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The rapid development and wide application of Artificial Intelligence (AI) and 
Big Data technologies have profoundly changed the way industries around the 
world operate, from finance, transportation, education to media, the integration 
of the two not only improves the efficiency of the industry, but also optimizes the 
quality of service and decision-making process to a large extent. In the era of deep 
integration of Biomedicine and AI, AI and Big Data technology are reconstructing 
the paradigm of drug development with unprecedented intensity. The long cycle 
of traditional drug development, which takes a decade and billions of dollars in 
investment, is being compressed to 2 years or even less under the drive of AI. 
Through big data analytics and deep learning techniques, AI can greatly improve 
R&D efficiency and accuracy in a variety of aspects such as compound screening, 
efficacy prediction, and clinical (pre) experiment design. However, the use of AI 
and big data in drug discovery and development also raises corresponding ethical 
issues, such as data privacy protection and algorithmic transparency. This article 
will systematically analyze the technological breakthroughs, potential risks, and 
governance paths of AI and big data in drug development. It will explore how to 
strengthen the bottom-line of safety and ethics in the Efficiency Revolution and 
build a responsible innovation ecosystem.
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1 Introduction

As a core field for improving human health, drug research and development is undergoing 
an efficiency revolution driven by AI technology, but the current data controversies reveal the 
contradiction between technological acceleration and ethics. Based on an in-depth analysis of 
the ethical challenges in drug R&D, this paper constructs an ethical evaluation framework 
centered on autonomy, justice, non-maleficence, and beneficence, and, through the three 
evaluation dimensions of data-mining informed consent, pre-clinical dual-track verification, 
and transparency in patient recruitment, systematically dissects the ethical risks across the 
entire AI R&D cycle. Finally, it puts forward referential strategies, including strengthening 
ethical supervision and regulation of AI algorithms, improving data-privacy protection, 
enhancing algorithmic openness and transparency, building accountability mechanisms, 
reinforcing long-cycle monitoring of AI technology in drug R&D (1), and encouraging multi-
party participation and informed consent from patients and the public (2). By implementing 
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these responsible-innovation strategies, the rights and interests of 
subjects can be more effectively protected, the safety and effectiveness 
of drugs ensured, and fair drug distribution and accessibility 
promoted. The integrated application of these ethical principles and 
innovation strategies is expected to push drug R&D toward a more 
responsible future.

2 Application of AI and big-data 
technology in the entire cycle of drug 
research and development

2.1 Overview of the ethical-evaluation 
theoretical framework for AI application 
throughout the drug-development cycle

Based on ethical-evaluation principles, from the initiation of AI 
technology in drug R&D to post-marketing surveillance, this paper 
realizes ethical-compliance control of AI applications through phased 
risk mapping, comprehensively evaluating the benefits and risks of 
this technology across the whole drug-development process. The 
current AI ethical framework is founded on universal ethical 
principles, with four core principles: autonomy (respect for individual 
autonomy, e.g., informed consent), justice (avoiding bias and 
discrimination, ensuring fairness in resources and opportunities), 
non-maleficence (avoiding potential risks and harms), and beneficence 
(promoting social well-being). Three evaluation dimensions 
corresponding to the three research stages are constructed—
requirements for informed consent in the data-mining stage, a dual-
track verification mechanism in pre-clinical research, and 
transparency requirements in the patient-recruitment stage. The paper 
systematically analyzes the technological breakthroughs of AI and big 
data in drug R&D and deeply examines typical risk points such as 
privacy leakage of group genetic data, undetected intergenerational 
toxicity, and algorithmic bias leading to unfair enrollment, aiming to 
regulate the ethical boundaries of AI technology in application and 
balance technological innovation with risk prevention and control.

The ethical-evaluation framework constructed herein is highly 
aligned with the current core principles of AI ethics: it emphasizes 
“informed consent in the data-mining stage,” requiring that the 
purpose of genetic-data collection be explicitly stated, directly echoing 
the core requirement of “respect for individual autonomy”; it focuses 
on “transparency in patient recruitment,” implementing the justice 
principle of “avoiding discrimination and ensuring fairness” by 
detecting algorithmic bias and opposing geographical bias in clinical 
trials; it proposes a “pre-clinical dual-track verification mechanism,” 
requiring that AI virtual-model predictions be  synchronously 
combined with actual animal experiments to avoid the omission of 
long-term toxicity due to shortened R&D cycles, directly 
corresponding to the core of “avoiding harm”; the overall goal is to 
ensure, through ethical norms, that AI technology improves drug-
development efficiency while ultimately serving human health, in line 
with the beneficence requirement of “promoting well-being.”

However, the current AI ethical framework mostly consists of 
abstract principles; this paper expands it into a concrete operational 
system for the entire cycle of drug R&D: the general principles are 
disassembled into the three-dimensional evaluation of “data mining 
— pre-clinical — patient recruitment,” each dimension corresponding 

to quantifiable operational standards, turning abstract principles into 
executable processes; in light of the particularities of drug development, 
it supplements areas not covered by the general framework.

