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Refined carbohydrate exposure—principally added sugars and rapidly digestible 
starches—is a modifiable driver of the overfat pandemic and carries downstream 
risks for brain health. This narrative review synthesizes epidemiological, clinical, 
and mechanistic evidence linking refined carbohydrates to excess adiposity and 
metabolic dysfunction, and in turn to cognitive, affective, and addiction-related 
outcomes. Converging data show that high-glycemic, ultra-processed foods 
promote positive energy balance via glycemic volatility, impaired satiety signaling, 
and reinforcement of dopaminergic reward pathways; chronic exposure contributes 
to insulin resistance, ectopic fat, systemic inflammation, and cerebrovascular burden. 
These states are associated with reduced executive function, attentional control, 
mood dysregulation, and heightened compulsive intake. Experimental studies 
demonstrate short-term effects on craving, reward responsivity, and glycemic 
variability, while longitudinal cohorts relate higher refined carbohydrate intake 
and markers of adiposity to poorer cognitive trajectories and greater depression 
risk. Although other dietary components may influence brain health, this review 
focuses on refined carbohydrates as a primary, tractable lever. Public health 
options include front-of-pack warnings for added sugars, targeted taxation and 
marketing restrictions (especially to children), procurement standards, reformulation 
targets, school and healthcare environment changes, and screening for overfat 
as a clinical vital sign. Priorities for research include causal trials that manipulate 
refined carbohydrate exposure with brain outcomes, and evaluation of policy 
packages at population scale. Reducing refined carbohydrate exposure offers a 
plausible, scalable strategy to curb overfat and protect brain health.
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Introduction

Social determinants of individual and population health are critical concepts in public 
health and often discussed as outcomes influenced by various social factors. Conversely, this 
paper addresses brain health as a primary factor influencing individual and social health. 
Brain health encompasses the complete physical, biochemical, and mental–emotional 
performance of the brain throughout aging, leading to more meaningful, impactful, 
purposeful, and productive lives that positively influence others and society (1–3). It is the 
preservation of overall structure and function independent of underlying pathophysiological 
processes (2, 4). The World Health Organization (WHO) defines brain health as the state of 
function across cognitive, sensory, social–emotional, behavioral and motor domains, 
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allowing a person to realize their full potential throughout life 
irrespective of the presence or absence of disorders (Optimizing 
Brain Health across the Life Course. World Health Organization; 
Geneva, Switzerland: 2022). As such, the terms brain health and brain 
function are used interchangeably here. Also referred to as 
neurocognitive performance and incorporating mental health, brain 
health encompasses behavior, decision-making, planning, self-
awareness, interactions, and cooperation with others. These factors 
impact overall health (5), and are dependent on learning, language, 
and communication which further enhances the brain. Creativity is 
also vital, facilitating the generation of novel concepts through the 
improved organization of established principles, furthering successful 
human achievements (6).

Individual and socioeconomic stress can adversely affect brain 
health (7). For example, financial fallout from escalating healthcare 
costs, lost workdays, reduced productivity, and increased disability 
intensifies economic hardship, compounding risks to cognition, 
behavior, mental disorders, and impaired social functioning across 
individuals, families, and populations (8, 9). This can contribute to 
societal challenges such as aggression and conflict (10).

Early subtle brain impairment can lead to preclinical dysfunction 
and poor performance predictive of later disease representing an 
unaddressed social and public health issue requiring immediate 
attention (11, 12). The WHO projects that by 2040 neurodegenerative 
diseases will become the second-leading cause of death worldwide 
(13). Optimizing brain health to ensure individual and societal 
wellbeing cannot be overstated (3, 4).

Although the brain is often viewed as either healthy or clinically 
impaired, early unattended reductions in function can occur in 
otherwise healthy individuals beginning in early life (14, 15). Other 
studies indicate that a significant proportion of adults meet the 
criteria for mental health disorders having their onset in childhood 
(16, 17). Research further highlights widespread executive 
dysfunction during everyday activities in non-clinical young adults 
with no psychiatric or neurological history (18, 19). Mild subclinical 
depression or anxiety often predicts the future clinical occurrence of 
these disorders (20). Moreover, reduced brain health is evident in 
asymptomatic subjects aged 50–80, with white matter loss being a 
significant risk factor for cognitive impairment and dementia (12), 
even in neurologically symptom-free diabetics (21). In addition, the 
early development of reduced brain health can accelerate biological 
aging, a major risk factor leading to increased morbidity and 
mortality (22).

A proactive response

Wide-ranging individual and social challenges necessitate healthy 
brain function to support processes like planning, creativity, 
communication, self-restraint, reasoning, and empathy, and without 
them brain dysfunction can contribute to individual and social 
adversities (23–26). A shift from predominantly reactive brain health 
care to a balanced emphasis of proactive approaches can more 
effectively address these serious problems. Proactive care entails early 
primary prevention to reduce or eliminate risk factors, disease, and 
premature death, while also maintaining or improving brain function 
throughout life. Reactive care, on the other hand, focuses on screening 
for and treating existing disease (3, 27).

As declining brain health often begins subtly and early in life 
with long preclinical periods spanning decades of accumulating 
damage before clinical symptoms emerge (28), proactive care 
represents a critical opportunity to implement a conservative, cost-
effective approach to help prevent or delay declines in brain function 
(2, 27). It can also positively influence quality of life, healthcare, and 
related economic costs (19, 23, 27, 29–31). While early diagnosis and 
intervention of disease is still critical, integrating both proactive and 
reactive strategies is essential for easing these burdens (32, 33) 
helping to ensure a healthier future for all individuals and societies. 
It could also positively influence the global burden of 
non-communicable diseases (NCD), health disparities, 
environmental and planetary health, social injustices, community 
breakdown, poverty, and other critical issues that reflect the enduring 
challenges described across disciplines such as anthropology, 
economics, public policy, and sociology (34, 35, 295).

Healthy lifestyles can significantly enhance brain function 
throughout aging, helping achieve individual and social purpose (36). 
Here we  emphasise the important influence of diet on the full 
spectrum of brain health.

