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The rapid development and wide application of Artificial Intelligence (Al) and
Big Data technologies have profoundly changed the way industries around the
world operate, from finance, transportation, education to media, the integration
of the two not only improves the efficiency of the industry, but also optimizes the
quality of service and decision-making process to a large extent. In the era of deep
integration of Biomedicine and Al, Al and Big Data technology are reconstructing
the paradigm of drug development with unprecedented intensity. The long cycle
of traditional drug development, which takes a decade and billions of dollars in
investment, is being compressed to 2 years or even less under the drive of Al.
Through big data analytics and deep learning techniques, Al can greatly improve
R&D efficiency and accuracy in a variety of aspects such as compound screening,
efficacy prediction, and clinical (pre) experiment design. However, the use of Al
and big data in drug discovery and development also raises corresponding ethical
issues, such as data privacy protection and algorithmic transparency. This article
will systematically analyze the technological breakthroughs, potential risks, and
governance paths of Al and big data in drug development. It will explore how to
strengthen the bottom-line of safety and ethics in the Efficiency Revolution and
build a responsible innovation ecosystem.
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1 Introduction

As a core field for improving human health, drug research and development is undergoing
an efficiency revolution driven by Al technology, but the current data controversies reveal the
contradiction between technological acceleration and ethics. Based on an in-depth analysis of
the ethical challenges in drug R&D, this paper constructs an ethical evaluation framework
centered on autonomy, justice, non-maleficence, and beneficence, and, through the three
evaluation dimensions of data-mining informed consent, pre-clinical dual-track verification,
and transparency in patient recruitment, systematically dissects the ethical risks across the
entire Al R&D cycle. Finally, it puts forward referential strategies, including strengthening
ethical supervision and regulation of AI algorithms, improving data-privacy protection,
enhancing algorithmic openness and transparency, building accountability mechanisms,
reinforcing long-cycle monitoring of AI technology in drug R&D (1), and encouraging multi-
party participation and informed consent from patients and the public (2). By implementing
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these responsible-innovation strategies, the rights and interests of
subjects can be more effectively protected, the safety and effectiveness
of drugs ensured, and fair drug distribution and accessibility
promoted. The integrated application of these ethical principles and
innovation strategies is expected to push drug R&D toward a more
responsible future.

2 Application of Al and big-data
technology in the entire cycle of drug
research and development

2.1 Overview of the ethical-evaluation
theoretical framework for Al application
throughout the drug-development cycle

Based on ethical-evaluation principles, from the initiation of AI
technology in drug R&D to post-marketing surveillance, this paper
realizes ethical-compliance control of Al applications through phased
risk mapping, comprehensively evaluating the benefits and risks of
this technology across the whole drug-development process. The
current Al ethical framework is founded on universal ethical
principles, with four core principles: autonomy (respect for individual
autonomy, e.g., informed consent), justice (avoiding bias and
discrimination, ensuring fairness in resources and opportunities),
non-maleficence (avoiding potential risks and harms), and beneficence
(promoting social well-being). Three evaluation dimensions
corresponding to the three research stages are constructed—
requirements for informed consent in the data-mining stage, a dual-
track verification mechanism in pre-clinical research, and
transparency requirements in the patient-recruitment stage. The paper
systematically analyzes the technological breakthroughs of Al and big
data in drug R&D and deeply examines typical risk points such as
privacy leakage of group genetic data, undetected intergenerational
toxicity, and algorithmic bias leading to unfair enrollment, aiming to
regulate the ethical boundaries of Al technology in application and
balance technological innovation with risk prevention and control.

The ethical-evaluation framework constructed herein is highly
aligned with the current core principles of Al ethics: it emphasizes
“informed consent in the data-mining stage,” requiring that the
purpose of genetic-data collection be explicitly stated, directly echoing
the core requirement of “respect for individual autonomy”; it focuses
on “transparency in patient recruitment,” implementing the justice
principle of “avoiding discrimination and ensuring fairness” by
detecting algorithmic bias and opposing geographical bias in clinical
trials; it proposes a “pre-clinical dual-track verification mechanism,”
requiring that AI virtual-model predictions be synchronously
combined with actual animal experiments to avoid the omission of
long-term toxicity due to shortened R&D cycles, directly
corresponding to the core of “avoiding harm”; the overall goal is to
ensure, through ethical norms, that Al technology improves drug-
development efficiency while ultimately serving human health, in line
with the beneficence requirement of “promoting well-being”

However, the current Al ethical framework mostly consists of
abstract principles; this paper expands it into a concrete operational
system for the entire cycle of drug R&D: the general principles are
disassembled into the three-dimensional evaluation of “data mining
— pre-clinical — patient recruitment,” each dimension corresponding
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to quantifiable operational standards, turning abstract principles into
executable processes; in light of the particularities of drug development,
it supplements areas not covered by the general framework.

