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overfat pandemic: implications
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Refined carbohydrate exposure—principally added sugars and rapidly digestible
starches—is a modifiable driver of the overfat pandemic and carries downstream
risks for brain health. This narrative review synthesizes epidemiological, clinical,
and mechanistic evidence linking refined carbohydrates to excess adiposity and
metabolic dysfunction, and in turn to cognitive, affective, and addiction-related
outcomes. Converging data show that high-glycemic, ultra-processed foods
promote positive energy balance via glycemic volatility, impaired satiety signaling,
and reinforcement of dopaminergic reward pathways; chronic exposure contributes
to insulin resistance, ectopic fat, systemic inflammation, and cerebrovascular burden.
These states are associated with reduced executive function, attentional control,
mood dysregulation, and heightened compulsive intake. Experimental studies
demonstrate short-term effects on craving, reward responsivity, and glycemic
variability, while longitudinal cohorts relate higher refined carbohydrate intake
and markers of adiposity to poorer cognitive trajectories and greater depression
risk. Although other dietary components may influence brain health, this review
focuses on refined carbohydrates as a primary, tractable lever. Public health
options include front-of-pack warnings for added sugars, targeted taxation and
marketing restrictions (especially to children), procurement standards, reformulation
targets, school and healthcare environment changes, and screening for overfat
as a clinical vital sign. Priorities for research include causal trials that manipulate
refined carbohydrate exposure with brain outcomes, and evaluation of policy
packages at population scale. Reducing refined carbohydrate exposure offers a
plausible, scalable strategy to curb overfat and protect brain health.
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Introduction

Social determinants of individual and population health are critical concepts in public
health and often discussed as outcomes influenced by various social factors. Conversely, this
paper addresses brain health as a primary factor influencing individual and social health.
Brain health encompasses the complete physical, biochemical, and mental-emotional
performance of the brain throughout aging, leading to more meaningful, impactful,
purposeful, and productive lives that positively influence others and society (1-3). It is the
preservation of overall structure and function independent of underlying pathophysiological
processes (2, 4). The World Health Organization (WHO) defines brain health as the state of
function across cognitive, sensory, social-emotional, behavioral and motor domains,
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allowing a person to realize their full potential throughout life
irrespective of the presence or absence of disorders (Optimizing
Brain Health across the Life Course. World Health Organization;
Geneva, Switzerland: 2022). As such, the terms brain health and brain
function are used interchangeably here. Also referred to as
neurocognitive performance and incorporating mental health, brain
health encompasses behavior, decision-making, planning, self-
awareness, interactions, and cooperation with others. These factors
impact overall health (5), and are dependent on learning, language,
and communication which further enhances the brain. Creativity is
also vital, facilitating the generation of novel concepts through the
improved organization of established principles, furthering successful
human achievements (6).

Individual and socioeconomic stress can adversely affect brain
health (7). For example, financial fallout from escalating healthcare
costs, lost workdays, reduced productivity, and increased disability
intensifies economic hardship, compounding risks to cognition,
behavior, mental disorders, and impaired social functioning across
individuals, families, and populations (8, 9). This can contribute to
societal challenges such as aggression and conflict (10).

Early subtle brain impairment can lead to preclinical dysfunction
and poor performance predictive of later disease representing an
unaddressed social and public health issue requiring immediate
attention (11, 12). The WHO projects that by 2040 neurodegenerative
diseases will become the second-leading cause of death worldwide
(13). Optimizing brain health to ensure individual and societal
wellbeing cannot be overstated (3, 4).

Although the brain is often viewed as either healthy or clinically
impaired, early unattended reductions in function can occur in
otherwise healthy individuals beginning in early life (14, 15). Other
studies indicate that a significant proportion of adults meet the
criteria for mental health disorders having their onset in childhood
(16, 17). Research further highlights widespread executive
dysfunction during everyday activities in non-clinical young adults
with no psychiatric or neurological history (18, 19). Mild subclinical
depression or anxiety often predicts the future clinical occurrence of
these disorders (20). Moreover, reduced brain health is evident in
asymptomatic subjects aged 50-80, with white matter loss being a
significant risk factor for cognitive impairment and dementia (12),
even in neurologically symptom-free diabetics (21). In addition, the
early development of reduced brain health can accelerate biological
aging, a major risk factor leading to increased morbidity and
mortality (22).

A proactive response

Wide-ranging individual and social challenges necessitate healthy
brain function to support processes like planning, creativity,
communication, self-restraint, reasoning, and empathy, and without
them brain dysfunction can contribute to individual and social
adversities (23-26). A shift from predominantly reactive brain health
care to a balanced emphasis of proactive approaches can more
effectively address these serious problems. Proactive care entails early
primary prevention to reduce or eliminate risk factors, disease, and
premature death, while also maintaining or improving brain function
throughout life. Reactive care, on the other hand, focuses on screening
for and treating existing disease (3, 27).
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As declining brain health often begins subtly and early in life
with long preclinical periods spanning decades of accumulating
damage before clinical symptoms emerge (28), proactive care
represents a critical opportunity to implement a conservative, cost-
effective approach to help prevent or delay declines in brain function
(2, 27). Tt can also positively influence quality of life, healthcare, and
related economic costs (19, 23, 27, 29-31). While early diagnosis and
intervention of disease is still critical, integrating both proactive and
reactive strategies is essential for easing these burdens (32, 33)
helping to ensure a healthier future for all individuals and societies.
It could also positively influence the global burden of
(NCD),
environmental and planetary health, social injustices, community

non-communicable  diseases health  disparities,
breakdown, poverty, and other critical issues that reflect the enduring
challenges described across disciplines such as anthropology,
economics, public policy, and sociology (34, 35, 295).

Healthy lifestyles can significantly enhance brain function
throughout aging, helping achieve individual and social purpose (36).
Here we emphasise the important influence of diet on the full
spectrum of brain health.