Diet and brain health

Global food production and dietary habits have changed 
significantly, especially over the past half-century. It is well known that 
healthy food contributes to reduced infant mortality, improved life 
expectancy, disease prevention, and influences brain health beginning 
in utero and throughout adulthood. However, the food supply has 
become more unhealthy due to processed items that, beginning early 
in life, can significantly promote poor brain health, NCD, including 
heart disease, stroke, some cancers, Type 2 diabetes, and Alzheimer’s 
disease, and raise healthcare costs (37–41). Specifically, unhealthy 
foods can contribute to excess body fat (42), termed overfat, estimated 
to affect ~80% of the world’s population (43–45) and also reduced 
brain health (46–50). Excess body fat is associated with several risk 
factors that can impact the brain, including early-onset impaired 
glucose metabolism due to insulin resistance in both the brain and 
body that can contribute to neurodegeneration and cognitive decline 
(51–53). Studies indicate that brain glucose hypometabolism is 
present in individuals at genetic risk for Alzheimer’s disease long 
before symptoms arise, particularly among those with a maternal 
family history of the disease (51, 54–56). Depression, even mild forms, 
is an independent predictor of increased mortality in patients with 
chronic disease (57).

Other conditions associated with excess body fat that can impair 
brain health include cardiometabolic dysregulation (58–61). Related 
abnormalities include chronic inflammation producing 
proinflammatory cytokines (62, 63) along with mitochondrial 
dysfunction and increased oxidative stress, further impairing 
glucose regulation (64). In addition, studies demonstrate impairment 
of leptin signaling that can induce Alzheimer’s-like pathologies such 
as β-amyloid accumulation and hyperphosphorylation of tau protein 
(65). Also increasingly evident over the past half-century, reductions 
in both gray and white matter volumes have been observed in 
individuals with excess body fat (66–71). This can contribute to early 
brain atrophy posing significant risks for the onset and progression 
of neurodegenerative diseases, including Parkinson’s, Alzheimer’s, 
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and multiple sclerosis (68, 72). A primary component of unhealthy 
diets and common cause of excess body fat is refined carbohydrates.

Refined carbohydrates

As unhealthy diets are responsible for more deaths globally than 
any other risks, including tobacco, drugs, alcohol, and unsafe sex 
combined (41, 73), refined carbohydrates are one of the most 
significant contributors to an unhealthy diet. The consumption of 
refined carbohydrates is a common denominator promoting many 
individual clinical factors that impair neurocognitive function 
throughout the lifespan in adults and children worldwide (74–85). As 
discussed below, we use “refined carbohydrates” to include added 
sugars and refined starches as primary components of unhealthy, fast 
or junk foods. Virtually all areas of the world have experienced an 
explosion of refined carbohydrate consumption and associated excess 
body fat and reduced brain health (43–45, 72, 86).

As food links environmental sustainability, the production and 
manufacture of unhealthy foods can also affect planetary health 
through climate change, biodiversity loss, freshwater use, nitrogen and 
phosphorus cycles, land-system changes, and chemical pollution, 
contributing to global unhealthy food-related harm to ecosystems and 
public health (41, 81, 82, 87, 88, 295).

Individual behavior affects the population which influences 
healthcare, the economy, society, and the environment (89) (see 
Figure 1).

Defining refined carbohydrates

Refined carbohydrates include sugars added to food and drink 
during processing or manufacturing, or by consumers before 
consuming them. Included is white and brown cane and beet sugar, 
molasses and honey, corn, malt, and other syrups, fruit nectars and 
concentrates, and other foods containing moderate or high levels of 

glucose and fructose known to potentially reduce health (90). 
Included are artificial sweeteners, which can induce glucose 
intolerance by altering gut microbiota (91). The gut-brain axis, a 
bidirectional communication network between the gastrointestinal 
tract and brain that incorporates endocrine and immune functions 
can also be adversely affected by refined carbohydrate consumption 
(Figure 2).

Refined carbohydrates also include most grain flours common to 
many foods including wheat, rye, corn, and other ingredients whose 
starches can quickly convert to glucose and fructose during digestion. 
Before processing, unrefined whole grains are defined as whole, intact, 
ground, or cracked, whose starchy endosperm, germ, and bran are 
present in the same relative portions as they exist in nature (92). 
However, processing removes the outer bran and inner germ with 
substantial loss in fiber, B vitamins, iron, magnesium, vitamin E, and 
other nutrients, making these whole grains no longer whole grains: 
refined-grain products are nutritionally inferior to their whole-grain 
counterparts and do not confer the same cardiometabolic and other 
potential health benefits (93, 94). For example, consuming whole 
grains can result in less storage of body fat in those consuming 
approximately ≥3 servings compared with those consuming <1 
serving/d, even after accounting for other lifestyle and dietary factors. 
Moreover, adding refined grains to whole grain products or meals can 
offset these potential benefits (95).

The advertising and labeling of flour-based food products and 
ingredients employs various terms and definitions depending on 
government and regulatory agencies, and often contain high 
percentages of refined grains despite being labeled as “whole grain,” 
which can be unclear or confusing to consumers (96, 97). Products 
containing refined carbohydrates are found in most breads, cereal, 
pasta, snack foods, soft drinks, condiments, pre-packaged frozen 
foods, soups and sauces, and other packaged and take-out foods, 
including many restaurant meals (98).

Separately, the NOVA food classification system describes 
refined carbohydrates as processed and ultra-processed, and 
categorized under group 3 and group 4, respectively (99). Group 3 
foods undergo significant processing, often including added sugar, 
while group 4 foods experience chemical modifications that break 
down whole foods into components with little resemblance to their 
natural state (100). These products are nutrient-poor, highly 
degraded, artificially engineered, and often marketed as “healthy” 
despite contributing to over 30 health conditions (81, 82, 101–103). 
Also referred to as junk foods, they are high in sugar, found in 
sweetened beverages, snacks, and even some “plant-based” products 
designed to mimic the appearance and flavor of animal products 
(103, 104). Commonly made from highly processed soy, wheat, oat, 
and other carbohydrates, they are often misrepresented as healthy 
alternatives but qualify as unhealthy due to their low nutritional 
value and high levels of added sugars and/or other refined 
carbohydrates (105). Similar packaged food products marketed for 
infants and toddlers can also be high in sugar and other refined 
carbohydrates, displacing natural, nutrient-rich options and 
contributing to early dietary imbalances (106). All these unhealthy 
foods and food ingredients are referred to here as 
refined carbohydrates.

From a health standpoint, restricting the consumption of refined 
carbohydrates can be a highly effective primary dietary intervention. 
It can rapidly reduce excess body fat and other related health 

FIGURE 1

Cycle of individual health behavior affecting population, society, and 
planetary health.
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impairments such as abnormal blood sugar, blood pressure, 
triglycerides, and reduce the need for related medications (102, 107–
109). As refined carbohydrate products for adults and children has 
significantly increased globally, they are displacing natural and 
traditional nutrient-dense foods, resulting in lower intakes of micro- 
and macronutrient intakes; unhealthy foods now the most common 
cuisine worldwide (110, 111, 296).

