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Introduction

Since 1990, substantial evidence from association studies has
identified the D(2) dopamine receptor (DRD2) gene as a factor in
the development of alcoholism (1–4). The DRD2 gene has also been
linked to other substance use disorders, including dependencies on
cocaine, nicotine, and opioids, as well as obesity (5–11). Dopamine
in the brain, often referred to as the “stress-relief molecule,” plays a
central role in managing stress responses (12).

The relationship between dopaminergic neurotransmission
and various forms of stress has been known for many years.
The current understanding is that numerous genes interacting
with dopaminergic pathways may comprise promising therapeutic
targets, particularly in addiction treatment (13). Li et al. identified
396 genes that together influence dopamine and glutamate release
in addiction contexts (14). The consistent evidence supporting
dopamine’s role in addiction has driven the development of
therapies focused on modulating dopaminergic signaling (7).

Dopamine D2 receptor neuro-genetics and
auto- receptor function

A significant limitation in suppressing the dopaminergic system
to induce drug extinction is the potential for mood disturbances
and an increased risk of suicidal ideation. These side effects are
counter-productive to the aim of the approach. Our laboratory
has proposed that long-term, gentle stimulation of dopamine
receptors could induce the “normalization” of reduced dopamine
D2 receptor density (15).

Our laboratory has promoted the extended–term use of
dopaminergic agonist therapies to reduce cravings for substances
such as glucose based on the understanding that individuals
carrying the DRD2 Taq A1 allele exhibit compromised D2 receptor
density (16, 17). Positron emission tomography (PET) imaging
studies have revealed substantial variability in dopamine D2
receptor density across in vivo human striatum. Low D2 receptor
binding in vivo has been consistently associated with dependence
on alcohol and other substances. The DRD2 A1 allele has been
potentially linked to a subtype of alcoholism and reduced D2
receptor density in vitro. Pohjalainen et al. (18) conducted a
study involving 54 healthy Finnish participants using PET imaging
with [11C] raclopride to evaluate D2 receptor characteristics,
including binding density (Bmax), affinity (Kd), and availability
(Bmax/Kd). They observed that the A1/A2 genotype group
exhibited significantly reduced D2 receptor availability compared
to the A2/A2 group, indicating an alteration in receptor density.
No difference in receptor affinity (Kd) was observed between
the groups. The association between the A1 allele and low D2
receptor availability in healthy subjects indicates that the A1 allele
of the TaqIA polymorphism may be in linkage disequilibrium with
a promoter/regulatory mutation affecting dopamine D2 receptor
expression. This research provides an in vivo neurobiological
correlation between the A1 allele and lower D2 receptor availability
in healthy individuals, aligning with our laboratory’s work to
underscore the importance of targeted interventions to address

the neurobiological underpinnings of dopamine dysfunction in
individuals with genetic predispositions (17).

Therapeutic implications of D2 receptor
regulation

Understanding why D2 receptor density was lower in A1
allele carriers provided the impetus to suggest that raising D2
receptor density may reduce aberrant craving behavior, providing
a homeostatic state toward normalization. This concept was
initially supported by Boundy et al. (19), whose research with
radiolabeled antagonists demonstrated that both agonists and
antagonists could induce up-regulation of D2 dopamine receptors
in cells transfected to express D2L or D2S receptors. Notably,
receptor regulation induced by agonists was synergistic with
cAMP analogs, and the time courses of the effects varied
between agonists and antagonists. Further studies extended these
findings by utilizing radiolabeled agonists to examine agonist-
and antagonist-induced regulation of the high-affinity state of the
D2L dopamine receptor in transfected HEK 293 cells. Exposure
to agonists resulted in a reduction of receptors in the high-
affinity agonist-preferring state, whereas antagonists increased
the density of such receptors. The effects of both agonists and
antagonists on the agonist-preferring receptors occurred without
a lag and were time and dose-dependent. Forskolin-stimulated
cAMP accumulation was unaffected by exposing cells to the
antagonist (-)-sulpiride, revealing that antagonists do not inhibit
cAMP activity. However, after 1.5 h of exposure to the agonist
quinpirole, desensitization occurred. This suggests that the rapid
loss of high-affinity binding sites represents an uncoupling of
the receptor from the G protein that mediates the inhibition of
adenylyl cyclase. Pretreatment of cells with the protein synthesis
inhibitor cycloheximide did not prevent this quinpirole-induced
loss of receptors with a high affinity for agonists. Cycloheximide
blocked the (-)-sulpiride-induced increase in high-affinity binding
sites, but only after extended incubation sufficient to upregulate
total receptor numbers. Short-term incubation of cells with (-)-
sulpiride in cycloheximide still presented an increased receptor
density with high agonist affinity. These results suggest that the
increase in agonist binding after brief exposure to an antagonist is
due to interactions of the receptor with one or more G proteins
that are not coupled to inhibition of adenylyl cyclase, whereas the
increase in agonist binding at later time points is associated with
the antagonist-induced up-regulation.

