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Introduction: Seasonal influenza is a major cause of illness and death 
worldwide. Vaccination remains the cornerstone of prevention, with options 
including trivalent inactivated (TIV), quadrivalent inactivated (QIV), and live-
attenuated vaccines. This study aimed to provide a systematic overview of the 
cost-effectiveness of pediatric influenza vaccination programs, with a particular 
focus on comparing different vaccine types.
Methods: A comprehensive literature search was conducted in PubMed, Web of 
Science, Scopus, and Cochrane databases for records published between 2013 
and 2024. The target population included individuals younger than 18 years. The 
primary research question was: Which influenza vaccines, trivalent, quadrivalent, 
or live-attenuated, are more cost-effective, and how does introducing seasonal 
vaccination for children under 18 influence healthcare costs and health 
outcomes? Data extraction was performed using a structured Excel spreadsheet.
Results: This review included 33 studies that met the inclusion and exclusion 
criteria. Most studies support the conclusion that vaccinating children is an 
effective and cost-effective strategy for reducing influenza transmission. Cost-
effectiveness varied depending on epidemiological and demographic factors, 
the type of vaccine used, and age group differences, which were influenced by 
the analytical perspective and local health and economic conditions.
Conclusion: This review confirms that pediatric influenza vaccination is a cost-
effective intervention, particularly with quadrivalent vaccines. The optimal 
choice of vaccine and strategy should be tailored to local population needs and 
economic conditions to maximize public health benefits.
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1 Introduction

Seasonal influenza is a major contributor to severe illness and 
hospitalization. Globally, it affects approximately one billion 
individuals each year, including 3–5 million cases that are life-
threatening. These cases result in an estimated 290,000 to 650,000 
deaths annually, with most fatalities in children under five attributed 
to influenza-related lower respiratory tract infections (1).

Vaccination remains the most effective strategy for preventing 
infection and reducing the severe consequences of seasonal 
influenza (2).

Most inactivated vaccines are produced in embryonated hen eggs, 
although some now use mammalian cell lines. The monovalent 
antigens are combined into trivalent or quadrivalent formulations. 
Trivalent influenza vaccines (TIVs) include two influenza A strains 
(H1N1 and H3N2) and one influenza B strain, whereas quadrivalent 
influenza vaccines (QIVs) include both lineages of influenza B (3). 
QIVs were developed to address the challenge of accurately identifying 
the predominant B lineage for TIV (4).

Annual influenza immunization is recommended due to the 
yearly variation in circulating virus strains, corresponding changes in 
vaccine composition, and the gradual decline in immunity over time. 
Ritzwoller et al. (5) reported that, although the influenza vaccine did 
not perfectly match the predominant circulating strains, it provided 
substantial protection to children who received the full dose and 
partial protection to those who received only one dose and were 
younger than nine years.

These findings highlight the importance of administering two 
doses to previously unvaccinated children for optimal protection and 
support vaccinating eligible children even when the vaccine strain 
match is suboptimal (5).

The live attenuated intranasal vaccine (LAIV), introduced in 2003, 
is also produced in embryonated hen eggs and does not contain 
preservatives. Like inactivated vaccines, it is updated annually and is 
recommended for individuals who are healthy, not pregnant, and 
between 2 and 49 years of age.

Since 2012, the World Health Organization (WHO) has 
recommended influenza vaccination for children aged 6 to 59 months, 
pregnant women, older adults, individuals with chronic illnesses, and 
healthcare professionals (6). Finland, the United Kingdom (UK), and 
Canada have incorporated the pediatric population into their routine 
immunization schedules, while the United  States has adopted a 
universal vaccination policy covering the entire population from 
6 months of age (7, 8).

In most European countries, vaccination is advised for individuals 
aged 65 years and older; however, the age threshold has been lowered 
to 60 years in Italy, Germany, Greece, Iceland, Hungary, and the 
Netherlands (9). Similarly, in Türkiye, annual influenza vaccination is 
recommended for people aged 65 years and older, children aged six 
months and above, individuals with chronic illnesses, nursing home 
residents, pregnant women, and healthcare personnel. The cost of 
vaccination for these high-risk groups is fully covered by the 
healthcare system (10).

