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Editorial on the Research Topic

Unraveling the complexity of sensory space perception

Environmental sensing refers to the process by which organisms extract information

from their surroundings to construct representations that guide behavior (Swanson, 2011).

Sensory recognition and the perceptual construction of such information are inherently

complex, given the multiplicity of mechanisms involved in each sensory system (Kaas,

1989). Spatial perception is fundamental to survival, as it enables the identification of food,

the location of shelters, and the detection of predators, allowing organisms to rapidly adjust

their actions to avoid risks.

At the functional level, spatial perception supports navigation through the

environment (Loomis et al., 1992; Yamamoto and Philbeck, 2025), distance estimation

(Santillán and Barraza, 2019), balance control (Corrêa et al., 2023), emotional expression

(Cardoso et al., 2021), and the coordination of complex movements (Angelaki et al., 2025).

Whether it is a bat in flight, a fish swimming against the current, or a human walking

across uneven terrain, all rely on spatial integration to efficiently and safely explore their

surroundings. On a broader scale, spatial recognition underpins social and cognitive life

(Proulx et al., 2016). In social animals, spatial signals can help distinguish among different

social contexts (Dorfman and Eilam, 2021). In humans, this ability is closely linked to

abstract reasoning (Harris, 2023).

Human spatial perception arises from the integration of multiple sensory systems

(Bremmer, 2011). No single sense, in isolation, can provide all the information required

for an individual to determine their position in the environment, orient themselves

relative to objects, and plan appropriate motor or cognitive actions. It is the dynamic

combination of sensory inputs that enables the construction of a coherent representation

of space. Although this strategy may introduce redundancy, since sensory modalities can

convey overlapping information, the engagement of multiple senses in building perceptual

representations reduces the likelihood of processing errors (Ernst and Bülthoff, 2004).

The relative weight of each modality varies according to context and the reliability of

the available information (Burns and Blohm, 2010). This flexibility ensures the robustness
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of spatial perception across a wide range of contexts, from everyday

life to extreme conditions, such as virtual environments and

microgravity (Bogon et al., 2024; Glasauer and Mittelstaedt, 1998).

The present Research Topic, entitledUnraveling the Complexity

of Sensory Space Perception, was designed to gather contributions

that expand our understanding of how sensory systems process

spatial information and how novel methods can facilitate the

investigation of these processes. Six articles were accepted,

addressing different sensory modalities: the vestibular system

(Zhang et al., 2025; Gerb et al., 2024), vision (Takeichi et al.,

2025), proprioception (Almeida et al., 2025), audition (Metcalfe

and Harris, 2025), and visuo-haptic integration (Fischer et al.,

2025).

Gerb et al. (2024) investigated the relationship between

subjective discomfort in spatial orientation and performance on

objective real-world navigation tasks, along with its association

with cognitive function in individuals with normal vestibular

function. Their findings suggest that the subjective sensation

of spatial discomfort may serve as a valuable clinical marker,

correlating with both behavioral performance and cognitive

decline. The study emphasizes that spatial orientation assessment

should integrate subjective and objective measures.

Zhang et al. (2025) examined the optimal rotational speed for

the unilateral centrifugation subjective visual vertical (UC-SVV)

test, in which participants adjust a luminous line to what they

perceive as the true vertical in the absence of external references.

This test specifically targets otolithic vestibular function. The study

provides practical parameters for standardizing the UC-SVV test

in clinical contexts, indicating that rotational speeds of 180◦/s (or

240◦/s, if tolerated) enhance the test’s sensitivity and reliability in

detecting vestibular dysfunctions.

Takeichi et al. (2025) tested whether the human visual system

can extract information about physical properties of fluids, such as

viscosity, from non-rigidmotion. Using the pseudo-flow technique,

based on tracking image gradient vectors, they demonstrated that

vision can infer the physical properties of non-rigid structures

from local motion, advancing our understanding of how the visual

system encodes motion and structure in the environment.

Almeida et al. (2025) compared joint position sense measures

obtained with inertial sensors embedded in devices of different

masses: a heavier smartphone and an ultralight sensor. In elbow

repositioning tasks, they observed a systematic bias associated

with the smartphone, which also showed moderate-to-good test–

retest reliability. By contrast, the ultralight sensor exhibited poor-

to-moderate reliability. The study concludes that, while both

devices are suitable for assessing proprioception, device mass

systematically affects outcomes and must be considered in clinical

and experimental applications.

Metcalfe and Harris (2025) examined how prior knowledge

influences the perception of vocal elements in MIDI stimuli, even

in the absence of an actual voice. The authors found that a

vague illusion of vocal presence can occur without prior learning,

but that only previous familiarity with the music enables the

precise perception of words. These findings underscore the fact

that auditory perception is not passive but rather emerges from

the interplay between bottom-up sensory cues and top-down

cognitive expectations.

Fischer et al. (2025) characterized precision and accuracy

in target localization tasks performed under visual, haptic,

and combined visuo-haptic conditions. Their results reveal that

integration does not always follow ideal models of sensory

combination and that structural differences between visual

and haptic maps shape spatial perception. These findings

hold important implications for the design of human–machine

interfaces with haptic feedback and for applications in virtual

reality and robotics.

In conclusion, the original objective of this Research Topic was

successfully achieved. The studies presented here reveal new aspects

of the complexity of sensory processing and its relationship with the

spatial domain. As emphasized in the call for this Research Topic,

we remain confident that advances from diverse fields, including

psychology, neuroscience, and computer science, will continue to

elucidate environmental information processing, with implications

not only for the clinical assessment of the nervous system but

also for the development and application of current and future

technologies in the service of humanity.
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