By analyzing real problems, this paper also indirectly criticizes the 
deficiencies of the current AI ethical framework in practice. 
Domestically, institutional gaps exist in cross-border transmission of 
group genetic data and cross-regional verification of clinical-trial data; 
the current framework lacks supporting regulatory rules for 
addressing specific risks of AI technology in drug R&D. International 
cooperation faces fragmented ethical standards and ambiguous 
divisions of responsibility, exposing the framework’s inadequacies in 
a global context; the chain of “historical data bias — algorithm 
amplification — clinical injustice” in drug R&D is insufficiently 
considered, and algorithm-audit mechanisms need to be strengthened.

2.2 Application of AI technology in drug 
research and development

In the field of drug development, AI technology is bringing 
disruptive changes. Demis Hassabis, CEO of Google DeepMind and 
winner of the 2024 Nobel Prize in Chemistry, once pointed out that 
traditional drug development takes an average of 10 years and costs 
billions of dollars, whereas AI technology is expected to greatly 
shorten this process. This view vividly demonstrates the tremendous 
potential of AI to accelerate drug-development progress.

Artificial intelligence has significantly improved R&D efficiency 
and precision by optimizing drug-discovery processes and clinical-
trial design, and this breakthrough stems from two core advantages of 
AI. AI technology replaces laboratory operations with virtual 
screening, transferring traditional bottle-and-flask compound 
screening into computer simulations, optimizing trial design and 
improving the scientificity of decision-making. For example, the 
cooperation between Iktos and Pfizer accelerated the discovery of 
small-molecule drugs through AI, enriching the drug-candidate 
library with AI-designed compounds. It is worth noting that, in the 
AI-accelerated drug-discovery process, the evaluation dimension of 
informed consent in the data-mining stage can be incorporated. For 
instance, the cooperation between Insitro and Gilead, which 
developed predictive models with AI technology to identify new drug 
targets (3), not only improves the speed of target discovery but may 
also reduce R&D costs. Insitro explicitly informed subjects of the 
purpose of data collection involving group genetic data in accordance 
with the framework—contrasting with the ethical controversy caused 
by ambiguous consent forms in DeepMind’s NHS data sharing.

Animal experiments are a key link in verifying the safety and 
effectiveness of drugs, but traditional methods are characterized by 
low efficiency and long cycles. The application of AI technology in 
simulating animal physiological responses provides a new solution to 
this dilemma. In traditional mouse experiments, second- and third-
generation studies often require a great deal of time to collect data. 
With AI technology, researchers can use existing genetic data and 
biological knowledge to build virtual mouse intergenerational models 
that simulate the physiological characteristics and drug responses of 
offspring mice under different genetic combinations, greatly 
shortening research intervals and accelerating drug-development 
progress. In this process, however, the “pre-clinical dual-track 
verification mechanism” requires that traditional animal experiments 
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be retained as controls to avoid the limitations of extrapolating from 
animal models, as in the thalidomide incident.

2.3 Retrospective value of big-data 
technology

Big-data technology plays a key role in modern drug R&D; it not 
only accelerates the speed of drug discovery and testing but also 
improves research quality and accuracy (4). By analyzing massive 
genetic datasets, researchers can identify gene variants related to 
specific diseases, providing clues for the development of targeted 
therapies. For example, Gaussian Process Regression (GPR) models 
are used to predict the bioactivity of molecules (5), helping decision-
making in drug design. In the clinical-trial stage, big data optimizes 
trial design by analyzing historical trial data, improving the efficiency 
and adaptability of clinical trials (6). In personalized medicine, by 
analyzing patients’ genetic data and lifestyle information, 
individualized treatment plans can be tailored for each patient. Tools 
such as DeepChem (7) and the BRENDA database (8) support 
compound-toxicity prediction and enzyme-activity research, while 
Recursion Pharmaceuticals promotes new-drug discovery by using 
machine learning to analyze cellular phenotypic changes (9). These 
applications show how big-data technology promotes every stage from 
drug discovery to market, making disease treatment more precise 
and efficient.

Looking back at drug-development history, the “thalidomide 
incident” is a typical example of the shortcomings of traditional drug-
safety evaluation. The use of thalidomide caused more than 12,000 
babies worldwide to suffer severe outcomes such as limb deformities. 
If modern big-data analytical capabilities had been available at that 
time, risk-prediction models built by combining natural-language 
processing of medical-record texts with machine-learning algorithms 
could have quickly locked onto the association between thalidomide 
and infant deformities, greatly increasing drug-harm traceability 
efficiency and avoiding more tragedies. This retrospective big-data 
analysis provides a new path for mining potential associations in 
drug-harm events and improving drug-safety research.

