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Emotion is a complex psychophysiological phenomenon elicited by external
stimuli, exerting a profound influence on cognitive processes, decision-making,
and social behavior. Emotion recognition holds broad application potential in
healthcare, education, and entertainment. With virtual reality (VR) emerging as a
powerful tool, it offers an immersive and controllable experimental environment.
Prior studies have confirmed the feasibility and advantages of VR for emotion
elicitation and recognition, and multimodal fusion has become a key strategy
for enhancing recognition accuracy. However, publicly available VR multimodal
emotion datasets remain limited in both scale and diversity due to the scarcity
of VR content and the complexity of data collection. The shortage hampers
further progress. Moreover, existing multimodal approaches still face challenges
such as noise interference, large inter-individual variability, and insufficient model
generalization. Achieving robust and accurate physiological signal processing
and emotion modeling in VR environments thus remains an open challenge.
To address the issues, we constructed a VR experimental environment and
selected 10 emotion-eliciting video clips guided by the PAD(Pleasure-Arousal-
Dominance) model. Thirty-eight participants (N=38) were recruited, from whom
electrodermal activity, eye-tracking, and questionnaire data were collected,
yielding 366 valid trials. The newly collected dataset substantially extends
the publicly available VREED dataset, enriching VR-based multimodal emotion
resources. Furthermore, we propose the MMTED model (Multi-Modal Temporal
Emotion Detector), which incorporates baseline calibration and multimodal
fusion of electrodermal and eye-tracking signals for emotion recognition.
Experimental results demonstrate the strong performance of the MMTED model,
achieving accuracies of 85.52% on the public VREED dataset, 89.27% on our
self-collected dataset, and 85.29% on their combination.

KEYWORDS

virtual reality, physiological signals, emotion recognition, deep learning, multimodal
data

1 Introduction

Emotion is a complex psychophysiological phenomenon elicited by external
stimuli, encompassing subjective experiences, behavioral expressions, and physiological
alterations (Shu et al., 2018). As a fundamental psychological state, it profoundly
influences individual cognition, decision-making, and social interactions (Lerner et al,
2014). Therefore, advancing emotion recognition technologies holds great significance
for understanding human affective mechanisms and optimizing human-computer
interaction. Such technologies have demonstrated broad application potential in
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diverse fields, health assessment and

psychotherapy (Praveena et al., 2020), education and adaptive

including mental

learning (Arduini and De Vito, 2024), and affect-aware human-
computer interaction(Yang et al., 2023). Virtual reality (VR) has
emerged as a powerful tool due to its immersive, interactive, and
controllable environments. Unlike traditional two-dimensional
media stimuli (Uhrig et al., 2016; Romeo et al., 2022), VR engages
multiple sensory channels, including visual, auditory, and even
haptic modalities, to evoke more natural and stable affective
states. Empirical studies have shown that VR can effectively elicit
both basic emotions (e.g., fear, joy) and complex affective states
(e.g., tension, excitement) (Rivu et al, 2021; Somarathna et al,
2022). Moreover, VR often produces stronger physiological and
self-reported responses compared to traditional media, particularly
in the induction of high-arousal negative emotions (Magdin et al.,
2021). The advantages make VR a reliable experimental paradigm
for emotion elicitation and recognition research, offering enhanced
ecological validity and experimental control.

To achieve accurate recognition of emotional states, researchers
have explored three major methodological approaches: subjective
evaluation, behavioral analysis, and physiological signal analysis.
Subjective evaluation methods collect self-reported emotional
states through questionnaires or rating scales, such as the Self-
Rating Emotional Scale (Gross and John, 2003) and the Positive
and Negative Affect Schedule (PANAS) (Partala and Kallinen,
2012). Behavioral analysis infers emotions from observable features
such as facial expressions, gestures, or vocal characteristics.
Physiological signal analysis, by contrast, examines changes in
biosignals including skin conductance, heart rate variability, and
electroencephalogram (EEG) activity (Alarcao and Fonseca, 2017;
Zhao et al, 2016). Within VR environments, the approaches
face unique opportunities and challenges. Subjective evaluation
methods remain effective in VR settings, where users typically
complete pre- and post-experience questionnaires to provide
feedback. However, behavioral analysis encounters certain
constraints in VR: head-mounted displays (HMDs) partially
obscure the upper face, which limits the effectiveness of traditional
facial expression recognition (Ortmann et al., 2025). Researchers
explored indirect emotion recognition approaches such as
eye movement data, vocal characteristics, and head motion.
In contrast, physiological signal analysis demonstrates high
adaptability in VR. Signals such as electrocardiogram (ECG),
electrodermal activity (EDA), and electroencephalogram (EEG)
can be captured without disrupting the immersive experience.
Therefore, physiological signal analysis becomes the predominant
method in current VR-based emotion recognition research (Gao
etal, 2020; Halbig and Latoschik, 2021). In practice, the emotional
data can serve as objective feedback for the design of VR content,
enabling developers to identify scenarios that elicit positive or
negative emotional responses. Furthermore, it can facilitate the
development of targeted content for emotionally adaptive virtual
environments.

Immersive VR environments further enable the integration
of physiological and behavioral data, providing rich multimodal
information for emotion recognition. Recent studies leveraging
multimodal signals with deep learning architectures have reported
promising results in VR settings (Marin-Morales et al., 2020;
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Polo et al., 2025; Li et al,, 2025). However, despite the advances,
the field faces persistent bottlenecks due to the scarcity of large-
scale, high-quality VR emotion datasets. Existing datasets, such as
VREED (Tabbaa et al., 2021), DER-VREEG (Suhaimi et al., 2022),
and VRMN-bD (Zhang et al., 2024), are constrained by limited
modalities, small participant pools, or narrow emotional categories.
As a result, they remain insufficient to support the development of
robust and generalizable recognition models (Gnacek et al., 2024).
Although unimodal and multimodal methods have shown potential
(Marin-Morales et al., 2021; Geraets et al., 2021; Wang and Wang,
2025), challenges such as class imbalance, and individual variability
hinder progress. The paper seeks to address the two major issues
by contributing new data collection and proposing a novel fusion-
based framework.