Diet and brain health

Global food production and dietary habits have changed
significantly, especially over the past half-century. It is well known that
healthy food contributes to reduced infant mortality, improved life
expectancy, disease prevention, and influences brain health beginning
in utero and throughout adulthood. However, the food supply has
become more unhealthy due to processed items that, beginning early
in life, can significantly promote poor brain health, NCD, including
heart disease, stroke, some cancers, Type 2 diabetes, and Alzheimer’s
disease, and raise healthcare costs (37-41). Specifically, unhealthy
foods can contribute to excess body fat (42), termed overfat, estimated
to affect ~80% of the world’s population (43-45) and also reduced
brain health (46-50). Excess body fat is associated with several risk
factors that can impact the brain, including early-onset impaired
glucose metabolism due to insulin resistance in both the brain and
body that can contribute to neurodegeneration and cognitive decline
(51-53). Studies indicate that brain glucose hypometabolism is
present in individuals at genetic risk for Alzheimer’s disease long
before symptoms arise, particularly among those with a maternal
family history of the disease (51, 54-56). Depression, even mild forms,
is an independent predictor of increased mortality in patients with
chronic disease (57).

Other conditions associated with excess body fat that can impair
brain health include cardiometabolic dysregulation (58-61). Related
abnormalities include chronic inflammation producing
proinflammatory cytokines (62, 63) along with mitochondrial
dysfunction and increased oxidative stress, further impairing
glucose regulation (64). In addition, studies demonstrate impairment
of leptin signaling that can induce Alzheimer’s-like pathologies such
as f-amyloid accumulation and hyperphosphorylation of tau protein
(65). Also increasingly evident over the past half-century, reductions
in both gray and white matter volumes have been observed in
individuals with excess body fat (66-71). This can contribute to early
brain atrophy posing significant risks for the onset and progression

of neurodegenerative diseases, including Parkinson’s, Alzheimer’s,
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and multiple sclerosis (68, 72). A primary component of unhealthy
diets and common cause of excess body fat is refined carbohydrates.

Refined carbohydrates

As unhealthy diets are responsible for more deaths globally than
any other risks, including tobacco, drugs, alcohol, and unsafe sex
combined (41,
significant contributors to an unhealthy diet. The consumption of

73), refined carbohydrates are one of the most

refined carbohydrates is a common denominator promoting many
individual clinical factors that impair neurocognitive function
throughout the lifespan in adults and children worldwide (74-85). As
discussed below, we use “refined carbohydrates” to include added
sugars and refined starches as primary components of unhealthy, fast
or junk foods. Virtually all areas of the world have experienced an
explosion of refined carbohydrate consumption and associated excess
body fat and reduced brain health (43-45, 72, 86).

As food links environmental sustainability, the production and
manufacture of unhealthy foods can also affect planetary health
through climate change, biodiversity loss, freshwater use, nitrogen and
phosphorus cycles, land-system changes, and chemical pollution,
contributing to global unhealthy food-related harm to ecosystems and
public health (41, 81, 82, 87, 88, 295).

Individual behavior affects the population which influences
healthcare, the economy, society, and the environment (89) (see
Figure 1).

Defining refined carbohydrates

Refined carbohydrates include sugars added to food and drink
during processing or manufacturing, or by consumers before
consuming them. Included is white and brown cane and beet sugar,
molasses and honey, corn, malt, and other syrups, fruit nectars and
concentrates, and other foods containing moderate or high levels of
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FIGURE 1
Cycle of individual health behavior affecting population, society, and
planetary health.

Frontiers in Public Health

10.3389/fpubh.2025.1585680

glucose and fructose known to potentially reduce health (90).
Included are artificial sweeteners, which can induce glucose
intolerance by altering gut microbiota (91). The gut-brain axis, a
bidirectional communication network between the gastrointestinal
tract and brain that incorporates endocrine and immune functions
can also be adversely affected by refined carbohydrate consumption
(Figure 2).

Refined carbohydrates also include most grain flours common to
many foods including wheat, rye, corn, and other ingredients whose
starches can quickly convert to glucose and fructose during digestion.
Before processing, unrefined whole grains are defined as whole, intact,
ground, or cracked, whose starchy endosperm, germ, and bran are
present in the same relative portions as they exist in nature (92).
However, processing removes the outer bran and inner germ with
substantial loss in fiber, B vitamins, iron, magnesium, vitamin E, and
other nutrients, making these whole grains no longer whole grains:
refined-grain products are nutritionally inferior to their whole-grain
counterparts and do not confer the same cardiometabolic and other
potential health benefits (93, 94). For example, consuming whole
grains can result in less storage of body fat in those consuming
approximately >3 servings compared with those consuming <1
serving/d, even after accounting for other lifestyle and dietary factors.
Moreover, adding refined grains to whole grain products or meals can
offset these potential benefits (95).

The advertising and labeling of flour-based food products and
ingredients employs various terms and definitions depending on
government and regulatory agencies, and often contain high
percentages of refined grains despite being labeled as “whole grain,”
which can be unclear or confusing to consumers (96, 97). Products
containing refined carbohydrates are found in most breads, cereal,
pasta, snack foods, soft drinks, condiments, pre-packaged frozen
foods, soups and sauces, and other packaged and take-out foods,
including many restaurant meals (98).

Separately, the NOVA food classification system describes
refined carbohydrates as processed and ultra-processed, and
categorized under group 3 and group 4, respectively (99). Group 3
foods undergo significant processing, often including added sugar,
while group 4 foods experience chemical modifications that break
down whole foods into components with little resemblance to their
natural state (100). These products are nutrient-poor, highly
degraded, artificially engineered, and often marketed as “healthy”
despite contributing to over 30 health conditions (81, 82, 101-103).
Also referred to as junk foods, they are high in sugar, found in
sweetened beverages, snacks, and even some “plant-based” products
designed to mimic the appearance and flavor of animal products
(103, 104). Commonly made from highly processed soy, wheat, oat,
and other carbohydrates, they are often misrepresented as healthy
alternatives but qualify as unhealthy due to their low nutritional
value and high levels of added sugars and/or other refined
carbohydrates (105). Similar packaged food products marketed for
infants and toddlers can also be high in sugar and other refined
carbohydrates, displacing natural, nutrient-rich options and
contributing to early dietary imbalances (106). All these unhealthy
foods and food
refined carbohydrates.

ingredients are referred to here as
From a health standpoint, restricting the consumption of refined
carbohydrates can be a highly effective primary dietary intervention.

