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Background and objectives: Arterial stiffness has been demonstrated to 
be  associated with a range of adverse cardiovascular events. Nevertheless, 
the epidemiological evidence on the association between metal exposure and 
arterial stiffness remains inconclusive.
Methods: The data concerning 12 urine metals were derived from the National 
Health and Nutrition Examination Survey (NHANES) conducted from 2003 to 
2016. Multiple linear regression and restricted cubic spline (RCS) analyses were 
applied to explore the potential linear and nonlinear associations between urine 
metal and ePWV. A parallel mediation analysis was conducted in order to explore 
the potential intermediate factors in metal-induced ePWV elevation. Weighted 
quantile sum (WQS) regression and Quantile g-computation (Qgcomp) were 
conducted to estimate the individual and combined associations between urine 
metal and ePWV.
Results: Following adjustment for the relevant covariates, it was found that 
urine Cd, Pb, Co, and U were found to be significantly correlated to elevated 
ePWV in both the multiple linear regression and the RCS model. Mediation 
analysis revealed that high  - density lipoprotein (HDL) and total cholesterol 
(TC) might be  partly implicated in the correlation between urine metal and 
ePWV. WQS regression and Qgcomp analyses consistently indicate a positive 
correlation between exposure to mixed metals and elevated ePWV, with Cd and 
Pb identified as the primary contributors to this phenomenon.
Conclusion: The present study indicated a significant association between the 
presence of a mixture of metals and elevated ePWV, with Cd and Pb identified as 
the primary risk factors. And HDL and TC might participate in mediating mixed 
metals exposure induced ePWV changes.
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1 Introduction

Arterial stiffness is a phenotype that appears early in the 
development of many cardiovascular diseases. Therefore, arterial 
stiffness is accounted as a predict index of several adverse 
cardiovascular outcomes such as hypertension, atherosclerosis and 
stroke (1–3). Pulse wave velocity (PWV) has been recommended as a 
non-invasive means of assessing arterial stiffness. This, in turn, can 
be used to evaluate organ damage resulting from arterial hypertension 
(4–7). In 2016, Greve et  al. derived estimate pulse wave velocity 
(ePWV) based on carotid-femoral pulse wave velocity (cfPWV) and 
demonstrated that ePWV has better predictive value in healthy 
patients and untreated hypertensive patients (8). And ePWV was 
gradually recognized for its reliability and low threshold. Vlachopoulos 
et al. have utilized ePWV as a metric to evaluate the incidence of 
adverse cardiovascular outcomes, including stroke, coronary heart 
disease and cardiovascular death, in individuals at risk of 
cardiovascular disease (CVD) within the SPRINT subgroups (9). 
Solini et al. also established that in patients diagnosed with type 2 
diabetes, elevated level of ePWV indicated a lower survival rates of 
patients with cardiac and renal complications (10).

Metals are widely used in storage batteries, electroplating industry, 
chemical raw materials and other industries (11). With the progress 
of industrialization and urbanization, a mass amount of metals are 
discharged into the environment in the approach of mining, smelting, 
exhaust emissions and sewage irrigation, which are contacted and 
introduced into the human body through drinking water and crops, 
and then accumulated in the human body (12–14). Metals are 
generally considered to affect a range of systems and organs, including 
the nervous system (15–17) and hematopoietic system (18–20). 
Recent years have seen an increased focus on the association between 
metal exposure and cardiovascular disease risk. However, there is a 
paucity of research on the association between metal exposure and 
arterial stiffness, and the conclusions vary (21, 22). Therefore, the 
potential role of metal exposure in arterial stiffness 
remains understudied.

In this study, we extracted data pertaining to urine metal and 
other sociodemographic characteristics of the population during 
2003–2016 cycle, and then calculated ePWV based on age and blood 
pressure. The relationship between urine metals and ePWV were 
investigated through several different statistical strategies. In addition, 
we  also investigated which potential factors could mediates the 
association between urine metal levels and ePWV.