To complement existing multimodal emotion datasets in VR
environments, the study was designed with reference to VREED. A
pre-experiment was conducted to select 10 emotion-eliciting clips
from 20 VR videos. 38 volunteers were recruited to watch the clips
while wearing VR headsets. During the experiment, participants’
real-time galvanic skin response (GSR) and eye-tracking data
were recorded, and subjective feedback was additionally collected
through questionnaires. In total, 366 valid samples were obtained.
Furthermore, we developed a multimodal emotion recognition
network. The model first extracts features from eye-tracking and
GSR data, and then integrates them through a multimodal feature
fusion strategy to achieve efficient emotion representation. The
effectiveness of the proposed method was validated on the VREED
dataset, the self-constructed dataset, and their combination.In
summary, the paper makes two main contributions:

e We construct a new multimodal VR emotion dataset by
selecting validated VR video stimuli, yielding 366 valid
samples to supplement existing datasets VREED.

e We propose a multimodal emotion recognition framework,
MMTED, which integrates features from GSR and eye-
tracking data via feature fusion strategies for accurate
emotion.

2 Related works

2.1 Emotion Recognition in virtual
environments

In recent years, emotion recognition in virtual reality has
garnered significant scholarly attention. Related studies utilize
VR technology to construct interactive environments, designing
various scenarios controlled experimental conditions to elicit,
measure, and analyze users’ emotional responses (Somarathna
etal., 2022).

Currently, numerous studies are focused on developing
emotion-inducing tasks within virtual environments and validating
their effectiveness through a combination of subjective assessments
and physiological signal analysis. For example, (Liao et al,
2019) developed a VR environment with targeted emotional
induction and validated its ecological validity advantage through
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multimodal physiological measures and self-report questionnaires.
Their experiment found that the VR environment was more
effective in evoking target emotional responses compared to
traditional video stimuli. (Felnhofer et al, 2015) manipulated
environmental variables such as lighting, weather, and time of
day in a virtual park to induce five emotions: joy, sadness,
boredom, anger, and anxiety. They confirmed the effectiveness
of the environments in eliciting multiple emotional states and
explored the relationship between physiological indicators, such
as skin conductance, and emotional arousal and presence. (Dozio
et al, 2022) proposed a method for constructing emotional
virtual environments by integrating emotional theory and semantic
elements. They validated its effectiveness across the valence,
arousal, and dominance dimensions. Their work emphasized
the development of ten specific emotion-inducing scenes using
primarily visual and auditory stimuli to facilitate user emotion
elicitation. (Marcolin et al, 2021) highlighted the importance
of emotional dimensions in affective VR design, noting that
different emotions require distinct design strategies. For instance,
fear-inducing scenes often incorporate dark color schemes and
sudden stimuli, whereas joyful environments utilize bright colors
and engaging elements. They conducted experiments in both
immersive and non-immersive VR settings, collecting ECG, EDA,
and EEG signals along with subjective ratings to validate their
application. (Lima et al, 2024) used 52 silent video clips from
the EMDB database, covering positive, negative, and neutral
emotions such as happiness, sadness, fear, anger, and disgust. The
stimuli were presented in both immersive and non-immersive VR
environments, with participants’ physiological signals collected and
analyzed for emotion recognition.

Some studies also concentrate on constructing virtual emotion
databases, aiming to establish a standardized foundation for
emotion annotation to support subsequent algorithm training.
(Suhaimi et al., 2018) constructed a VR-based emotion recognition
database using the arousal-valence model to annotate participants’
emotional states, thereby providing critical support for the
development of VR-based emotion classification algorithms.
(Radiah et al,, 2023) developed a Unity3D-based system containing
six distinct emotional scenarios, covering typical emotional states
from happiness to fear. They employed the Self-Assessment
Manikin (SAM) scale to evaluate emotional intensity. (Tabbaa et al.,
2021) publicly released the VREED dataset, which captures the
emotional responses of 34 volunteers in an immersive 360° video
virtual environment (360-VES) by recording 59-channel GSR and
ECG data. Currently, the dataset is one of the few multi-emotion
databases available in the field of virtual reality research.

Overall, existing research has preliminarily confirmed the
feasibility and advantages of virtual reality in emotion induction
and recognition. By constructing immersive virtual scenarios,
researchers can effectively elicit specific emotional responses in
controlled experimental settings. The findings have laid a solid
foundation for emotion recognition based on virtual environments.
However, certain limitations remain. For instance, some studies
employ limited or repetitive emotional scenarios, a scarcity of VR-
based emotional datasets with limited sample sizes, the use of
homogeneous emotion induction scenarios, and a heavy reliance
on traditional metrics and self-report questionnaires. Moreover,
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many approaches have yet to fully leverage the capability of
deep learning in mining and integrating multimodal physiological
signals.

2.2 Physiological signal-based emotion
recognition

Compared to traditional methods based on facial expressions
and vocal signals, physiological signals offer advantages such as
objectivity, stability, and resistance to disguise, thereby improving
the accuracy and ecological validity of emotion recognition.