Refined carbohydrates exert their detrimental effects through 
rapid glycemic responses, promoting insulin resistance, visceral 
fat accumulation, and neurochemical imbalances affecting 
dopamine and reward systems, and appetite regulation. It is also 
important to note that natural carbohydrates such as those found 
in honey, fruits and vegetables, and unrefined starches, while 
healthy for many, may be unhealthy for individuals with excess 
body fat, often accompanied by insulin resistance. In addition, 
while the Healthy Eating Index (HEI) and Diet Quality Index 
(DQI) are commonly used to assess diet quality in populations, 
they generally only recommend limiting refined carbohydrate 
consumption (112, 113).

Socioeconomic status, brain health, body 
fat, and refined carbohydrates

To reduce the burden of excess body fat and decreased brain 
health, it is important to consider social determinants of health—the 
conditions in which people are born, raised, live, and their age, 
including socioeconomic status (SES) (114). Broadly defined, SES 
includes education, income, occupation, perceptions of social status, 
and access to opportunities and resources, which can influence health 
and food choices through behavioral and psychological factors (115) 
with some research showing SES partially mediates observed racial 
and ethnic disparities (116).

While brain and body health outcomes occur through many 
complex pathways and physiological mechanisms, a large body of 
evidence suggests likely causal roles are strongly linked with income 
and education (117). However, the high prevalence of combined 
excess body fat, reduced brain health, and increased consumption of 
refined carbohydrates in virtually all regions of the world make the 
analysis of SES more difficult. Most importantly, improving brain 
health and reducing excess body fat can be accomplished with lifestyle 
modification throughout every individual’s lifespan (118), especially 
by reducing refined carbohydrate consumption as discussed in 
this paper.

Consumption of refined carbohydrates is highly prevalent among 
the full range of socioeconomic groups, including studies 
demonstrating a more recent sharp increase of unhealthy foods in 
low- and middle-income countries (119–121). While not exclusively 
evaluating refined carbohydrates, a systematic assessment of dietary 
patterns across 187 nations between 1990 and 2010 showed that diet 
quality varied by age, sex, national income, and region, and in most 
areas of the world unhealthy food consumption outpaced healthy 
food with SES and diet quality only weakly correlated (122). In 
addition, as globalization of unhealthy food progresses, advertising 
and marketing of these foods significantly increases more populations 
to abandon their cultural identities concerning traditional healthy 
food (119, 123). This includes regions of low SES such as sub-Saharan 
Africa where those exposed to media more likely consume unhealthy 
foods (124).

Food insecurity is the limited or uncertain ability to acquire 
adequate food and is experienced globally and associated with reduced 
brain health, increased body fat, and lower diet quality (125–127). 
This exposes more low-income populations in developing countries 
to the same low-cost, refined carbohydrate nutritionally poor foods 
that make low-income people in the U. S. particularly vulnerable to 
excess body fat, impaired brain function, and its associated 

FIGURE 2

Refined carbohydrates and reduced brain health.
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downstream NCD (128, 129). U. S. food assistance programs for 
low-income families can also contribute to the food insecurity-obesity 
paradox (130). Overall, as the availability of unhealthy food increases 
globally, those with low- and moderate-income may consume more 
of these foods and influence brain and body health (125). However, 
food insecurity, low SES, and excess body fat are associated in both the 
general population and across many population subgroups with some 
studies showing this pattern may be independent of education and 
income (131, 132).

Other studies show there may be  little variation across SES 
measured as income and wealth, as adults all along this spectrum 
consume unhealthy food with the middle class eating slightly more 
than the poor and the wealthy (133), with changes in socioeconomic 
status during the lifetime also not affecting consumption. This 
includes the influence of other factors such as age, gender, food 
accessibility, body fat, physical activity, nutrition knowledge, with 
overall consumption of refined carbohydrate remaining high (119, 
133). In a diverse, low-income population, Hidaka et al. (134) showed 
high educational attainment (college graduate or higher) increased 
unhealthy food intake among women but not men. But in general, 
women tend to eat differently in part because they believe healthy 
eating is more important but have more difficulty cooking healthy 
meals, while men prefer the taste of unhealthy food and have reduced 
self-control.

Globally, overall consumer demand for refined carbohydrate 
foods greatly depends on price and consumer perception of cost, 
time for meal preparation, and food preference, with price and food 
quantity inversely related (135, 136). However, unhealthy food is 
only perceived as inexpensive with studies showing that healthy, 
home-prepared meals are often more cost-effective and result in 
lower energy and sugar intakes, while frequent eating out is 
associated with significantly higher per capita food expenditures 
overall (137–139).

While those with economic restraints in developing regions are 
more inclined to purchase inexpensive unhealthy foods, consumers in 
developed areas respond similarly. A systemic review and meta-
analysis that included primary studies implementing taxes on sugar-
sweetened beverages (SSB) in 45 countries with a range of 
socioeconomic conditions, including the U. S., the U. K., Mexico, 
Chili, and other nations, it was demonstrated that taxing SSB was 
associated with higher prices and sustained reductions in sales without 
significant substitution of untaxed beverages except water, with little 
differences between socioeconomic status including income (140). 
Other studies demonstrate that low-income consumers have the 
highest consumption of SSB (141) that contributes to the obesity 
epidemics of most developing countries (123, 142–145). Global 
monitoring of SSB sales is important as decreased use also reduces the 
consumption of unhealthy meals (133).

While those with lower incomes may spend a smaller portion of 
it on food, and therefore often choose less expensive items, these 
behaviors may not apply when purchasing tobacco. As smoking is 
declining in most developed countries, the inequality of smoking 
prevalence persists in lower socioeconomic groups (146).

Regardless of SES, a multifaceted approach to reduce refined 
carbohydrate while improving healthy food intake should address 
cost, accessibility, and cultural factors, along with education, food 
assistance programs, and especially focused policy changes described 
below to help address this global problem.