Although substantial evidence supports the effectiveness of 
vaccines in children under five, limited data are available for those 
aged 5 to 14 years and young adults up to 18 years. While influenza 
often has less severe consequences in this age group, recent research 
indicates that the average age of influenza-related deaths among 

children without pre-existing conditions is approximately 6 to 
7 years (11).

Administering influenza vaccines throughout childhood is an 
effective strategy for reducing the overall burden of the disease, 
particularly by lowering rates of hospitalization and complications in 
children. Vaccinating children also helps curb transmission to more 
vulnerable individuals, such as those with weaker immune responses 
and older adults (12).

Economic evaluations have demonstrated that vaccinating 
children significantly decreases the incidence of influenza, leading to 
substantial reductions in healthcare costs (13). These savings stem 
from fewer physician consultations, emergency room visits, 
hospitalizations, and prescriptions. Widespread vaccination also 
reduces school absenteeism, supports better educational outcomes, 
and helps parents maintain consistent work schedules. Importantly, 
pediatric immunization contributes to the establishment of herd 
immunity, providing indirect protection to susceptible populations 
and further reducing the economic and healthcare burden associated 
with influenza (14, 15). While evidence supports the general benefits 
of pediatric influenza vaccination, studies specifically comparing the 
cost-effectiveness of different vaccine types are limited. This systematic 
review addresses this gap by providing an overview of the cost-
effectiveness of pediatric vaccination programs, with a particular focus 
on differences across vaccine types.

2 Methods

We systematically searched four electronic databases, namely 
PubMed, Scopus, Web of Science, and Cochrane, for records published 
between 2013 and 2024. The target population consisted of individuals 
younger than 18 years. The study aimed to answer the following 
question: Which influenza vaccines are more cost-effective—trivalent, 
quadrivalent, or live-attenuated—and how does the introduction of 
seasonal vaccination for children under 18 affect healthcare costs and 
health outcomes?

This review followed the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines, using a flow 
diagram to map the literature selection process (16) (Figure 1). The 
search string combined the following keywords: “((pharmaeconomic 
OR pharmaceutical economics OR pharmaceutical economy OR 
pharmacy economy OR cost effectiveness OR economic OR cost OR 
expenditure OR value AND money OR budget) AND ((vaccine OR 
immune* OR active immunization*)) AND ((flu OR influenza* OR 
human influenza* OR human flu OR influenza in human* OR grippe 
OR seasonal flu)) AND ((pediatric* OR child OR child health OR 
healthy children* OR children’s health OR child wellbeing 
OR children*)).”

2.1 Inclusion and exclusion criteria

The inclusion criteria encompassed clinical research evaluating 
the cost-effectiveness of seasonal influenza vaccines in children under 
18 years of age. No restrictions were applied regarding country of 
origin, participant race or gender, or the language of publication. All 
vaccine formulations, including trivalent, multivalent, and LAIV, were 
considered. Exclusion criteria included abstract-only papers, 
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conference proceedings, editorials, author responses, theses, books, 
articles without full-text availability, case reports, case series, 
systematic reviews, meta-analyses, and studies comparing antiviral 
treatments. In addition, studies that did not clearly describe the cost-
analysis methodology or that lacked data on incremental cost-
effectiveness were excluded.

2.2 Screening and data retrieval

Search hits were first de-duplicated to account for overlap between 
databases, followed by double-blinded title, abstract, and full-text 
screening conducted independently by two reviewers (N.A. and N.O.). 
Disagreements were resolved by B.S.

A Microsoft Excel spreadsheet was developed to systematically 
collect and extract data. Two authors (N.A. and N.O.) independently 

collected and verified the extracted information, which included the 
following parameters: authors, year of publication, study setting, type 
of economic evaluation, mathematical model, time horizon, target 
population, vaccination strategy, analytical perspective, vaccine type 
and cost, cost drivers, sensitivity analyses, clinical outcomes, 
incremental cost-effectiveness ratio (ICER), and key study conclusions.

