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Cellular defense mechanisms
against asbestos fibers

Christy A. Barlow1 and Brooke T. Mossman2*
1Aetia Scientific Collaborative, Boulder, CO, United States, 2Department of Pathology and Laboratory
Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States

Although inhalation of sufficient doses and dimensions of airborne asbestos
dusts in an occupational setting can produce cancer in the lungs, pleura
and peritoneum, tumors occur in <5–10% of exposed individuals, even
among persons with considerable historical exposures. In this perspective, we
review cell defense mechanisms that are involved in protective and adaptive
responses to asbestos exposure. These adaptive responses are orchestrated
through a multifaceted cellular program involving the concerted action of
diverse stress response pathways, including antioxidant responses, DNA repair
mechanisms, molecular mechanisms for intracellular signaling leading to
proliferation, apoptosis, and inflammation, and cell cycle regulation. These
cell defenses suggest that humans can adjust to moderate levels of stress
or change without experiencing negative effects, implying the existence of a
threshold dose. Likewise, reported no-observed adverse-effect levels (NOAELs)
for various asbestos fiber types and asbestos-related cancers in experimental and
epidemiological data further support the existence of a threshold dose and are
discussed here.
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1 Introduction

Asbestos is a generic term for a family of naturally occurring hydrated silicate minerals
(1, 2). It encompasses a group of six chemically and physically diverse types of asbestiform
minerals that are characterized according to morphology as serpentine (chrysotile) or
amphibole (crocidolite, amosite, tremolite, anthophyllite, and actinolite). Chrysotile, the
sole member of the serpentine group, is a hydrated magnesium silicate that is represented
by the chemical formula Mg3[Si2O5](OH)4, whereas the two most commercially important
amphiboles, crocidolite and amosite, have a high iron content and are represented
as Na2Fe3+

2 Fe2+
3 [Si8O22](OH)2 and Fe2+

7 [Si8O22](OH)2, respectively (3). It should be
acknowledged that increased risks of both lung cancers and malignant mesotheliomas
(MMs) have been observed in workers exposed to asbestos fibers occupationally, but the
carcinogenic potency of commercially used fibers (crocidolite > amosite > chrysotile) is
vastly different, especially in the development of MMs (4–10).

Asbestos-related disease conforms to standard toxicological principles for human
disease and exhibits a non-linear dose-response relationship (8). Scientific data
increasingly suggest that promoters and other non-genotoxic agents will have a non-
linear dose-response relationship at low doses (11, 12). Non-linear relationships and the
assumption that no increase in risk occurs at low doses of agents below a certain level
have been endorsed for ionizing radiation and chemicals in general, providing evidence for
thresholds for both DNA interacting and epigenetic chemical carcinogens (13–19).
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Humans have evolved multiple defense mechanisms against the
external environment to maintain homeostasis within their internal
environment. In response to asbestos and other carcinogens,
defensive and adaptive cellular responses exist to prevent cellular
injury and permit normal cell survival. Adaptive responses include
metabolism and elimination of foreign agents, as well as damage
repair that can occur at both the cellular and molecular level.
Formation of cancers is thought to involve a loss in multiple
adaptive cellular responses (20). In this perspective, we review
cell defense mechanisms that are involved in protective and
adaptive responses to asbestos fiber exposures in lung epithelial and
mesothelial cells, target cells of asbestos-induced lung carcinomas
and MMs. Then, we review experimental and epidemiological
evidence suggesting thresholds for exposures to asbestos fibers.
Knowledge of these defense responses are important in the
regulation of asbestos exposures and the design of preventive and
therapeutic approaches to both lung cancers and MMs.

2 Cell defense/adaptive responses

Researchers have used in vitro studies on isolated cells and
organ cultures to address key events in carcinogenesis by asbestos
(21). These in vitro models allow for the measurement of acute
responses, including those important in defense and adaptation,
after exposure to known concentrations of fibers over a range
of doses. In this perspective, in vitro data, have been correlated,
whenever possible, to events occurring after inhalation, the natural
route of access to the body, of various asbestos fiber types in rodents
and human lungs (22). There are several limitations in many of the
studies described below including a general lack of dose-response
experiments and the lack of inclusion of non-disease causing
particles or fibers (negative controls) to determine the specificity
of asbestos-induced responses. Additionally, most animal studies
evaluated effects attributed to asbestos on an equal mass or weight
basis even though the number, surface area and reactivity of fibers
at equal weight concentrations may be vastly different, thereby
rendering comparisons between different experiments and human
exposure difficult.

Adaptive cellular responses are of specific interest in this
perspective and include multiple DNA repair mechanisms; a
battery of antioxidant responses; proteins that monitor cellular
proliferation, growth, and adhesion; and cell cycle check point
mechanisms that pause cell proliferation to allow for DNA repair.