It can rapidly reduce excess body fat and other related health
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Refined Carbs

FIGURE 2
Refined carbohydrates and reduced brain health.
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impairments such as abnormal blood sugar, blood pressure,
triglycerides, and reduce the need for related medications (102, 107-
109). As refined carbohydrate products for adults and children has
significantly increased globally, they are displacing natural and
traditional nutrient-dense foods, resulting in lower intakes of micro-
and macronutrient intakes; unhealthy foods now the most common
cuisine worldwide (110, 111, 296).

Refined carbohydrates exert their detrimental effects through
rapid glycemic responses, promoting insulin resistance, visceral
fat accumulation, and neurochemical imbalances affecting
dopamine and reward systems, and appetite regulation. It is also
important to note that natural carbohydrates such as those found
in honey, fruits and vegetables, and unrefined starches, while
healthy for many, may be unhealthy for individuals with excess
body fat, often accompanied by insulin resistance. In addition,
while the Healthy Eating Index (HEI) and Diet Quality Index
(DQI) are commonly used to assess diet quality in populations,
they generally only recommend limiting refined carbohydrate
consumption (112, 113).

Socioeconomic status, brain health, body
fat, and refined carbohydrates

To reduce the burden of excess body fat and decreased brain
health, it is important to consider social determinants of health—the
conditions in which people are born, raised, live, and their age,
including socioeconomic status (SES) (114). Broadly defined, SES
includes education, income, occupation, perceptions of social status,
and access to opportunities and resources, which can influence health
and food choices through behavioral and psychological factors (115)
with some research showing SES partially mediates observed racial
and ethnic disparities (116).

Frontiers in Public Health

While brain and body health outcomes occur through many
complex pathways and physiological mechanisms, a large body of
evidence suggests likely causal roles are strongly linked with income
and education (117). However, the high prevalence of combined
excess body fat, reduced brain health, and increased consumption of
refined carbohydrates in virtually all regions of the world make the
analysis of SES more difficult. Most importantly, improving brain
health and reducing excess body fat can be accomplished with lifestyle
modification throughout every individual’s lifespan (118), especially
by reducing refined carbohydrate consumption as discussed in
this paper.

Consumption of refined carbohydrates is highly prevalent among
the full range of socioeconomic groups, including studies
demonstrating a more recent sharp increase of unhealthy foods in
low- and middle-income countries (119-121). While not exclusively
evaluating refined carbohydrates, a systematic assessment of dietary
patterns across 187 nations between 1990 and 2010 showed that diet
quality varied by age, sex, national income, and region, and in most
areas of the world unhealthy food consumption outpaced healthy
food with SES and diet quality only weakly correlated (122). In
addition, as globalization of unhealthy food progresses, advertising
and marketing of these foods significantly increases more populations
to abandon their cultural identities concerning traditional healthy
food (119, 123). This includes regions of low SES such as sub-Saharan
Africa where those exposed to media more likely consume unhealthy
foods (124).

Food insecurity is the limited or uncertain ability to acquire
adequate food and is experienced globally and associated with reduced
brain health, increased body fat, and lower diet quality (125-127).
This exposes more low-income populations in developing countries
to the same low-cost, refined carbohydrate nutritionally poor foods
that make low-income people in the U. S. particularly vulnerable to
excess body fat, impaired brain function, and its associated
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downstream NCD (128, 129). U. S. food assistance programs for
low-income families can also contribute to the food insecurity-obesity
paradox (130). Overall, as the availability of unhealthy food increases
globally, those with low- and moderate-income may consume more
of these foods and influence brain and body health (125). However,
food insecurity, low SES, and excess body fat are associated in both the
general population and across many population subgroups with some
studies showing this pattern may be independent of education and
income (131, 132).

Other studies show there may be little variation across SES
measured as income and wealth, as adults all along this spectrum
consume unhealthy food with the middle class eating slightly more
than the poor and the wealthy (133), with changes in socioeconomic
status during the lifetime also not affecting consumption. This
includes the influence of other factors such as age, gender, food
accessibility, body fat, physical activity, nutrition knowledge, with
overall consumption of refined carbohydrate remaining high (119,
133). In a diverse, low-income population, Hidaka et al. (134) showed
high educational attainment (college graduate or higher) increased
unhealthy food intake among women but not men. But in general,
women tend to eat differently in part because they believe healthy
eating is more important but have more difficulty cooking healthy
meals, while men prefer the taste of unhealthy food and have reduced
self-control.

Globally, overall consumer demand for refined carbohydrate
foods greatly depends on price and consumer perception of cost,
time for meal preparation, and food preference, with price and food
quantity inversely related (135, 136). However, unhealthy food is
only perceived as inexpensive with studies showing that healthy,
home-prepared meals are often more cost-effective and result in
lower energy and sugar intakes, while frequent eating out is
associated with significantly higher per capita food expenditures
overall (137-139).

While those with economic restraints in developing regions are
more inclined to purchase inexpensive unhealthy foods, consumers in
developed areas respond similarly. A systemic review and meta-
analysis that included primary studies implementing taxes on sugar-
sweetened beverages (SSB) in 45 countries with a range of
socioeconomic conditions, including the U. S., the U. K., Mexico,
Chili, and other nations, it was demonstrated that taxing SSB was
associated with higher prices and sustained reductions in sales without
significant substitution of untaxed beverages except water, with little
differences between socioeconomic status including income (140).
Other studies demonstrate that low-income consumers have the
highest consumption of SSB (141) that contributes to the obesity
epidemics of most developing countries (123, 142-145). Global
monitoring of SSB sales is important as decreased use also reduces the
consumption of unhealthy meals (133).

While those with lower incomes may spend a smaller portion of
it on food, and therefore often choose less expensive items, these
behaviors may not apply when purchasing tobacco. As smoking is
declining in most developed countries, the inequality of smoking
prevalence persists in lower socioeconomic groups (146).