By analyzing real problems, this paper also indirectly criticizes the
deficiencies of the current AI ethical framework in practice.
Domestically, institutional gaps exist in cross-border transmission of
group genetic data and cross-regional verification of clinical-trial data;
the current framework lacks supporting regulatory rules for
addressing specific risks of Al technology in drug R&D. International
cooperation faces fragmented ethical standards and ambiguous
divisions of responsibility, exposing the framework’s inadequacies in
a global context; the chain of “historical data bias — algorithm
amplification — clinical injustice” in drug R&D is insufficiently
considered, and algorithm-audit mechanisms need to be strengthened.

2.2 Application of Al technology in drug
research and development

In the field of drug development, Al technology is bringing
disruptive changes. Demis Hassabis, CEO of Google DeepMind and
winner of the 2024 Nobel Prize in Chemistry, once pointed out that
traditional drug development takes an average of 10 years and costs
billions of dollars, whereas AI technology is expected to greatly
shorten this process. This view vividly demonstrates the tremendous
potential of AT to accelerate drug-development progress.

Artificial intelligence has significantly improved R&D efficiency
and precision by optimizing drug-discovery processes and clinical-
trial design, and this breakthrough stems from two core advantages of
AL Al technology replaces laboratory operations with virtual
screening, transferring traditional bottle-and-flask compound
screening into computer simulations, optimizing trial design and
improving the scientificity of decision-making. For example, the
cooperation between Iktos and Pfizer accelerated the discovery of
small-molecule drugs through AI, enriching the drug-candidate
library with AI-designed compounds. It is worth noting that, in the
Al-accelerated drug-discovery process, the evaluation dimension of
informed consent in the data-mining stage can be incorporated. For
instance, the cooperation between Insitro and Gilead, which
developed predictive models with AI technology to identify new drug
targets (3), not only improves the speed of target discovery but may
also reduce R&D costs. Insitro explicitly informed subjects of the
purpose of data collection involving group genetic data in accordance
with the framework—contrasting with the ethical controversy caused
by ambiguous consent forms in DeepMind’s NHS data sharing.

Animal experiments are a key link in verifying the safety and
effectiveness of drugs, but traditional methods are characterized by
low efficiency and long cycles. The application of Al technology in
simulating animal physiological responses provides a new solution to
this dilemma. In traditional mouse experiments, second- and third-
generation studies often require a great deal of time to collect data.
With AT technology, researchers can use existing genetic data and
biological knowledge to build virtual mouse intergenerational models
that simulate the physiological characteristics and drug responses of
offspring mice under different genetic combinations, greatly
shortening research intervals and accelerating drug-development
progress. In this process, however, the “pre-clinical dual-track
verification mechanism” requires that traditional animal experiments
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be retained as controls to avoid the limitations of extrapolating from
animal models, as in the thalidomide incident.

2.3 Retrospective value of big-data
technology

Big-data technology plays a key role in modern drug R&D; it not
only accelerates the speed of drug discovery and testing but also
improves research quality and accuracy (4). By analyzing massive
genetic datasets, researchers can identify gene variants related to
specific diseases, providing clues for the development of targeted
therapies. For example, Gaussian Process Regression (GPR) models
are used to predict the bioactivity of molecules (5), helping decision-
making in drug design. In the clinical-trial stage, big data optimizes
trial design by analyzing historical trial data, improving the efficiency
and adaptability of clinical trials (6). In personalized medicine, by
analyzing patients genetic data and lifestyle information,
individualized treatment plans can be tailored for each patient. Tools
such as DeepChem (7) and the BRENDA database (8) support
compound-toxicity prediction and enzyme-activity research, while
Recursion Pharmaceuticals promotes new-drug discovery by using
machine learning to analyze cellular phenotypic changes (9). These
applications show how big-data technology promotes every stage from
drug discovery to market, making disease treatment more precise
and efficient.

Looking back at drug-development history, the “thalidomide
incident” is a typical example of the shortcomings of traditional drug-
safety evaluation. The use of thalidomide caused more than 12,000
babies worldwide to suffer severe outcomes such as limb deformities.
If modern big-data analytical capabilities had been available at that
time, risk-prediction models built by combining natural-language
processing of medical-record texts with machine-learning algorithms
could have quickly locked onto the association between thalidomide
and infant deformities, greatly increasing drug-harm traceability
efficiency and avoiding more tragedies. This retrospective big-data
analysis provides a new path for mining potential associations in
drug-harm events and improving drug-safety research.