2.1 DNA repair mechanisms

Since a consequence of asbestos-induced oxidative damage
may include DNA single strand breaks (SSB) and oxidant-induced
8-hydroxydeoxyguanosine (8-OHdG) DNA adducts (23, 24), it
is important to discuss the human physiological response to
such insult. In mammalian cells, four major DNA damage repair
mechanisms are known to be responsible for repairing different
DNA lesions: base excision repair (BER), nucleotide excision
repair, mismatch repair, and recombinational system repair (25).
Polymorphisms in genes encoding DNA repair proteins, such as
XRCC1 and BRCA1, have also been suggested to be associated with

the risk of MM (26, 27). Moreover, germline mutations in DNA
repair genes may induce MMs (28) or predispose asbestos-exposed
individuals to MMs (29, 30).

Different types of asbestos have been shown to produce
8-OHdG DNA adducts, DNA damage, and/or chromosomal
aberrations in mesothelial cells in vitro and in vivo (23, 24). Adduct
formation, oxidative damage, alkylation, and deamination can all
create DNA base damage that is repaired by the same base excision
repair mechanism. This pathway is also responsible for repairing
DNA SSBs generated by reactive oxygen species (ROS) (31). DNA
glycosylases recognize and remove the damaged base leaving a site
that that is absent of a purine and pyrimidine (AP site) (32). The
AP site is repaired by an AP-endonuclease and ligase which initially
creates a gap in the DNA strand that is eventually filled in by DNA
polymerase and DNA ligase (33). AP-endonuclease co-localizing
with mitochondria is increased in mesothelial cells after exposure
to crocidolite asbestos, suggesting that repair mechanisms exist
(34). Moreover, mitochondrial 8-oxoguanine DNA glycosylase, a
mtDNA BER enzyme, reduces mtDNA damage and apoptosis by
amosite in alveolar epithelial cells and mitigates lung fibrosis (35).

Arguably, DSB are the most significant form of DNA damage
and could lead to cell lethality and transformation if left unrepaired
(36). As few as one DSB is sufficient to kill a cell if it inactivates
an essential gene or induces apoptosis. Mammalian cells have two
somewhat redundant mechanisms for repairing DSBs: homology-
directed repair and non-homologous end-joining repair (33). The
pathway that the cell uses to repair the DSB depends on the
phase of cell cycle when the error is detected and the type of
DNA lesion. The non-homologous end-joining mechanism is used
if the cell is in the G1 phase of cell cycle. If the cells are in S
or G2 phase of the cell cycle, then the cell repairs the DSB by
the homology-directed repair mechanism (37). Marczynski et al.
reported that there are higher incidences of DSBs in white blood
cells of occupationally exposed asbestos workers as compared with
the non-exposed control population (38).

The upregulation of DNA repair genes after exposure to
asbestos is a strong indication of an adaptive response, meaning
that a cell is actively increasing its ability to repair DNA damage
in response to a stressful environment, allowing it to better tolerate
and survive the damaging conditions. This upregulation is often
part of a broader cellular response to stress, where the cell activates
various mechanisms to mitigate damage and maintain homeostasis.

2.2 Antioxidant responses

Despite decades of research on the health effects of asbestos, the
underlying mechanisms leading to asbestos-induced pulmonary
toxicity and cancers are not completely understood; however,
much research has focused on the importance of generation of
ROS and reactive nitrogen species (RNS). Multiple mechanisms
of generation of oxidant species occur in lung epithelial cells,
mesothelial cells, and phagocytes, such as alveolar and pleural
macrophages, after exposure to amphibole asbestos and other fibers
(39, 40). For example, the high iron content and iron availability of
amosite and crocidolite asbestos generates a Haber-Weiss reaction
producing superoxide and hydrogen peroxide that may function
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extracellularly or within cells after fiber uptake. Whereas, cells of a
variety of types can internalize fibers less than their cell diameters,
longer fibers cause frustrated phagocytosis which stimulates
NADPH (nicotinamide adenine dinucleotide phosphate) oxidase
in cell membranes, a potent enzyme in production of ROS. Once
internalized into an acidic phagolysosome, shorter fibers undergo
changes in composition and structure (41) and exist in perinuclear
vesicles or free in the cytoplasm (42).

Mitochondria are both a source and target of ROS generated
by crocidolite asbestos in mesothelial and pulmonary epithelial
cells. Oxidant elaboration results in damage to mitochondrial
DNA (mtDNA) and dose-related alterations in mitochondrial gene
expression (43–45). At high toxic fiber concentrations, apoptosis
occurs. The importance of oxidative stress in asbestos-induced
toxicity and cell death has been discussed previously (39, 40).