Existing studies have explored the application of various
physiological indicators in virtual environments. Among these,
galvanic skin response (GSR) is an important signal reflecting
autonomic nervous system activity and indicative of emotional
arousal levels. (Hinkle et al., 2019) demonstrated that GSR is
closely linked to emotional arousal and can effectively differentiate
between emotions. In their VR-based experiments, support vector
machines and k-nearest neighbors algorithms are used to classify
GSR signals, they achieved a maximum recognition accuracy
of 89.19Eye movement data, as a non-invasive physiological
behavioral indicator, also demonstrates strong potential for
emotion recognition. (Zheng et al, 2020) applied eye-tracking
technology to detect users’ emotional states and found that features
such as pupil dilation and eye movement trajectory correlate with
emotional valence. Positive emotions are typically associated with
pupil dilation, whereas negative emotions tend to result in pupil
constriction. The eye movement characteristics provide valuable
insights for real-time assessment of users’ emotional conditions.
Electroencephalogram (EEG) signals possess inherent advantages
in capturing emotional and cognitive processes. (ZHAO Dan-
Dan, 2023) segmented the frequency bands of preprocessed EEG
signals, extracted differential entropy features, and developed a
hybrid model combining convolutional neural networks and gated
recurrent units to classify emotions into three categories: positive,
negative, and neutral. The model achieved an average recognition
accuracy of 86.50% on the SEED dataset, though its cross-subject
generalization capability remains limited.

Consequently, multimodal fusion approaches have gradually
emerged as a key strategy for improving emotion recognition
performance. (Cimtay et al, 2020) proposed a hybrid model
integrating multimodal signals including facial expressions, GSR,
and EEG. Applied to the DEAP dataset, their model achieved
a maximum accuracy of 91.5% in classifying emotions such
as anger, disgust, fear, happiness, neutrality, sadness, and
surprise, surpassing the performance of single-modal models.
The highlights the advantage of multimodal fusion in complex
2024)
combined ECG and GSR signals to recognize five emotional

emotion recognition tasks. Similarly, (Arslan et al,

states—excitement, happiness, anxiety, calmness, and sadness—
in a VR environment. Although overall accuracy was high, the
model struggled with blurred boundaries and exhibited limited
generalization capability.

Despite the strong application prospects of physiological signal-
based emotion recognition in VR contexts, it still faces significant
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challenges such as inherent signal noise, pronounced inter-subject
variability, and consequently limited model generalization. The
acquisition of physiological data, including GSR and eye-tracking
signals, is highly susceptible to contamination from motion
artifacts induced by user interaction. Furthermore, the high
degree of individual differences in physiological responses makes
it difficult to build a universal model, often leading to biased
performance when applied to new users. Achieving robust
and high-precision physiological signal processing and emotion
modeling in virtual environments remains a critical issue to be
addressed.

2.3 Deep learning-based emotion
recognition

With VR advancements,
is expanding into more complex and realistic interactive

emotion recognition research

environments. Deep learning methods, leveraging strengths
in multimodal data modeling and temporal feature extraction,
have become vital for precise emotion recognition in VR.

In deep learning, convolutional neural networks (CNNs) and
long short-term memory (LSTM) networks excel in processing
temporal signals and multimodal data. CNNs perform well in
time-frequency feature extraction. For instance, (Dessai and Virani,
2023) improved emotion classification accuracy by converting
GSR signals to time-frequency domains via continuous wavelet
transform and applying CNNs. (Tang et al, 2017) demonstrated
LSTM’s effectiveness in modeling physiological signal dynamics
to capture emotional temporal dependencies. (Li, 2024) combined
CNN and LSTM into a CRNN model using fast Fourier transform
features, achieving higher accuracy than standalone CNN or LSTM
models.

Recent trends emphasize multimodal fusion. (Zhang et al,
2020) transformed GSR and eye movement data into network-
compatible inputs, using deep models to learn latent features and
improve complex emotion discrimination. (Zali-Vargahan et al,
2023) extended modalities by fusing EEG, peripheral physiological
signals, and facial expressions, converting signals to time-frequency
images via 2D discrete Stockwell transform and extracting deep
features via CNN, achieving 95.3% and 92.8% accuracy for binary
and four-class classification on DEAP. (Ma et al., 2019) proposed
a multimodal residual LSTM network with shared weights to
learn EEG-physiological signal correlations, achieving 92.87% and
92.30% accuracy for arousal and valence classification on DEAP,
outperforming traditional LSTM.

While deep learning excels in multimodal feature extraction
and fusion, current research primarily focuses on coarse-grained
emotion classification, with limited capability for fine-grained,
multi-category emotion recognition.

3 Dataset collection

3.1 Experiment design

To accurately characterize emotional states, the PAD (Pleasure-
Arousal-Dominance) model was employed. The model posits that
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emotions can be described along three continuous dimensions:
pleasure, arousal, and dominance. The Pleasure dimension, also
referred to as valence, indicates the positivity or negativity of an
emotional state, ranging from one extreme (e.g., distress) to the
other (e.g., ecstasy). The Arousal dimension, alternatively termed
activation, captures the level of physiological and psychological
alertness. States such as sleep and boredom are associated with low
arousal, while wakefulness and tension correspond to high arousal.
The dominance dimension, sometimes labeled as the control or
influence dimension, indicates the extent to which an individual
feels in control of or controlled by their environment or others.
High dominance is associated with feelings of empowerment, such
as anger and bravery, whereas low dominance is linked to states of
vulnerability, such as anxiety and fear.

20 VR videos with distinct emotional tendencies were carefully
selected from online platforms and public databases, covering a
wide range of emotional states, from high pleasure, high arousal,
and high dominance to low pleasure, low arousal, and low
dominance.'? The design of situational elements such as lighting,
tone, perspective, and rhythm in the videos was fully informed by
established guidelines from prior research on emotion-inducing
environments (Romeo et al, 2022; Rivu et al, 2021). Prior to
the formal experiment, a pilot study was conducted to evaluate
and select suitable experimental videos. A total of ten volunteers
participated in the preliminary phase. Each participant wore a
VR headset to experience various video types and completed an
emotional self-assessment questionnaire immediately after each
viewing. The data collected during the pilot study were used to
assess the emotional elicitation effectiveness of each video. The
selection process was conducted subjectively, based on whether the
scores across the three dimensions (P, A and D) of the 9-Likert-scale
self-assessment questionnaire showed significant differentiation, as
well as on the technical stability and immersive quality of the
videos themselves. Based on the criteria, 10 video clips (in Figure 1)
demonstrating superior emotional elicitation validity and visual
immersion were selected from the original pool of 20 candidates to
constitute the final experimental stimulus set, as detailed in Table 1.
Videos with identifiers beginning with “V” denote the final selected
materials. The video library covers all eight possible combinations
of the three dimensions of P, A, and D, including their positive and
negative variations £P, A, £D.