Although big data shows strong power in retrospective research, 
prospective drug development still relies on a strict clinical-trial 
system. The correlations revealed by big-data analysis cannot directly 
establish causality; for example, data show a correlation between 
caffeine intake during pregnancy and infant health problems, but 
other confounding factors may interfere. Clinical trials, through 
randomized-controlled designs and double-blind experiments, verify 
causal mechanisms of drug efficacy and safety in controlled 
environments, providing decisive evidence for drug approval. Thus, 
big-data analysis can serve as an important auxiliary tool, 
complementing clinical trials and jointly consolidating the scientificity 
and reliability of drug R&D.

2.4 Drug-development model combining 
AI and big data

In modern drug R&D, the combination of AI and big data has 
significantly improved drug-development efficiency and accuracy 
(10). Specifically, the cooperation between GSK and Exscientia (11) 

optimizes drug-molecule design with AI technology, predicting 
molecular-structural activity for specific biological targets and 
iteratively optimizing with big data, greatly shortening the discovery 
cycle of drug-candidate molecules (12). For example, Exscientia 
reported that its AI system successfully designed a new obsessive-
compulsive disorder drug candidate in less than a year, whereas 
traditional methods usually need many years (13). In addition, 
cooperation between Pfizer and IBM Watson Health also shows how 
AI and big data accelerate biomarker discovery through the Watson 
for Drug Discovery platform (14), which is important for new-target 
discovery, new-drug development, and personalized medicine. These 
cases not only prove that AI and big data can increase R&D speed but, 
through precise analysis, can optimize the entire R&D process, 
improving the success rate and economic efficiency of drug 
development. This technical integration represents a main 
developmental trend in current drug R&D, and its application 
potential will continue to expand.

3 Ethical risks of AI technology in 
accelerated drug R&D

3.1 Ethical risks inherent in algorithms

3.1.1 Ethical breach of the pre-clinical dual-track 
verification mechanism

Within the safety-evaluation system of drug R&D, inherent 
differences between animal models and human physiology constitute 
a biological barrier that AI-simulation technology cannot surmount; 
this belongs to the technical maladaptation of algorithms to biological 
complexity. Taking thermoregulation as an example, the core body 
temperature of chickens is maintained at 29–30 °C, fundamentally 
different from the human metabolic environment at 37  °C; this 
temperature gap markedly affects the activity expression of drug-
metabolizing enzymes, causing divergence between metabolic rates 
and toxicological characteristics of drugs in low-temperature animals 
and the actual human response. Similarly, the hepatic UGT1A1 
enzyme activity of rodents is only one-tenth that of humans, so drugs 
such as irinotecan show far lower toxicity in animal experiments than 
in clinical observation, exposing significant interspecies differences in 
metabolic pathways.

The limitations of in-vitro experimental systems are even more 
prominent: the cell-culture environment lacks the complex in-vivo 
tissue microenvironment, so doxorubicin shows cardiac toxicity 
in  vitro 30–50% lower than in animal experiments. Although AI 
technology can integrate multi-species data by constructing 
physiologically based pharmacokinetic (PBPK) models, its predictive 
accuracy is still limited by the completeness of underlying biological 
data—for example, differences between rhesus monkeys and humans 
in the IL-6 cytokine-signaling pathway cause antibody drugs targeting 
this pathway to show remarkable efficacy in animal experiments but 
to be forced to terminate in Phase I due to cytokine storm.

This biological-difference simulation dilemma essentially reflects 
the “data-dependence” of AI models. When training data lack deep 
annotation of cross-species physiological characteristics, even 
algorithms optimized through transfer learning cannot accurately 
predict the dynamic response of drugs in the complex human 
physiological environment. Therefore, AI-simulated rat 
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intergenerational experiments must synchronously retain chronic-
toxicity tests in non-rodent animals—this is the concrete 
implementation of the principle of “non-maleficence.”

3.1.2 Ethical absence of the transparency 
requirement in patient recruitment

When using AI and big-data technology in drug R&D, one must 
be alert to data and algorithm bias. Such bias often exists in multiple 
links—data collection, processing, and algorithm design—and, in 
severe cases, may threaten the clinical safety and effectiveness of 
drugs. Data on which drug R&D relies must cover a broad population 
to ensure that the developed drug can benefit all patients. However, 
historically, participants in clinical trials have often lacked diversity; 
e.g., certain races or specific groups are under-represented, which may 
cause AI algorithms to predict effects inaccurately for these groups. In 
such cases, AI trained on imperfect data may show bias in race, 
gender, age, etc., thus affecting the fairness and effectiveness of drug 
R&D (15). A study evaluating sex, racial, and ethnic differences in 
U. S. cardiovascular trials found that African-American and Hispanic 
participants were significantly under-represented in key clinical trials, 
especially coronary-artery bypass graft (CABG) trials, where their 
participation rates were far lower than those of whites (16). Such 
imbalance may bias predictive models because models are usually 
trained on the population of clinical trials.

Besides the lack of diversity among participants, algorithm design 
itself may harbor bias (17). AI systems generally learn historical data 
to predict future outcomes; if historical data contain bias, the 
algorithms will amplify it. Moreover, developers’ subjectivity may 
inadvertently affect fairness (18). A 2019 study found that an 
algorithm used to predict patients’ future health risk showed 
significant predictive bias among different races. The algorithm took 
medical cost as a proxy for health need, but because Black patients 
incurred lower costs, it incorrectly assessed them as healthier than 
white patients with the same condition. Correcting this bias could 
raise the proportion of Black patients receiving additional care from 
17.7 to 46.5% (19).