3 Results

The literature search identified 270 studies: 38 from PubMed, 178 
from Web of Science, 46 from Scopus, and 8 from Cochrane. After 
removing 92 duplicates, 178 articles remained for title and abstract 
screening, of which 97 were excluded as irrelevant. The full texts of the 
remaining 81 publications were reviewed in detail, resulting in 33 
articles that met the inclusion and exclusion criteria (Figure 1). Data 

FIGURE 1

PRISMA flow chart for the studies included in the systematic review.
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from these articles were extracted systematically. The PICOS 
framework (Population, Intervention, Comparisons, Outcomes, and 
Study design) was used to guide data extraction. Details on population, 
intervention, comparisons, and study setting and design are presented 
in Supplementary Table 1, while outcomes related to effectiveness, 
cost, and ICERs are summarized in Supplementary Tables 2, 3.

These 33 studies evaluated the pharmacoeconomic impact of 
pediatric influenza vaccination in diverse settings, including countries 
in Europe (Finland, France, Germany, Ireland, the Netherlands, 
Portugal, Scotland, Spain, and England), as well as South Korea, 
Canada, Peru, Uruguay, Bangladesh, China, the United  States, 
South Africa, Argentina, Taiwan, Thailand, and Vietnam.

Figure  2 illustrates the distribution of studies by region and 
vaccine type, while Figure 3 presents a scatter plot showing the cost, 
effectiveness, and coverage of different vaccine types.

Most cost-effectiveness studies used static models, whereas 14 
studies employed dynamic transmission models (17–30) 
(Supplementary Table 1).

The analysis time horizon varied considerably across studies, 
ranging from 200 years in one study (25) to 20 years in three studies 
(20, 23). Two studies used a 14-year horizon (17, 29), while three 
others adopted a 10-year timeframe (19, 22, 28). The remaining 
studies focused on a single influenza season or a one-year period 
(31–46) (Supplementary Table 1).

The populations analyzed also varied widely, ranging from 6 to 
56 months (38), 36 months to 15 years (47), and 0 to 17 years (40), to 
2 to 16 years (20), and 2 to 11 years or 2 to 16 years in an expanded 
scenario (29). Pitman et al. (25) assessed three alternative vaccination 
strategies targeting children aged 2–4, 2–10, and 2–18 years, while 
Baguelin et al. (17) examined strategies for children aged 2–4, 5–16, 
and 2–16 years. Figure  4 presents the ICER in USD per quality-
adjusted life-year (QALY) for different vaccine comparisons across 
these age groups.

The cost-effectiveness of different influenza vaccines was 
evaluated across multiple studies. Seven studies compared QIV with 
TIV (19, 21, 23, 31, 33, 38, 48). Three studies assessed TIV versus no 

vaccination (39, 40, 49), whereas two compared QIV with no 
vaccination (18, 42). Three studies analyzed live-attenuated influenza 
vaccine (LAIV) in comparison with TIV (17, 19, 25). Thommes et al. 
(28) evaluated TIV versus QIV in Canada, whereas in the 
United Kingdom (UK), children aged 2–17 years transitioned from 
LAIV to quadrivalent live-attenuated influenza vaccine (QLAIV), 
and adults switched from TIV to QIV. Nagy et al. (23) compared TIV, 
QIV, and LAIV in pediatric populations and evaluated QIV in other 
age groups under various scenarios, including no vaccination. All 
studies conducted sensitivity analyses, with several incorporating 
multi-parameter sensitivity analyses.

Except for Yoo et al. (46), Gregg et al. (47), and Gerlier et al. (22), 
which reported outcomes as cost per life-year gained or cost per 
influenza case averted, nearly all studies used cost per QALY as the 
primary economic outcome. Detailed results and conclusions are 
presented in Supplementary Tables 1–3.

3.1 Cost-effectiveness of pediatric 
influenza vaccination programs

Numerous studies (17, 19, 22, 24, 25–29, 31, 32, 34, 36, 37, 44) 
have confirmed that vaccinating children is both effective and cost-
effective in reducing influenza transmission. Edoka et al. (49) reported 
that vaccinating all at-risk populations, with the exception of children 
aged 6–59 months, is cost-effective. In contrast, Naber et al. (40) found 
that annual vaccination of children with medical risk factors is not 
cost-effective. de Boer et al. (20) concluded that pediatric vaccination 
is cost-effective in the Netherlands but less so when the analysis is 
limited to outcomes in children alone. Age-stratified analyses revealed 
clear differences in cost-effectiveness. Vaccination of primary school-
aged children (approximately 5–11 years) consistently demonstrated 
the most favorable cost-effectiveness profiles, reflecting their central 
role in influenza transmission and social contact patterns (17, 30). 
Preschool children (2–4 years) also benefited, with generally cost-
saving outcomes, although ICERs were typically higher compared 

FIGURE 2

Distribution of vaccine types across different regions.

https://doi.org/10.3389/fpubh.2025.1589403
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Aksoy et al.� 10.3389/fpubh.2025.1589403

Frontiers in Public Health 05 frontiersin.org

FIGURE 3

Cost, effectiveness, and coverage of different influenza vaccine types.