Thus, the gradual administration of agonistic therapy promotes
the proliferation of Dopamine D2 receptors over time (20).
This finding holds significant therapeutic potential, particularly
in the use of KB220Z, a dopaminergic agonist reported to
address Reward Deficiency Syndrome (RDS) behaviors (Figure 1),
including addiction to substances such as drugs and alcohol (21).
Studies indicate that individuals carrying the DRD2 A1 allele
exhibit a higher likelihood of positive treatment response and
compliance with dopaminergic agonist therapy compared to those
with the DRD2 A2 allele genotype. However, it must be noted
that the precise mechanisms producing these favorable clinical
responses remain unclear (22–25).
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FIGURE 1

Brain Reward Cascade and the Neurobiological Basis of Reward
Deficiency Syndrome (RDS). This schematic of the relevant pathways
and neurotransmitter systems is simplified for clarity and illustrates
the neurocircuitry of the Brain Reward Cascade (BRC), emphasizing
the interactions between key neurotransmitter systems involved in
stress modulation and dopaminergic signaling. Stress activates
glutamatergic neurons in the prefrontal cortex (PFC), which project
to the nucleus accumbens (NAcc) and ventral tegmental area (VTA).
Increased glutamate (GLUT) release modulates dopamine (DA)
release in the NAcc through NMDA receptor activation and
downstream GABAergic regulation of VTA dopaminergic neurons via
GABAA and GABAB receptors. Disruptions in this cascade—such as
low D2 receptor density due to the DRD2 A1 allele—contribute to
hypodopaminergia, a hallmark of Reward Deficiency Syndrome
(RDS). RDS behaviors include substance and non-substance
addictions (e.g., alcohol, drugs, gambling, overeating, internet use,
and risk-taking behavior). This model supports the clinical rationale
for genetic testing and precision-targeted dopaminergic
modulation in managing addiction and stress-related disorders.

Laakso et al. (26) provided critical insights into the mechanisms
underlying dopamine dysfunction for the first time in the study
of dopaminergic genetics. Their research indicates that the A1
allele of the TaqI restriction fragment length polymorphism (RFLP)
in the dopamine D2 receptor gene (DRD2) is associated with
reduced D2 receptor density in the striatum. Recognizing the key
role of D2 autoreceptors in dopamine synthesis regulation, they
investigated whether the A1 allele alters presynaptic dopamine
function in the brain. They additionally studied two other