2 Materials and methods

2.1 Study population

The data utilized in this study has been drawn from the NHANES 
database. The latter is a cross-sectional study conducted on a 
nationwide scale, overseen by the National Center for Health Statistics. 
The survey enables researchers to obtain information related to 
demographics, socioeconomics, diet, health, and physical examination 
from a sample of the US population that is representative of the whole 
population. The survey data can then be utilized to appraise the health 
and nutritional status of the population. In summary, from 2003 to 
2016, relevant indicators were collected from approximately 

70,000 U.S. residents. All data and indicator sources for the study can 
be referred to on public access.1

Among the 71,058 subjects available for the study, the following 
conditions were set for data cleaning: (1) lack of data on metal 
exposure and data required for calculation of the ePWV index; (2) 
subjects under the age of 20 or pregnant; (3) missing one or more 
covariates. Eventually, 8,800 samples were included in the analysis to 
verify the association between metal exposure and ePWV. The detailed 
flow chart of the included subjects is shown in Figure 1.

2.2 Acquisition of estimated pulse wave 
velocity (ePWV)

The formula for ePWV is referenced in Greve et al. and is derived 
from the collaborative reference value for arterial stiffness (8). 
ePWV = 9.587–0.402 × age + 4.560 × 10−3 × age2–2.621 × 10−5 × age2 
× MBP + 3.176 × 10−3 × age × MBP - 1.832 × 10−2 × MBP. MBP was 
calculated by the following formula: (DBP) + 0.4 (SBP − DBP). And 
ePWV was trisected as T1 (<6.88 m/s), T2 (6.88–9.20 m/s), T3 
(>9.20 m/s).

2.3 Measurement of metals in urine

Urine metal levels are favored as a noninvasive assay for large 
follow-up cohorts compared to serum metal levels. According to the 
guiding manual, the urine samples were pretreated, stored on 
appropriate medium and transported to the laboratory for analysis. 
Urine levels of 12 selected metals [including Barium (Ba), Cobalt 
(Co), Cesium (Cs), Molybdenum (Mo), Antimony (Sb), Tungsten 
(W), Uranium (U), Thallium (Tl), Lead (Pb), Cadmium (Cd), 
Mercury (Hg), Arsenic (As)] were measured by inductively coupled 
plasma mass spectrometry (ICP-MS) analysis (23). Based on these 
results, we extracted data of urine metal levels in the period 2003 to 
2016, and all 12 metals were detected at a rate of more than 60%, and 
were corrected by creatinine (Supplementary Table S1). The 
distribution of these metals among the study participants can be seen 
in Supplementary Table S2.

2.4 Covariates

In accordance with the previous literature, the core covariates 
selected for this study are outlined below: sociodemographic 
characteristics, including sex (male/female), age (under 40 years 
old/40–60 years old/over 60 years old), race (Mexican American/other 
Hispanic/non-Hispanic White/non-Hispanic Black/other), education 
level (less than 11th grade/ high school grade/ some college or above), 
poverty income ratio (PIR); life style and body measurement 
indicators, including physical activity, body mass index (BMI), TC, 
HDL, white blood cell counts; alcohol consumption, smoking status, 
total energy intake and urine creatinine. PIR (%) was divided into 
categorical variable according to the quartile [Q1 (<1.18), Q2 

1  https://www.cdc.gov/nchs/nhanes/
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(1.18–2.20), Q3 (2.21–4.10), Q4 (>4.10)]. Physical activity was divided 
into three categories based on the questionnaire (never/moderate/
vigorous). Smoking status was (never/former/current) based on 
cigarettes consumption (more than 100) and whether smoking 
currently. Drinking status was based on alcoholic beverage 
consumption. The conversion of alcohol consumption was in 
accordance with the previous method. The results were “No” and 
“Yes.” BMI was coded as continuous variables (24). Considering the 
correlation between arterial stiffness and related disease, 
we  additionally regarded diabetes, hypertension, and CVD as 
covariates in our analysis (25).