Regardless of SES, a multifaceted approach to reduce refined
carbohydrate while improving healthy food intake should address
cost, accessibility, and cultural factors, along with education, food
assistance programs, and especially focused policy changes described
below to help address this global problem.
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The sugar-tobacco connection

Sugar and other refined carbohydrates as a food addiction behavior
and tobacco use are both prevalent causes of preventable chronic disease
morbidity and mortality worldwide, and a significant healthcare burden
(147). There is emerging evidence that these two disorders can develop
concurrently or sequentially within individuals, following similar but
not identical neurological, physiological, and behavioral abnormalities
(148). A greater understanding of how these two disorders are related
or overlap is important in addressing their socioeconomic and public
health responses, despite research on sugar’s role in food addiction being
a relatively new field of study compared to that of tobacco. Both food
and tobacco addiction are maladaptive behaviors in which individuals
experience compulsive engagement and loss of control despite usually
knowing the harmful consequences (149), with tobacco use elevated in
those with food addictions. Both nicotine and sugar can alter the brain’s
reward pathways through dopamine release, engaging different neural
pathways, engendering addictive-like responses in susceptible
individuals (150, 151). While sugars are natural tobacco components,
they are also frequently added to tobacco during the manufacturing
process, contributing to the addictive potential and adverse health
effects of tobacco (152, 153). Added sugar also serves as agreeable (to
smokers) taste and olfactory sensations, especially in young smokers,
and can generate acetaldehyde, which can also be addictive.

Another health problem associated with tobacco use is its
relationship to increased body fat: while smokers generally have lower
body weight and or body mass index (BMI) they tend to possess more
abdominal fat, particularly harmful visceral fat, than non-smokers
(154-159). This suggested causal effect of smoking on increased body
fat is independent of socioeconomic status and alcohol consumption.
Despite nicotine’s effects on appetite reduction and altered metabolism,
a population-based, cross-sectional study of 40,036 participants
showed no evidence to support the belief that smoking protects against
overweight and obesity (158). Smoking may increase body fat through
its effect on increased cortisol and reduced sex hormone levels (155).

Refined carbohydrates and addictive
behaviors

On their own, refined carbohydrate foods have been associated with
addictive behaviors that negatively impact mental health, contributing
to eating disorders, mood disorders, and anxiety disorders (160). This
growing individual, social, and public health issue also connects refined
carbohydrate consumption, overfat, and reduced brain health (161).
While animal studies demonstrate that sugar consumption can lead to
behaviors such as bingeing, craving, and withdrawal, which trigger the
release of endogenous opioids, these effects bear substantial parallels to
the mechanisms of drug addiction as confirmed by human studies (162,
163) (DiNicolantonio et al., 2018). Shared characteristics between drug
and food abuse include overconsumption, preoccupation, intense
craving, and continued use despite awareness of adverse consequences.

However, not all experts agree with the term “food addiction,”
suggesting instead that these issues align more closely with a
behavioral condition termed “eating addiction.” Proponents of this
view argue that, except for substances like caffeine and alcohol, no
evidence suggests that food or its ingredients cause substance-based
addictions (164, 165).
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The overfat pandemic

As noted, excess body fat may be a potential early marker of
reduced brain health. While determination of body fat content is
traditionally accomplished through overweight and obese
classifications and measures of BMI, these do not directly assess body
fat. There are notable racial and ethnic disparities in excess body fat
prevalence, with higher rates observed among Black, Asian,
Indigenous, and other non-White populations (43, 44, 166, 167), and
despite its widespread use, BMI often misclassifies body composition
in these disparities, failing to identify over 50% of individuals with
excess body fat and associated disease risk factors (168, 169). The term
overfat was defined as the presence of excess body fat that negatively
impacts physical, biochemical, and mental-emotional health (170). It
is estimated that approximately 80% of the world’s population may
be overfat (43, 44). Globally, 20-40% of adults classified as having
normal weight and BMI may still be overfat (171, 172), a condition
often referred to as normal weight obesity which has also been linked
to cardiometabolic disease and other health risks (173).

The metabolic processes that contribute to the overfat status can
begin in utero and continue throughout childhood, placing a
significant number of children at high risk of becoming overfat adults.
Beyond increasing the risk of chronic diseases, excess body fat can
impair immune function and heighten susceptibility to infectious
diseases (174). This vulnerability became particularly evident during
the COVID-19 pandemic, where overfat individuals were
disproportionately affected (175). Excess body fat also contributes to
physical impairments, ranging from minor injuries to significant
disabilities (176). Moreover, it places an enormous burden on
healthcare systems and economies, with global annual costs of
overweight and obesity alone projected to reach $18 trillion by
2060 (177).

Determining whether an individual is overfat does not
necessarily require expensive or inaccessible technology. While
advanced imaging techniques such as Dual-energy X-ray
absorptiometry (DEXA) scans provide precise body composition
data, their cost and limited availability prevent widespread use for
regular monitoring. Instead, waist circumference (WC) serves as a
practical and reliable clinical and home measurement for assessing
overfat in both adults and children (178), with increased WC
independent of concurrent gains in BMI that more likely represents
abdominal and visceral fat accumulation (121). A particularly useful
metric is the waist-to-height ratio (WHIR), which offers a quick and
effective way to assess excess body fat and related health risks,
including brain health (179). The WHIR is a valid and useful
anthropometric index to assess adiposity, and its prediction of
cardiometabolic risk factors associated with NCD, and easily
applicable in clinical practice (168, 180, 181). WHtR is also
considered more advantageous compared to BMI since its
adjustment for height allows a single threshold to be defined which
is applicable to the overall population regardless of sex, age, or ethnic
group (182) and may be the best anthropometric index when used
alone (183). The guideline is simple: waist circumference measured
at the umbilicus should be less than half of one’s height.

While increased body fat can occur while consuming any
macronutrient beyond caloric requirements, dietary fat has historically
been implicated as a primary contributor excess body weight.
However, foods that combine both processed fats and carbohydrates
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are particularly associated with increased body fat and addictive
behaviors, more so than unrefined, natural foods (161, 184-186).
Studies suggest that weight loss on carbohydrate-restricted diets may
be superior to calorie- and fat-restricted diets for adults (187) and
adolescents (188). Additionally, very-low-carbohydrate diets high in
fat have been shown to effectively reduce excess body fat (189) and are
useful for metabolic advantages when compared to low-fat diets (190).