FIGURE 4

Cost-effectiveness of different influenza vaccine types across age groups.

https://doi.org/10.3389/fpubh.2025.1589403
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Aksoy et al.� 10.3389/fpubh.2025.1589403

Frontiers in Public Health 06 frontiersin.org

with primary school-aged children, likely due to differences in contact 
rates and vaccine uptake (25, 30). In contrast, vaccination of secondary 
school-aged children (12–16 years) yielded mixed results and, in some 
scenarios, may not be cost-effective (30). Figure 4 illustrates these 
age-related differences in cost-effectiveness.

3.2 Herd immunity, mathematical method, 
and time horizon

Herd immunity provides indirect protection and is a key driver of 
the cost-effectiveness of pediatric vaccination (22, 26, 50). Studies 
such as Baguelin et al. (17), Pitman et al. (25), and Sandmann et al. 
(26) demonstrate that incorporating herd protection through dynamic 
modeling reduces ICERs by approximately 10–30%, reflecting the 
broader population-level benefits of vaccination. In contrast, static 
decision-tree or Markov models, as used by Yoo et  al. (46) and 
Kittikraisak et  al. (39), often generate higher ICERs and may 
underestimate the full economic value of pediatric vaccination 
programs. Studies employing longer time horizons, spanning multiple 
influenza seasons or even several decades [e.g., Baguelin et al. (17), 
Pitman et  al. (25), and Sandmann et  al. (26)]—are better able to 
capture the cumulative benefits of vaccination, including sustained 
herd immunity and reductions in influenza-related complications over 
time. These extended horizons typically yield more favorable ICERs 
by accounting for long-term health gains and cost savings. Conversely, 
evaluations with shorter horizons, such as single-season static models 
[e.g., Kittikraisak et al. (39) and Yoo et al. (46)], often underestimate 
the overall economic value of vaccination by focusing solely on 
immediate, direct effects.

3.3 Perspective of the economic analysis

Cost-effectiveness analyses of pediatric influenza vaccination 
commonly adopt different perspectives, which significantly influence 
the reported outcomes.

The societal perspective is frequently used as it captures a 
comprehensive range of costs and benefits, including direct medical 
costs, non-medical costs, and indirect costs such as productivity losses 
due to parental caregiving or absenteeism. This broader viewpoint 
often results in more favorable cost-effectiveness ratios compared with 
analyses adopting a healthcare payer perspective, which typically 
considers only direct healthcare costs borne by insurers or health 
systems. Our review found that the societal perspective predominates 
in many studies, particularly in high-income countries, because it 
better reflects the full economic impact of vaccination programs. 
Several models and economic analyses have also demonstrated that 
clinical effects of vaccination, including reductions in illness, 
hospitalizations, and fatalities, outweigh the cost of vaccination.

For example, A study by Scholz et al. (27) in Germany found that 
systematic childhood vaccination is not only cost-saving from a 
societal perspective but also highly cost-effective from the perspective 
of third-party payers. Similarly, an analysis by Pitman et al. (25), a 
vaccination strategy targeting children aged 2–18 years in the UK was 
identified as the most cost-effective, with an ICER of £251 per QALY 
from the perspective of the National Health Service.

3.4 Regional differences

Regions with higher influenza burden often report more favorable 
ICERs, sometimes even achieving cost-saving outcomes, as 
vaccination reduces both direct medical expenses and broader societal 
impacts such as productivity losses (17, 43).

Conversely, in settings with higher vaccine costs or lower 
influenza incidence, as observed in Uruguay, ICERs may rise and 
approach or even exceed commonly accepted willingness-to-pay 
thresholds, potentially challenging the economic viability of 
vaccination programs (48).