DRD2 polymorphisms, C957T and−141C Ins/Del, which have
also been suggested to affect D2 receptor levels in the brain.
The relationships between the Taq IA RFLP, C957 T, and−141C
Ins/Del polymorphisms and striatal dopamine synthesis in 33
healthy Finnish volunteers were studied using positron emission
tomography and [18F] fluorodopa [[18F] FDOPA], a radiolabeled
analog of the dopamine precursor L-DOPA. The study revealed
that heterozygous carriers of the A1 allele (A1/A2; 10 subjects)
exhibited an 18% increase in [18F] FDOPA uptake in the putamen
compared to non-carriers (A2/A2; 23 subjects). In contrast, the
C957T and−141C Ins/Del polymorphisms did not significantly
affect [18F] FDOPA uptake values. These findings demonstrate
that the A1 allele of the DRD2 gene is linked to the increased
striatal activity of aromatic L-amino acid decarboxylase, the final
enzyme in dopamine biosynthesis and the rate-limiting enzyme
for trace amine (e.g., beta-phenylethylamine) synthesis (26). The
increased activity of this enzyme is thought to compensate for
lower D2 receptor expression caused by the A1 allele, leading
to decreased autoreceptor function. These results suggest that
dopamine synthesis in A1 allele carriers could benefit from a
gentler, less potent dopaminergic agonist compared to L-DOPA.
This supports the use of the KB220z complex, precursor amino
acid, and enkephalinase therapy as an effective dopamine agonist. It
is proposed that lower DA quanta dopamine release at presynaptic
neurons in the N. accumbens should induce receptor upregulation
in A1 allele carriers, ultimately reducing craving behaviors and
contributing to dopamine homeostasis.

Silent mutations and functional impact on
DRD2 expression

In the article “The Price of Silent Mutations,” published in
∗Scientific American∗, Chamary and Hurst (27) posit that minor
DNA changes previously thought innocuous may have profound
implications for human diseases, evolution, and biotechnology.
The article mentions silent mutations within the DNA code,
revealing that mutations located outside gene regulatory introns
can significantly influence how genes are translated into proteins.
Over time, studies have linked the 3′ untranslated region (UTR) to
mRNA activity, demonstrating its critical role in gene expression.
Chamary and Hurst specifically identify a silent mutation in the
dopamine D2 receptor (DRD2) gene, which encodes a receptor
that detects the neurotransmitter dopamine. One silent mutation
in this gene causes accelerated degradation of mRNA, resulting in
reduced production of the encoded protein, which may, in turn,
affect certain disease states.

This suggests that the DRD2 Taq A1 allele association in the
3′ region by Grandy and our subsequent association studies are
due to synonymous mutations (silent) in the human dopamine D2
affect mRNA stability and thus synthesis of the receptor. Notably,
mutations like−957T are now recognized as being connected to the
Taq A1 allele (28). These findings challenge traditional assumptions
concerning synonymous variations in molecular genetics and
gene-mapping studies. In the context of complex inherited
conditions, such as stress and RDS, synonymous variation may hold
significant pathophysiological and pharmacogenetic relevance.
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FIGURE 2

Regulation of the NAcc Dopamine Stress Response via Glutamate-GABA-VTA Circuitry. This diagram depicts how glutamate (GLUT) and GABA
signaling influence dopamine (DA) release in the nucleus accumbens (NAcc) during stress. GLUT activates NMDA receptors in the NAcc, stimulating
GABA output neurons that project directly or indirectly to the ventral tegmental area (VTA). In the VTA, GABAB receptors on DA neurons inhibit
activity, while GABAA receptors on interneurons or DA neurons modulate DA firing through both inhibition and disinhibition. NMDA receptor
blockade in the NAcc potentiates the DA stress response, suggesting a feedback loop involving GLUT, GABA, and VTA DA neurons. This circuitry
ultimately regulates DA transmission in response to stress.

This underscores the need for further research regarding silent
mutations in genetic regulation and their broader implications.

Neurobiological mechanisms of stress and
dopamine dysregulation

A recent PUBMED search identified 13,003 articles related
to dopamine (DA) (retrieved 11-18-24). Stress will stimulate
dopamine (DA) transmission in both the medial prefrontal cortex
(PFC) and the nucleus accumbens (NAcc) (29). However, the
NAcc dopamine response to stress appears to be modulated
by a DA-sensitive mechanism in the PFC, where increased DA
transmission in this cortical region dampens the NAcc response to
various stress stimuli (30). There is also evidence implicating PFC
glutamate (GLUT)-producing neurons, some of which project to
the NAcc and the ventral tegmental area (VTA), the origin of the
mesocorticolimbic dopamine system (31, 32).