3.2 Questionnaire design

The paper employed structured questionnaires to quantify
the subjective experiences and individual characteristic variables
of vparticipants throughout the experimental process. The
questionnaire system consisted of four distinct instruments: one
pre-test questionnaire and three post-test questionnaires. The pre-
test questionnaire was designed to be completed before the formal
experiment and aimed to collect base information of participants.
The post-test questionnaires were completed after viewing each
experimental video, and were used to evaluate subjective emotional

1 https://dl.acm.org/doi/10.1145/3495002

2 https://github.com/JuneQCX/Emotion-Inducing-Video- Library
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FIGURE 1
Selected videos for the formal experiment.

h.l 4

TABLE 1 Library of VR emotion-eliciting videos.

ID Name PAD P A D

Vo1 The Soviet-German battlefield in World War II -P+A-D 24£06 7.6 £0.5 31406
V02 Concept car experience —P—-A+D 32+£05 29+04 7.14+0.5
Vo3 Roller coaster experience +P+A+£D 6.8£0.7 82+04 5.6+0.8
Vo4 eruption +P +A+D 7.0£0.5 7.94+0.6 6.9+0.5
Vo5 escape from prison —P+A+D 35407 7.1+0.6 6.240.6
Vo6 Interact with a puppy +P—-A-D 82+0.5 35£05 40406
Vo7 forest —P+A -D 2.7+0.6 73104 3340.6
Vo8 Post war ruins —-P—-A-D 2.1+0.5 3.14+0.6 25+0.6
Vo9 beach +P —-A+D 7.5+0.5 3.1+0.6 6.7+£0.4
V10 rocket launching +P +A -D 6.5+04 82+04 42405

states, sense of presence, and emotional responses within the
virtual reality environment.

The pre-test questionnaire consisted of a total of 12 items
(see Table 2), including basic personal information, familiarity with
VR and the video stimuli, and individual immersion propensity.
Specifically, the immersion tendency section was adapted from
the Immersion Tendency Questionnaire (ITQ) scale (Russell,
1980), and a five-point Likert scale was employed to quantify
subjective traits. To control for potential confounding effects of
familiarity with video content on emotional responses, an item
measuring “familiarity with the video content to be viewed” was

Frontiersin Psychology

included in the pre-test and used as a covariate in subsequent
analyses.

The post-test questionnaires were used to assess participants’
emotional changes and experiential feedback after watching each
VR video. After watching each video, participants were required to
complete three separate questionnaires:

e The Self-Assessment Manikin (SAM) Scale, which uses
pictorial representations to measure emotional responses
along the dimensions of pleasure, arousal, and dominance (see
Figure 2).
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TABLE 2 Pre-test User Questionnaire

ID Item

1 Field of study/professional background.

2 Do you frequently use VR devices or experience VR content?

3 I tend to become easily absorbed in the plot of movies or TV
shows.

4 I tend to be less affected by external distractions when

immersed in an activity.

5 I often lose track of time during immersive experiences.

6 In states of immersion, my emotions fluctuate noticeably in
response to environmental stimuli.

7 I typically experience heightened realism or a sense of “being
there” when viewing VR content.

8 I believe the level of immersion influences my emotional
responses to content.

9 I am familiar with the content of the VR videos I am about to
watch.

e The PAD (Pleasure-Arousal-Dominance) Scale, designed to
capture the direction and intensity of the participants’
subjective emotions during viewing (see Table 3).

e The Presence Questionnaire, which included items such as

» o«

“sense of being there;” “reduced awareness of reality,” and

“environmental realism” (see Table 3).

Based on the collected questionnaire data, emotional labels
were quantitatively processed. A total of 12 items (Q1-Q12)
from the PAD-based questionnaire were used to characterize the
three emotional dimensions. The values for each dimension were
calculated according to the Equations 1 -3,

Pleasure:
P=Q1—Q4+Q7—Q10 )
4
Arousal:
A= —Q2+Q54—Q8+Q11 @)
Dominance:
D:Qa—Q5+Q9—Q12 3)

4

To support model training in classification tasks, the study
maps PAD coordinates to discrete emotion categories by calculating
the Euclidean distances between individual PAD coordinates and
predefined emotion prototype points. Each PAD coordinate is
assigned the label of the emotion category whose prototype is
closest in the emotional space. The mapping process effectively
converts subjective assessment results into categorical labels
while preserving the continuity of emotional expression, thereby
establishing an emotion labeling framework suitable for machine
learning. The approach facilitates the subsequent training and
evaluation of emotion recognition models.
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3.3 Ethical review

Given the socio-humanistic dimensions of the

experiment, which involves participants’ psychological well-being

strong

and privacy protection, the experimental procedures were strictly
standardized to safeguard the safety of the subjects and the
credibility of the results. The study implemented ethical review
and professional evaluations before the experiment.

After clarifying the experimental process, the research team
invited experts from the Department of Psychology and the field of
cognitive neuroscience at Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences, to evaluate the experimental
design and materials. Particular attention was given to assessing the
potential psychological effects of the video content on participants.
Upon expert review, it was confirmed that none of the materials
contained violent, frightening, or trauma-inducing scenes, thereby
ensuring that the experiment would not induce long-term adverse
psychological effects.