In addition to ROS- and RNS-induced protein modifications
in vitro and in vivo, DNA and lipids undergo structural changes
that are linked to damage of macromolecules and cell death at
high concentrations of asbestos and initiation of multiple signaling
pathways linked to carcinogenic events at low concentrations.
Signatures of oxidative RNA and DNA damage have been observed
for as long as 72 h in human mesothelial cells at growth inhibitory
concentrations of crocidolite (34, 46), in isolated rat pleural
mesothelial cells at both toxic and non-toxic concentrations of
crocidolite (34), and in rats after intraperitoneal injection of
crocidolite (47).

Since amosite and crocidolite asbestos are high iron-containing
and the most potent in the induction of human mesotheliomas,
most studies have focused on their mechanisms of oxidant stress
and defense (40, 48, 49). Surface active sites reducing O2 and
catalyzing the decomposition of H2O2 to reactive radicals, such
as •OH, or lipid radicals are largely related to the presence and
ionic state of iron. Moreover, pre-addition or co-administration of
iron chelators or catalase inhibits cell injury, inflammation, and
asbestosis in vivo (50, 51), supporting a direct role of iron in
lung disease.

One well-documented protective response to longer (generally
> 10 or 20 microns) amphibole fibers is the formation of
asbestos (ferruginous) bodies in the lung that are comprised of
predominately ferric iron with minor amounts of protein and
mucopolysaccharides. The sequestration of fibers in a non-reactive
core is an important defense mechanism as the valence sites of ferric
moieties are not available for electron exchange and generation of
ROS. In addition, asbestos bodies, in comparison to native fibers,
show both diminished formation of ROS and reduced toxicity (49).

Upregulation and increased expression of a cadre of
antioxidant enzymes have also been demonstrated in vitro
and in vivo after exposures to asbestos fibers and inflammatory
particles (52). Conventional antioxidant enzymes include copper–
zinc containing superoxide dismutase (CuZnSOD or SOD1),
manganese-containing superoxide dismutase (MnSOD or SOD2),
catalase, and glutathione peroxidase (GPX) and may act alone or in
combination to prevent asbestos-associated injury (51, 53). Other
proteins, including heme oxygenase-1 (HO-1), GRP78, and heat
shock proteins (HSP70), are linked to prevention of oxidant stress
and increase after exposures of lung epithelial and mesothelial cells
to crocidolite fibers in vitro (54, 55).

Supplementation of antioxidant enzymes also inhibits asbestos-
induced toxicity and signatures of carcinogenesis. For example, in

tracheobronchial epithelial cells, minimally toxic concentrations
of crocidolite or chrysotile asbestos caused protracted increases
in total SOD levels, and toxicity was ameliorated by addition
of SOD (56). In rat lungs and human bronchi, CuZnSOD
was prominent in macrophages and bronchiolar epithelial cells,
suggesting protective mechanisms in both target cells of lung
cancers and effector cells of the immune system. Administration
of antioxidant enzymes inhibited crocidolite-induced cell injury,
inflammation, and fibrotic changes (51). In comparison to other
antioxidant enzymes, mitochondrial MnSOD was most strikingly
elevated, and linked to injury and inflammation of other fibrogenic
minerals such as silica (57–59). Transfection of MnSOD into
tracheal epithelial cells exposed to asbestos inhibited asbestos-
induced toxicity (60). Individuals with a GSTM1 null allele and
Ala/Ala genotypes of codon 16 within the MNSOD gene exhibit
increased risk of MM (61).

Cell glutathione and thiol levels are critical defense mechanisms
after oxidant stress by asbestos (62, 63). Depletion of total cell
glutathione pools occurs after addition of crocidolite to mesothelial
cells and is accompanied by increased levels of c-fos and c-jun early
response prot(o)oncogenes (64). Addition of N-acetyl-cysteine to
boost thiol levels decreased asbestos-mediated gene expression in a
dose-dependent fashion (64).

The thioredoxin system is composed of NADPH, cytosolic
and mitochondrial thioredoxins, and thioredoxin reductases.
Crocidolite asbestos oxidized the pool of the antioxidant,
Thioredoxin-1 (TRX1), in human mesothelial cells via production
of ROS (65). Modulation of thioredoxins and thioredoxin
interacting protein (TXNIP) showed that TRX1 overexpression
or knockdown of TXNIP attenuated NLRP3 inflammasome
activation, reinforcing the role of inflammasome activation by
oxidants and subsequent generation of proteins, IL-1B and
HMGB1, linked to mesothelioma development (66, 67).

Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is a
transcription factor that plays a key role in controlling the
inducible expression of enzymes linked to the synthesis of
glutathione and other antioxidants. As such, it is important
in the control of inflammation (68). When exposed to ROS,
Nrf2 migrates from the cytoplasm to the nucleus where it
leads to the upregulation of expression of several antioxidant
and detoxification genes (e.g., GSTs, SODs, and HO-1), the
downregulation of NF-κB, and reduction in proinflammatory
cytokines (e.g., IL-6 and IL-1β). This is an adaptive mechanism
that enhances resiliency in response to subthreshold doses
of toxins.

In summary, cells of the immune system and target cells of
asbestos-associated diseases exhibit oxidative stress that can be
counteracted by antioxidant responses at low concentrations of
asbestos fibers that are non-toxic but are overwhelmed at high fiber
concentrations that may be carcinogenic or cause cell death.

2.3 Molecular mechanisms of proliferation
and inflammation

Both Activator Protein-1 (AP-1) and NF-κB are redox-
acivated transcription factors that play crucial roles in regulating
cellular processes such as proliferation and inflammation by
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FIGURE 1

Shows the main AP-1 and NF-kB cell signaling pathways that occur in tracheobronchial/lung epithelial and mesothelial cells after exposures to
asbestos fibers, such as amosite and crocidolite asbestos, that initially interact with the external cell membrane. Interactions of fibers or elaboration
of oxidants then result in activation of protein cascades that cause alterations in gene expression. It is unlikely that asbestos and other elongated
mineral fibers at low concentrations induce cancerous changes by interacting directly with the DNA of cells. For example, the mutagenic changes
reported using chrysotile asbestos in a human/hybrid cell model are observed at high concentrations causing large scale deletions incompatible with
cell survival (40, 140). Moreover, crocidolite and erionite induce polyploidy and clastogenic effects in cells, but not mutations (183). In contrast to
chrysotile asbestos which dissolves over time in rodent and human lungs (139, 184), durable amosite and crocidolite fibers produce many of the
hallmarks of cancers, most notably genomic instability, sustained cell proliferation and chronic inflammation (13, 69, 185). These and other
characteristics of cancer observed in asbestos-associated cell outcomes are attributed to long, iron-rich amphibole fibers, altered cell signaling
events, and production of reactive oxygen and nitrogen species (ROS, RNS) (69).

controlling gene expression. These events are hallmarks of
the cancer process (69). Generally, frustrated phagocytosis of
asbestos fibers triggers the production of ROS within cells,
which in turn activates cellular signaling pathways leading to
the phosphorylation and nuclear translocation of AP-1 and NF-
κB subunits (Figure 1). These events can lead to altered gene
expression affecting cellular processes linked to proliferation,
altered cell function (metaplasia), cell death, and inflammation.
In general, a relatively low concentration of chrysotile or
amphibole asbestos exposure (<1 μm/cm2) results in proliferative
signaling in mesothelial cells, while higher asbestos concentrations
result in apoptosis and block proliferation (70–74). Proliferation
of mesothelial cells by crocidolite asbestos, the phorbol ester
tumor promoter, TPA (12-O-tetradecanoylphorbol-13-acetate),
and TNFα (Tumor Necrosis Factor alpha) suggest multiple cell
pathways leading to tumor promotion in MMs (75). In contrast,
apoptosis is an important protective mechanism by which DNA
damaged cells are eliminated without initiating an inflammatory
response (76). Likewise, acute inflammation is considered a vital
defense mechanism as it is the immune system’s response to
harmful stimuli, like infections or injury, by ultimately restoring
tissue homeostasis.

2.3.1 TP53
TP53 (p53) acts as a tumor suppressor protein that generally

functions to suppress inflammatory responses by negatively
regulating NF-κB signaling (77). NF-κB can suppress p53 levels by
upregulating the expression of MDM2, a target gene of NF-kB.

Studies have shown increased p53 protein expression occurs
in lung epithelial and mesothelial cells and in rodents exposed
to asbestos (78–80). In chrysotile-exposed mice and rats, p53
increases are observed prior to reversible increases in lung
epithelial cell proliferation (81, 82). p53 primarily functions as
a transcription factor that regulates a wide spectrum of genes
including apoptosis, cell cycle arrest, senescence, autophagy,
DNA repair, and angiogenesis (83). Broadly, p53 is a tumor
suppressor that limits cellular proliferation by inducing cell cycle
arrest and apoptosis in response to cellular stresses, such as
DNA damage.

Beyond its traditional role as a transcription factor, recent
research has shown that p53 can also directly translocate
to the mitochondria under stress conditions, where it can
interact with mitochondrial proteins to disrupt their function
and initiate apoptosis (84). Amphibole asbestos exposure causes
mitochondrial dysfunction, which leads to cell oxidative stress
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and apoptosis through the p53-regulated mitochondrial pathway
(85). Moreover, spontaneous p53 mutations in murine mesothelial
cells increase their sensitivity to crocidolite asbestos and ionizing
radiation (86).