The sugar-tobacco connection

Sugar and other refined carbohydrates as a food addiction behavior 
and tobacco use are both prevalent causes of preventable chronic disease 
morbidity and mortality worldwide, and a significant healthcare burden 
(147). There is emerging evidence that these two disorders can develop 
concurrently or sequentially within individuals, following similar but 
not identical neurological, physiological, and behavioral abnormalities 
(148). A greater understanding of how these two disorders are related 
or overlap is important in addressing their socioeconomic and public 
health responses, despite research on sugar’s role in food addiction being 
a relatively new field of study compared to that of tobacco. Both food 
and tobacco addiction are maladaptive behaviors in which individuals 
experience compulsive engagement and loss of control despite usually 
knowing the harmful consequences (149), with tobacco use elevated in 
those with food addictions. Both nicotine and sugar can alter the brain’s 
reward pathways through dopamine release, engaging different neural 
pathways, engendering addictive-like responses in susceptible 
individuals (150, 151). While sugars are natural tobacco components, 
they are also frequently added to tobacco during the manufacturing 
process, contributing to the addictive potential and adverse health 
effects of tobacco (152, 153). Added sugar also serves as agreeable (to 
smokers) taste and olfactory sensations, especially in young smokers, 
and can generate acetaldehyde, which can also be addictive.

Another health problem associated with tobacco use is its 
relationship to increased body fat: while smokers generally have lower 
body weight and or body mass index (BMI) they tend to possess more 
abdominal fat, particularly harmful visceral fat, than non-smokers 
(154–159). This suggested causal effect of smoking on increased body 
fat is independent of socioeconomic status and alcohol consumption. 
Despite nicotine’s effects on appetite reduction and altered metabolism, 
a population-based, cross-sectional study of 40,036 participants 
showed no evidence to support the belief that smoking protects against 
overweight and obesity (158). Smoking may increase body fat through 
its effect on increased cortisol and reduced sex hormone levels (155).

Refined carbohydrates and addictive 
behaviors

On their own, refined carbohydrate foods have been associated with 
addictive behaviors that negatively impact mental health, contributing 
to eating disorders, mood disorders, and anxiety disorders (160). This 
growing individual, social, and public health issue also connects refined 
carbohydrate consumption, overfat, and reduced brain health (161). 
While animal studies demonstrate that sugar consumption can lead to 
behaviors such as bingeing, craving, and withdrawal, which trigger the 
release of endogenous opioids, these effects bear substantial parallels to 
the mechanisms of drug addiction as confirmed by human studies (162, 
163) (DiNicolantonio et al., 2018). Shared characteristics between drug 
and food abuse include overconsumption, preoccupation, intense 
craving, and continued use despite awareness of adverse consequences.

However, not all experts agree with the term “food addiction,” 
suggesting instead that these issues align more closely with a 
behavioral condition termed “eating addiction.” Proponents of this 
view argue that, except for substances like caffeine and alcohol, no 
evidence suggests that food or its ingredients cause substance-based 
addictions (164, 165).
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The overfat pandemic

As noted, excess body fat may be  a potential early marker of 
reduced brain health. While determination of body fat content is 
traditionally accomplished through overweight and obese 
classifications and measures of BMI, these do not directly assess body 
fat. There are notable racial and ethnic disparities in excess body fat 
prevalence, with higher rates observed among Black, Asian, 
Indigenous, and other non-White populations (43, 44, 166, 167), and 
despite its widespread use, BMI often misclassifies body composition 
in these disparities, failing to identify over 50% of individuals with 
excess body fat and associated disease risk factors (168, 169). The term 
overfat was defined as the presence of excess body fat that negatively 
impacts physical, biochemical, and mental–emotional health (170). It 
is estimated that approximately 80% of the world’s population may 
be overfat (43, 44). Globally, 20–40% of adults classified as having 
normal weight and BMI may still be overfat (171, 172), a condition 
often referred to as normal weight obesity which has also been linked 
to cardiometabolic disease and other health risks (173).

The metabolic processes that contribute to the overfat status can 
begin in utero and continue throughout childhood, placing a 
significant number of children at high risk of becoming overfat adults. 
Beyond increasing the risk of chronic diseases, excess body fat can 
impair immune function and heighten susceptibility to infectious 
diseases (174). This vulnerability became particularly evident during 
the COVID-19 pandemic, where overfat individuals were 
disproportionately affected (175). Excess body fat also contributes to 
physical impairments, ranging from minor injuries to significant 
disabilities (176). Moreover, it places an enormous burden on 
healthcare systems and economies, with global annual costs of 
overweight and obesity alone projected to reach $18 trillion by 
2060 (177).

Determining whether an individual is overfat does not 
necessarily require expensive or inaccessible technology. While 
advanced imaging techniques such as Dual-energy X-ray 
absorptiometry (DEXA) scans provide precise body composition 
data, their cost and limited availability prevent widespread use for 
regular monitoring. Instead, waist circumference (WC) serves as a 
practical and reliable clinical and home measurement for assessing 
overfat in both adults and children (178), with increased WC 
independent of concurrent gains in BMI that more likely represents 
abdominal and visceral fat accumulation (121). A particularly useful 
metric is the waist-to-height ratio (WHtR), which offers a quick and 
effective way to assess excess body fat and related health risks, 
including brain health (179). The WHtR is a valid and useful 
anthropometric index to assess adiposity, and its prediction of 
cardiometabolic risk factors associated with NCD, and easily 
applicable in clinical practice (168, 180, 181). WHtR is also 
considered more advantageous compared to BMI since its 
adjustment for height allows a single threshold to be defined which 
is applicable to the overall population regardless of sex, age, or ethnic 
group (182) and may be the best anthropometric index when used 
alone (183). The guideline is simple: waist circumference measured 
at the umbilicus should be less than half of one’s height.

While increased body fat can occur while consuming any 
macronutrient beyond caloric requirements, dietary fat has historically 
been implicated as a primary contributor excess body weight. 
However, foods that combine both processed fats and carbohydrates 

are particularly associated with increased body fat and addictive 
behaviors, more so than unrefined, natural foods (161, 184–186). 
Studies suggest that weight loss on carbohydrate-restricted diets may 
be superior to calorie- and fat-restricted diets for adults (187) and 
adolescents (188). Additionally, very-low-carbohydrate diets high in 
fat have been shown to effectively reduce excess body fat (189) and are 
useful for metabolic advantages when compared to low-fat diets (190).

Refined carbohydrates and added sugars alone, even in the 
absence of dietary fat, are significant contributors to body fat 
accumulation due to their metabolic effects, including increased 
insulin secretion and the development of insulin resistance (191). 
Excessive consumption of sugar-sweetened beverages and other 
refined carbohydrates has been linked to metabolic syndrome, type 2 
diabetes, and other adverse health outcomes, regardless of calorie 
content (102, 192). Notably, high-sugar and other processed 
carbohydrate diets can promote adverse metabolic and psychosocial 
consequences even in individuals without significant increases in 
body weight (193, 194). These findings emphasize the importance of 
addressing refined carbohydrate intake as a key strategy for reducing 
excess body fat to improve brain health.