To protect participant privacy, all data collected throughout
the study were anonymized and subjected to strict access control
measures.

3.4 Experiment procedure

The study recruited a total of 38 participants through online
social platforms and campus bulletins. All volunteers had normal
auditory and visual abilities, with no history of severe visual
impairment or neurological disorders. Prior to the experiment, the
research staff once again explained the purpose and procedures of
the study to the participants. Each volunteer was required to sign an
Informed Consent Form, which detailed the specific content of the
experiment, expected duration, potential risks, participant rights,
and the scope of data usage. Participants were explicitly informed
of their right to terminate the experiment at any time. All collected
data were anonymized, stored solely for research purposes, and not
used for any commercial applications.

The study employed the Meta Quest Pro as the primary head-
mounted display (HMD) and utilized the Unity platform to develop
multi-dimensional emotion elicitation scenarios (see in Figure 3a).
By integrating functionalities such as video playback and interactive
logic within a unified engine, the experimental procedure achieved
both stability and flexibility, while also facilitating future scalability.
For physiological data acquisition, a jskj-pf GSR sensor was used to
capture electrodermal activity in real time. The sensor was attached
to participants’ fingers to continuously monitor changes in skin
conductance under various emotional stimuli(see in Figure 3b). Eye
movement data were collected using a plugin integrated within
the Unity environment. Metrics such as gaze position, fixation
duration, pupil diameter variation, and blink frequency were
recorded. The parameters provide insights into the distribution
of attention and psychological responses in specific emotional
contexts.

The experiment consists of three stages: the pre-test, the
video viewing, and the post-test stage. During the pre-test
stage, participants read the experimental instructions, signed the
informed consent form, became familiar with the physiological
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Valence = B K o
Dimension j E j E j E j E
Unpleasant QO O O O O O Pleasant
1 2 3 4 5 6 7 8 9
I o I o R o
Arousal
Dimension * IOﬁ j O E
Excited O O O O O O O O O Calm
1 2 3 4 5 6 7 8 9
Dominance
Dimension ﬂ
Lack of Control O O O O O O O O (O  InControl
1 2 3 4 5 6 7 8 9
CAM cosle

TABLE 3 PAD emotion scale.

Emotion Emotion
1 Angry o o o o o o o o o Activated
2 Wide ° ° o o o o o o o Sleepy
3 Controlled o o o o o o o o o Controlling
4 Friendly o o o o o ) ) ) o Scornful
5 Calm o o o o o o o o ) Excited
6 Dominant o o o o o o o o o Submissive
7 Cruel o o o o o o o o o Joyful
8 Interested o ° ° o o o o o o Relaxed
9 Guided o o o o o ) ) ) o Autonomous
10 Excited o o o o o o ) ) o Enraged
11 Relaxed o o o o o o o o o Hopeful
12 Influential o o o o o o o o o Influenced

signal acquisition equipment and HMD, and completed the pre-
test questionnaire. In the video viewing stage, each participant was
required to watch 10 videos. The viewing order was randomized
for each participant. After being fitted with the GSR sensor,

Frontiersin Psychology

participants viewed the videos via a VR headset (see in Figure 3c).
During the time, real-time EDA and eye movement signals were
recorded. In the post-test stage, immediately after each video
was played, participants completed three subjective questionnaires:
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FIGURE 3
Experiment procedure. (a) Multi-dimensional emotion elicitation scenario, (b) GSR sensor, (c) Participants in the experiment.

the Self-Assessment Manikin (SAM), the Positive and Negative
Affect Schedule (PAD), and a presence questionnaire. They then
proceeded to the next video and subsequent questionnaire round.
To mitigate fatigue effects, a short rest interval was provided
after each video. The total duration of the experiment for each
participant was maintained within 60 minutes.

3.5 Data preprocessing

As an essential physiological indicator reflecting the arousal
state of the autonomic nervous system, the galvanic skin response
(GSR) signal is highly sensitive to emotional fluctuations. After
baseline correction and standardization, the following features
were extracted from the raw signals: Mean GSR value, which
reflects the overall level of sympathetic arousal; Standard deviation
and variance, indicating the intensity of signal fluctuations and
dispersion, representing the magnitude of emotional changes;
Minimum and maximum values, capturing the lowest inhibition
point and the peak activation point under emotional stimuli. Due
to baseline correction, the values may be negative. Number of peaks
and troughs, representing the frequency of rapid increases and
decreases in GSR during stimulation, which reveals the intensity of
physiological reactivity to emotional stimuli; Peak-to-trough ratio,
used to measure the dynamic symmetry between rapid excitation
and recovery of the GSR signal, reflecting the symmetry and trend
of arousal responses. See Equation 4:

Number of Peaks

Ratio =
0= Number of Valleys + €

4)

where € is a small constant to prevent division by zero.

Each segment of the GSR signal was ultimately transformed
into a structured feature vector, affixed with a corresponding
emotional category label, and used for subsequent training of
machine learning models and emotion recognition tasks.

Eye movement data serve as a key indicator for revealing an
individual’s cognitive load, attention distribution, and emotional
state.

Regarding fixation characteristics, Identification by Dispersion-
Threshold (I-DT) was employed to identify fixation segments.
A threshold was predefined, and contiguous points where the

Frontiersin Psychology

angular velocity remained below the value for a certain duration
were classified as a fixation. Angular velocity was calculated using
Equation 5:

\/(xi—H —x)* + iv1 — i)’

wj

tiy1 — i ®
where (x;,y;) and (xit1,yi+1) denote the coordinates of the
user’s gaze points at times t; and t;4; respectively. For all detected
fixation segments, statistical measures were extracted, including the
number of fixations, mean fixation duration, standard deviation,
skewness, maximum fixation duration, and first fixation duration.
The metrics reflect the participant’s information uptake density and
visual dwelling preferences.