Although big data shows strong power in retrospective research,
prospective drug development still relies on a strict clinical-trial
system. The correlations revealed by big-data analysis cannot directly
establish causality; for example, data show a correlation between
caffeine intake during pregnancy and infant health problems, but
other confounding factors may interfere. Clinical trials, through
randomized-controlled designs and double-blind experiments, verify
causal mechanisms of drug efficacy and safety in controlled
environments, providing decisive evidence for drug approval. Thus,
big-data analysis can serve as an important auxiliary tool,
complementing clinical trials and jointly consolidating the scientificity
and reliability of drug R&D.

2.4 Drug-development model combining
Al and big data

In modern drug R&D, the combination of AI and big data has
significantly improved drug-development efficiency and accuracy
(10). Specifically, the cooperation between GSK and Exscientia (11)
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optimizes drug-molecule design with AI technology, predicting
molecular-structural activity for specific biological targets and
iteratively optimizing with big data, greatly shortening the discovery
cycle of drug-candidate molecules (12). For example, Exscientia
reported that its AI system successfully designed a new obsessive-
compulsive disorder drug candidate in less than a year, whereas
traditional methods usually need many years (13). In addition,
cooperation between Pfizer and IBM Watson Health also shows how
Al and big data accelerate biomarker discovery through the Watson
for Drug Discovery platform (14), which is important for new-target
discovery, new-drug development, and personalized medicine. These
cases not only prove that Al and big data can increase R&D speed but,
through precise analysis, can optimize the entire R&D process,
improving the success rate and economic efficiency of drug
development. This technical integration represents a main
developmental trend in current drug R&D, and its application
potential will continue to expand.

3 Ethical risks of Al technology in
accelerated drug R&D

3.1 Ethical risks inherent in algorithms

3.1.1 Ethical breach of the pre-clinical dual-track
verification mechanism

Within the safety-evaluation system of drug R&D, inherent
differences between animal models and human physiology constitute
a biological barrier that Al-simulation technology cannot surmount;
this belongs to the technical maladaptation of algorithms to biological
complexity. Taking thermoregulation as an example, the core body
temperature of chickens is maintained at 29-30 °C, fundamentally
different from the human metabolic environment at 37 °C; this
temperature gap markedly affects the activity expression of drug-
metabolizing enzymes, causing divergence between metabolic rates
and toxicological characteristics of drugs in low-temperature animals
and the actual human response. Similarly, the hepatic UGT1Al
enzyme activity of rodents is only one-tenth that of humans, so drugs
such as irinotecan show far lower toxicity in animal experiments than
in clinical observation, exposing significant interspecies differences in
metabolic pathways.

The limitations of in-vitro experimental systems are even more
prominent: the cell-culture environment lacks the complex in-vivo
tissue microenvironment, so doxorubicin shows cardiac toxicity
in vitro 30-50% lower than in animal experiments. Although Al
technology can integrate multi-species data by constructing
physiologically based pharmacokinetic (PBPK) models, its predictive
accuracy is still limited by the completeness of underlying biological
data—for example, differences between rhesus monkeys and humans
in the IL-6 cytokine-signaling pathway cause antibody drugs targeting
this pathway to show remarkable efficacy in animal experiments but
to be forced to terminate in Phase I due to cytokine storm.

This biological-difference simulation dilemma essentially reflects
the “data-dependence” of AI models. When training data lack deep
annotation of cross-species physiological characteristics, even
algorithms optimized through transfer learning cannot accurately
predict the dynamic response of drugs in the complex human
environment. Al-simulated  rat

physiological Therefore,
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intergenerational experiments must synchronously retain chronic-
toxicity tests in non-rodent animals—this is the concrete
implementation of the principle of “non-maleficence”

3.1.2 Ethical absence of the transparency
requirement in patient recruitment

When using Al and big-data technology in drug R&D, one must
be alert to data and algorithm bias. Such bias often exists in multiple
links—data collection, processing, and algorithm design—and, in
severe cases, may threaten the clinical safety and effectiveness of
drugs. Data on which drug R&D relies must cover a broad population
to ensure that the developed drug can benefit all patients. However,
historically, participants in clinical trials have often lacked diversity;
e.g., certain races or specific groups are under-represented, which may
cause Al algorithms to predict effects inaccurately for these groups. In
such cases, Al trained on imperfect data may show bias in race,
gender, age, etc., thus affecting the fairness and effectiveness of drug
R&D (15). A study evaluating sex, racial, and ethnic differences in
U. S. cardiovascular trials found that African-American and Hispanic
participants were significantly under-represented in key clinical trials,
especially coronary-artery bypass graft (CABG) trials, where their
participation rates were far lower than those of whites (16). Such
imbalance may bias predictive models because models are usually
trained on the population of clinical trials.