Fueling the brain

Impaired glucose metabolism is often a consequence of insulin 
resistance, and a significant contributor to reduced brain energy 
(195). The brain demands substantial amounts of energy, primarily 
derived from glucose, its main ATP source. Ketones and lactate also 
serve as alternative fuels, supporting neurotransmission, protein 
synthesis, plasticity, maintenance of membrane potentials, and nearly 
all other brain functions. At an average rate of 6 kcal/d per billion 
neurons, the human brain’s ~86 billion neurons require about 
516 kcal/day, up to 25% of the body’s total energy expenditure (196). 
To meet these high energy demands, early humans developed 
cooking techniques, including the use of fire, which enhanced the 
digestibility and absorption of nutrients from energy-dense, fatty, and 
protein-rich animal foods (197, 198). This pivotal evolutionary 
advancement, occurring between Homo erectus and Homo sapiens, 
significantly increased the number of neurons, leading to dramatic 
enhancements in overall brain size and function (196, 199). The 
resulting human diet  also promoted metabolic flexibility, an 
adaptation allowing early humans to efficiently use glucose and fatty 
acids for muscle energy, and glucose and ketones for the brain (200). 
Metabolic efficiency contributed to reduced disease risk and 
increased longevity (108, 201). When glucose availability is limited, 
the brain relies on ketone bodies, such as β-hydroxybutyrate and 
acetoacetate, derived from fatty acid oxidation in the liver, that can 
cross the blood–brain barrier. These ketones provide a higher ATP 
yield compared to glucose (84, 85, 202).

Deviating from this ancestral higher-fat, moderate-protein, 
low-carbohydrate dietary pattern may contribute to today’s risk for 
nutrient deficiencies, chronic diseases, and reduced brain health 
(203). While the brain’s metabolic and nutritional needs have 
remained relatively consistent over millennia, the recent global 
nutrition transition has significantly altered the human diet, 
resulting in consumption of significant amounts of sugar and other 
refined carbohydrates (110). Unhealthy foods—industrial 
formulations primarily composed of chemically modified substances 

https://doi.org/10.3389/fpubh.2025.1585680
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Maffetone and Laursen� 10.3389/fpubh.2025.1585680

Frontiers in Public Health 07 frontiersin.org

extracted from whole foods—are designed for long shelf life, 
convenience, and low perceived cost. They are predominantly 
composed of highly refined carbohydrates, which can elevate insulin 
levels, reduce metabolic flexibility, and promote excess fat storage 
(81, 82, 204, 205). They can also lower brain glucose utilization while 
impairing the use of ketone bodies as an alternative energy source, 
promoting brain glucose hypometabolism (75, 84, 85). This 
metabolic impairment can occur years or decades before the onset 
of clinical symptoms, including cognitive decline and memory 
impairment. Individuals with risk factors for Alzheimer’s disease, 
such as family history, genetic mutations (presenilin-1), and the 
APOE4 gene, are particularly vulnerable (14). Brain glucose 
hypometabolism can also lead to synaptic dysfunction, neuronal 
death, and structural thinning in critical brain regions, further 
impairing brain health (58, 84, 85).

It should be noted that while insulin is produced peripherally in 
the pancreas, it crosses the blood–brain barrier to regulate glucose 
metabolism in the brain. The overlapping but distinct actions of 
peripheral and central insulin highlight their critical but complex roles 
in metabolic and cognitive health (84, 85, 206).

Numerous brain disorders have shown significant benefits from 
very-low-carbohydrate diets that increase ketone production, 
including pediatric epilepsy (297), traumatic brain injuries (207), and 
chronic neurodegenerative conditions (298) and related oxidative 
stress (208). These diets are also effective for reducing excess body 
fat (209).

Low- or very-low-carbohydrate and ketogenic diets are generally 
higher in fat, with moderate protein and low carbohydrates, with 
daily carbohydrates comprising only 5–10% of total energy intake or 
less than 50 g/day (210, 211). Dietary carbohydrate definitions 
include very-low-carbohydrate or ketogenic diets (≤10% and 
20–50 g/day), low-carbohydrate diets (10–26% and 50–130 g/day), 
and moderate-carbohydrate diets (26–45% and 130–230 g/day) 
(212). Optimal levels of carbohydrate intake can vary with individual 
health, e.g., lower levels in those who are overfat and insulin resistant. 
Despite its clinical success in managing numerous conditions—
including Type 1 and Type 2 diabetes, various cancers, autoimmune 
diseases, and other NCDs—this dietary approach remains 
underutilized and is not widely endorsed by the medical 
establishment. This hesitation persists despite the approach’s minimal 
risks and potential for profound therapeutic benefits (213).

Expanding brain health

The concept of brain health encompasses all aspects of overall 
function, independent of underlying pathophysiological processes (2). 
Brain health reflects enhanced cognitive, behavioral, emotional, and 
related performance across the lifespan, fostering healthier individuals 
and societies through improved communication, understanding, 
decision-making, and overall wellbeing. This includes creativity, 
which plays a vital role not only in the arts but also in science and 
virtually all brain activities, driving the generation of novel and 
practical ideas by organizing established principles to contribute 
meaningfully to human achievements, both small and large (6, 214). 
Importantly, creativity supports the mental representation of healthier, 
future-oriented possibilities rather than remaining anchored in the 
past (215). Beyond cognitive and emotional performance, brain health 

relies on critical biological processes, including circulation, ATP 
generation, cellular repair, and adaptation, among others, to sustain 
its function and resilience.

Healthy brain performance is often conceptualized through 
neurocognitive domains, which include:

	 1	 Complex attention: encompasses sustained, divided, and 
selective attention, as well as processing speed.

	 2	 Executive function: involves goal-oriented and problem-
solving behaviors, such as planning, decision-making, working 
memory, and non-verbal intelligence.

	 3	 Social cognition: pertains to social and emotional behaviors 
and how individuals relate to themselves and others.

	 4	 Learning and memory: includes both short- and long-term 
memory functions.

	 5	 Perceptual-motor function: involves visual and motor 
coordination, critical for physical movements.

	 6	 Language: refers to the production and comprehension of 
speech and communication (1, 216).

While these categories aid in clinical discussions, they are not 
mutually exclusive. Impairments in one domain can lead to a broad 
range of symptoms, often beginning preclinically. Even subtle 
dysfunctions can diminish performance and pose long-term risks, 
including increased morbidity, mortality, and rising healthcare 
costs (12, 84, 85). As such, we  advocate for a holistic and 
transdiagnostic approach to brain health (217), which focuses on 
addressing shared underlying causes of dysfunction rather than 
treating isolated conditions, thereby supporting broader and more 
effective care.