3.5 Vaccine efficacy/effectiveness and 
coverage

The scatter plot in Figure 3 shows that as effectiveness increases, 
costs generally rise as well. Some strategies cluster in the lower-cost, 
higher-effectiveness range, while others are associated with higher 
costs but only modest gains in effectiveness.

Several studies in this systematic review focused on vaccine 
efficacy in preventing severe influenza-related outcomes, such as 
hospitalizations and complications, which have a substantial impact 
on healthcare costs and patient well-being [e.g., Naber et al. (40)]. 
These studies highlight that reducing severe cases significantly 
enhances the cost-effectiveness of vaccination programs by preventing 
expensive medical treatments and improving quality of life. Other 
studies, such as De Boer et al. (20), emphasize the importance of 
vaccination coverage, the proportion of the target population that 
receives the vaccine, as a critical factor influencing cost-effectiveness. 
Higher coverage rates strengthen herd immunity, reduce disease 
transmission, and amplify both direct and indirect benefits, thereby 
improving overall economic outcomes.

Together, these findings underscore that both vaccine effectiveness 
against severe disease and the extent of vaccine uptake are key drivers 
in determining the value of pediatric influenza vaccination programs 
(20, 40).

Live-attenuated vaccines (LAIV and QLAIV) show the highest 
effectiveness (~70%) but also the highest cost per dose (approximately 
$24–$29). Quadrivalent inactivated vaccines (QIVc and QIVe) offer a 
balance of moderate cost ($6.49–$10) and good effectiveness (~60–
65%). Among these, egg-based quadrivalent vaccines (QIVe) are 
slightly less effective than cell-based quadrivalent vaccines (QIVc) due 
to egg-adaptive mutations that can reduce the match to circulating 
strains, thereby impacting overall effectiveness (41). Trivalent vaccines 
(TIV and IIV3/IV4) are less expensive but typically less effective 
(~50–55%).

Vaccine coverage assumptions in economic models vary widely 
across studies and populations. For example, Baguelin et  al. (17) 
assumed approximately 20% coverage in children aged 1–14 years and 
50% in low-risk groups, whereas Kittikraisak et  al. (39) reported 
coverage ranging from 24 to 64% in different seasons for children and 
29 to 31% for adults. Vo et al. (43) modeled a base-case coverage of 
97.2%, reflecting near-universal vaccination in their setting. Gerlier 
et al. (22) simulated an expansion of coverage among healthy children 
aged 2–17 years to 50%, while Bellier et al. (31) reported coverage 
ranging from 7% in adults to over 52% in one-year-old children, 
highlighting age-related differences. Wong et  al. (45) observed a 
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baseline intramuscular vaccine acceptance rate of 28.4%, with 
potential increases through novel delivery methods.

3.6 Quadrivalent versus trivalent vaccines

Kim et  al. (38) reported that QIV was cost-effective in older 
populations but not in children aged 6 to 59 months. In contrast, 
several other studies have shown that QIVs generally provide greater 
cost-effectiveness than TIVs across a range of age groups. These 
findings have been consistent across diverse geographic regions and 
healthcare systems, supporting the broad applicability of QIV (18, 21, 
23, 26, 28, 29, 31, 33, 34, 38, 48).

3.7 Inactivated versus live-attenuated 
vaccines

LAIV generally demonstrates higher or comparable effectiveness 
in children, particularly in younger age groups (2–17 years), compared 
with inactivated influenza vaccines (22). Several studies (e.g., (17, 25, 
29)) have found LAIV to be more effective in preventing influenza in 
healthy children, likely due to its intranasal administration and ability 
to induce mucosal immunity. LAIV is also well tolerated and often 
preferred by children because of its needle-free delivery, which can 
enhance vaccine uptake (45). Multiple studies (e.g., (19, 22, 46)) have 
shown that pediatric vaccination programs using LAIV can be cost-
effective, and in some cases cost-saving, compared with IIV, due to 
higher vaccine effectiveness and the added benefits of herd immunity.

3.8 Cell-based versus egg-based 
quadrivalent influenza vaccines

Three studies compared QIVc with QIVe (24, 32, 42). All reported 
that QIVc generally provides greater vaccine effectiveness than QIVe. 
Although QIVc has a higher unit cost, it is often found to be cost-
effective, and in some cases cost-saving (24), when the broader 
healthcare costs avoided through better protection are considered.