Besides the lack of diversity among participants, algorithm design
itself may harbor bias (17). AI systems generally learn historical data
to predict future outcomes; if historical data contain bias, the
algorithms will amplify it. Moreover, developers’ subjectivity may
inadvertently affect fairness (18). A 2019 study found that an
algorithm used to predict patients’ future health risk showed
significant predictive bias among different races. The algorithm took
medical cost as a proxy for health need, but because Black patients
incurred lower costs, it incorrectly assessed them as healthier than
white patients with the same condition. Correcting this bias could
raise the proportion of Black patients receiving additional care from
17.7 to 46.5% (19).

3.1.3 Safety and credibility issues

With the widespread use of Al and big-data technology, challenges
in safety and credibility are increasingly prominent. The credibility
problem of Al and big data in drug R&D must also consider data
timeliness and relevance (20). Over time, population health status and
disease spectra may change; if the data used in Al training do not
reflect these changes, the developed drugs may not effectively address
current health challenges. Furthermore, different regions and
environments may differently influence diseases, requiring AI models
to recognize and adapt to such diversity to avoid “one-size-fits-all”
solutions. A study showed that, in HIV/AIDS drug R&D, a major issue
is the geographic and genetic diversity among viral strains: different
HIV subtypes may tend to develop higher resistance to certain drugs
(21), posing new challenges to drug development.

Moreover, safety is one of the most critical considerations in drug
R&D. AI models rely on large data inputs and complex algorithms
when designing drugs and predicting drug interactions. If input data
are of poor quality or incomplete, Al-recommended drugs or
treatment plans may carry potential safety risks. IBM’s Watson,
initially highly anticipated for providing innovative cancer-treatment
sometimes

plans via its powerful data-processing ability,
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recommended inappropriate treatments; reports attribute this to
limitations of training data and input-data quality (22).

The decision process of AI models is often opaque, making it
complex to verify the reliability of Al-proposed drug designs or
research results. This “black-box” characteristic may cause researchers
difficulty in understanding the R&D logic and make regulators
struggle to assess compliance and scientific validity (23). When AI
models are used to predict the probability of genetic diseases, although
such predictions can theoretically aid early intervention, they also
raise ethical questions about whether patients should be told these
future health risks (24). If predictions are inaccurate, unnecessary
anxiety or wrong medical decisions may result. One study indicated
that knowing one’s disease susceptibility may have psychological
impacts, and, when no practical intervention exists, such knowledge
may do more harm than good (25).

3.2 Ethical misconduct in human behavior

3.2.1 Ethical breach of the pre-clinical dual-track
verification mechanism

As Al technology compresses the drug-development cycle from
the traditional 10 years to a few years or even months, the systemic
absence of long-term toxicity observation is becoming a core hidden
danger threatening drug safety. In traditional R&D systems, toxicity
monitoring lasting several years is key to capturing delayed adverse
reactions, genetic toxicity, and cumulative metabolic risks. The
Al-driven R&D model, pursuing efficiency, often replaces part of
long-term experiments with virtual models or shortens observation
periods in pre-clinical trials, which may obscure adverse effects in
long-term metabolism or intergenerational transmission.

Just as the thalidomide tragedy revealed the limitations of
extrapolating animal experiments to humans, it also sounds a warning
for Al-accelerated R&D—although AI improves efficiency by
simulating animal physiology and compressing intergenerational
experiments, advancing subsequent stages merely because no short-
term abnormalities appear in first-generation trials may neglect
genetic toxicity and delayed risks. One difficulty in governing medical
Al ethically is that the speed of technological iteration far outpaces
updates to ethical norms, causing long-term risk assessment to lag;
this, together with the “black-box” nature of AI models, intensifies
uncertainty in toxicity prediction (26). In addition, companies such as
Google claim to compress the R&D cycle to 2 years or even 6 months;
their models rely on historical data and cannot predict unknown
reactions of biological systems. The value of the traditional “ten-year
cycle” lies in verifying risks through long-term monitoring and
intergenerational observation; shortening the cycle with AI may
sacrifice key observation windows, laying a hidden danger of chronic
toxicity and potentially missing delayed teratogenic risks like the
thalidomide incident, violating the “dual-track verification” principle
in the pre-clinical evaluation dimension.

3.2.2 Ethical breach of the informed-consent
principle in data mining

In recent years, some cases have reflected potential privacy risks
of Al and big-data technology, deserving in-depth analysis and
discussion. In healthcare, the data-sharing controversy between
DeepMind and the United Kingdom’s National Health Service (NHS)
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is typical (27); ostensibly aimed at predicting acute kidney injury with
AL it actually manifested three ethical defects in data sharing:

During the development of the “Streams” app by DeepMind and
NHS, three major ethical irregularities in processing 1.6 million
patients’ medical data directly violated the principle of “substantial
informed consent in the data-mining stage”:

First, the NHS data-use consent form did not explicitly state that
data would be used to train Al algorithms for a commercial entity,
using the vague wording “may be used for research” to evade the duty
of explanation, essentially violating Article 22 of the Declaration of
Helsinki, which requires that research purposes be clearly explained.