Loss of function mutations in p53 have been associated with
the development of MMs in humans and rodents (87, 88). A
select group of MM patients demonstrate mutations in the p53
gene (89).

2.3.2 Activator protein-1 (AP-1)
Members of the Mitogen-Activated Protein Kinase (MAPK)

family are critical to most aspects of AP-1 regulation. In vitro
experiments have shown that the MAPK cascade is involved in
both apoptotic and proliferative responses to abestos. Although the
mechanism of action remains elusive, it has been shown that after
interaction with cells, asbestos fibers trigger a series of multiple
protein phosphorylation events occurring after asbestos-associated
oxidant generation. After dimerization and rapid dissociation
or phosphorylation of the the epidermal growth factor receptor
(EGFR) (90), crocidolite asbestos fibers trigger many signaling
cascades, including the AKT pathway and MAPK (73, 91–96).
MAPKs consist of three major families: extracellular signal-
regulated kinases (ERKs), c-Jun-NH2-terminal kinases (JNKs), and
p38 kinases. ERKs (ERK1, 2, and 5) are effectors of the Ras
proto-oncoprotein and are activated in response to mitogenic
stimuli whereas JNKs and p38s are stress activated protein kinases
that are activated preferentially by environmental stresses and
inflammatory cytokines of the TNF family (97, 98). Asbestos has
been shown to stimulate predominately ERKs, but also p38, and
JNK pathways in alveolar type II epithelial cells and mesothelial
cells (74, 99, 100). These oxidant regulated signaling pathways
regulate gene expression of early response proto-oncogenes (fos/jun
family) in mesothelial and lung epithelial cells (101, 102). Their
proteins can dimerize, forming the transcription factor, AP-1 that
interacts with DNA (103). These events may be linked to increases
in early-response genes which govern cellular responses, such as
proliferation and apoptosis (71). AP-1 activation also leads to
increased production of pro-inflammatory cytokines (e.g., TNFα

and IL-6) in certain cell types (104).
Since MAPKs are regulated by reversible phosphorylation on

threonine and tyrosine residues, deactivation of MAPKs can also
occur via dephosphorylation at these residues. This is the role
and function of the MAPK phosphatases (MKPs) (105). MKP-
1 specifically targets the phosphorylated forms of p38 and JNK,
removing the phosphate group and rendering them inactive. By
controlling p38 and JNK signaling, MKP-1 plays a crucial role in
cell survival by regulating p38 and JNK in response to cellular stress.
MKP-1 is upregulated in response to exposure to asbestos in human
mesothelial cells (106).

2.3.3 Nuclear factor-kappa B (NF-κB)
NF-κB is a redox-sensitive transcription factor and can be

a downstream target of MAPK signaling pathways. Studies have
shown that asbestos fibers activate NF-κB in tracheal epithelial
and mesothelial cells in vitro and in rat lungs in vivo after
asbestos inhalation (107–110). NF-κB regulates multiple aspects

of innate and adaptive immune functions and serves as a
pivotal mediator of inflammatory responses (111–113). NF-κB
is comprised of protein dimers, including the transcription-
activating heterodimer consisting of p50 and p65 (RelA) subunits.
It is a ubiquitous redox-regulated transcription factor that is
retained in the cytoplasm by forming an inactive complex with its
cytosolic repressor, IkB. Oxidative and pro-inflammatory stimuli
activate NF-κB through phosphorylation-dependent proteasomal
degradation of IkBα, ultimately allowing NF-κB to move into the
nucleus where it can influence gene expression. NF-κB induces
the expression of various pro-inflammatory genes, including
those encoding cytokines and chemokines (e.g., TNFα, IL-6,
COX-2). It also participates in inflammasome regulation (114).
In addition, NF-κB plays a critical role in regulating the
survival, activation and differentiation of innate immune cells and
inflammatory T cells.

2.3.4 NLRP3 inflammasome
The NLRP3 inflammasome is a multiprotein complex that

plays a pivotal role in regulating the innate immune system and
inflammatory responses by interacting with various cell death
pathways like apoptosis, pyroptosis, and necroptosis (115). By
modulating these pathways, inflammation can be mitigated, and
tissue repair and regeneration can be promoted.