3.9 Economic and health system context

Thommes et al. (28) reported that QIV was more cost-effective in 
Canada than in the United Kingdom, largely due to higher healthcare 
expenses and greater vaccination uptake in Canada. Influenza 
vaccination tends to be more cost-effective in countries with higher 
healthcare costs and higher vaccination coverage rates. Studies from 
diverse settings, such as Bangladesh (36) and Taiwan (32), highlight 
that local healthcare access and economic conditions play a critical 
role in determining the value and feasibility of vaccination strategies.

4 Discussion

This systematic review synthesized evidence from 33 studies 
evaluating the cost-effectiveness of pediatric influenza vaccination 
programs across diverse global settings. The findings consistently 

demonstrate that vaccinating children, particularly primary school-
aged groups, is a cost-effective strategy for reducing influenza 
transmission and its associated health and economic burdens. 
Importantly, the review highlights key nuances related to vaccine type, 
regional context, modeling approaches, and age-specific patterns in 
cost-effectiveness, supporting the prioritization of pediatric 
vaccination in public health policy.

These results are consistent with previous systematic reviews and 
economic evaluations, reinforcing that childhood influenza 
vaccination is generally a cost-effective intervention. Notably, 
prioritizing primary school-aged children maximizes both direct and 
indirect benefits, making this group the most economically 
advantageous target for influenza vaccination programs (51, 52).

A key finding of this review is the substantial impact of herd 
immunity on the cost-effectiveness of pediatric influenza vaccination. 
Most studies that incorporated dynamic transmission models capable 
of capturing indirect protection reported that including herd 
immunity effects significantly improved cost-effectiveness estimates, 
often reducing ICERs by 10–30%. For example, studies such as Pitman 
et al. (25), Baguelin et al. (17), and Sandmann et al. (26) found that 
accounting for herd immunity led to more favorable economic 
outcomes compared to static models, which only consider direct 
effects. This aligns with previous research and systematic reviews [e.g., 
Boccalini et al. (53)] that emphasize herd immunity as a critical driver 
of vaccination value. Our review confirms that dynamic models, 
which reflect real-world transmission dynamics, provide a more 
accurate assessment of the full benefits of pediatric vaccination 
programs. However, the magnitude of the herd immunity effect varied 
depending on local epidemiology, vaccine coverage, and population 
structure, underscoring the importance of context-specific modeling. 
Modeling studies of influenza vaccines, along with ecological evidence 
demonstrating the benefits of herd immunity, have informed seasonal 
and pandemic influenza vaccination strategies (54, 55). Herd 
immunity reduces the number of influenza cases among unvaccinated 
individuals, thereby lowering healthcare expenditures and improving 
overall health outcomes (56). Earlier simulation studies in the 
United States have consistently reported strong indirect effects, with 
even relatively low vaccine coverage rates yielding significant public 
health benefits (57, 58).

Notably, one study comparing dynamic and static modeling 
approaches found that the indirect protection conferred to 
unvaccinated individuals (the “herd immunity effect”) can exceed the 
direct benefits experienced by vaccine recipients, highlighting the 
importance of incorporating herd immunity into economic 
evaluations of preventive interventions (59). Thus, dynamic 
transmission models are essential for accurately assessing the 
population-level benefits of pediatric influenza vaccination.

Our review found that the societal perspective predominates in 
many studies, particularly in high-income countries, because it better 
captures the full economic impact of vaccination programs. A 
systematic review of the cost-effectiveness of seasonal influenza 
vaccines in older adults demonstrated that the chosen perspective 
significantly influences results. Analyses adopting a healthcare payer 
viewpoint typically include only direct medical costs, often producing 
more conservative estimates of vaccine cost-effectiveness. In contrast, 
societal perspective analyses incorporate indirect costs such as 
productivity losses and caregiving burdens, generally yielding more 
favorable cost-effectiveness ratios (60), a finding consistent with the 
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results of this review. Influenza in children frequently leads to parental 
work absenteeism, imposing substantial economic burdens on families 
and employers (57). Moreover, adopting a societal perspective 
supports more equitable health policy decisions by acknowledging the 
broader social value of vaccination, including reduced disease 
transmission in underserved communities. This consideration is 
particularly relevant in low- and middle-income countries, where 
indirect benefits and productivity gains are key drivers of vaccination 
value (61). Additionally, employing longer time horizons in 
conjunction with dynamic transmission models enables a more 
comprehensive assessment of vaccination programs by capturing 
indirect and long-term benefits. In contrast, shorter time horizons, 
while useful for rapid decision-making, risk overlooking these 
critical effects.