Saccade Characteristics: Non-fixation segments were classified
as saccades. A minimum duration threshold was applied, and the
following saccade features were extracted: number of saccades,
saccade duration, amplitude, direction angle, and path length.
Saccade amplitude and direction were calculated based on the
angular difference between the starting and ending gaze vectors,
while the path length was derived from the cumulative angular
changes along the saccade trajectory. The metrics help reveal
cognitive strategies during rapid visual information integration.
The saccade amplitude was computed using the spherical vector
angle formula, as shown in Equation 6:

7 - g 180
A = arccos(—=—22 g‘i X — (6)
gs| - 1gel T

where g; and g, end denote the unit gaze vectors at the beginning
and end of the saccade respectively.

Regarding blink characteristics, since the raw data did not
include annotated blink events, an adaptive threshold was
established based on the distribution of binocular Z-axis velocity
changes to detect abrupt shifts indicative of blinks. The identified
blink segments were used to compute metrics such as blink count,
mean blink duration, standard deviation, skewness, and maximum
duration. Among these, blink frequency and duration can reflect
the participant’s fatigue level, emotional fluctuations, and changes
in alertness.

To enhance the model’s ability to capture directional details in
eye movements, the angular changes of saccades were computed
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separately along the horizontal (X-axis) and vertical (Y-axis)
directions. The approach helps characterize directional biases in
visual scanning, reflecting underlying tendencies in attentional
allocation.

Skewness (see Equation 7) and kurtosis (see Equation 8) are
used to characterize the asymmetry and outlier distribution of eye
movement behavior. The formulas are as follows:

1 )3

Skewness = % (7)
(52 (i — X))
1 )4

Skewness = — DG it (8)

G X -

To account for the synergistic or compensatory relationship
between head and eye movements in certain scenarios, head
rotation components (Head Rotation X/Y/Z/W) derived from
quaternion analysis were incorporated into the feature set. The
rate of change per unit time was computed as dynamic head
motion features, capturing the influence of head movement on
gaze behavior. Statistical features were extracted within each time
window.

All eye movement features were sampled at the frame
level, processed using sliding-window statistics, and subjected to
outlier removal, resulting in stable and reliable individual feature
sequences. During acquisition, both the GSR sensor and eye-tracker
were synced to the VR system clock. We downsampled the eye data
to match the GSR sampling rate by grouping gaze samples into
1-second windows aligned with GSR timestamps. Conversely, for
each eye frame we associated the nearest GSR value. This ensured
that each feature vector in our model had correctly paired eye and
GSR inputs.

4 Multi-modal temporal emotion
detector

To mitigate potential information loss associated with manual
feature engineering, the paper adopts a raw time-series-based
modeling approach Multi-Modal Temporal Emotion Detector
(MMTED). In MMTED, an end-to-end architecture is employed to
automatically learn salient temporal features directly from the input
signals. The overall model structure consists of three components:
GSR feature extraction, eye movement feature extraction, and
feature concatenation and output, as illustrated in Figure 4.

The GSR feature extraction module comprises two parts: A
convolutional layer that captures local trends and short-term
dynamic patterns, and a Transformer module that models
global dependencies and temporal evolutionary structures.
The standardized GSR signal sequences are fed into a one-
dimensional convolutional layer containing multiple kernels
and ReLU activation functions. The module primarily extracts
key morphological characteristics such as local fluctuations and
variation rates, as specified in Equations 9, 10.

H; = ReLU(Convl1D;(X;,)) 9)
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H, = ReLU(Conv1D,(Hy)) (10)

Where the receptive field of the first convolutional kernel is set
to k = 5, and that of the second kernel to k = 3. The first layer
contains 64 convolutional kernels, while the second layer contains
128. The output feature sequence from the convolutional layer,
denoted as Hy, has the shape RE*T*4, where d represents the output
dimension of the convolution.

The output is then fed into a Transformer module, which
integrates a multi-head self-attention mechanism with feed-
forward networks. The structure enables the model to capture long-
range dependencies between different time steps in the sequence
and dynamically adjust the focus on critical segments based on self-
attention scores. Given an input H, the attention output is given by
Equation 11:

T
Attention(Q,K, V) = softmax(QL)V (11)

i

where:
Q=HWLK = HWK, v = HWV

Then the multiple attention heads are processed in parallel and
subsequently concatenated, as expressed in Equation 12.

MultiHead(H) = Concat(head,, . . . ,headh)WO (12)

Each encoder layer’s output is connected with residual
connections and layer normalization., as shown in Equations 13,
14:

H' = LayerNorm(H + MultiHead(H)) (13)

H"” = LayerNorm(H + FEN(H')) (14)

where FFN denotes the feedforward neural network:
FFN(x) = max(0,xW1 + b;)W, + b, (15)

The model employs a 2-layer stacked Transformer encoder
with 4 attention heads and a feed-forward dimension of 256.
The temporal representation produced by the Transformer is
condensed into a fixed-length representation via global average
pooling, as specified in Equation 16.

1 T
H= ) Hoult] (16)
=1

The entire GSR feature extraction process can be summarized
as:

Zgsr = Transformer(Conv1D(Xggr)) (17)

Eye movement signals exhibit highly complex temporal

characteristics, encompassing both static fixation-related
information and dynamic saccadic and microsaccadic behaviors.

