and kidney stone
prevalence across different population subgroups. As illustrated
in Figure 3, nearly all subgroup stratifications, including age,
gender, BMI, alcohol intake, smoking, hypertension, blood urea
nitrogen, creatinine, uric acid, eGFR, and total calcium, and
diabetes status, did not significantly affect the positive correlation
between daily VPA time and kidney stone prevalence. Interestingly,
in the subgroup stratified by moisture, the significant positive
correlation between daily VPA time and kidney stone prevalence
disappeared (P > 0.05). Interaction tests showed that only age had
a significant impact on the relationship between daily VPA time
and kidney stone prevalence (P = 0.00421), this positive correlation
was not significantly affected by gender, BMI, drinking, smoking,
hypertension, diabetes, blood urea nitrogen, creatinine, uric acid,
eGFR, total calcium, or moisture intake (all interaction terms,
P > 0.05).

Discussion

In this observational study, we observed a significant
association between prolonged vigorous physical activity (VPA)
duration and increased kidney stone prevalence after adjusting
for confounders. Specifically, when daily VPA exceeded 240 min,
each additional minute was linked to a 0.3% rise in prevalence,
plateauing near 360 min. This pattern corresponded with
increased urine specific gravity during extended VPA, suggesting
dehydration may contribute to risk. These findings highlight the
importance of targeted moisture strategies for high-exposure
groups (e.g., athletes): clinicians should advise proactive moisture,
before, during, and after prolonged VPA to mitigate urine
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FIGURE 2

The curve of the association between Vigorous physical activity and prevalence rate of kidney stones among study participants in fully adjusted
model.

TABLE 4 Threshold effect analysis of the daily vigorous physical activity
time and prevalence rate of kidney stones.

Outcome: Prevalence rate of kidney
stones

Model OR(95%CI) P-value

Fitting by standard linear model 1.002 (1.001, 1.002) <0.001

Fitting by two-piecewise linear model

Breakpoint (K) 240

OR1 (VPA < 240) 1.001 (1.000, 1.002) 0.279

OR2 (VPA > 240) 1.003 (1.001, 1.006) 0.001

OR2/OR1 1.003 (1.000, 1.006) 0.045

Logarithmic likelihood ratio test
P-value

0.046

Adjust for: Age, Sex, Ethnicity, Edu, PIR; Smoke, Alcohol drinking, Hypertension, Diabetes,
BMI, Moisture intake, Moderate physical activity, Sedentary activity, blood urea nitrogen,
creatinine, uric acid, eGFR and total calcium.

concentration. Mechanistic confirmation requires further research:
we propose longitudinal cohorts tracking VPA exposure against
dynamic urine composition changes (calcium, citrate, pH),
followed by randomized controlled trials (RCTs) testing moisture
interventions on stone incidence in high-risk populations.
While moisture remains, a practical precaution based on our
data, definitive causal pathways warrant verification through
these studies.

The association between physical activity and kidney stones has
been a topic of much discussion. Liu et al., using data from the
UK Biobank, found that physical activity was negatively associated

with kidney stone disease (KSD) risk, irrespective of genetic
predisposition (27). A non-linear relationship between physical
activity and KSD was observed in The study by Feng et al. found
that KSD prevalence decreased as physical activity rose, before
leveling out at a certain threshold (20). Using NHANES data, Li
et al. showed that in individuals who did not engage in vigorous
recreational activity, increased sedentary time was associated with
a higher prevalence of kidney stones (23). While some studies
suggest physical activity protects against KSD, others have found
no meaningful correlation. A cohort study of 215,133 participants
observed no evident link between physical activity and KSD after
accounting for various confounding factors (22). Similarly, Patrick
et al.’s systematic review, which included 17,511 patients, found
inconclusive evidence on the relationship of physical activity to
KSD (28). In contrast, our study found that prolonged VPA was
not protective against kidney stone.

It was associated with an increased risk. Li et al.’s research also
suggested that after reaching a certain intensity and duration of
exercise, kidney stone prevalence does not continue to decrease,
consistent with our findings. Our study addresses a research gap
by specifically examining the impact of vigorous physical activity
on kidney stone prevalence.

In our study, vigorous activity appeared as a risk factor
for kidney stones, likely due to multiple mechanisms. First,
exercise-induced sweating and fluid loss may cause dehydration,
leading to urine concentration and supersaturation of stone-
forming substances, calcium oxalate and uric acid, for instance,
may then deposit in the kidneys (29–31). Additionally, electrolyte
imbalances from sweat loss could disrupt calcium metabolism,
raising calcium ion concentration in urine and increasing the
risk of calcium oxalate stones (31). Acidic metabolic by-products
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FIGURE 3

Subgroup analysis on the association of vigorous physical activity and the prevalence of kidney stones.