Second, de-identification retained correlated fields such as
timestamps of clinical events and disease codes; empirical research at
the University of Cambridge showed that combining the temporal
features of medical records with public data could re-identify 15% of
patients, clearly violating Article 4 of the 1998 Data Protection Act
(UK), which
non-identifiability.

legally requires anonymization to achieve

Third, the project deliberately bypassed review by an independent
Research Ethics Committee (REC) and did not follow the NHS
Research Ethics FrameworK’s requirement for a full ethical review of
commercial data research, rendering the review process void.

After exposure, the incident aroused systemic public concern: an
investigation by The Guardian confirmed that NHS’s legal team was
informed unilaterally only 3 months before data transfer and that
patients were never notified; scholars at University College London
wrote in Nature that the case sets a dangerous precedent for the
commercial misuse of public medical data, etc. In 2018, the
Information Commissioner’s Office (ICO) ruled that the case violated
the Data Protection Act and forced the establishment of a transparent
data-sharing platform. NHS’s 2019 “Guidelines on Commercial Use
of Health Data” established a regulatory mechanism of “explicit
consent + third-party data trust” As the first typical medical-data
violation case after GDPR implementation, it has been officially
included in the annotation database for Article 9 (processing of
sensitive data) of the GDPR, becoming a landmark precedent in global
medical-Al data governance.

In drug research and development, researchers likewise need to
handle large amounts of patient data—including genetic information,
personal and family medical histories, and lifestyle habits. Such data
help researchers better understand disease mechanisms and patient
response differences to design more targeted drugs. However, they
also raise significant ethical issues: how to tap the data’s potential while
protecting patient privacy from infringement. Similarly, 23andMe’s
cooperation with pharmaceutical companies raised privacy concerns
(28); accumulating massive genetic data via consumer genome
services, it signed a 2018 agreement with GlaxoSmithKline to share its
genetic database for new drug development. Although the statement
included privacy protection, the public worried that personal genetic
information might be used for commercial profit. 23andMe did not
obtain separate ethical consent for “population-gene frequency
analysis,” thus violating the informed-consent standard in the data-
mining dimension. This risk is more pronounced in cross-border data
transfer: for instance, a multinational drug company’s Hong Kong
subsidiary circumvented approval procedures, exposing the gap
between group genetic-data regulation and framework requirements.

Human actors also exploit regulatory loopholes: in low-cost trial
regions such as Cambodia and South Africa, pharmaceutical
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companies often make use of weak local ethical-review capacity and
scarce medical resources to conduct clinical trials that could not pass
ethical review in developed countries, essentially shifting R&D risk
artificially. A typical case showed that, in a Phase III trial of an
anti-HIV drug in African children, the control group still used
outdated AZT monotherapy, artificially enlarging the mortality
difference between the test and control groups; this geographical bias
essentially shifts R&D risk to developing countries. An even more
concealed double standard exists in pediatric drug use: parents in
Europe and the U. S. generally oppose including their own children in
new-drug trials but tacitly permit pharmaceutical companies to
recruit poor-family children in India or Brazil as subjects, forming an
“ethical exemption” mind-set of “testing drugs on other people’s
children,” which clearly violates the Declaration of Helsinki’s principle
of “risk-benefit balance”

3.2.3 Delay in domestic regulation and systems

The application of artificial intelligence (AI) and big-data
technology in drug R&D is a double-edged sword: while increasing
efficiency and bringing unprecedented opportunities, it also brings
complex ethical responsibilities and regulatory demands. In traditional
drug-development processes, every step of decision-making can
be traced back to specific researchers or teams. However, when Al is
involved in decision-making—especially when AI automatically
performs data analysis and pattern recognition—determining the
attribution of responsibility becomes particularly difficult (29). For
example, in the aforementioned case of IBM Watson: when it
recommended inappropriate treatment methods, if adverse events
occurred, should responsibility lie with the AI developers, users, or
the AT itself? This not only highlights the challenge of responsibility
attribution in Al-assisted medical decisions and drug design but also
reflects the complexity of regulating such technological applications.

The use of AI and big data must conform to existing
pharmaceutical regulations and ethical norms. However, many
existing regulations are not fully adapted to the characteristics of Al
technology (30). For example: when AI models process patients’
privacy data, a new problem arises as to how to ensure data
confidentiality or patients’ privacy rights. In addition, the application
of Al in drug R&D may involve new risks, such as the algorithmic bias
mentioned earlier, which may lead to unequal distribution of drug
efficacy (1). How to make it fairer and better serve all patients is also
a current regulatory challenge.