2.5 Statistical analysis

The mean ± standard deviation (SD) was utilized to depict 
continuous variables conforming to a normal distribution, in order to 
provide descriptive information on the sociodemographic 
characteristics. Other variables were defined as categorical variables 
and are expressed as n (%). In this study, metal concentrations (μg/mg) 

were adjusted by urine creatinine to analyze the correlation between 
urine metal and ePWV. In order to circumvent the potential bias 
engendered by a skewed distribution, the concentrations of urine 
metals were transformed through log10 function in order to achieve 
approximate normal distribution (continuous variable), or categorized 
into quartiles (Q1, Q2, Q3, and Q4) as categorical variables. The 
internal relevance between the mixed urine metals was evaluated by 
Spearman’s correlation coefficient.

Multiple linear regression model was utilized to investigate the 
association between each urine metal and ePWV. Mediation analysis 
was performed to ascertain the mediating effect of serum lipid levels 
and white blood cell counts on the associations between urine metals 
and ePWV. Considering the complexity of real environmental 
exposure, WQS analysis was employed to investigate the joint effects 
of mixed metal exposures on ePWV. And the contribution of every 
single metal to the holistic indices effect can then be assessed through 
the weight assigned to each variable by the model. Additionally, 
we introduced the Qgcomp model to confirm the effects of each urine 
metal on ePWV. This was achieved by allocating positive or negative 
weights to each factor in the model. Restricted cubic spline (RCS) 

FIGURE 1

Flow diagram for participant inclusion.
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regression was employed to estimate the potential nonlinear 
relationship between each urine metal and ePWV. Spearman’s 
correlation coefficient was employed to examine relationships between 
urine metals.

All statistical methods have been adjusted for the aforementioned 
confounding variables. These analyses were executed utilizing the R 
software platform (R 4.1.1). In the statistical model, significance was 
affirmed by a two-sided p-value of under 0.05.

3 Results

3.1 Baseline characterization

The basic characteristics of the participants which were involved 
in study are shown in Table 1. A total of 71,058 participants were 
collected for this study and the final number included in the analysis 
was 8,880, including 4,585 male and 4,295 female. Higher level of 
ePWV was prefer to exist in the subgroup which participants over 
60 years old, male, of Non-Hispanic White, have lower level of 
education, with less exercise, had a history of smoking. Additionally, 
we observed the higher levels of ePWV were accompanied by a higher 
prevalence of hypertension, CVD, diabetes.

3.2 Spearman’s correlation coefficient for 
the mutual correlations among the urine 
metals

In order to investigate mutual correlations among the 
environmental metal exposures, we calculated Spearman’s correlation 
coefficients to check the correlation between pairwise urine metals. 
Positive but weak correlations were observed between almost all of the 
12 metals in urine (Supplementary Figure S1). The highest levels of 
correlation were observed between U and Ba (r = 0.21, p < 0.05), Tl 
and Cs (r = 0.2, p < 0.05).

3.3 Associations between urine metals and 
ePWV

According to the results exhibited in Figure  2, 
Supplementary Table S3, we found that Cd (β = 0.012, 95% CI: 0.006, 
0.017), Co (β = 0.012, 95% CI: 0.006, 0.017), Cs (β = 0.008, 95% CI: 
0.001, 0.015), Pb (β = 0.024, 95% CI: 0.019, 0.029), U (β = 0.031, 95% 
CI: 0.012, 0.051) levels were positively correlated with the ePWV. And 
an inverse correlation has been observed between Sb (β = −0.009, 95% 
CI: −0.018, −0.001), Tl (β = −0.015, 95% CI: −0.024, −0.005), W 
(β = −0.008, 95% CI: −0.015, −0.002), Hg (β = −0.005, 95% CI: 
−0.009, −0.002) and the levels of ePWV (p < 0.05).

3.4 RCS analysis between multiple metals 
exposure and ePWV

We conducted RCS analysis to visualize the potential nonlinear 
relationships between urine metals and ePWV. As exhibited in 
Figure 3, nine of all urine metals were significantly associated with 

ePWV (p-overall < 0.05), while U, Pb, Co, Cd showed positive 
associations with ePWV. The analysis results also revealed that Cs, Mo 
were positively correlated with the ePWV and in a nonlinear mode 
(p-non-linear < 0.05).