The signals can reveal subtle changes in cognitive processing and
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emotional responses. The paper introduces a pure Transformer-
based architecture that integrates global attention mechanisms
and nonlinear feed-forward networks to more effectively model
temporal dependencies and multi-scale dynamic variations in eye
movement signals. The overall eye movement feature extraction
process can be expressed as:
Zpyg = Transformer(Xpyg) (18)
After temporal modeling, the aligned GSR and eye movement
features are concatenated. The combined features are then pooled
to obtain a global representation, which is finally fed into a Softmax
classifier to predict the emotional label:

9 = Softmax(FC(Global AvgPool(Z))) (19)

5 Experiment and result

5.1 Experiment settings

The paper employs both the VREED dataset and the self-
constructed dataset. VREED is a publicly available multimodal
emotion recognition dataset designed for researching emotional
modeling in virtual reality environments. It utilizes immersive 360°
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videos to elicit authentic emotional responses from participants
while collecting multimodal data, including eye-tracking data,
electrodermal activity, and self-reported emotion ratings. The data
collection involved 34 healthy volunteers, each watching videos
lasting 1-3 minutes. Emotional states were measured along the
dimensions of arousal and valence.

To investigate the performance of the MMTED model
under varying task complexities, the study defines two emotion
recognition scenarios: a four-class task and an eight-class task.

The Four-class task uses the emotion labels provided by the
VREED dataset, emotions were categorized based on arousal
and valence levels. All samples were classified into four basic
emotional states: high arousal-positive valence, high arousal-
negative valence, low arousal-negative valence, and low arousal-
positive valence. The classification method is structurally simple
and clearly distributed, facilitating the validation of the proposed
emotion recognition model’s fundamental performance on the
public dataset.

The Eight-class tasks uses the self-constructed dataset. A more
fine-grained PAD (Pleasure-Arousal-Dominance) emotional space
model was adopted, introducing dominance as a third dimension
to more comprehensively capture an individual’s sense of control
and emotional expression in VR contexts.

Based on the tasks, three independent experiments were

conducted:
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TABLE 4 Performance Comparison in Experiment 1, 2, 3.

10.3389/fpsyg.2025.1709943

Dataset task Model Accu F1-score AUC

Experiment 1 VREED 4-Class SVM 62.38% 0.6082 0.8904
KNN 53.51% 0.5183 0.7421

Random Forest 65.12% 0.6385 0.3157

LightGBM 77.62% 0.7689 0.3986

LDA 79.23% 0.7827 0.4023

MMTED 85.52% 0.8428 0.9183

Experiment 2 Self-constructed 8-Class SVM 66.35% 0.6528 0.8852
KNN 58.24% 0.5783 0.8031

Random Forest 61.87% 0.5924 0.9015

LightGBM 59.12% 0.5726 0.8756

LDA 65.83% 0.6392 0.9189

CNN Transformer (GSR only) 82.15% 0.7521 0.9326

Transformer (Eye only) 84.76% 0.7812 0.9518

MMTED 89.27% 0.8421 0.9865

Experiment 3 VREED + 4-Class SVM 58.67% 0.5726 0.7584

Self-constructed

KNN 51.72% 0.5274 0.7389

Random Forest 64.39% 0.6391 0.8826

LightGBM 62.54% 0.6226 0.8613

LDA 55.59% 0.5538 0.4682

MMTED 85.29% 0.8432 0.9428

e A four-class task on the VREED dataset to validate the
effectiveness of the proposed model;

e An eight-class task on the self-constructed dataset to further
verify the MMTED model’s efficacy in higher-precision
classification;

e A merged four-class task using both VREED and the
self-constructed dataset to assess the usability of the self-
constructed dataset.

A stratified random splitting strategy was applied to divide
the dataset into training (80%) and testing (20%) sets, ensuring
consistent distribution of emotional categories across subsets.
To achieve efficient emotion classification and evaluation, the
following three metrics were selected:

e Accuracy: Measures the proportion of correctly classified
samples overall.

e F1-Score: Balances precision and recall, making it suitable for
imbalanced class distributions.

e AUC (Area Under the ROC Curve): Evaluates the model’s
overall discriminative ability across different thresholds, ideal
for probabilistic multi-class output tasks.

5.2 Results

To comprehensively evaluate the performance of the MMTED
model, the study compared it with multiple baseline models,
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including both traditional machine learning methods and deep
learning approaches, on the emotion classification tasks based on
the PAD model. The results are presented in Table 4.

The results of Experiment 1 demonstrate the MMTED model
achieved the highest accuracy of 85.52%, reflecting its strong
capability in capturing emotional features through end-to-end
modeling. Additionally, it attained an Fl-score of 0.8428 and
an AUC value of 0.9183, indicating a substantial advantage over
traditional machine learning methods. The iterative accuracy curve
during model training is illustrated in Figure 5a.

According to the results of Experiment 2, MMTED
outperformed traditional methods across all three evaluation
metrics, demonstrating its stronger modeling capability in
handling non-linear, high-dimensional physiological time-series
signals. Moreover, as shown in the Table 4, the accuracy achieved
through multimodal data fusion (89.27%) was significantly higher
than that of single-modality approaches (GSR: 82.15%; Eye:
84.76%). This once again validates the effectiveness of MMTED’s
multimodal fusion and underscores the strong complementary
relationships among different modalities in multimodal emotion
recognition tasks. The training accuracy iteration curve of the
fusion model is illustrated in Figure 5b.

Furthermore, we observed certain class imbalance issues in
the self-constructed dataset (Table 5). To address the issue, the
experiment employed Focal Loss in place of cross-entropy loss.
While cross-entropy assigns equal weight to every sample, Focal
Loss reduces the loss contribution from well-classified samples
(those with high confidence) while maintaining higher loss for

frontiersin.org



https://doi.org/10.3389/fpsyg.2025.1709943
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Qu et al.

10.3389/fpsyg.2025.1709943

Model Accuracy

Model Accuracy

Model Accuracy

0s o5
04

03

02

—— train Acc
—— test Acc

(a) (b)

FIGURE 5
Training accuracy iteration plot for MMTED.

00

Epach

TABLE 5 Number of samples for each of the 8 categories.

PAD Number of samples
+P+A+D 59
+P+A-D 54
+P—A+D 36
+P—A-D 28
—P+A+D 22
—P+A-D 42
—P—A+D 65
—P—A-D 60

TABLE 6 Learning rate and loss function optimization.