In the data-mining dimension, regarding the regulatory gap in
group genetic data, Article 36 of GCP clearly requires that “clinical-
trial data shall be authentic, complete, and traceable,” yet regulatory
arbitrage in cross-regional trials is common. A typical case showed
that an anticancer drug completed Phase I clinical trials at a tertiary
hospital in Shanghai but, without completing the required three-
month safety follow-up, transferred the remaining cases to a hospital
in Xian to continue Phase IT trials via “data slicing,” using geographical
dispersion to obscure signals of hepatotoxicity. Although China has
issued the “New-Generation Artificial-Intelligence Development
Plan,” proposing a three-step strategy to establish an Al-ethics legal
system, specific standards are still lacking for cross-border
transmission of group genetic data, algorithmic bias, and other issues
in drug R&D (31). This operation exploits the decentralization of
ethical reviews in domestic multi-center trials—each hospital’s ethics
committee only reviews local data and lacks a cross-regional
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data-linkage verification mechanism, resulting in “patching data from
different locations” as a gray method for evading long-term toxicity
monitoring. According to the National Medical Products
Administration’s 2023 spot-inspection report, 28% of clinical-trial
institutions had such problems, and the violation rate in cross-regional
trials was 3.2 x that of single-center trials.

Compared with Article 9 of the EU GDPR, which strictly regulates
the handling of genetic data, China’s current regulations have obvious
institutional gaps. The “Regulations on Administration of Human
Genetic Resources” cover only “human genetic-resource materials”
and lack regulation of anonymized genetic-sequencing data in cross-
border transmission; a multinational pharmaceutical company once
bypassed approval through a Hong-Kong subsidiary and was publicly
reported by the Ministry of Science and Technology. The “Personal
Information Protection Law” classifies “biometric data” as sensitive
information but does not explicitly define the legal status of “group
genetic data”; a bioinformatics company was interviewed by the
Cyberspace Administration for using genetic data of Northwestern
populations to train models without group-level ethical consent. The
“Data Security Law” does not specify whether “group genetic data”
constitute critical data; in practice, drug companies often transmit
data abroad in the name of “research data,” such as a Chinese-
American joint-venture drug company submitting unapproved
Han-Chinese gene-frequency data to the U. S. FDA.

In the pre-clinical and patient-recruitment dimensions, current
traditional regulatory means may find it difficult to handle group-data
risks in the Al era. First, this is reflected in weak cross-regional data-
traceability capability: domestic clinical-trial data platforms have not
yet achieved national networking, and the NMPA inspection system
cannot compare patient-enrollment data across institutions in real
time, making it hard to identify “the same patient enrolled in different
cities” Second, it is reflected in the absence of an algorithm-audit
mechanism: when drug companies use AI models to analyze group
genetic data, regulators lack technical means to verify whether
algorithms are biased. In 2024, an innovative drug company’s
Al-assisted diagnostic model was found to have a diagnostic accuracy
for Tibetan people 35% lower than for Han people; the NMPA
required supplementary ethnic-group data, but current regulations
have no technical standards for algorithmic fairness.

The deep reason for this regulatory loophole is that China’s drug-
development regulation still follows an “individual-safety-oriented”
institutional logic, while the application of Al and big-data technology
has expanded the risk dimension to group genetic safety and bioethics.
As the NMPAs 2024 “White Paper on Al Drug-Development
Supervision” points out: “It is necessary to build a new three-in-one
regulatory framework of ‘data-algorithm-ethics, include group-
genetic-data protection in the key points for revising the ‘Regulations
on Administration of Human Genetic Resources, and establish a
blockchain certificate-deposit system for cross-regional clinical-trial
data, tackling regulatory difficulties through both technical traceability
and institutional improvement.”

3.2.4 Cross-national implementation dilemmas
under the three-dimensional ethical-evaluation
principle

In the context of global cooperation in drug development, when
AT technology accelerates cross-border drug R&D, the biological
differences of animal-model extrapolation and the institutional
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vacuum in international responsibility allocation are forming a
superimposed double risk.

Biological uncertainty exists in extrapolating animal models: for
example, anti-fibrotic drugs targeting TGF-f can reverse liver fibrosis
in rat models, but clinical Phase III had to be terminated for inducing
human cholangiocarcinoma, because the TGF-f-signal threshold of
rat hepatic-stellate cells is three times that of humans. When AI
accelerates R&D by simulating animal physiology, such risks may
be amplified: a multinational pharmaceutical company advanced an
international multi-center trial of a lung-cancer drug based on
Al-predicted mouse-toxicity data, but the model did not include the
human-specific CYP2F1 enzyme metabolic pathway in lung epithelial
cells, resulting in interstitial pneumonia in American subjects.