3.1.3 Safety and credibility issues
With the widespread use of AI and big-data technology, challenges 

in safety and credibility are increasingly prominent. The credibility 
problem of AI and big data in drug R&D must also consider data 
timeliness and relevance (20). Over time, population health status and 
disease spectra may change; if the data used in AI training do not 
reflect these changes, the developed drugs may not effectively address 
current health challenges. Furthermore, different regions and 
environments may differently influence diseases, requiring AI models 
to recognize and adapt to such diversity to avoid “one-size-fits-all” 
solutions. A study showed that, in HIV/AIDS drug R&D, a major issue 
is the geographic and genetic diversity among viral strains: different 
HIV subtypes may tend to develop higher resistance to certain drugs 
(21), posing new challenges to drug development.

Moreover, safety is one of the most critical considerations in drug 
R&D. AI models rely on large data inputs and complex algorithms 
when designing drugs and predicting drug interactions. If input data 
are of poor quality or incomplete, AI-recommended drugs or 
treatment plans may carry potential safety risks. IBM’s Watson, 
initially highly anticipated for providing innovative cancer-treatment 
plans via its powerful data-processing ability, sometimes 

recommended inappropriate treatments; reports attribute this to 
limitations of training data and input-data quality (22).

The decision process of AI models is often opaque, making it 
complex to verify the reliability of AI-proposed drug designs or 
research results. This “black-box” characteristic may cause researchers 
difficulty in understanding the R&D logic and make regulators 
struggle to assess compliance and scientific validity (23). When AI 
models are used to predict the probability of genetic diseases, although 
such predictions can theoretically aid early intervention, they also 
raise ethical questions about whether patients should be told these 
future health risks (24). If predictions are inaccurate, unnecessary 
anxiety or wrong medical decisions may result. One study indicated 
that knowing one’s disease susceptibility may have psychological 
impacts, and, when no practical intervention exists, such knowledge 
may do more harm than good (25).

3.2 Ethical misconduct in human behavior

3.2.1 Ethical breach of the pre-clinical dual-track 
verification mechanism

As AI technology compresses the drug-development cycle from 
the traditional 10 years to a few years or even months, the systemic 
absence of long-term toxicity observation is becoming a core hidden 
danger threatening drug safety. In traditional R&D systems, toxicity 
monitoring lasting several years is key to capturing delayed adverse 
reactions, genetic toxicity, and cumulative metabolic risks. The 
AI-driven R&D model, pursuing efficiency, often replaces part of 
long-term experiments with virtual models or shortens observation 
periods in pre-clinical trials, which may obscure adverse effects in 
long-term metabolism or intergenerational transmission.

Just as the thalidomide tragedy revealed the limitations of 
extrapolating animal experiments to humans, it also sounds a warning 
for AI-accelerated R&D—although AI improves efficiency by 
simulating animal physiology and compressing intergenerational 
experiments, advancing subsequent stages merely because no short-
term abnormalities appear in first-generation trials may neglect 
genetic toxicity and delayed risks. One difficulty in governing medical 
AI ethically is that the speed of technological iteration far outpaces 
updates to ethical norms, causing long-term risk assessment to lag; 
this, together with the “black-box” nature of AI models, intensifies 
uncertainty in toxicity prediction (26). In addition, companies such as 
Google claim to compress the R&D cycle to 2 years or even 6 months; 
their models rely on historical data and cannot predict unknown 
reactions of biological systems. The value of the traditional “ten-year 
cycle” lies in verifying risks through long-term monitoring and 
intergenerational observation; shortening the cycle with AI may 
sacrifice key observation windows, laying a hidden danger of chronic 
toxicity and potentially missing delayed teratogenic risks like the 
thalidomide incident, violating the “dual-track verification” principle 
in the pre-clinical evaluation dimension.

3.2.2 Ethical breach of the informed-consent 
principle in data mining

In recent years, some cases have reflected potential privacy risks 
of AI and big-data technology, deserving in-depth analysis and 
discussion. In healthcare, the data-sharing controversy between 
DeepMind and the United Kingdom’s National Health Service (NHS) 
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is typical (27); ostensibly aimed at predicting acute kidney injury with 
AI, it actually manifested three ethical defects in data sharing:

During the development of the “Streams” app by DeepMind and 
NHS, three major ethical irregularities in processing 1.6 million 
patients’ medical data directly violated the principle of “substantial 
informed consent in the data-mining stage”:

First, the NHS data-use consent form did not explicitly state that 
data would be used to train AI algorithms for a commercial entity, 
using the vague wording “may be used for research” to evade the duty 
of explanation, essentially violating Article 22 of the Declaration of 
Helsinki, which requires that research purposes be clearly explained.