Refined carbohydrates and added sugars alone, even in the
absence of dietary fat, are significant contributors to body fat
accumulation due to their metabolic effects, including increased
insulin secretion and the development of insulin resistance (191).
Excessive consumption of sugar-sweetened beverages and other
refined carbohydrates has been linked to metabolic syndrome, type 2
diabetes, and other adverse health outcomes, regardless of calorie
content (102, 192). Notably, high-sugar and other processed
carbohydrate diets can promote adverse metabolic and psychosocial
consequences even in individuals without significant increases in
body weight (193, 194). These findings emphasize the importance of
addressing refined carbohydrate intake as a key strategy for reducing
excess body fat to improve brain health.

Fueling the brain

Impaired glucose metabolism is often a consequence of insulin
resistance, and a significant contributor to reduced brain energy
(195). The brain demands substantial amounts of energy, primarily
derived from glucose, its main ATP source. Ketones and lactate also
serve as alternative fuels, supporting neurotransmission, protein
synthesis, plasticity, maintenance of membrane potentials, and nearly
all other brain functions. At an average rate of 6 kcal/d per billion
neurons, the human brain’s ~86 billion neurons require about
516 kcal/day, up to 25% of the body’s total energy expenditure (196).
To meet these high energy demands, early humans developed
cooking techniques, including the use of fire, which enhanced the
digestibility and absorption of nutrients from energy-dense, fatty, and
protein-rich animal foods (197, 198). This pivotal evolutionary
advancement, occurring between Homo erectus and Homo sapiens,
significantly increased the number of neurons, leading to dramatic
enhancements in overall brain size and function (196, 199). The
resulting human diet also promoted metabolic flexibility, an
adaptation allowing early humans to efficiently use glucose and fatty
acids for muscle energy, and glucose and ketones for the brain (200).
Metabolic efficiency contributed to reduced disease risk and
increased longevity (108, 201). When glucose availability is limited,
the brain relies on ketone bodies, such as f-hydroxybutyrate and
acetoacetate, derived from fatty acid oxidation in the liver, that can
cross the blood-brain barrier. These ketones provide a higher ATP
yield compared to glucose (84, 85, 202).

Deviating from this ancestral higher-fat, moderate-protein,
low-carbohydrate dietary pattern may contribute to today’s risk for
nutrient deficiencies, chronic diseases, and reduced brain health
(203). While the brain’s metabolic and nutritional needs have
remained relatively consistent over millennia, the recent global
nutrition transition has significantly altered the human diet,
resulting in consumption of significant amounts of sugar and other
(110). Unhealthy foods—industrial
formulations primarily composed of chemically modified substances

refined carbohydrates
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extracted from whole foods—are designed for long shelf life,
convenience, and low perceived cost. They are predominantly
composed of highly refined carbohydrates, which can elevate insulin
levels, reduce metabolic flexibility, and promote excess fat storage
(81, 82,204, 205). They can also lower brain glucose utilization while
impairing the use of ketone bodies as an alternative energy source,
promoting brain glucose hypometabolism (75, 84, 85). This
metabolic impairment can occur years or decades before the onset
of clinical symptoms, including cognitive decline and memory
impairment. Individuals with risk factors for Alzheimer’s disease,
such as family history, genetic mutations (presenilin-1), and the
APOE4 gene, are particularly vulnerable (14). Brain glucose
hypometabolism can also lead to synaptic dysfunction, neuronal
death, and structural thinning in critical brain regions, further
impairing brain health (58, 84, 85).

It should be noted that while insulin is produced peripherally in
the pancreas, it crosses the blood-brain barrier to regulate glucose
metabolism in the brain. The overlapping but distinct actions of
peripheral and central insulin highlight their critical but complex roles
in metabolic and cognitive health (84, 85, 206).

Numerous brain disorders have shown significant benefits from
very-low-carbohydrate diets that increase ketone production,
including pediatric epilepsy (297), traumatic brain injuries (207), and
chronic neurodegenerative conditions (298) and related oxidative
stress (208). These diets are also effective for reducing excess body
fat (209).

Low- or very-low-carbohydrate and ketogenic diets are generally
higher in fat, with moderate protein and low carbohydrates, with
daily carbohydrates comprising only 5-10% of total energy intake or
less than 50 g/day (210, 211). Dietary carbohydrate definitions
include very-low-carbohydrate or ketogenic diets (<10% and
20-50 g/day), low-carbohydrate diets (10-26% and 50-130 g/day),
and moderate-carbohydrate diets (26-45% and 130-230 g/day)
(212). Optimal levels of carbohydrate intake can vary with individual
health, e.g., lower levels in those who are overfat and insulin resistant.
Despite its clinical success in managing numerous conditions—
including Type 1 and Type 2 diabetes, various cancers, autoimmune
diseases, and other NCDs—this dietary approach remains
underutilized and is not widely endorsed by the medical
establishment. This hesitation persists despite the approach’s minimal
risks and potential for profound therapeutic benefits (213).

Expanding brain health

The concept of brain health encompasses all aspects of overall
function, independent of underlying pathophysiological processes (2).
Brain health reflects enhanced cognitive, behavioral, emotional, and
related performance across the lifespan, fostering healthier individuals
and societies through improved communication, understanding,
decision-making, and overall wellbeing. This includes creativity,
which plays a vital role not only in the arts but also in science and
virtually all brain activities, driving the generation of novel and
practical ideas by organizing established principles to contribute
meaningfully to human achievements, both small and large (6, 214).
Importantly, creativity supports the mental representation of healthier,
future-oriented possibilities rather than remaining anchored in the
past (215). Beyond cognitive and emotional performance, brain health
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relies on critical biological processes, including circulation, ATP
generation, cellular repair, and adaptation, among others, to sustain
its function and resilience.

Healthy brain performance is often conceptualized through
neurocognitive domains, which include:

1 Complex attention: encompasses sustained, divided, and
selective attention, as well as processing speed.

2 Executive function: involves goal-oriented and problem-
solving behaviors, such as planning, decision-making, working
memory, and non-verbal intelligence.