The cost-effectiveness of influenza vaccination programs can vary 
considerably depending on the economic and healthcare context of a 
region. For example, countries with higher healthcare costs, such as 
greater expenses related to hospitalizations, medical treatments, and 
management of influenza complications, tend to report more favorable 
cost-effectiveness outcomes, as preventing illness offsets these 
substantial costs. Higher vaccination uptake rates in such settings 
further enhance cost-effectiveness by increasing overall health benefits 
and reducing disease transmission. Conversely, in regions where 
healthcare costs are lower or influenza incidence is less severe, the 
economic value of vaccination programs may appear less favorable. 
Differences in healthcare infrastructure, access to medical services, 
and local economic conditions also shape the performance of 
vaccination strategies in terms of both health outcomes and costs. 
Policymakers should therefore interpret ICERs within their regional 
context, considering not only economic thresholds but also public 
health priorities and budget constraints, to optimize vaccination 
strategies effectively.

Previous studies conducted outside the timeframe of this 
systematic review have suggested that vaccinating low-risk children 
may not always be cost-effective. This is particularly evident in regions 
with low influenza prevalence, where fewer cases occur and, 
consequently, fewer illnesses are prevented through vaccination. 
Additionally, when vaccine effectiveness is suboptimal, due to factors 
such as poor strain match or lower immune response, the health 
benefits gained from vaccination are reduced. In such contexts, the 
costs of vaccinating large numbers of low-risk children may outweigh 
the economic and health benefits, making vaccination programs less 
economically attractive (15, 57). Variations in healthcare utilization 
patterns, such as hospitalization rates, outpatient visits, and 
willingness-to-pay thresholds, also influence cost-effectiveness 
outcomes (62). Willingness to pay reflects the maximum amount a 
society or healthcare system is prepared to invest to gain one unit of 
health benefit (e.g., a QALY), and higher thresholds can make 
vaccination programs appear more cost-effective by accepting higher 
costs for greater health gains. These disparities underscore the need 
for region-specific economic evaluations that incorporate local cost 
data, vaccine procurement mechanisms, and demographic factors to 
accurately assess the value of pediatric influenza vaccination.

The findings of this systematic review highlight important 
considerations for influenza vaccine selection in public health 
programs, where higher-cost vaccines may provide superior 
protection, but budget constraints often require selecting vaccines that 
balance cost and effectiveness. Vaccine coverage assumptions also 

depend heavily on local context, age groups, and program strategies, 
which critically affect the projected impact and cost-effectiveness of 
influenza vaccination. In this review, QIVs demonstrated superior 
cost-effectiveness across multiple studies.

QIVs provide protection against four influenza virus strains, 
including two distinct lineages of influenza B viruses. In comparison, 
TIVs protect against only one B strain. By covering both B lineages, 
QIVs offer broader protection and reduce the likelihood of a strain 
mismatch during the influenza season. This advantage is particularly 
notable in years when influenza B viruses predominate. However, 
variations in assumptions about vaccine effectiveness, strain 
circulation, and healthcare utilization contribute to differences in 
estimated cost-effectiveness across studies. Additionally, differences 
in vaccination coverage rates and population immunity can influence 
the incremental benefits of QIV, with some models showing smaller 
gains in settings with high baseline vaccination coverage. A systematic 
review of health economic evaluations found that switching from TIV 
to QIV is generally a valuable intervention from both public health 
and economic perspectives (63). These findings support our results 
and underscore that vaccine selection is a key determinant of 
program value.

The decision between inactivated and live-attenuated vaccinations 
depends on patient age, risk profile, and local epidemiology. 
Consistent with our findings, systematic reviews and economic 
analyses have shown that vaccinating children with the intranasal 
LAIV is cost-effective compared with strategies targeting only high-
risk groups or the older adults, and often when compared with IIV/
TIV as well (64–66).