Stress not only enhances dopamine transmission but also
elevates GLUT levels in the PFC and NAcc (33). Research indicates
that the NAcc dopamine stress response is influenced by a GLUT-
sensitive mechanism (34, 35). Furthermore, studies have shown
that blocking NMDA receptors locally in the NAcc potentiates the
dopamine stress response (36). This suggests that NMDA receptors
on NAcc output neurons, which project to the VTA, mediate the
local effects of GLUT on the NAcc DA stress response. Part of
the NAcc output system comprises GABA neurons that project
either directly or indirectly to the VTA via the ventral pallidum
(37). In the VTA, GABA is known to hyperpolarize DA cells,
inhibiting their activity through GABAB receptor-mediated action.
GABA also regulates VTA dopamine cells at GABAA receptors,
which exert both inhibitory and disinhibitory effects alongside
predominant indirect disinhibitory action, likely via presynaptic
action on non-dopaminergic interneurons (37). Local activation of

GABAA and GABAB receptors in the VTA modulates dopamine
transmission in both the NAcc and VTA (Figure 2). However, to
our knowledge, no comparable studies have directly explored how
these mechanisms affect the NAcc dopamine response, specifically
under stress (37).

Evidence suggests that the dopamine (DA) stress response in
the nucleus accumbens (NAcc) is regulated by GABA inputs to
VTA dopamine, with differential effects mediated by GABAA and
GABAB receptors (38). Data indicates that GABAB receptors are
located directly on DA neurons, while GABAA receptors are found
on GABA interneurons and potentially on DA neurons themselves.
These findings align with the presumption that corticofugal
glutamate (GLUT) inputs to the NAcc regulate stress-induced DA
release indirectly through a GABA-mediated feedback pathway to
the VTA.

Genetic vulnerability, hypodopaminergia,
and stress-induced addiction risk

Over the past decade, it has become increasingly clear that
susceptibility to substance use disorders is influenced by complex
interactions between genetic and environmental determinants (39–
42). Notably, impulsive behaviors are more likely to occur under
conditions of stress or heightened arousal (43). Well-supported
associations between stress and substance abuse have been noted
(44, 45). However, the precise nature of stress-induced alterations
on DA neurotransmission, the conditions under which these
alterations occur, and the ability to generalize the preclinical
findings to humans remain to be determined.

Since Blum et al. (46) linked dopamine D2 receptor (DRD2)
gene polymorphisms to severe alcoholism, subsequent research has
associated DRD2 gene polymorphisms with both acute and chronic
forms of stress. Importantly, emerging evidence underscores the

Frontiers in Public Health 04 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1594872
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lewandrowski et al. 10.3389/fpubh.2025.1594872