3.5 WQS analysis of the effects of multiple 
and individual metal exposure on ePWV

Our findings indicated that the WQS indices exhibited a 
substantial correlation with ePWV. As shown in Figure 4A, the upper 
quartile of the WQS indices was significantly related to elevated 
ePWV (β = 0.022, 95% CI: 0.017, 0.028), in which U (β = 0.15), Pb 
(β = 0.48), Co (β = 0.15), and Cd (β = 0.1) were the dominating 
contributors to the positive correlation (p < 0.01).

3.6 Qgcomp analysis of the effects of 
multiple and individual metal exposure on 
ePWV

Unlike other mixed exposure models, Qgcomp analysis does not 
require all weight indices to be aligned in the same direction. Our 
findings showed mixed metals exposure were significantly and 
positively associated with ePWV (β = 0.022, 95% CI: 0.016, 0.027). For 
the levels of ePWV, the urine level of Pb (β = 0.4) showed the strongest 
positive correlation, followed by Cd (β = 0.18), Co (β = 0.16) and Cs 
(β = 0.10) (Figure  4B). When it comes to negative relationship 
between urine metals and ePWV, TI, Hg, W, Sb exhibited a negative 
tendency with ePWV.

3.7 Mediation analysis of potential 
intermediate factors in the association 
between urine metals and ePWV

To explore potential underlying mechanisms between metal 
exposure and ePWV, a parallel mediation analysis was conducted to 
evaluate the mediating effect of serum lipid levels and white blood cell 
counts on the aforementioned association. Parallel mediation analysis 
demonstrated that HDL and TC exerted a weak but significant 
mediation effect on the association between mixed metals WQS 
indices and ePWV, and the proportion of mediation was 2.14 and 
3.70% (Table 2). The mediated proportion of HDL on the associations 
between Co, Cs, Pb, U, As and ePWV was 1.50, 5.73, 2.29, 5.29 and 
18.82% (p < 0.05). TC similarly mediated the association between Ba, 
Cd, Co, Cs, Pb, U and ePWV, and the proportion of mediation was 
11.88, 6.44, −6.04%, 5.55, 4.91 and 6.40% (Supplementary Table S4).

4 Discussion

In this study, we observed an association between metal exposure 
and ePWV based on the NHANES cohort. In the multiple linear 
regression analysis, higher levels of urine U, Pb, Cd and Co were 
related to increased ePWV. Mixture analysis models revealed a 
significant correlation between metal mixture and elevated ePWV, 
with Pb and Cd as the primary contributors. Furthermore, mediation 
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TABLE 1  Baseline characteristics of the participants in the analyses.

Characteristics Total population ePWV (m/s)

T1 (<6.88) T2 (6.88–9.20) T3 (>9.20)

Overall 8,880 2,931 2,930 3,019

Age (years, %)

<40 2,857 (32.2) 2,402 (82.0) 453 (15.5) 2 (0.1)

40–60 2,957 (33.3) 523 (17.8) 2,102 (71.7) 332 (11.0)

>60 3,066 (34.5) 6 (0.2) 375 (12.8) 2,685 (88.9)

Gender (%)

Male 4,585 (51.6) 1,415 (48.3) 1,565 (53.4) 1,605 (53.2)

Female 4,295 (48.4) 1,516 (51.7) 1,365 (46.6) 1,414 (46.8)

Race (%)

Mexican American 1,413 (15.9) 565 (19.3) 479 (16.3) 369 (12.2)

Other Hispanic 754 (8.5) 278 (9.5) 250 (8.5) 226 (7.5)

Non-Hispanic White 4,238 (47.7) 1,246 (42.5) 1,361 (46.5) 1,631 (54.0)

Non-Hispanic Black 1785 (20.1) 553 (18.9) 617 (21.1) 615 (20.4)

Other 690 (7.8) 289 (9.9) 223 (7.6) 178 (5.9)

Education level (%)

Less Than 11th Grade 2,189 (24.7) 592 (20.2) 643 (21.9) 954 (31.6)