The activation of the NLRP3 inflammasome is a two-step
process, requiring a priming signal that upregulates NLRP3
expression and a subsequent activation signal that triggers the
assembly of the inflammasome complex, leading to the maturation
and release of pro-inflammatory cytokines like IL-1β and IL-
18 (111, 115). Multiple studies have shown that crocidolite
asbestos fibers prime and activate the NLRP3 inflammasome
in human mesothelial and macrophage cells in vitro and in
mice using inhalation models (66, 116, 117). Both AP-1 and
NF-κB have been shown to play a role in regulating the
NLRP3 inflammasome through transcription of its components,
particularly by upregulating the expression of NLRP3 and pro-IL-
1β, essentially acting as “priming” signals for NLRP3 activation in
response to inflammatory stimuli.

Some studies suggest that prolonged NLRP3 inflammasome
activation in response to crocidolite asbestos exposure can
contribute to early and chronic inflammation (114). Others
postulate that HMGB1, that both stimulates and is a consequence
of inflammasome activation, contributes to MM development in
rodents (67). However, NLRP3 deficient mice show a similar
incidence of MMs when compared to wild-type mice, suggesting
that NLRP3 activation may not be critical to the development of
MMs (118).

2.3.5 Activator transcription factor 3 (ATF3)
Activator Transcription Factor 3 (ATF3) is a stress-induced

transcription factor that acts as a hub of adaptive responses in
cells (119). It has been shown using human mesothelial cells
that crocidolite asbestos induced increased expression of ATF3,
indicating its participation in cell defense from fibers and particles
(120). Moreover, in cells exposed to asbestos, silencing of ATF3
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increased production of inflammatory cytokines and growth factors
such as IL-1B, PDGFBB, VEGF and IL-13.

2.4 Epigenetic control mechanisms

Asbestos fibers have been historically regarded as epigenetic
as they do not act directly with DNA to form adducts or
metabolites (121, 122). The most frequently studied epigenetic
marker in cells is DNA methylation, a process catalyzed by
DNA methyl transferases that results in covalent attachment of
a methyl group to cytosine. Methylation also occurs at sites
of CpG dinucleotides within the promoter regions of genes.
Whereas, methylation causes condensation of chromatin, making
it inaccessible for transcription, histone acetylation (addition of –
COCH3) causes increased accessibility of DNA for transcription.
The dynamic reversible processes of acetylation, deacetylation and
methylation/demethylation control gene expression in normal and
tumor cells (123).

DNA methylation profiling of MET5A mesothelial cells
exposed to crocidolite or chrysotile revealed methylation at CpG
sites located in genes related to migration and cell adhesion (124).
Global and gene-specific DNA methylation effects of crocidolite,
amosite and chrysotile fibers have been studied in immortalized
human bronchial epithelial cells over a range of asbestos
concentrations (125). Global DNA methylation was observed
after exposures to crocidolite or amosite, but not chrysotile
asbestos. Moreover, no significant changes were observed at the
lowest concentrations of amphibole fibers, illustrating a threshold
effect. Hierarchical clustering of gene-specific DNA methylation
patterns also showed different patterns in chrysotile-exposed
cells as compared to amphiboles. Examination of genome-wide
methylation changes in lung cancers from smokers and individuals
exposed to asbestos revealed unique changes, suggesting that
methylation changes may be predictive of these risk factors (126).

Loss of function mutations of tumor suppressor genes that
have been associated with cell cycle control have been reported in
human and rodent MMs as discussed earlier in this perspective. For
example, methylation of the CDKN2A/p16INK4A gene promoter
region occurs in human MMs (127). The CDKN2A locus encodes
the tumor suppressor proteins, p16INK4 and p14ARF, which
regulate the Rb and p53 cell cycle pathways. Loss of CDK2NKB
function has also been noted in lung cancers, MMs, and
experimental models of mesothelioma where loss of function
reflected increased numbers of tumors with decreased latency
periods (128).

The methylation status and silencing of the CDKN2A gene has
been studied in precancerous bronchial lesions from a series of 37
patients at high risk for lung cancer (129). Increases in methylation
occurred with the severity of lesions, suggesting a relationship to
the development of lung cancers.

The studies above illustrate the complexity of methylation
changes that could be linked to gene expression governing cell
defense or initiation of carcinogenic changes by asbestos fibers. The
interplay between these epigenetic events and non-coding RNAs
may exert protective effects or participate in oxidant-dependent
signaling cascades (130).

3 Discussion

The likelihood and magnitude of a biologically relevant
response is related to the dose of the substance to which one is
exposed. In addition, other factors such as immunologic status,
age of exposure, and the microenvironment, etc., influence the
vulnerability and severity of exposure. A unifying concept in
the biological sciences, and a fundamental tenet in toxicology,
is the dose-response relationship. This principle, which has been
recognized since at least the sixteenth century, holds that the
likelihood and degree of a biologic response is related to the
amount of the toxicant administered, and is often described by
the oldest and most venerated axiom in toxicology: the dose
makes the poison (131, 132). As described in Casarett and
Doull’s Toxicology: The Basic Science of Poisons, “[i]t is generally
recognized that, for most types of toxic responses, a threshold
exists such that at doses below the threshold, no toxicity is evident”
[(133), p. 22].