The emergence of QIVc as a potentially more effective, though 
more expensive, alternative was also examined in this systematic 
review. Across all included studies, QIVc consistently demonstrated 
superior vaccine effectiveness compared with QIVe. This advantage is 
largely attributed to the avoidance of egg-adaptive mutations during 
vaccine production, which can reduce the antigenic match between 
circulating strains and egg-based vaccines. QIVc has been associated 
with fewer symptomatic influenza cases, hospitalizations, and 
influenza-related complications compared with QIVe, particularly in 
pediatric and adolescent populations. A recent systematic review 
evaluating the economic justification for cell-based influenza vaccines 
in both children and adults confirmed that, across various scenarios 
and analytical approaches, QIVc consistently demonstrated cost-
effectiveness relative to QIVe in diverse global settings (67).

4.1 Challenges and considerations

The effectiveness of the influenza vaccine varies from season to 
season, influenced by multiple factors that affect the match between 
vaccine strains and circulating strains. This variability can impact the 
overall cost-effectiveness of vaccination programs. As Kim et al. (38) 
noted, “More robust models better capturing this diversity in the 
efficacy of vaccines are needed.”

Another key determinant of cost-effectiveness in vaccination 
programs is resource allocation. Damm et al. (19) emphasized that 
cost-effectiveness analyses should incorporate both direct and indirect 
costs, including patient co-payments and productivity losses. Gregg 
et al. (47) highlighted substantial indirect cost savings from reduced 
work absenteeism, demonstrating how vaccination programs can 
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alleviate financial pressures on healthcare systems. Effective resource 
allocation ensures that vaccination programs remain cost-effective by 
minimizing wastage and maximizing the efficient use of 
available resources.

For policymakers in low-resource settings, implementing cost-
effective pediatric influenza vaccination programs requires tailored 
strategies that reflect local epidemiological and economic conditions. 
Prioritizing high-risk pediatric subgroups, integrating influenza 
vaccination into existing immunization platforms, and adopting cost-
sharing or subsidy mechanisms can enhance program feasibility and 
sustainability. Strengthening surveillance and improving regional data 
collection will further support evidence-based decision-making and 
help optimize resource allocation.

4.2 Limitation

This systematic review exclusively examined full-text articles from 
four electronic databases within a specified timeframe (2013–2024). 
While our literature search included PubMed, Scopus, Web of Science, 
and the Cochrane Library to ensure comprehensive coverage, 
we acknowledge that Embase was not included due to institutional 
access limitations. Although Embase contains relevant biomedical 
literature, previous studies have demonstrated substantial overlap with 
the databases we searched. Nevertheless, the exclusion of Embase may 
have led to the omission of some studies, which we recognize as a 
limitation of this review.

Additionally, there is considerable heterogeneity in the designs 
and methodologies of the included studies, with variations in 
economic models, assumptions about vaccine effectiveness, and 
patterns of disease transmission. This heterogeneity presents a 
significant challenge when attempting to compare results 
across studies.

To improve comparability and robustness in future research, 
standardizing key methodological elements—such as time horizons, 
analytical perspectives (e.g., societal vs. healthcare payer), and cost 
components—would be beneficial. Greater transparency in reporting 
and the adoption of common frameworks or guidelines for economic 
evaluations of influenza vaccination would further facilitate consistent 
and interpretable findings. In regions with weak surveillance systems, 
poor data quality and limited availability pose additional barriers to 
generating reliable and meaningful results, particularly where 
information on healthcare system variability, economic conditions, 
and disease burden is lacking. Another challenge is the evolving 
epidemiology of influenza. The emergence of new strains and changes 
in healthcare systems are likely to influence cost-effectiveness over 
time. Furthermore, results are often context-specific, making 
generalization difficult and replication in other countries or across 
different age or risk groups challenging. Addressing these limitations 
is essential to ensure that future reviews yield robust and 
generalizable conclusions.

5 Conclusion

This review demonstrates that vaccinating children against 
influenza is generally cost-effective, with the greatest value observed 
in school-aged populations. Quadrivalent vaccines tend to offer 

greater cost-effectiveness than trivalent formulations. The choice 
between inactivated and live-attenuated vaccines should be guided by 
community-specific factors, including population characteristics and 
risk profiles. Key determinants of cost-effectiveness include vaccine 
effectiveness, coverage levels, herd immunity, and local economic 
conditions. Incorporating herd immunity into economic models 
enhances the accuracy of cost-effectiveness estimates.
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