3 Social cognition: pertains to social and emotional behaviors
and how individuals relate to themselves and others.

4 Learning and memory: includes both short- and long-term
memory functions.

5 Perceptual-motor function: involves visual and motor
coordination, critical for physical movements.

6 Language: refers to the production and comprehension of
speech and communication (1, 216).

While these categories aid in clinical discussions, they are not
mutually exclusive. Impairments in one domain can lead to a broad
range of symptoms, often beginning preclinically. Even subtle
dysfunctions can diminish performance and pose long-term risks,
including increased morbidity, mortality, and rising healthcare
costs (12, 84, 85). As such, we advocate for a holistic and
transdiagnostic approach to brain health (217), which focuses on
addressing shared underlying causes of dysfunction rather than
treating isolated conditions, thereby supporting broader and more
effective care.

As humans reach full physical and mental maturity, they develop
greater capacity to manage the physical, biochemical, and mental-
emotional stressors of life (218, 219). Both genetic and environmental
factors interact to shape brain health, with ~75% of the variance in
cognitive ability throughout life attributed to environmental influences
(220, 221).

Lifestyle, shaped by personal choices, external environmental
factors, and others, plays a critical role in brain health. For example,
access to healthy or unhealthy food options and exposure to food
advertising significantly influence dietary habits and associated health
outcomes (101, 222, 223). Other factors include physical activity,
tobacco use, and alcohol consumption. Moreover, humans
instinctively form social groups to foster cooperative behavior, which
aids in adapting to stress, enhancing brain function, and improving
overall health and fitness (224). This extends to moral behavior, which
is intrinsically linked to social cognition and brain health (29). A
healthy brain not only enhances its inherent and acquired capabilities
but also contributes to the wellbeing of other individuals and society
as a whole.

Genetig, lifestyle, and environmental factors contribute to varying
levels of resilience to aging, with some individuals maintaining
cognitive health longer than others (225). Those with exceptional
cognitive abilities despite aging—known as super-agers—exhibit brain
health comparable to younger adults. Unlike many of their peers, these
individuals can display normal glucose metabolism in regions such as
the anterior cingulate cortex and anterior temporal lobes, associated
with increased cognitive resilience (226). While the precise
mechanisms underlying super-aging and its predictability remain
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unclear, it underscores the human potential to prevent cognitive
decline and sustain brain health well into advanced age.

Brain injury

Reduced brain health can stem from the progressive loss of
neuronal structure and/or function caused by acquired brain injuries.
This broad category encompasses any non-congenital, non-hereditary
brain disorder (227-229).

Acquired brain injuries result from a wide range of physical,
biochemical, and/or mental-emotional insults. Symptoms vary from
minor to debilitating and can be classified into two main forms:

1 Traumatic brain injuries (TBI): these injuries are caused by
physical trauma to the head and/or neck. Common sources
include falls, whiplash, motor crashes, microtraumas, sports
injuries, and other events (228, 229).

2 Non-traumatic brain injuries: these are caused by biochemical
or metabolic factors that impair brain function, such as:

« Insulin resistance and glucose dysregulation: conditions like
hypo- or hyperglycemia and “Type 3 Diabetes” (a term linked to
Alzheimer’s disease) are associated with brain injury (39, 230).

o Chronic inflammation: persistent inflammation contributes to
neurodegeneration and aging-related diseases (37, 68).

o Excess body fat: overfat conditions correlate with structural brain
changes and cognitive decline (68, 231).

Mental-emotional stress also contributes to brain injury by
disrupting the hypothalamic-pituitary-adrenal (HPA) axis, leading to
neuroplasticity deficits and exacerbating conditions such as major
depressive disorder (219, 232, 233).

Reduced brain volume can impair health and be considered a form
of brain injury. Research suggests that human brain size may have
begun diminishing a few 1,000 years ago (234). As noted, reductions
in both gray and white matter volumes have been observed in
individuals with excess body fat linked to neuroinflammation, insulin
resistance, and reduced glycemic control (66-68, 70, 71), corresponding
with the global rise in excess body fat in both adults and children (42,
45). The accumulation of excess body fat and its contribution to early
brain atrophy and reduced volume pose significant risks for reduced
brain health (68, 72). Moreover, factors contributing to brain injury,
such as physical trauma, often coexist with neuroinflammation, which
can exacerbate damage and hinder recovery (228). These
interconnected mechanisms emphasize the importance of addressing
excess body fat and related conditions as part of strategies to maintain
brain health and prevent cognitive decline.

Human performance deficiency

Measurable impairment of brain function can also lead to
human performance deficiency, commonly referred to as human
error. These deficiencies may involve momentary lapses in attention
and effort, potentially resulting in minor mistakes or severe
consequences (235). The prevalence of human error is strikingly
high across various domains. It accounts for over 60% of accidents
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in the home, 70-80% of aviation mishaps, and up to 85% of errors
in aerospace operations (236). In medicine, human error contributes
to more than 50% of complications occurring during major surgeries
in the US, leading to an estimated 400,000 potentially preventable
adverse events (237).

A recent study found that occupational accidents in secondary
industry workers peaked during periods of low blood glucose and
accumulated fatigue (238). This aligns with research suggesting that
even in healthy individuals, moderate hypoglycemia can significantly
impair cognitive functions such as visual and auditory selective
attention, attentional flexibility, and information processing speed—
while nonverbal intelligence remains unaffected (239).

Physical activity and the brain

In addition to a healthy diet, physical activity plays a crucial role
in reducing major risk factors associated with poor brain health,
including hypertension, insulin resistance, and excess body fat, by
improving overall fitness (240). However, despite relatively stable
physical activity levels, many populations have experienced dramatic
increases in excess body fat. For example, among U. S. adults,
participation in aerobic or muscle-strengthening exercise increased
from 44 to 52% between 1998 and 2014, yet the prevalence of excess
body fat increased from 75% to over 90% during the same period
(231). This paradox—rising levels of physical activity and increased
body fat—is also observed in populations with high levels of exercise,
including competitive athletes (241) and military personnel (242).

While exercise is well known to improve cardiovascular fitness, a
very-low-carbohydrate, high-fat diet (VLCHF) has been shown to
provide even greater cardiovascular benefits in college students
compared to high-intensity exercise alone (243). Additional benefits
of a VLCHEF diet have also been observed in competitive endurance
athletes (244). Beyond its physiological benefits, physical activity can
enhance brain health, with outdoor exercise providing even greater
cognitive benefits than indoor activity (245).