As humans reach full physical and mental maturity, they develop 
greater capacity to manage the physical, biochemical, and mental–
emotional stressors of life (218, 219). Both genetic and environmental 
factors interact to shape brain health, with ~75% of the variance in 
cognitive ability throughout life attributed to environmental influences 
(220, 221).

Lifestyle, shaped by personal choices, external environmental 
factors, and others, plays a critical role in brain health. For example, 
access to healthy or unhealthy food options and exposure to food 
advertising significantly influence dietary habits and associated health 
outcomes (101, 222, 223). Other factors include physical activity, 
tobacco use, and alcohol consumption. Moreover, humans 
instinctively form social groups to foster cooperative behavior, which 
aids in adapting to stress, enhancing brain function, and improving 
overall health and fitness (224). This extends to moral behavior, which 
is intrinsically linked to social cognition and brain health (29). A 
healthy brain not only enhances its inherent and acquired capabilities 
but also contributes to the wellbeing of other individuals and society 
as a whole.

Genetic, lifestyle, and environmental factors contribute to varying 
levels of resilience to aging, with some individuals maintaining 
cognitive health longer than others (225). Those with exceptional 
cognitive abilities despite aging—known as super-agers—exhibit brain 
health comparable to younger adults. Unlike many of their peers, these 
individuals can display normal glucose metabolism in regions such as 
the anterior cingulate cortex and anterior temporal lobes, associated 
with increased cognitive resilience (226). While the precise 
mechanisms underlying super-aging and its predictability remain 
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unclear, it underscores the human potential to prevent cognitive 
decline and sustain brain health well into advanced age.

Brain injury

Reduced brain health can stem from the progressive loss of 
neuronal structure and/or function caused by acquired brain injuries. 
This broad category encompasses any non-congenital, non-hereditary 
brain disorder (227–229).

Acquired brain injuries result from a wide range of physical, 
biochemical, and/or mental–emotional insults. Symptoms vary from 
minor to debilitating and can be classified into two main forms:

	 1	 Traumatic brain injuries (TBI): these injuries are caused by 
physical trauma to the head and/or neck. Common sources 
include falls, whiplash, motor crashes, microtraumas, sports 
injuries, and other events (228, 229).

	 2	 Non-traumatic brain injuries: these are caused by biochemical 
or metabolic factors that impair brain function, such as:

	•	 Insulin resistance and glucose dysregulation: conditions like 
hypo- or hyperglycemia and “Type 3 Diabetes” (a term linked to 
Alzheimer’s disease) are associated with brain injury (39, 230).

	•	 Chronic inflammation: persistent inflammation contributes to 
neurodegeneration and aging-related diseases (37, 68).

	•	 Excess body fat: overfat conditions correlate with structural brain 
changes and cognitive decline (68, 231).

Mental–emotional stress also contributes to brain injury by 
disrupting the hypothalamic–pituitary–adrenal (HPA) axis, leading to 
neuroplasticity deficits and exacerbating conditions such as major 
depressive disorder (219, 232, 233).

Reduced brain volume can impair health and be considered a form 
of brain injury. Research suggests that human brain size may have 
begun diminishing a few 1,000 years ago (234). As noted, reductions 
in both gray and white matter volumes have been observed in 
individuals with excess body fat linked to neuroinflammation, insulin 
resistance, and reduced glycemic control (66–68, 70, 71), corresponding 
with the global rise in excess body fat in both adults and children (42, 
45). The accumulation of excess body fat and its contribution to early 
brain atrophy and reduced volume pose significant risks for reduced 
brain health (68, 72). Moreover, factors contributing to brain injury, 
such as physical trauma, often coexist with neuroinflammation, which 
can exacerbate damage and hinder recovery (228). These 
interconnected mechanisms emphasize the importance of addressing 
excess body fat and related conditions as part of strategies to maintain 
brain health and prevent cognitive decline.

Human performance deficiency

Measurable impairment of brain function can also lead to 
human performance deficiency, commonly referred to as human 
error. These deficiencies may involve momentary lapses in attention 
and effort, potentially resulting in minor mistakes or severe 
consequences (235). The prevalence of human error is strikingly 
high across various domains. It accounts for over 60% of accidents 

in the home, 70–80% of aviation mishaps, and up to 85% of errors 
in aerospace operations (236). In medicine, human error contributes 
to more than 50% of complications occurring during major surgeries 
in the US, leading to an estimated 400,000 potentially preventable 
adverse events (237).

A recent study found that occupational accidents in secondary 
industry workers peaked during periods of low blood glucose and 
accumulated fatigue (238). This aligns with research suggesting that 
even in healthy individuals, moderate hypoglycemia can significantly 
impair cognitive functions such as visual and auditory selective 
attention, attentional flexibility, and information processing speed—
while nonverbal intelligence remains unaffected (239).

Physical activity and the brain

In addition to a healthy diet, physical activity plays a crucial role 
in reducing major risk factors associated with poor brain health, 
including hypertension, insulin resistance, and excess body fat, by 
improving overall fitness (240). However, despite relatively stable 
physical activity levels, many populations have experienced dramatic 
increases in excess body fat. For example, among U. S. adults, 
participation in aerobic or muscle-strengthening exercise increased 
from 44 to 52% between 1998 and 2014, yet the prevalence of excess 
body fat increased from 75% to over 90% during the same period 
(231). This paradox—rising levels of physical activity and increased 
body fat—is also observed in populations with high levels of exercise, 
including competitive athletes (241) and military personnel (242).

While exercise is well known to improve cardiovascular fitness, a 
very-low-carbohydrate, high-fat diet (VLCHF) has been shown to 
provide even greater cardiovascular benefits in college students 
compared to high-intensity exercise alone (243). Additional benefits 
of a VLCHF diet have also been observed in competitive endurance 
athletes (244). Beyond its physiological benefits, physical activity can 
enhance brain health, with outdoor exercise providing even greater 
cognitive benefits than indoor activity (245).