Although in vitro or in vivo experimental studies do not
provide precise estimates of the biologically effective dose (the
actual dose that contributes to the risk of disease) that occurs
under realistic exposure scenarios in humans, they do provide
evidence for the existence of a threshold dose (a minimum
dose that triggers minimal detectable biological effect). More
specifically, in vitro studies using asbestos fibers over a range of
concentrations demonstrated levels below which no increases in
c-jun/c-fos gene expression and/or cell division occurred (70, 101,
134, 135).

3.1 Thresholds in genotoxicity

There is an obvious disconnect between toxicity, genotoxicity,
and carcinogenic effects of asbestos fibers. In the majority of
toxicity and genotoxicity studies, chrysotile asbestos at equal weight
concentrations is more active than amphibole asbestos (23, 136).
This is attributed to the positive surface charge of chrysotile
rendered by Mg2+ interacting with negative sialic acid residues
on the cell surface whereas amphiboles had a neutral or slightly
negative charge (137, 138). In contrast, chrysotile asbestos is
much less pathogenic in the causation of MMs than amphibole
asbestos, in part because Mg2+ is leached from chrysotile over
time resulting in its conversion to a non-reactive amorphous
particle (139). In fact, its ability to cause genotoxicity, aneuploidy,
and cytotoxicity due to large scale deletions in DNA (140)
might explain why chrysotile asbestos is not a potent carcinogen
in the development of MMs, as a dead cell cannot give rise
to tumors.

Throughout the last two decades, numerous independent
studies demonstrate the potential for asbestos fibers to act as
genotoxic agents by inducing DNA and chromosomal damage in
lung and pleural cells [reviewed in Barlow et al. (23)]. DNA damage
induced by asbestos is an early event in vitro that may result in
genetic instability, necrosis, or apoptosis at high concentrations
of fibers and cell transformation at low doses (23, 141). All types
of asbestos fibers are capable of mediating chromosomal and
DNA damage, such as DNA breaks, cross-linking, and base lesions
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at high, toxic concentrations (142). Despite the overall lack of
dose-response in genotoxic studies in the literature, dose-response
relationships are observed in some genotoxicity studies, suggesting
cell defense mechanisms such as DNA repair mechanisms and
antioxidant responses. For example, non-toxic concentrations
of crocidolite asbestos (1.25 and 2.5 μg/cm2) causes increased
expression of AP-endonuclease in a dose-dependent manner in
isolates of rat pleural mesothelial cells with persistent increases
over a 72-h time frame (143). AP-endonuclease was induced
at both non-toxic and toxic concentrations of crocidolite. Both
transformed and normal cells exhibit dose-related responses to
asbestos fibers as indicated by markers of DNA and chromosomal
damage, including a lack of effects at lowest concentrations (21).
These studies suggest NOAELs.

More recent studies of mechanisms of asbestos-induced injury
and disease have focused on indirect effects that lead to DNA
damage, and in some cases, the development of lung cancer or MM.
These are different from the direct assault on DNA described above
in that the focus is on the importance of generation of ROS. As
outlined earlier, asbestos fibers were found to stimulate production
of ROS though Fe-mediated and cell-mediated mechanisms in
vitro (39, 49). Therefore, when discussing the genotoxic potential
of asbestos, it is important to distinguish between primary and
secondary genotoxicity. The surface properties associated with
the different forms of asbestos are believed to play a major role
in the primary genotoxicity of asbestos, while the excessive and
persistent formation of ROS from inflammatory cells are postulated
to play a role in secondary genotoxicity (23, 144). Inflammation is
known to persist only at a sufficient dose, and therefore secondary
genotoxicity is believed to occur at a threshold dose.

3.2 Thresholds in inflammation

Research has shown that exposure to long fibers of amphibole
asbestos and carbon nanotubes significantly causes inflammatory
responses in laboratory studies (145–148). Moreover, chronic
inflammation is a critical process in the development of human
MMs (149–151). Asbestos dose is a crucial determinant for
triggering inflammation as high doses over short periods promote
an acute neutrophil predominant inflammation whereas low
doses over prolonged periods promote an alveolar macrophage
predominant chronic inflammation. Of note, several studies using
chrysotile and crocidolite have demonstrated levels below which
no increases in gene and protein markers of inflammation and
disease occur (152). The data inherently negate the legitimacy
of a no threshold model as the induction of the inflammatory
response contains a natural threshold for inflammatory response
activation (153–155).