Second, de-identification retained correlated fields such as 
timestamps of clinical events and disease codes; empirical research at 
the University of Cambridge showed that combining the temporal 
features of medical records with public data could re-identify 15% of 
patients, clearly violating Article 4 of the 1998 Data Protection Act 
(UK), which legally requires anonymization to achieve 
non-identifiability.

Third, the project deliberately bypassed review by an independent 
Research Ethics Committee (REC) and did not follow the NHS 
Research Ethics Framework’s requirement for a full ethical review of 
commercial data research, rendering the review process void.

After exposure, the incident aroused systemic public concern: an 
investigation by The Guardian confirmed that NHS’s legal team was 
informed unilaterally only 3 months before data transfer and that 
patients were never notified; scholars at University College London 
wrote in Nature that the case sets a dangerous precedent for the 
commercial misuse of public medical data, etc. In 2018, the 
Information Commissioner’s Office (ICO) ruled that the case violated 
the Data Protection Act and forced the establishment of a transparent 
data-sharing platform. NHS’s 2019 “Guidelines on Commercial Use 
of Health Data” established a regulatory mechanism of “explicit 
consent + third-party data trust.” As the first typical medical-data 
violation case after GDPR implementation, it has been officially 
included in the annotation database for Article 9 (processing of 
sensitive data) of the GDPR, becoming a landmark precedent in global 
medical-AI data governance.

In drug research and development, researchers likewise need to 
handle large amounts of patient data—including genetic information, 
personal and family medical histories, and lifestyle habits. Such data 
help researchers better understand disease mechanisms and patient 
response differences to design more targeted drugs. However, they 
also raise significant ethical issues: how to tap the data’s potential while 
protecting patient privacy from infringement. Similarly, 23andMe’s 
cooperation with pharmaceutical companies raised privacy concerns 
(28); accumulating massive genetic data via consumer genome 
services, it signed a 2018 agreement with GlaxoSmithKline to share its 
genetic database for new drug development. Although the statement 
included privacy protection, the public worried that personal genetic 
information might be used for commercial profit. 23andMe did not 
obtain separate ethical consent for “population-gene frequency 
analysis,” thus violating the informed-consent standard in the data-
mining dimension. This risk is more pronounced in cross-border data 
transfer: for instance, a multinational drug company’s Hong Kong 
subsidiary circumvented approval procedures, exposing the gap 
between group genetic-data regulation and framework requirements.

Human actors also exploit regulatory loopholes: in low-cost trial 
regions such as Cambodia and South  Africa, pharmaceutical 

companies often make use of weak local ethical-review capacity and 
scarce medical resources to conduct clinical trials that could not pass 
ethical review in developed countries, essentially shifting R&D risk 
artificially. A typical case showed that, in a Phase III trial of an 
anti-HIV drug in African children, the control group still used 
outdated AZT monotherapy, artificially enlarging the mortality 
difference between the test and control groups; this geographical bias 
essentially shifts R&D risk to developing countries. An even more 
concealed double standard exists in pediatric drug use: parents in 
Europe and the U. S. generally oppose including their own children in 
new-drug trials but tacitly permit pharmaceutical companies to 
recruit poor-family children in India or Brazil as subjects, forming an 
“ethical exemption” mind-set of “testing drugs on other people’s 
children,” which clearly violates the Declaration of Helsinki’s principle 
of “risk–benefit balance.”

3.2.3 Delay in domestic regulation and systems
The application of artificial intelligence (AI) and big-data 

technology in drug R&D is a double-edged sword: while increasing 
efficiency and bringing unprecedented opportunities, it also brings 
complex ethical responsibilities and regulatory demands. In traditional 
drug-development processes, every step of decision-making can 
be traced back to specific researchers or teams. However, when AI is 
involved in decision-making—especially when AI automatically 
performs data analysis and pattern recognition—determining the 
attribution of responsibility becomes particularly difficult (29). For 
example, in the aforementioned case of IBM Watson: when it 
recommended inappropriate treatment methods, if adverse events 
occurred, should responsibility lie with the AI developers, users, or 
the AI itself? This not only highlights the challenge of responsibility 
attribution in AI-assisted medical decisions and drug design but also 
reflects the complexity of regulating such technological applications.

The use of AI and big data must conform to existing 
pharmaceutical regulations and ethical norms. However, many 
existing regulations are not fully adapted to the characteristics of AI 
technology (30). For example: when AI models process patients’ 
privacy data, a new problem arises as to how to ensure data 
confidentiality or patients’ privacy rights. In addition, the application 
of AI in drug R&D may involve new risks, such as the algorithmic bias 
mentioned earlier, which may lead to unequal distribution of drug 
efficacy (1). How to make it fairer and better serve all patients is also 
a current regulatory challenge.