Discussion

Many national and international health organizations recognize
reduced brain health as a critical issue, emphasizing the need for early
intervention before the onset of disease and escalating healthcare
costs. Despite these concerns, the problem remains unresolved. The
overfat pandemic, affecting an estimated 80% of the global population
(43, 44), and promoted by the consumption of refined carbohydrates,
drives cardiometabolic dysfunction, including insulin resistance,
impaired glucose regulation, and neuroinflammation (246, 247),
along with various downstream conditions including depression
(248). The result is reduced brain health beginning long before the
onset of neurodegeneration (46, 47). As increased body fat and
reduced brain health are preventable through modifiable lifestyle
factors, it has been proposed that the health of those most socially
advantaged in society indicates a high level of health that should
be attainable for all others, yet a large majority of the global
population, and across racial or ethnic groups, is less healthy (117).
From a public health, and ethical and human rights perspective, this
is unacceptable.
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The rapid expansion of economic globalization has facilitated
the widespread availability of unhealthy food across nearly all
nations and socioeconomic barriers (119, 133, 135), displacing
healthy foods. Reversing this trend can be cost effective: In
addressing the global reduction of NCD alone by one-third through
lifestyle modification, it was estimated that an additional US$18
billion annually between 2023 and 2030 could avert 39 million lives
and generate an average net economic benefit of US$2.7 trillion—a
19:1 return on investment (249). While some governments and
industries argue that limiting access to unhealthy foods could harm
national economies, as these refined carbohydrate products
contribute significantly to gross domestic product (250), this same
argument was previously made against tobacco regulation.
However, evidence suggests that reducing unhealthy food sales can
be balanced by increased demand for healthier alternatives, which
can be distributed and sold through the same retail and supply
chains. A global initiative to regulate refined carbohydrate intake
could be a crucial step toward reversing the problem of excess body
fat and its downstream conditions, improving cognitive function
across populations with the potential for rapid, global health
improvements (see Figure 3).

A single, targeted lifestyle modification—restricting refined
carbohydrates—has the potential for significant impact. For
example, just reducing SSB intake has been shown to improve overall
dietary quality without replacing other refined carbohydrates and
can encourage consumers to make additional spontaneous and
healthy changes (251). When replacing all SSB with drinking water
it reduced total energy by 200 kcal/d over 12 months (252). Banning
SSB sales in the workplace have also been associated with reduced
intake and significant reductions in waist circumference within
10 months, with additional improvements by using a short
motivational intervention to target employees at higher risk of
cardiometabolic health (253).

10.3389/fpubh.2025.1585680

However, while SSB consumption is a major component of
refined carbohydrate intake, it is only part of an overall poor
dietary pattern. To maximize recommendations and improve
global dietary quality, a comprehensive strategy can more likely
better address the current public health challenges (254).
Therefore, when developing dietary guidance, other added sugar
sources in the diet must be considered while emphasizing
reductions of all refined carbohydrates (255). Lessons from alcohol
and tobacco regulation provide valuable insight in reducing
refined carbohydrates, as public health policies that restrict access
and availability—such as taxation—have repeatedly shown
effectiveness in reducing harmful substance use (140, 246,
256, 257).

A science-based ancestral dietary pattern

A viable strategy to effectively address the problem of reduced
brain health requires a clear scientific approach independent of
political and commercial influences. One consideration is to base
healthy dietary habits on those that sustained human evolution
for millions of years—a natural food-based eating pattern that is
higher in healthy fats, moderate in protein, and low in
carbohydrates without refined carbohydrates (25, 199, 201, 244,
299-308).
known benefits are found in the ketogenic diet, the Mediterranean

Nowadays, similar approaches with well-
and Mediterranean-DASH Intervention for Neurodegenerative
Delay (MIND) diet, and other low- and very-low-carbohydrate
and anti-inflammatory approaches, with extensive evidence that
these diets enhance brain health and reduce excess body fat (47,
70, 258-262). The potential benefits of significantly reducing
refined carbohydrates have not yet been effectively translated into

organized global dietary guidelines. Like other government
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The potential for global health improvements by restricting refined carbohydrates.
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guidelines there may be several reasons for this gap. For many
consumers, the sheer volume of dietary information—often
contradictory and coming from multiple sources—creates
confusion and frustration, negatively impacting attitudes, beliefs,
and behaviors (261, 262). While public trust in science is
fundamental to improving population health, distrust of scientific
information remains a major barrier (263). Yet, when the
addictive properties of unhealthy food are framed similarly to
those of tobacco, awareness, belief, and education about these
risks can lead to increased public support for regulation (186,
264, 265).

The global push to regulate refined
carbohydrates

Similar public health measures restricting refined carbohydrates
are already being implemented on relatively small scales in various
regions with measurable success. These include taxes on SSB in
countries like Mexico and the U. S. leading to a sustained reduction in
consumption (266), with workplace bans on SSB significantly
improving employee health outcomes (253), and others discussed
above. Included are policies that restrict or ban unhealthy foods in
retail stores, restaurants, schools, and vending machines, with
consumer compliance increasing when product prices rise. These and
other approaches generally mirror successful restrictions placed on
tobacco, demonstrating that reducing availability directly reduces
consumption and, ultimately, improves health outcomes (246, 256,
257,267).

While this approach could reduce refined carbohydrate
consumption for all consumers, the effects can differ by
socioeconomic status. While increased tax revenue may come from
high income consumers, when viewed as a percentage of total
household expenditures, lower income consumers may assume more
of the financial burden (268). However, larger health benefits often
accrue to low-income consumers because of their stronger response
to price changes, the potentially larger financial burden could also
be mitigated by a pro-poor use of the generated tax revenues
(directing more resources toward them). While carefully designed
and implemented approaches can be successful and fair to all
socioeconomic groups, this complex economic issue goes beyond
the scope of this paper.

Understanding past public health errors—where many health
organizations and governments only passively discouraged tobacco
use, allowing its prevalence to persist for decades—the modern phrase
“sugar is the new tobacco” serves as a fitting call to action in reducing
the consumption of unhealthy foods (269-272). While this
comparison of two different but harmful substances should not
weaken the rationale for adopting related regulatory framework, some
of the successful policies and regulations that curtail tobacco use could
similarly be applied to refined carbohydrates, including methods that
limit public access and restrict marketing and advertising (102, 267,
273, 274) (see Figure 4).