High School Grad 2064 (23.2) 655 (22.3) 685 (23.4) 724 (24.0)

Some College or above 4,627 (52.1) 1,684 (57.5) 1,602 (54.7) 1,341 (44.4)

Physical activity (%)

Inactive 4,760 (53.6) 1,416 (48.3) 1,493 (51.0) 1851 (61.3)

Moderate 2,158 (24.3) 677 (23.1) 706 (24.1) 775 (25.7)

Vigorous 1962 (22.1) 838 (28.6) 731 (24.9) 393 (13.0)

Past-year alcohol drinking (%)

No 2,466 (27.8) 693 (23.6) 760 (25.9) 1,013 (33.6)

Yes 6,414 (72.2) 2,238 (76.4) 2,170 (74.1) 2006 (66.4)

Smoking status (%)

Never 4,715 (53.1) 1758 (60.0) 1,545 (52.7) 1,412 (46.8)

Former 2,353 (26.5) 405 (13.8) 709 (24.2) 1,239 (41.0)

Current 1812 (20.4) 768 (26.2) 676 (23.1) 368 (12.2)

Family PIR (%)

Q1 (<1.18) 2,112 (23.8) 822 (28.0) 630 (21.5) 660 (21.9)

Q2 (1.18–2.20) 2,211 (24.9) 705 (24.1) 624 (21.3) 882 (29.2)

Q3 (2.21–4.10) 2,261 (25.5) 727 (24.8) 742 (25.3) 792 (26.2)

Q4 (>4.10) 2,296 (25.9) 677 (23.1) 934 (31.9) 685 (22.7)

Total energy intake (kcal, %)

Q1 (<1472.0) 2,124 (23.9) 530 (18.1) 623 (21.3) 971 (32.2)

Q2 (1472.0–1915.0) 2,230 (25.1) 670 (22.9) 676 (23.1) 884 (29.3)

Q3 (1915.1–2502.5) 2,238 (25.2) 757 (25.8) 751 (25.6) 730 (24.2)

Q4 (>2502.5) 2,288 (25.8) 974 (33.2) 880 (30.0) 434 (14.4)

CVD (%)

No 7,913 (89.1) 2,874 (98.1) 2,717 (92.7) 2,322 (76.9)

Yes 967 (10.9) 57 (1.9) 213 (7.3) 697 (23.1)

Hypertension (%)

(Continued)
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analysis indicated that HDL and TC accounted for a mediation effect 
of 2.14 and 3.70% on the association of multiple metals WQS index 
with ePWV.

Metals are widely used in industrial production and are 
therefore released into the environment. The general population is 
mainly exposed to metals through air, food, and drinking water, 
while occupational exposure exists in mining, smelting, and 
chemical manufacturing industries (13). Considering the 
complexity of real-world scenarios, individuals are always exposed 
to multiple metals. We further used the WQS and Qgcomp models 
to evaluate the collective effects of multiple metals. Based on the 
aforementioned models, we  found that mixed metal exposure 
increases the risk of arterial stiffness. This finding is supported by 
a multicenter study involving multiple ethnic groups, where higher 
levels of urine metals were linked to the progression of coronary 
artery stiffness (26). Furthermore, we identified that urine Cd and 
Pb contributed most to the elevated ePWV through a mixture 
analysis model. These findings provide a basis for reducing related 
metals exposure. Additionally, we  observed that the WQS 
regression revealed a significant association between U and 
increased ePWV, whereas the conclusion of Qgcomp was different. 
This phenomenon may be  attributed to the nature that WQS 

regression is restricted to gaging risk factors in the same 
direction (27).

Our mediation analysis indicate that HDL/TC play a promotional 
role in the association between metal exposure and elevated 
ePWV. Substantial evidence implicates Pb and Cd could elevate TC 
level, as well as reduced HDL level (28, 29). HDL and TC were also 
associated with baPWV/cfPWV (30, 31). Preclinical studies in 
animal models suggests that metal exposure can disrupt lipid 
metabolism (32). These evidences indicate that Pb and Cd can 
disrupt the biological activity of enzymes involved in lipid 
metabolism, leading to lipid metabolism disorders and promoting 
arterial stiffness.