In the data-mining dimension, regarding the regulatory gap in 
group genetic data, Article 36 of GCP clearly requires that “clinical-
trial data shall be authentic, complete, and traceable,” yet regulatory 
arbitrage in cross-regional trials is common. A typical case showed 
that an anticancer drug completed Phase I clinical trials at a tertiary 
hospital in Shanghai but, without completing the required three-
month safety follow-up, transferred the remaining cases to a hospital 
in Xi’an to continue Phase II trials via “data slicing,” using geographical 
dispersion to obscure signals of hepatotoxicity. Although China has 
issued the “New-Generation Artificial-Intelligence Development 
Plan,” proposing a three-step strategy to establish an AI-ethics legal 
system, specific standards are still lacking for cross-border 
transmission of group genetic data, algorithmic bias, and other issues 
in drug R&D (31). This operation exploits the decentralization of 
ethical reviews in domestic multi-center trials—each hospital’s ethics 
committee only reviews local data and lacks a cross-regional 
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data-linkage verification mechanism, resulting in “patching data from 
different locations” as a gray method for evading long-term toxicity 
monitoring. According to the National Medical Products 
Administration’s 2023 spot-inspection report, 28% of clinical-trial 
institutions had such problems, and the violation rate in cross-regional 
trials was 3.2 × that of single-center trials.

Compared with Article 9 of the EU GDPR, which strictly regulates 
the handling of genetic data, China’s current regulations have obvious 
institutional gaps. The “Regulations on Administration of Human 
Genetic Resources” cover only “human genetic-resource materials” 
and lack regulation of anonymized genetic-sequencing data in cross-
border transmission; a multinational pharmaceutical company once 
bypassed approval through a Hong-Kong subsidiary and was publicly 
reported by the Ministry of Science and Technology. The “Personal 
Information Protection Law” classifies “biometric data” as sensitive 
information but does not explicitly define the legal status of “group 
genetic data”; a bioinformatics company was interviewed by the 
Cyberspace Administration for using genetic data of Northwestern 
populations to train models without group-level ethical consent. The 
“Data Security Law” does not specify whether “group genetic data” 
constitute critical data; in practice, drug companies often transmit 
data abroad in the name of “research data,” such as a Chinese-
American joint-venture drug company submitting unapproved 
Han-Chinese gene-frequency data to the U. S. FDA.

In the pre-clinical and patient-recruitment dimensions, current 
traditional regulatory means may find it difficult to handle group-data 
risks in the AI era. First, this is reflected in weak cross-regional data-
traceability capability: domestic clinical-trial data platforms have not 
yet achieved national networking, and the NMPA inspection system 
cannot compare patient-enrollment data across institutions in real 
time, making it hard to identify “the same patient enrolled in different 
cities.” Second, it is reflected in the absence of an algorithm-audit 
mechanism: when drug companies use AI models to analyze group 
genetic data, regulators lack technical means to verify whether 
algorithms are biased. In 2024, an innovative drug company’s 
AI-assisted diagnostic model was found to have a diagnostic accuracy 
for Tibetan people 35% lower than for Han people; the NMPA 
required supplementary ethnic-group data, but current regulations 
have no technical standards for algorithmic fairness.

The deep reason for this regulatory loophole is that China’s drug-
development regulation still follows an “individual-safety-oriented” 
institutional logic, while the application of AI and big-data technology 
has expanded the risk dimension to group genetic safety and bioethics. 
As the NMPA’s 2024 “White Paper on AI Drug-Development 
Supervision” points out: “It is necessary to build a new three-in-one 
regulatory framework of ‘data-algorithm-ethics,’ include group-
genetic-data protection in the key points for revising the ‘Regulations 
on Administration of Human Genetic Resources,’ and establish a 
blockchain certificate-deposit system for cross-regional clinical-trial 
data, tackling regulatory difficulties through both technical traceability 
and institutional improvement.”

3.2.4 Cross-national implementation dilemmas 
under the three-dimensional ethical-evaluation 
principle

In the context of global cooperation in drug development, when 
AI technology accelerates cross-border drug R&D, the biological 
differences of animal-model extrapolation and the institutional 

vacuum in international responsibility allocation are forming a 
superimposed double risk.

Biological uncertainty exists in extrapolating animal models: for 
example, anti-fibrotic drugs targeting TGF-β can reverse liver fibrosis 
in rat models, but clinical Phase III had to be terminated for inducing 
human cholangiocarcinoma, because the TGF-β-signal threshold of 
rat hepatic-stellate cells is three times that of humans. When AI 
accelerates R&D by simulating animal physiology, such risks may 
be amplified: a multinational pharmaceutical company advanced an 
international multi-center trial of a lung-cancer drug based on 
AI-predicted mouse-toxicity data, but the model did not include the 
human-specific CYP2F1 enzyme metabolic pathway in lung epithelial 
cells, resulting in interstitial pneumonia in American subjects.

International cooperation currently still has a responsibility gap, 
especially manifested in regulatory arbitrage and fragmented 
standards. When drug development crosses national borders, cross-
national use of animal-experiment data is often accompanied by vague 
responsibility. For example, in a Sino-U. S. collaborative gene-therapy 
drug project, safety evaluation in primate experiments was completed 
by the U. S. team; the Chinese team advanced Phase I trials based on 
AI-simulation data. However, because the two sides had different 
standards for monkey-kidney toxicity thresholds, when irreversible 
kidney damage occurred in Chinese subjects, Chinese and American 
regulators delayed handling due to disputes over 
responsibility allocation.