International cooperation currently still has a responsibility gap,
especially manifested in regulatory arbitrage and fragmented
standards. When drug development crosses national borders, cross-
national use of animal-experiment data is often accompanied by vague
responsibility. For example, in a Sino-U. S. collaborative gene-therapy
drug project, safety evaluation in primate experiments was completed
by the U. S. team; the Chinese team advanced Phase I trials based on
Al-simulation data. However, because the two sides had different
standards for monkey-kidney toxicity thresholds, when irreversible
kidney damage occurred in Chinese subjects, Chinese and American
delayed
responsibility allocation.

regulators handling due to disputes over

This institutional gap may stem from international differences in
animal-experiment standards and liability exemptions for AI-model
intellectual property. The FDA requires non-rodent animal
experiments to last at least 6 months, while the NMPA may accept
three-month data for certain orphan drugs. A Sino-European orphan-
drug collaboration used this difference, obtaining EU approval with
six-month canine data while submitting only three-month monkey
data in China; it was eventually recalled because Chinese patients
experienced cardiotoxicity already observed in dog models. Moreover,
a Korean pharmaceutical company exported an Al-assisted diagnostic
system to an African nation; its animal-experiment data were based
on Korean macaques, but the model was not adjusted for genetic
polymorphisms of African green monkeys, increasing the
misdiagnosis rate and exposing a responsibility vacuum in cross-
border technology export.

The essence of this responsibility ambiguity is the institutional
imbalance of “localizing risks while internationalizing profits” in the
global R&D system. As the 2023 CIOMS “Guidelines on Ethical AI
Drug Development” state: when animal-experiment data are
transmitted cross-border by Al and used for human decisions, a full-
chain responsibility-traceability mechanism of “data source—
algorithm logic—clinical application” must be established to avoid
shifting biological-difference risks to regions with weak regulation.
Solving this problem requires not only unifying cross-species
extrapolation standards for animal models but also constructing an
international shared-responsibility mechanism for Al R&D under the
WHO framework.

4 Countermeasure suggestions

Responsible innovation is an innovation strategy that takes ethics,
social responsibility, and sustainability as its core, aiming to ensure
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that technological progress enhances human well-being while
minimizing negative impacts on the environment and society.
Applying the principles of responsible innovation can promote the
development of more transparent and fair Al systems (32), strengthen
ethical standards of data management, and drive the establishment of
more comprehensive ethical-review mechanisms. In addition, by
promoting interdisciplinary cooperation, bringing together ethicists,
legal experts, and technologists to study and solve complex problems
brought by new technology, this approach not only enhances public
trust in Al-assisted drug development and treatment plans but also
helps ensure that technological innovation proceeds within moral and
legal frameworks, enabling its achievements to bring maximum
benefit to society.

4.1 Strengthening ethical-review and
supervision frameworks

4.1.1 Implementation of informed consent in the
data-mining stage

In the data-mining dimension, it is necessary to examine whether
group-genetic-data collection meets the standards of “explicit consent
and third-party data trust” while simultaneously enhancing
algorithmic transparency and explainability—this is a key link in
strengthening ethical-review and supervision frameworks. The EU
“Ethics Guidelines for Trustworthy AI” propose that Al systems
should meet seven requirements, including “human agency and
oversight” and “privacy and data governance,” providing a reference
for improving algorithmic transparency in drug R&D (33). Decisions
made by Al algorithms in drug design, screening, and clinical-drug
selection can be extremely complex, but the bases for these decisions
must be explicable and reviewable to avoid a “black box” (34). This
requires researchers not only to disclose algorithm design and
operation mechanisms but also to ensure that algorithm-decision
logic is traceable, allowing third-party auditing of AI decision
processes. Standardized algorithm-audit procedures can be developed
to ensure that the algorithm’s application undergoes continuous
effectiveness evaluation and risk monitoring. In addition, an
internationally accepted ethical-review mechanism for sharing group
genetic data should be established, requiring multinational drug
companies to obtain approval from multi-party ethics committees
when collecting, transferring, and using human genetic data, and
clarifying data sovereignty and cross-border flow rules; at the same
time, drawing on GDPR experience, the informed-consent standards
for group genetic data should be refined to eliminate “genetic
colonialism” risks.

4.1.2 Strengthening dual-track verification in
pre-clinical research

The AI technology compresses the drug-development cycle
from the traditional 10 years to 2 years. While simulating animal
physiology and accelerating intergenerational experiments to
achieve efficiency improvement, it exposes core contradictions of
insufficient long-term toxicity observation and reduced accuracy
in extrapolating animal models to humans, such as the tragedy in
which animal experiments failed to predict human teratogenicity
in the thalidomide incident—risks that may be amplified by
AT acceleration.
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Therefore, a mandatory dual-track verification mechanism and
long-cycle observation system must be implemented: on one hand,
Al-designed compounds must undergo “virtual-model prediction +
actual animal experiments”—the virtual model uses Al algorithms to
simulate drug mechanisms and metabolism, providing preliminary
risk assessment, while actual animal experiments verify predictions in
real organisms, compensating for the virtual model’s limitation in
simulating biological complexity; on the other hand, in high-risk key
areas such as cardiovascular and neuropsychiatric drugs, clinical
studies must set at least a one-year human follow-up and establish
dynamic monitoring databases, tracking the safety and effectiveness
of drugs post-marketing to avoid missing chronic toxicity due to short
observation periods. Furthermore, a rigorous review process must
be established, requiring developers to submit detailed dual-track
verification reports, with regulators conducting regular spot checks to
ensure the authenticity and reliability of pre-clinical data, thereby
safeguarding safety before drugs enter clinical trials.