However, it should be emphasized that although the mediating 
effect of HDL and TC was significant, its proportion of total effect was 
faint in our model. These findings suggest that the mechanism 
underlying the metal-induced arterial stiffness remains to 
be elucidated. However, the findings from animal studies may offer 
some clues. Pb and Cd exposure can reduce NO production by 
inhibiting eNOS (33, 34), augment the secretion levels of endothelial 
cell adhesion molecule (35, 36), eventually resulting in endothelial 
dysfunction and vascular injury. Furthermore, Pb and Cd may also 
compete with calcium in calcium-dependent processes and interact 

TABLE 1  (Continued)

Characteristics Total population ePWV (m/s)

T1 (<6.88) T2 (6.88–9.20) T3 (>9.20)

No 5,673 (63.9) 2,661 (90.8) 1875 (64.0) 1,137 (37.7)

Yes 3,207 (36.1) 270 (9.2) 1,055 (36.0) 1882 (62.3)

Diabetes (%)

No 7,608 (85.7) 2,830 (96.6) 2,470 (84.3) 2,308 (76.4)

Yes 1,272 (14.3) 101 (3.4) 460 (15.7) 711 (23.6)

BMI (kg/m2) 29.04 ± 6.67 27.78 ± 6.68 30.32 ± 6.88 29.01 ± 6.20

HDL (mg/dL) 53.05 ± 16.16 52.54 ± 14.78 51.70 ± 16.44 54.86 ± 16.99

TC (mg/dL) 195.62 ± 42.09 185.94 ± 37.97 202.58 ± 42.85 198.26 ± 43.43

All data originated from NHANES 2003–2016. Data are presented as frequencies (%) for categorial variables, and mean ± geometric standard deviation continuous variables.
ePWV, Estimated Pulse Wave Velocity. T, Tri-sectional quantile. Q, quartile. Family PIR, ratio of family income to poverty. CVD, Cardiovascular diseases. BMI, Body mass index. HDL, High-
Density Lipoprotein. TC, Total Cholesterol.

FIGURE 2

The association between environmental metal exposures with ePWV. The multiple linear regression models were adjusted for age, gender, race, 
education levels, smoking status, past-year alcohol drinking, intake of total energy, physical activity, BMI, ratio of family income to poverty, diabetes, 
hypertension, CVD (cardiovascular diseases), NHANES survey circle, level of high-density lipoprotein and total cholesterol. * p < 0.05.

https://doi.org/10.3389/fpubh.2025.1606518
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhou et al.� 10.3389/fpubh.2025.1606518

Frontiers in Public Health 07 frontiersin.org

with calmodulin, thereby disrupting calcium homeostasis and 
inducing smooth muscle contraction and relaxation dysfunction (37).

This study highlights several notable advantages. First, 
we conducted a comprehensive population-based analysis to ascertain 
the role of metal exposure in the progression of arterial stiffness, 
providing important corroborations with regard to the cardiovascular 
consequences induced by metal exposure. Second, we employed two 
mixture analysis models to simulate real-world scenarios and 
discriminate high-risk metals. Third, we  explored potential 
mechanisms through mediation analysis, suggesting that metal 
exposure may exacerbate arterial stiffness through perturbations in 
lipid homeostasis. The findings presented herein provide indispensable 
epidemiological evidence for identifying the vascular impairment 
caused by metal exposure. It also indicates that policymakers should 

take measures to mitigate and control sources of exposure, which is 
crucial to reducing metal contamination in air, water, and food, 
thereby ensuring public health.

A few limitations should be  acknowledged. First, the cross-
sectional nature of our study design limits the capacity to establish a 
causal relationship between metal exposure and arterial stiffness. 
Second, given the disparity in half-life and distribution between 
metals, urine metal levels may not accurately represent actual 
exposure in  vivo. Third, our analyses did not consider sampling 
weights, which may have impacted the conclusions. In conclusion, it 
is imperative that the findings pertaining to the association between 
metal exposure and arterial stiffness are corroborated in forthcoming 
experimental studies and prospective studies with augmented 
sample sizes.