Discussion

Many national and international health organizations recognize 
reduced brain health as a critical issue, emphasizing the need for early 
intervention before the onset of disease and escalating healthcare 
costs. Despite these concerns, the problem remains unresolved. The 
overfat pandemic, affecting an estimated 80% of the global population 
(43, 44), and promoted by the consumption of refined carbohydrates, 
drives cardiometabolic dysfunction, including insulin resistance, 
impaired glucose regulation, and neuroinflammation (246, 247), 
along with various downstream conditions including depression 
(248). The result is reduced brain health beginning long before the 
onset of neurodegeneration (46, 47). As increased body fat and 
reduced brain health are preventable through modifiable lifestyle 
factors, it has been proposed that the health of those most socially 
advantaged in society indicates a high level of health that should 
be  attainable for all others, yet a large majority of the global 
population, and across racial or ethnic groups, is less healthy (117). 
From a public health, and ethical and human rights perspective, this 
is unacceptable.

https://doi.org/10.3389/fpubh.2025.1585680
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Maffetone and Laursen� 10.3389/fpubh.2025.1585680

Frontiers in Public Health 09 frontiersin.org

The rapid expansion of economic globalization has facilitated 
the widespread availability of unhealthy food across nearly all 
nations and socioeconomic barriers (119, 133, 135), displacing 
healthy foods. Reversing this trend can be  cost effective: In 
addressing the global reduction of NCD alone by one-third through 
lifestyle modification, it was estimated that an additional US$18 
billion annually between 2023 and 2030 could avert 39 million lives 
and generate an average net economic benefit of US$2.7 trillion—a 
19:1 return on investment (249). While some governments and 
industries argue that limiting access to unhealthy foods could harm 
national economies, as these refined carbohydrate products 
contribute significantly to gross domestic product (250), this same 
argument was previously made against tobacco regulation. 
However, evidence suggests that reducing unhealthy food sales can 
be balanced by increased demand for healthier alternatives, which 
can be distributed and sold through the same retail and supply 
chains. A global initiative to regulate refined carbohydrate intake 
could be a crucial step toward reversing the problem of excess body 
fat and its downstream conditions, improving cognitive function 
across populations with the potential for rapid, global health 
improvements (see Figure 3).

A single, targeted lifestyle modification—restricting refined 
carbohydrates—has the potential for significant impact. For 
example, just reducing SSB intake has been shown to improve overall 
dietary quality without replacing other refined carbohydrates and 
can encourage consumers to make additional spontaneous and 
healthy changes (251). When replacing all SSB with drinking water 
it reduced total energy by 200 kcal/d over 12 months (252). Banning 
SSB sales in the workplace have also been associated with reduced 
intake and significant reductions in waist circumference within 
10 months, with additional improvements by using a short 
motivational intervention to target employees at higher risk of 
cardiometabolic health (253).

However, while SSB consumption is a major component of 
refined carbohydrate intake, it is only part of an overall poor 
dietary pattern. To maximize recommendations and improve 
global dietary quality, a comprehensive strategy can more likely 
better address the current public health challenges (254). 
Therefore, when developing dietary guidance, other added sugar 
sources in the diet must be  considered while emphasizing 
reductions of all refined carbohydrates (255). Lessons from alcohol 
and tobacco regulation provide valuable insight in reducing 
refined carbohydrates, as public health policies that restrict access 
and availability—such as taxation—have repeatedly shown 
effectiveness in reducing harmful substance use (140, 246, 
256, 257).

A science-based ancestral dietary pattern

A viable strategy to effectively address the problem of reduced 
brain health requires a clear scientific approach independent of 
political and commercial influences. One consideration is to base 
healthy dietary habits on those that sustained human evolution 
for millions of years—a natural food-based eating pattern that is 
higher in healthy fats, moderate in protein, and low in 
carbohydrates without refined carbohydrates (25, 199, 201, 244, 
299–308). Nowadays,  similar approaches with well-
known benefits are found in the ketogenic diet, the Mediterranean 
and Mediterranean-DASH Intervention for Neurodegenerative 
Delay (MIND) diet, and other low- and very-low-carbohydrate 
and anti-inflammatory approaches, with extensive evidence that 
these diets enhance brain health and reduce excess body fat (47, 
70, 258–262). The potential benefits of significantly reducing 
refined carbohydrates have not yet been effectively translated into 
organized global dietary guidelines. Like other government 

FIGURE 3

The potential for global health improvements by restricting refined carbohydrates.
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guidelines there may be several reasons for this gap. For many 
consumers, the sheer volume of dietary information—often 
contradictory and coming from multiple sources—creates 
confusion and frustration, negatively impacting attitudes, beliefs, 
and behaviors (261, 262). While public trust in science is 
fundamental to improving population health, distrust of scientific 
information remains a major barrier (263). Yet, when the 
addictive properties of unhealthy food are framed similarly to 
those of tobacco, awareness, belief, and education about these 
risks can lead to increased public support for regulation (186, 
264, 265).

The global push to regulate refined 
carbohydrates

Similar public health measures restricting refined carbohydrates 
are already being implemented on relatively small scales in various 
regions with measurable success. These include taxes on SSB in 
countries like Mexico and the U. S. leading to a sustained reduction in 
consumption (266), with workplace bans on SSB significantly 
improving employee health outcomes (253), and others discussed 
above. Included are policies that restrict or ban unhealthy foods in 
retail stores, restaurants, schools, and vending machines, with 
consumer compliance increasing when product prices rise. These and 
other approaches generally mirror successful restrictions placed on 
tobacco, demonstrating that reducing availability directly reduces 
consumption and, ultimately, improves health outcomes (246, 256, 
257, 267).

While this approach could reduce refined carbohydrate 
consumption for all consumers, the effects can differ by 
socioeconomic status. While increased tax revenue may come from 
high income consumers, when viewed as a percentage of total 
household expenditures, lower income consumers may assume more 
of the financial burden (268). However, larger health benefits often 
accrue to low-income consumers because of their stronger response 
to price changes, the potentially larger financial burden could also 
be  mitigated by a pro-poor use of the generated tax revenues 
(directing more resources toward them). While carefully designed 
and implemented approaches can be  successful and fair to all 
socioeconomic groups, this complex economic issue goes beyond 
the scope of this paper.

Understanding past public health errors—where many health 
organizations and governments only passively discouraged tobacco 
use, allowing its prevalence to persist for decades—the modern phrase 
“sugar is the new tobacco” serves as a fitting call to action in reducing 
the consumption of unhealthy foods (269–272). While this 
comparison of two different but harmful substances should not 
weaken the rationale for adopting related regulatory framework, some 
of the successful policies and regulations that curtail tobacco use could 
similarly be applied to refined carbohydrates, including methods that 
limit public access and restrict marketing and advertising (102, 267, 
273, 274) (see Figure 4).