This institutional gap may stem from international differences in 
animal-experiment standards and liability exemptions for AI-model 
intellectual property. The FDA requires non-rodent animal 
experiments to last at least 6 months, while the NMPA may accept 
three-month data for certain orphan drugs. A Sino-European orphan-
drug collaboration used this difference, obtaining EU approval with 
six-month canine data while submitting only three-month monkey 
data in China; it was eventually recalled because Chinese patients 
experienced cardiotoxicity already observed in dog models. Moreover, 
a Korean pharmaceutical company exported an AI-assisted diagnostic 
system to an African nation; its animal-experiment data were based 
on Korean macaques, but the model was not adjusted for genetic 
polymorphisms of African green monkeys, increasing the 
misdiagnosis rate and exposing a responsibility vacuum in cross-
border technology export.

The essence of this responsibility ambiguity is the institutional 
imbalance of “localizing risks while internationalizing profits” in the 
global R&D system. As the 2023 CIOMS “Guidelines on Ethical AI 
Drug Development” state: when animal-experiment data are 
transmitted cross-border by AI and used for human decisions, a full-
chain responsibility-traceability mechanism of “data source—
algorithm logic—clinical application” must be established to avoid 
shifting biological-difference risks to regions with weak regulation. 
Solving this problem requires not only unifying cross-species 
extrapolation standards for animal models but also constructing an 
international shared-responsibility mechanism for AI R&D under the 
WHO framework.

4 Countermeasure suggestions

Responsible innovation is an innovation strategy that takes ethics, 
social responsibility, and sustainability as its core, aiming to ensure 
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that technological progress enhances human well-being while 
minimizing negative impacts on the environment and society. 
Applying the principles of responsible innovation can promote the 
development of more transparent and fair AI systems (32), strengthen 
ethical standards of data management, and drive the establishment of 
more comprehensive ethical-review mechanisms. In addition, by 
promoting interdisciplinary cooperation, bringing together ethicists, 
legal experts, and technologists to study and solve complex problems 
brought by new technology, this approach not only enhances public 
trust in AI-assisted drug development and treatment plans but also 
helps ensure that technological innovation proceeds within moral and 
legal frameworks, enabling its achievements to bring maximum 
benefit to society.

4.1 Strengthening ethical-review and 
supervision frameworks

4.1.1 Implementation of informed consent in the 
data-mining stage

In the data-mining dimension, it is necessary to examine whether 
group-genetic-data collection meets the standards of “explicit consent 
and third-party data trust,” while simultaneously enhancing 
algorithmic transparency and explainability—this is a key link in 
strengthening ethical-review and supervision frameworks. The EU 
“Ethics Guidelines for Trustworthy AI” propose that AI systems 
should meet seven requirements, including “human agency and 
oversight” and “privacy and data governance,” providing a reference 
for improving algorithmic transparency in drug R&D (33). Decisions 
made by AI algorithms in drug design, screening, and clinical-drug 
selection can be extremely complex, but the bases for these decisions 
must be explicable and reviewable to avoid a “black box” (34). This 
requires researchers not only to disclose algorithm design and 
operation mechanisms but also to ensure that algorithm-decision 
logic is traceable, allowing third-party auditing of AI decision 
processes. Standardized algorithm-audit procedures can be developed 
to ensure that the algorithm’s application undergoes continuous 
effectiveness evaluation and risk monitoring. In addition, an 
internationally accepted ethical-review mechanism for sharing group 
genetic data should be  established, requiring multinational drug 
companies to obtain approval from multi-party ethics committees 
when collecting, transferring, and using human genetic data, and 
clarifying data sovereignty and cross-border flow rules; at the same 
time, drawing on GDPR experience, the informed-consent standards 
for group genetic data should be  refined to eliminate “genetic 
colonialism” risks.

4.1.2 Strengthening dual-track verification in 
pre-clinical research

The AI technology compresses the drug-development cycle 
from the traditional 10 years to 2 years. While simulating animal 
physiology and accelerating intergenerational experiments to 
achieve efficiency improvement, it exposes core contradictions of 
insufficient long-term toxicity observation and reduced accuracy 
in extrapolating animal models to humans, such as the tragedy in 
which animal experiments failed to predict human teratogenicity 
in the thalidomide incident—risks that may be  amplified by 
AI acceleration.