Importantly, consumer decision-making is associated with food
choices (275) and must be considered along with the biological
mechanisms affecting brain health discussed above, including those
associated with addiction and eating behavior (160). While these are
all associated with brain health, powerful influences come from
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companies advertising and marketing products, and governmental
recommendations which are strongly affected by politics and
lobbying. A primary factor that can significantly influence food
purchases and consumption is cost.

Given these considerations, implementing not one but a
combination of factors associated with taxation, lobbying, marketing
restrictions, financial incentives, and other regulatory measures can
help reduce the consumption of unhealthy foods. As in past public
health challenges—such as tobacco control, drunk driving prevention,
and HIV intervention—effective initiatives can successfully overcome
key barriers to change, including socioeconomic status, education,
income, and environment (3).

Various strategies to help improve brain health are summarized
below.

Taxation

One of the most important strategies to reduce the
consumption of refined carbohydrates is increasing their cost,
often through taxation along the supply chain (276, 277). As
evidence suggests that the resulting higher costs of unhealthy food
and beverages lead to a measurable decline in consumption, this
approach could include raising taxes on unhealthy foods while
lowering taxes on healthier options to create incentives for better
dietary choices. For this to be effective, the price adjustments must
be substantial enough to influence purchasing behavior (278).
This could also address the physical food environment issue
(related to food insecurity discussed above): many people may not
have access to healthy foods. Easier access to healthy and
affordable food occurs by replacing the available unhealthy foods
with healthy options in the same retail and wholesale food
distribution areas.

Food labeling

Food ingredient labeling and product information, including
those in advertising and marketing, use a variety of terms and
definitions that differ across government and regulatory agencies
worldwide. Many products labeled as “whole grain” contain high
percentages of refined carbohydrates, making labeling inconsistent
and potentially misleading for consumers (96, 97). Such discrepancies
in labeling can obscure product quality and nutritional value.
Improving food labeling and advertising regulations—particularly
through the adoption of standardized definitions—may help enhance
consumer understanding to limit inadvertent consumption of
refined carbohydrates.

Food subsidies

In addition to taxes, significant health gains and cost savings can
be made by addressing food subsidies (279, 280). The global junk food
industry is supported by governments that subsidize crops used to
produce unhealthy food ingredients. Without these subsidies,
unhealthy food costs would rise. These subsidies can instead
be transitioned to support healthier food production.
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You wouldn't give cigarettes to kids,
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Lobbying

Food industry lobbying efforts have proven more successful at
shaping consumer behavior than public health campaigns. Much like
the tobacco industry, the sugar industry and its political allies have
strongly influenced policies and public perception (102, 281). Since
the 1950s, the sugar industry lobby—a powerful Washington,
DC-based trade association—has actively misrepresented its
products, shifting blame onto dietary fat to divert attention from the
harmful effects of sugar (282). Another major lobbying success
occurred in 1966, when the National Institute of Dental Research
aimed to eradicate dental caries. Rather than acknowledging sugar’s
role, the industry redirected focus away from sugar consumption as
the primary cause of cavities (283). This was despite the strong
scientific consensus that sugar contributes to tooth decay and overall
poor oral health through systemic effects and direct reduction of oral
pH (284). Today, the food industry continues to shape dietary
choices through misinformation, including on social media, where
misleading content further encourages unhealthy eating habits (285).
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Advertising and marketing restrictions

Policies that limit public advertising and marketing of unhealthy
foods are essential for improving public health (273). Beyond
traditional ads on TV, radio, billboards, and the Internet, unhealthy
food marketing infiltrates stores, shopping centers, public
transportation, and even community spaces. A particularly concerning
strategy is athletic sponsorship, where junk food companies serve as
major sponsors of public events worldwide, targeting both adults and
children. This is evident in local, amateur, and professional sports,
including the Olympic Games, where these brands associate their
products with athletic excellence despite their negative health effects.

Litigation

The legal system has long played a crucial role in promoting and
protecting public health. Similar to the successful lawsuits against the
tobacco industry, litigation against unhealthy food companies could
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be a viable strategy for change (267). Tobacco lawsuits, particularly
those led by U. S. attorneys general, significantly shifted public
attitudes about smoking. A similar legal approach targeting junk food
manufacturers could raise awareness, hold corporations accountable,
and drive policy change.

User financial incentives

While taxation can discourage unhealthy food consumption, it
may be less effective than strategies that actively engage individuals
in improving their health (250). One proven approach is offering
financial incentives for making healthier choices. Studies show that
paying individuals to adopt better health habits can lead to
significant benefits (286-289). Despite the upfront costs, a carefully
monitored program can lead to long-term savings by reducing
healthcare expenditures on treatments and medications. Similarly,
corporate wellness programs yield up to six times the company’s
investment (290). Schools implementing free, high-quality meal
programs have shown reduced obesity rates among children (291,
292), highlighting the potential of financial incentives in promoting
healthier choices at both individual and systemic levels.

To support these and other initiatives, public education, which
may not be effective on its own, should be delivered through simple,
straightforward, consistent, and ongoing campaigns. These efforts
should include clear product descriptions, school-based education,
and scientific-based guidelines from unbiased health organizations
(293, 294). Additionally, tailored strategies should be developed to
align with the socioeconomic conditions of specific regions, ensuring
that interventions are both effective and culturally relevant. A
comprehensive global brain health initiative must focus on reducing
the availability and consumption of unhealthy foods while
simultaneously fostering improved dietary habits and overall
brain health.

Conclusion

Optimal brain health is essential for the wellbeing of individuals,
societies, and the environment. The global overfat pandemic signals
widespread and worsening cognitive and cardiometabolic health
issues largely driven by consumption of sugar and other refined
carbohydrates. Drawing from successful public health strategies used
to combat tobacco, regulatory measures such as taxation, marketing
restrictions, litigation, and financial incentives offer a viable path to
reducing refined carbohydrate consumption. Implementing these
strategies alongside targeted education and policy reform can
significantly help lower excess body fat, enhance brain function, curb
chronic disease, and alleviate the growing burden on healthcare
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