Importantly, consumer decision-making is associated with food 
choices (275) and must be  considered along with the biological 
mechanisms affecting brain health discussed above, including those 
associated with addiction and eating behavior (160). While these are 
all associated with brain health, powerful influences come from 

companies advertising and marketing products, and governmental 
recommendations which are strongly affected by politics and 
lobbying. A primary factor that can significantly influence food 
purchases and consumption is cost.

Given these considerations, implementing not one but a 
combination of factors associated with taxation, lobbying, marketing 
restrictions, financial incentives, and other regulatory measures can 
help reduce the consumption of unhealthy foods. As in past public 
health challenges—such as tobacco control, drunk driving prevention, 
and HIV intervention—effective initiatives can successfully overcome 
key barriers to change, including socioeconomic status, education, 
income, and environment (3).

Various strategies to help improve brain health are summarized  
below.

Taxation

One of the most important strategies to reduce the 
consumption of refined carbohydrates is increasing their cost, 
often through taxation along the supply chain (276, 277). As 
evidence suggests that the resulting higher costs of unhealthy food 
and beverages lead to a measurable decline in consumption, this 
approach could include raising taxes on unhealthy foods while 
lowering taxes on healthier options to create incentives for better 
dietary choices. For this to be effective, the price adjustments must 
be  substantial enough to influence purchasing behavior (278). 
This could also address the physical food environment issue 
(related to food insecurity discussed above): many people may not 
have access to healthy foods. Easier access to healthy and 
affordable food occurs by replacing the available unhealthy foods 
with healthy options in the same retail and wholesale food 
distribution areas.

Food labeling

Food ingredient labeling and product information, including 
those in advertising and marketing, use a variety of terms and 
definitions that differ across government and regulatory agencies 
worldwide. Many products labeled as “whole grain” contain high 
percentages of refined carbohydrates, making labeling inconsistent 
and potentially misleading for consumers (96, 97). Such discrepancies 
in labeling can obscure product quality and nutritional value. 
Improving food labeling and advertising regulations—particularly 
through the adoption of standardized definitions—may help enhance 
consumer understanding to limit inadvertent consumption of 
refined carbohydrates.

Food subsidies

In addition to taxes, significant health gains and cost savings can 
be made by addressing food subsidies (279, 280). The global junk food 
industry is supported by governments that subsidize crops used to 
produce unhealthy food ingredients. Without these subsidies, 
unhealthy food costs would rise. These subsidies can instead 
be transitioned to support healthier food production.
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Lobbying

Food industry lobbying efforts have proven more successful at 
shaping consumer behavior than public health campaigns. Much like 
the tobacco industry, the sugar industry and its political allies have 
strongly influenced policies and public perception (102, 281). Since 
the 1950s, the sugar industry lobby—a powerful Washington, 
DC-based trade association—has actively misrepresented its 
products, shifting blame onto dietary fat to divert attention from the 
harmful effects of sugar (282). Another major lobbying success 
occurred in 1966, when the National Institute of Dental Research 
aimed to eradicate dental caries. Rather than acknowledging sugar’s 
role, the industry redirected focus away from sugar consumption as 
the primary cause of cavities (283). This was despite the strong 
scientific consensus that sugar contributes to tooth decay and overall 
poor oral health through systemic effects and direct reduction of oral 
pH (284). Today, the food industry continues to shape dietary 
choices through misinformation, including on social media, where 
misleading content further encourages unhealthy eating habits (285).

Advertising and marketing restrictions

Policies that limit public advertising and marketing of unhealthy 
foods are essential for improving public health (273). Beyond 
traditional ads on TV, radio, billboards, and the Internet, unhealthy 
food marketing infiltrates stores, shopping centers, public 
transportation, and even community spaces. A particularly concerning 
strategy is athletic sponsorship, where junk food companies serve as 
major sponsors of public events worldwide, targeting both adults and 
children. This is evident in local, amateur, and professional sports, 
including the Olympic Games, where these brands associate their 
products with athletic excellence despite their negative health effects.

Litigation

The legal system has long played a crucial role in promoting and 
protecting public health. Similar to the successful lawsuits against the 
tobacco industry, litigation against unhealthy food companies could 

FIGURE 4

Sugar is the new tobacco. Reproduced from “Sugar is the New Tobacco’’ by Phil Maffetone (https://maffetonemusic.com).
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be a viable strategy for change (267). Tobacco lawsuits, particularly 
those led by U. S. attorneys general, significantly shifted public 
attitudes about smoking. A similar legal approach targeting junk food 
manufacturers could raise awareness, hold corporations accountable, 
and drive policy change.

User financial incentives

While taxation can discourage unhealthy food consumption, it 
may be less effective than strategies that actively engage individuals 
in improving their health (250). One proven approach is offering 
financial incentives for making healthier choices. Studies show that 
paying individuals to adopt better health habits can lead to 
significant benefits (286–289). Despite the upfront costs, a carefully 
monitored program can lead to long-term savings by reducing 
healthcare expenditures on treatments and medications. Similarly, 
corporate wellness programs yield up to six times the company’s 
investment (290). Schools implementing free, high-quality meal 
programs have shown reduced obesity rates among children (291, 
292), highlighting the potential of financial incentives in promoting 
healthier choices at both individual and systemic levels.

To support these and other initiatives, public education, which 
may not be effective on its own, should be delivered through simple, 
straightforward, consistent, and ongoing campaigns. These efforts 
should include clear product descriptions, school-based education, 
and scientific-based guidelines from unbiased health organizations 
(293, 294). Additionally, tailored strategies should be developed to 
align with the socioeconomic conditions of specific regions, ensuring 
that interventions are both effective and culturally relevant. A 
comprehensive global brain health initiative must focus on reducing 
the availability and consumption of unhealthy foods while 
simultaneously fostering improved dietary habits and overall 
brain health.

Conclusion

Optimal brain health is essential for the wellbeing of individuals, 
societies, and the environment. The global overfat pandemic signals 
widespread and worsening cognitive and cardiometabolic health 
issues largely driven by consumption of sugar and other refined 
carbohydrates. Drawing from successful public health strategies used 
to combat tobacco, regulatory measures such as taxation, marketing 
restrictions, litigation, and financial incentives offer a viable path to 
reducing refined carbohydrate consumption. Implementing these 
strategies alongside targeted education and policy reform can 
significantly help lower excess body fat, enhance brain function, curb 
chronic disease, and alleviate the growing burden on healthcare 

systems and economies worldwide. A proactive, science-driven 
approach is crucial to reversing these trends, fostering a healthier 
global population and long-term societal wellbeing.
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