FIGURE 3

The Genetic Addiction Risk Score (GARS) test evaluates 10-12 specific genetic variants that are closely associated with the brain’s reward pathways
and the risk of addictive behaviors. These genetic variants collectively contribute to an individual’s predisposition to addictive behaviors by affecting
the brain’s reward circuitry. The GARS test assesses the presence and combination of these variants to provide a genetic risk score that can be used
to guide personalized interventions and prevention strategies. These genetic variants are found in key neurotransmitter systems, including dopamine,
serotonin, and endorphins, which play crucial roles in regulating mood, motivation, and pleasure. The following are some of the key genetic variants
tested in the GARS assessment: (1) DRD2 (Dopamine Receptor D2): Variants in this gene are linked to reduced dopamine receptor density, leading to
decreased reward sensitivity and an increased risk of substance abuse and other addictive behaviors. (2) DAT1 (Dopamine Transporter): This gene
regulates dopamine reuptake in the brain. Certain polymorphisms can result in altered dopamine availability, contributing to impulsivity and the
propensity for addiction. (3) ANKK1 (Ankyrin Repeat and Kinase Domain Containing 1): Often associated with the DRD2 gene, variations in ANKK1
influence dopamine receptor signaling and have been linked to higher risks of addiction and compulsive behaviors. (4) COMT
(Catechol-O-Methyltransferase): This enzyme is involved in the breakdown of dopamine. Variants in the COMT gene can affect dopamine levels in
the prefrontal cortex, impacting decision-making and increasing susceptibility to addictive behaviors. (5) MAOA (Monoamine Oxidase A): This gene
encodes an enzyme that breaks down neurotransmitters like dopamine and serotonin. Certain variants can lead to imbalances in these
neurotransmitters, contributing to impulsivity and addiction risk. (6) OPRM1 (Opioid Receptor Mu 1): Variants in this gene affect the opioid system,
influencing pain perception and the rewarding effects of substances like alcohol and opioids, thereby increasing the likelihood of addiction. (7) BDNF
(Brain-Derived Neurotrophic Factor): This gene is involved in neuroplasticity. Variants in BDNF can affect the brain’s ability to adapt to new
experiences, potentially increasing vulnerability to addictive behaviors. (8) 5HTTLPR (Serotonin Transporter Gene): Polymorphisms in this gene affect
serotonin transport and are linked to mood disorders and increased risk-taking behaviors, which can contribute to addiction. (9) GABRB3
(Gamma-Aminobutyric Acid Receptor Subunit Beta-3): Variants in this gene influence the GABAergic system, which is critical for inhibitory signaling
in the brain. Dysregulation here can lead to anxiety and susceptibility to substance abuse. (10) TH (Tyrosine Hydroxylase): This gene is involved in the
synthesis of dopamine. Variants in TH can influence dopamine production, affecting reward processing and increasing addiction risk. (11) SLC6A3
(Solute Carrier Family 6 Member 3): This gene encodes the dopamine transporter protein, and its variants can affect dopamine reuptake, contributing
to altered dopamine signaling and an increased risk of addictive behaviors. (12) CHRNA4 (Cholinergic Receptor Nicotinic Alpha 4 Subunit): Variants in
this gene are associated with nicotine dependence and other substance use disorders due to its role in acetylcholine receptor function in the brain.

role of genetic and epigenetic factors in creating a state of
“hypodopaminergia,” which may increase susceptibility to trauma,
as in post-traumatic stress disorder (PTSD) (47). A series of studies
by the RDS Consortium provided evidence for DNA antecedents
involving hypodopaminergia, highlighting its importance in RDS
vulnerability and urging the scientific community to investigate
the potential of induction of “dopamine” “homeostasis” with pro-
dopamine regulation (e.g., KB220) (48–68).

This growing body of evidence underscores the need for
targeted interventions to address the interplay between stress,
dopamine regulation, and genetic predisposition, paving the way
for precision therapies aimed at restoring dopamine balance in
affected individuals. The Genetic Addiction Risk Score (GARS) test
allows to quantify the risk of addictive behaviors (Figure 3).

Conclusion

Stress is widely recognized as a significant risk factor
for the onset of addiction, chronic pain, and vulnerability
to relapse. Population-based and epidemiological studies have
identified specific stressors and individual-level variables that
are predictive of substance use and abuse. Preclinical studies
further demonstrate that stress exposure increases drug self-
administration and reinstates drug-seeking behavior in previously
drug-experienced animals. The deleterious impact of early life
stress, child maltreatment, and accumulated adversity on the
corticotropin-releasing factor/hypothalamic-pituitary-adrenal axis
(CRF/HPA), extrahypothalamic CRF, autonomic arousal, and
central noradrenergic systems are reported to be relevant.
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Noradrenergic activation is closely tied to the severity of stress
experienced. The effects of these alterations on the corticostriatal-
limbic motivational, learning, and adaptation systems that include
mesolimbic dopamine, glutamate, and gamma-amino-butyric
acid (GABA) pathways are all associated with the underlying
pathophysiology linked with stress-related risk of addiction.

Although significant research gaps remain in understanding the
precise relationship between stress and addiction, existing literature
highlights a promising non-pharmacological approach-KB220.
This pro-dopaminergic compound has the potential to drive
new prevention and treatment plans to address stress-induced
vulnerability associated with hypodopaminergia. The novel
approach may mitigate reward deficiency and reduce the likelihood
of substance- and non-substance-related addictive behaviors.
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