that accumulate during intense exercise may further acidify urine,
promote the deposition of uric acid and calcium oxalate and
thereby increasing kidney stone risk (32). Furthermore, vigorous
exercise accelerates metabolism, increasing uric acid production,

especially under dehydrated conditions that favor urate crystal
formation (30). Based on these observations, we hypothesized
that VPA may lead to urine concentration, with stone-forming
substances reaching supersaturation and depositing in the kidneys,
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thus elevating kidney stone risk. To explore this hypothesis,
we analyzed the relationship between daily VPA time and
urine specific gravity. As depicted in Supplementary Table S1 and
Supplementary Figure S1, after adjusting for various confounders,
we found that vigorous exercise was associated with an increase
in urine specific gravity (β = 0.07, 95% CI from 0.002
to 0.12, P = 0.00495), especially when VPA time exceeded
170 min, aligning with the K-value calculated using a two-
segment linear regression model. Notably, when daily VPA
time exceeded 360 min, the prevalence of kidney stones no
longer increased, investigating the underlying mechanisms may
be valuable. In the initial stages of exercise, sweating induces
dehydration, electrolyte loss, elevated uric acid levels, and urine
acidification, all of which collectively elevate the risk of kidney
stone formation; however, as exercise continues (e.g., reaching
360 min), the body initiates a series of adaptive responses to
mitigate this risk. These include: (1) activation of AMPK to
inhibit xanthine oxidase activity, thereby reducing uric acid
production; (2) enhanced activity of antioxidant enzymes such
as superoxide dismutase (SOD) (33) and glutathione peroxidase
(GPx), alleviating renal tubular damage; (3) restoration of urine
dilution through rehydration and the antidiuretic hormone (ADH)
escape mechanism; and (4) increased urinary citrate excretion,
promoting calcium chelation and inhibiting crystal formation
(34). Together, these mechanisms facilitate rehydration, restore
electrolyte balance, regulate uric acid metabolism, and enhance
acid-base buffering, ultimately enabling the body to progressively
reduce the likelihood of kidney stone formation during prolonged
exercise (35).

There are several strengths in our study. First, it is based
on NHANES data, which is a nationally representative dataset
obtained through standardized protocols. We performed all
analyses using appropriate NHANES sampling weights, ensuring
our findings reflect the broader population. We also controlled
for a variety of confounding factors to ensure the robustness of
our conclusions, and the large sample size allowed for detailed
subgroup analyses. Moreover, based on available information,
this study assesses the effect of daily VPA on kidney stone
risk, clearly defining the type of exercise. Our results offer
valuable insights for those in physically demanding occupations
or recreational activities, with implications for kidney stone
management. Despite the insights provided by this study, there
are limitations. Primarily, because it is based on the NHANES
database, we cannot establish causality for daily VPA time and
kidney stone prevalence. Additionally, as NHANES data represents
only the U.S. population, the generalizability of our findings may
be limited. The self-reported nature of both the exposure and
outcome variables introduces potential for recall and self-report
biases, which could lead to the omission of asymptomatic kidney
stone cases. We acknowledge the absence of important confounders
[e.g., diet (36), dietary supplement intake (37), oxalate intake,
genetics (38), occupation (39), climate (40)] due to data limitations.
Reverse causality is also a possibility. These are now explicitly
listed as limitations, and we propose future cohort studies and
Mendelian randomization to further clarify causal relationships.
Additionally, variations in moisture reporting between participants
with and without kidney stones could introduce reporting bias.

Specifically, those with a history of kidney stones may report
higher moisture, which may account for the lack of a significant
positive correlation between daily VPA time and kidney stone
prevalence in our subgroup analysis of moisture. Although VPA
itself can lead to short-term dehydration, which is a known
theoretical risk factor for kidney stone formation, in real-world
settings—particularly when individuals maintain adequate fluid
regulation—the net effect of VPA on kidney stone risk tends
to be neutral or even beneficial. This is primarily because
sufficient water intake plays a decisive role in urine dilution,
effectively mitigating the concentration of urine caused by intense
physical activity (41). In populations with low or no fluid
intake, the duration of VPA may be limited (since prolonged
exercise without hydration can lead to severe consequences), and
previous findings suggest that short-term vigorous activities—
such as swimming—may even have protective effects (42). While
it is true that VPA can lead to dehydration, the key factor
is the individual’s hydration habits during and after exercise.
If exercisers—especially those who engage in regular, health-
conscious physical activity—actively replenish fluids during and
after workouts, they can effectively reverse the temporary urine
concentration caused by exercise. Overall, adequate total moisture
intake is one of the most effective strategies for preventing kidney
stones (43).

Conclusion

Our analysis demonstrates that, in this observational study,
longer durations of VPA are linked to a higher prevalence of kidney
stones after accounting for potential confounders. Specifically, we
observed that kidney stone prevalence increased with rising daily
VPA time. When daily VPA time exceeded 240 min, each additional
minute of VPA was associated with a 0.3% increase in kidney
stone prevalence, reaching a plateau around 360 min. This observed
association may be related to the concurrent increase in urine
specific gravity seen with prolonged VPA. Given these findings,
maintaining adequate moisture during periods of VPA could be a
prudent practical measure.
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