4.1.3 Improving transparency in the
patient-recruitment stage

To improve ethical compliance in patient recruitment, double
auditing of AI enrollment algorithms can be implemented. First,
sample proportions of each major ethnic group in the algorithm must
be > the demographic proportion of the target population; IBM
AIF360 and other professional tools can be used to detect algorithmic
bias, ensuring risk-prediction deviation among ethnic groups < 5%,
and regular public audit reports plus detailed algorithm-process
descriptions guarantee patients’ right to know. Second, a “biological-
difference compensation factor” can be introduced into AI drug-
development models: by integrating multi-species physiological
parameters and metabolizing-enzyme activity data, and constructing
a biomimetic virtual experimental environment with organ-on-a-chip
and organoid technology, after calibration, predictive deviation
between animal-experiment results and human response can be <5%,
thereby improving Al-prediction reliability at the data source and
promoting fairness and scientificity in clinical-trial enrollment.

4.2 Protecting patients’ data privacy

The involvement of AI and big data in healthcare covers large
amounts of sensitive patient data; protecting data privacy thus
becomes an urgent issue. Within a responsible-innovation framework,
ensuring patient data privacy is not only a legal and ethical
requirement but also embodies technological progress and social
responsibility. Privacy protection of medical AI must adopt a
“technology + system” dual path: for example, differential-privacy
technology can retain statistical value while hiding individual
information in data sharing, and blockchain technology can realize
data traceability and access control (35).

Protecting patient data privacy must start from the data-collection
source. At every stage of data collection, storage, and processing,
relevant legal norms must be strictly observed, such as the EU GDPR
and the U. S. HIPAA. These laws provide a strong protection
framework for personal data, ensuring the reflection of personal
privacy rights during data processing. For example, researchers must
ensure that patients fully understand that their data will be used for
research purposes and give explicit consent.

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1585180
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Fanetal.

To further strengthen privacy protection, high-standard technical
means are needed: encryption during transmission to prevent
unauthorized access and strict access control to ensure only relevant
personnel can access sensitive data. In addition, anonymization can
allow data use in research without revealing personal identity,
reducing the risk of information leakage (36). Beyond technical and
legal support, a culture valuing data-privacy rights must be cultivated
across the drug-development field; every participant, from researchers
to management, must receive data-protection training, understand its
importance (37), and implement this principle in daily work.

4.3 Improving algorithmic fairness and
reliability

Improving algorithmic fairness and reliability is not only ethically
justified but also an important guarantee for enhancing research accuracy
and efficiency. Building multi-source heterogeneous datasets and
establishing long-term audit mechanisms are core paths for improving
algorithmic fairness. On one hand, balanced data covering different
regions, races, ages, and disease types must be collected, especially
increasing the proportion of rare-disease and special-group data to avoid
algorithmic bias at the source. On the other hand, independent third-
party institutions should establish a normalized fairness-evaluation
mechanism; audit content includes data bias, decision logic, and group-
impact differences, linking audit results to R&D qualification
dynamically—enterprises failing audits would face rectification deadlines
or project-qualification suspension. This also requires a cross-disciplinary
collaborative mechanism involving statisticians, clinicians, drug R&D
personnel, and ethicists (38) to identify algorithm-bias risks from multiple
perspectives. Problems found must be promptly adjusted and optimized
to avoid long-term accumulated bias affecting fairness and scientific
validity of R&D results.

5 Conclusion

The development and application of large AT and big-data models
bring more innovative possibilities and opportunities to drug R&D
but also trigger many ethical challenges. As large Al and big-data
models become increasingly integrated into the performance and
development of new drugs, management of pharmaceutical ethics
becomes ever more important, and research on responsible innovation
in drug R&D will become ever stricter. At present, China’s legal and
regulatory system for protecting data-privacy rights, safeguarding
subjects’ rights, and realizing ethical values in drug R&D is still
imperfect; government, society, and individuals all need to strengthen
ethical-protection awareness and improve moral cultivation. By
embedding the three-dimensional ethical-evaluation framework of
“data mining — pre-clinical — patient recruitment,” this paper
constructs a comprehensive system of pharmaceutical-ethics
governance. The application of large AI and big-data models to
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