Therefore, a mandatory dual-track verification mechanism and 
long-cycle observation system must be implemented: on one hand, 
AI-designed compounds must undergo “virtual-model prediction + 
actual animal experiments”—the virtual model uses AI algorithms to 
simulate drug mechanisms and metabolism, providing preliminary 
risk assessment, while actual animal experiments verify predictions in 
real organisms, compensating for the virtual model’s limitation in 
simulating biological complexity; on the other hand, in high-risk key 
areas such as cardiovascular and neuropsychiatric drugs, clinical 
studies must set at least a one-year human follow-up and establish 
dynamic monitoring databases, tracking the safety and effectiveness 
of drugs post-marketing to avoid missing chronic toxicity due to short 
observation periods. Furthermore, a rigorous review process must 
be established, requiring developers to submit detailed dual-track 
verification reports, with regulators conducting regular spot checks to 
ensure the authenticity and reliability of pre-clinical data, thereby 
safeguarding safety before drugs enter clinical trials.

4.1.3 Improving transparency in the 
patient-recruitment stage

To improve ethical compliance in patient recruitment, double 
auditing of AI enrollment algorithms can be  implemented. First, 
sample proportions of each major ethnic group in the algorithm must 
be  ≥ the demographic proportion of the target population; IBM 
AIF360 and other professional tools can be used to detect algorithmic 
bias, ensuring risk-prediction deviation among ethnic groups < 5%, 
and regular public audit reports plus detailed algorithm-process 
descriptions guarantee patients’ right to know. Second, a “biological-
difference compensation factor” can be  introduced into AI drug-
development models: by integrating multi-species physiological 
parameters and metabolizing-enzyme activity data, and constructing 
a biomimetic virtual experimental environment with organ-on-a-chip 
and organoid technology, after calibration, predictive deviation 
between animal-experiment results and human response can be <5%, 
thereby improving AI-prediction reliability at the data source and 
promoting fairness and scientificity in clinical-trial enrollment.

4.2 Protecting patients’ data privacy

The involvement of AI and big data in healthcare covers large 
amounts of sensitive patient data; protecting data privacy thus 
becomes an urgent issue. Within a responsible-innovation framework, 
ensuring patient data privacy is not only a legal and ethical 
requirement but also embodies technological progress and social 
responsibility. Privacy protection of medical AI must adopt a 
“technology + system” dual path: for example, differential-privacy 
technology can retain statistical value while hiding individual 
information in data sharing, and blockchain technology can realize 
data traceability and access control (35).

Protecting patient data privacy must start from the data-collection 
source. At every stage of data collection, storage, and processing, 
relevant legal norms must be strictly observed, such as the EU GDPR 
and the U. S. HIPAA. These laws provide a strong protection 
framework for personal data, ensuring the reflection of personal 
privacy rights during data processing. For example, researchers must 
ensure that patients fully understand that their data will be used for 
research purposes and give explicit consent.
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To further strengthen privacy protection, high-standard technical 
means are needed: encryption during transmission to prevent 
unauthorized access and strict access control to ensure only relevant 
personnel can access sensitive data. In addition, anonymization can 
allow data use in research without revealing personal identity, 
reducing the risk of information leakage (36). Beyond technical and 
legal support, a culture valuing data-privacy rights must be cultivated 
across the drug-development field; every participant, from researchers 
to management, must receive data-protection training, understand its 
importance (37), and implement this principle in daily work.

4.3 Improving algorithmic fairness and 
reliability

Improving algorithmic fairness and reliability is not only ethically 
justified but also an important guarantee for enhancing research accuracy 
and efficiency. Building multi-source heterogeneous datasets and 
establishing long-term audit mechanisms are core paths for improving 
algorithmic fairness. On one hand, balanced data covering different 
regions, races, ages, and disease types must be  collected, especially 
increasing the proportion of rare-disease and special-group data to avoid 
algorithmic bias at the source. On the other hand, independent third-
party institutions should establish a normalized fairness-evaluation 
mechanism; audit content includes data bias, decision logic, and group-
impact differences, linking audit results to R&D qualification 
dynamically—enterprises failing audits would face rectification deadlines 
or project-qualification suspension. This also requires a cross-disciplinary 
collaborative mechanism involving statisticians, clinicians, drug R&D 
personnel, and ethicists (38) to identify algorithm-bias risks from multiple 
perspectives. Problems found must be promptly adjusted and optimized 
to avoid long-term accumulated bias affecting fairness and scientific 
validity of R&D results.

5 Conclusion

The development and application of large AI and big-data models 
bring more innovative possibilities and opportunities to drug R&D 
but also trigger many ethical challenges. As large AI and big-data 
models become increasingly integrated into the performance and 
development of new drugs, management of pharmaceutical ethics 
becomes ever more important, and research on responsible innovation 
in drug R&D will become ever stricter. At present, China’s legal and 
regulatory system for protecting data-privacy rights, safeguarding 
subjects’ rights, and realizing ethical values in drug R&D is still 
imperfect; government, society, and individuals all need to strengthen 
ethical-protection awareness and improve moral cultivation. By 
embedding the three-dimensional ethical-evaluation framework of 
“data mining — pre-clinical — patient recruitment,” this paper 
constructs a comprehensive system of pharmaceutical-ethics 
governance. The application of large AI and big-data models to 

responsible innovation in drug R&D should always take the protection 
of human life and health as its purpose, pursuing the coordinated 
development of technological progress and ethical cultivation.
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