FIGURE 3

RCS regression between individual urine metal and ePWV. (A) U, (B) Pb, (C) Cd, (D) Co, (E) Cs, (F) Mo, (G) Ba, (H) As, (I) Hg, (J) W, (K) Sb, (L) Tl. The 
model was adjusted for gender, age, race, education levels, smoking status, past-year alcohol drinking, intake of total energy, physical activity, BMI, 
ratio of family income to poverty, diabetes, hypertension, CVD, NHANES survey circle, level of high-density lipoprotein and total cholesterol.
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FIGURE 4

Both the joint and individual effects of urine metals on ePWV were evaluated by WQS (A) and Qgcomp (B) model. Models were adjusted for gender, 
age, race, education levels, smoking status, past-year alcohol drinking, intake of total energy, physical activity, BMI, ratio of family income to poverty, 
diabetes, hypertension, CVD, NHANES survey circle, level of high-density lipoprotein and total cholesterol.

TABLE 2  Mediation analysis on the association of multiple metals WQS index with ePWV.

Mediators Indirect  
effects

Direct  
effects

Total  
effects

Mediated proportion 
(%)

p-value

β (95% CI) β (95% CI) β (95% CI)

HDL 0.0006 (0.0002, 0.0009) 0.027 (0.023, 0.031) 0.028 (0.023, 0.032) 2.14% <0.001

TC 0.001 (0.0007, 0.002) 0.026 (0.022, 0.030) 0.027 (0.024, 0.031) 3.70% <0.001

WBC 0.001 (−0.002, 0.003) 0.026 (0.022, 0.031) 0.026 (0.022, 0.031) - 0.892

LYM −0.001 (−0.001, 0.0001) 0.026 (0.022, 0.031) 0.026 (0.022, 0.031) - 0.732

MON 0.001 (−0.001, 0.001) 0.026 (0.022, 0.031) 0.026 (0.022, 0.031) - 0.866

NEU −0.001 (−0.001, 0.001) 0.026 (0.022, 0.031) 0.026 (0.022, 0.031) - 0.726

EOS −0.001 (−0.002, 0.001) 0.027 (0.022, 0.031) 0.026 (0.022, 0.031) - 0.238

BAS −0.001 (−0.001, 0.001) 0.026 (0.022, 0.031) 0.026 (0.022, 0.031) - 0.900

Model was adjusted for age, gender, race, education levels, smoking status, past-year alcohol drinking, intake of total energy, physical activity, BMI (body mass index), ratio of family income to 
poverty, diabetes, hypertension, CVD (cardiovascular diseases), NHANES survey circle, level of high-density lipoprotein and total cholesterol (apart from the analyses of HDL and TC).
ePWV, Estimated Pulse Wave Velocity. WBC, White blood cell count. LYM, Lymphocyte number. MON, Monocyte number. NEU, Segmented neutrophils number. EOS, Eosinophils number. 
BAS, Basophils number. HDL, high-density lipoprotein. TC, total cholesterol.
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5 Conclusion

Our research provides the following findings. First, mixed and 
single exposure model emphasized that metal exposure increases the 
risk of high ePWV level, especially Pb and Cd. Furthermore, HDL and 
TC may act as mediating factors for the associations of metal exposure 
with elevated ePWV, though this mediating effect is negligible.
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Glossary

ePWV - estimate pulse wave velocity

cfPWV - carotid-femoral pulse wave velocity

NHANES - National Health and Nutrition Examination Survey

WQS - Weighted Quantile Sum regression

Qgcomp - Quantile g-computation

RCS - restricted cubic spline regression

PIR - poverty income ratio

Sb - antimony

As - arsenic

Ba - barium

Cd - cadmium

Cs - cesium

Co - cobalt

Pb - lead

Mo - molybdenum

Hg - mercury

TI - thallium

W - tungsten

U - uranium

HDL - high-density lipoprotein

TC - total cholesterol

MBP - mean blood pressure

SBP - systolic blood pressure

DBP - diastolic blood pressure
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