It is widely accepted that inflammation is a significant
driver of carcinogenesis, particularly during the tumor promotion
phase (156). Some of the proposed pathobiological processes for
inflammation-induced carcinogenesis are through indirect DNA
damage due to generation of ROS/RNS within target cells or from
macrophages and other immune cells, changes in metabolism, and
disruption of immune system homeostasis and function.

Inflammation is the main rate-limiting mode of action for
increasing risk in inflammatory-mediated diseases, including MMs
(156–160). As described above, the NLRP3 inflammasome plays

a key role in initiating inflammation. The two-step process of
priming and activation of the NLRP3 inflammasome are governed
by several threshold mechanisms (153). Activation of the NLRP3
inflammasome requires a certain intensity and duration of stimulus
to trigger its assembly and subsequent inflammatory cytokine
release (161). Moreover, these triggering events, which may
include sustained generation of intracellular and mitochondrial
ROS, depletion of antioxidant pools, and lysosomal destabilization
and rupture, also require a certain intensity and duration of
stimulus. Both the priming (NFκB signaling and MAPK activation)
and triggering event (the activating stimulus) must reach these
threshold levels. As such, the NLRP3 inflammasome is activated
by sufficiently high and prolonged exposures. This threshold
system acts as a protective mechanism, preventing the body from
overreacting to minor irritants encountered daily. These thresholds
prevent small and brief exposures from triggering an inflammatory
response while allowing sufficiently high and prolonged exposures
to do so.

3.3 Thresholds in carcinogenicity

The existence of a threshold dose of asbestos at which no
increased risk of asbestos-related disease can be observed is
supported by occupational and environmental studies. Specifically,
a number of published epidemiology studies have suggested that
exposures to ambient asbestos concentrations of any fiber type are
not associated with a significantly increased incidence of asbestos-
related disease (162–170). For example, Price and Ware stated
that although women’s environmental exposures would likely have
increased since the 1930s, with the increasing use of asbestos in
the U.S., “the mesothelioma risk for women has not increased”
[162, p. 111]. They noted that “[e]nvironmental exposure levels,
although increasing, have not triggered a risk response in women.
Therefore, those exposure levels must have been below a threshold
for mesothelioma” [162, p. 111]. Similarly, Glynn et al. found that
there was no increase in incidence rates of pleural mesothelioma
among females in urban vs. rural areas in the U.S. between 1973
and 2012, despite measured differences of up to 10-fold or more in
ambient airborne asbestos concentrations between these different
geographical areas (171). According to the authors, these results
suggested that ambient exposures to asbestos over a wide range
of background concentrations have not significantly affected the
incidence of pleural mesothelioma in the U.S. over the past 40 years.

Epidemiology studies of predominately chrysotile-exposed
cohorts suggest that there is a cumulative chrysotile exposure
below which there is negligible risk of asbestos-related diseases.
Pierce et al. summarized NOAELs reported in the literature for
predominantly chrysotile-exposed cohorts and found that the
preponderance of studies showed cumulative chrysotile NOAELs
for both lung cancers and MMs (172, 173). In an updated
analysis incorporating epidemiologic studies published through
2022, Beckett et al. reported the lower- and upper-bound for the
chrysotile NOAELs of 97–175 f/cc–yr for lung cancer and 250–
379 f/cc-yr for mesothelioma (174). Conversely, epidemiological
data have demonstrated a substantially elevated risk of all asbestos-
related diseases, including mesothelioma, for occupations involving
high cumulative exposures to amphibole asbestos or a combination
of amphibole and chrysotile asbestos (175–182). Beckett et al.
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applied published relative potency factors for mesothelioma to
the chrysotile NOAEL for mesothelioma reported to derive
the best estimate NOAELs for predominately amosite- and
crocidolite-exposed populations of 2–5 f/cc-yr and 0.6–1 f/cc-yr,
respectively (174).

4 Summary and conclusions

We review here the mechanisms of asbestos-induced
carcinogenicity with a focus on molecular pathways that are
inhibited or modulated in cell defense from asbestos fiber
exposures. These protective mechanisms are summarized within
and are consistent with observations reported by others after
exposures to chemical carcinogens and radiation (14–16). Simply
put, humans have a cadre of defense mechanisms at the cellular
and host level that maintain homeostasis and combat deleterious
exposures to asbestos and other carcinogens. However, under
certain conditions, such as increased vulnerability or exceeding
critical response thresholds, these homeostatic mechanisms can
be overwhelmed. This information and a review of the animal
and human literature strongly suggest the existence of thresholds
for MMs and lung cancers promoted by asbestos. Studies also
illustrate the importance of asbestos type in calculation of NOAELs
based upon different cellular responses to the commercial types
of asbestos (chrysotile, amosite, and crocidolite) as well as their
individual biodurability and size characteristics.
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