Loss LR Accu F1- AUC
score
Focal Loss 0.0001 86.45% 0.8321 0.9753
Focal Loss 0.0003 84.12% 0.8128 0.9632
Focal Loss 0.0005 89.21% 0.8512 0.9824
Cross-entropy 0.0001 88.92% 0.8621 0.9815
Cross-entropy 0.0005 89.27% 0.8421 0.9865
Cross-entropy 0.0007 75.84% 0.7243 0.8921

hard-to-classify examples. For a sample i with true class y; and
predicted probability p;; for the target class, Focal Loss is defined
as follows (Equation 20):

FL(pti) = —ae(1 — pri)” log(pei) (20)

where p;; denotes the probability that the i sample is classified
correctly, at is a balancing factor for class t, and y (often set to 2 Lin
etal,, 2017) is the focusing parameter that controls the emphasis on
hard-to-classify samples. When y = 0, Focal Loss is equivalent to
cross-entropy; when y > 0, it reduces the contribution of easy-to-
classify samples to the total loss, thereby focusing optimization on
hard examples. Adjustments were also made to the optimizer and
learning rate during training. The optimization process is detailed
in Table 6.
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To validate the model’s generalization capability and robustness
across different scenarios, the study merged data from the
VREED dataset and the self-constructed dataset to form an
aggregated dataset. The classification performance of various
models was compared on the combined dataset under a four-
class emotion recognition task (Experiment 3). The experiment
compared traditional machine learning methods, single-modality
deep learning models, and multimodal fusion models. The results
are presented in Table 4, which shows that MMTED achieved an
accuracy of 85.29%, significantly outperforming all other models.
The training accuracy iteration curve of the fusion model is
illustrated in Figure 5c.

When comparing the results across all three experiments, we
observed that MMTED achieved the highest accuracy on the self-
constructed eight-class task (Acc = 89.27%, F1 = 0.8421, AUC =
0.9865), while its performance was lowest on the mixed-dataset
four-class task (Acc = 85.29%, F1 = 0.8432, AUC = 0.9428).
The discrepancy can be attributed to differences between the
two datasets in terms of acquisition devices, scenario design,
participant demographics, and emotion elicitation intensity. The
inconsistencies led to a degradation in model performance when
generalizing across domains, making it challenging for the fusion
model to stably extract cross-modal features from the mixed
samples.

For each experiment, we conducted 5-fold cross-validation,
where each fold maintains the 80/20 split proportion. The results
are shown in Table 7.

The average accuracy across folds was within 1-2% of the 80/20
split result (Table 7), demonstrating stability. And the iterative
accuracy curve during model training is illustrated in Figure 6.

The results highlight the complexity and challenges of
cross-dataset modeling in physiological signal-based emotion
recognition. They also suggest that future research should
consider incorporating domain adaptation mechanisms or data
standardization methods to enhance the model’s generalization
capability in multi-source data scenarios.

5.3 Ablation studies
Ablation studies were conducted to analyze each module’s
contribution to the multimodal model’s performance, involving

systematic removal of attention modules, individual modality
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TABLE 7 5-fold cross-validation of experiment 1, 2, 3.

10.3389/fpsyg.2025.1709943

Dataset IEN Model Accu F1-score AUC

Experiment 1 VREED 4-Class SVM 59.38% 0.5713 0.8958
KNN 62.19% 0.8108 0.7029
Random Forest 61.90% 0.6206 0.8546
LightGBM 74.60% 0.7447 0.9190
LDA 76.19% 0.7636 0.3884
MMTED 85.94% 0.9125 0.9725

Experiment 2 Self-constructed 8-Class SVM 67.38% 0.6713 0.7962
KNN 54.05% 0.5269 0.8226
Random Forest 55.41% 0.5279 0.8754
LightGBM 54.05% 0.5145 0.4754
LDA 70.89% 0.6717 0.8299
MMTED 90.76% 0.9253 0.9711

Experiment 3 VREED + 4-Class SVM 55.88% 50.5453 0.7392

Self-constructed
KNN 57.53% 0.5754 0.7232
Random Forest 59.56% 0.5930 0.8420
LightGBM 63.24% 0.6313 0.8688
LDA 53.94% 0.5274 0.4429
MMTED 85.78% 0.8925 0.9520
TABLE 8 Ablation study analysis.

Model Attention Multi Accu Fl-score

MMTED Yes Yes 89.27% 0.8421

MMTED (no No Yes 86.46% 0.7824

attenion)

GSR-only - No 82.15% 0.7521

Eye-only - No 84.76% 0.7812

5-Fold Cr
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FIGURE 6
Training accuracy iteration plot for MMTED in 5-fold cross-validation. (a) Experiment 1: MMTED, (b) Experiment 2: MMTED, (c) Experiment 3: MMTED.

channels,

multimodal
against two unimodal baselines: a CNN-Transformer for
electrodermal activity and a Transformer for eye-tracking
data. The multimodal architecture integrates deep semantic
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(Table 8). To
fusion model was

and fusion layers evaluate the

approach, the compared

classification performance.

features from both modalities while employing attention
mechanisms to dynamically weight features, thereby enhancing

In confusion matrices, the multimodal model exhibits
stronger diagonal concentrations (Figure 7), indicating more

frontiersin.org


https://doi.org/10.3389/fpsyg.2025.1709943
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Qu et al. 10.3389/fpsyg.2025.1709943
1
° ° °
i @ v 2 o 1 0 s 0 60 @ ' 0 o 0 0 0 0 H 3 0 ) 0 2 ) 4
< o =
14
3 s > o ) ) 0 wo g, 2 o 0 2 3 1 > ' . s 5
< S s
2
~ o o
8- o o 3 n 2 20 ° - o o o o : . o )
< S 3 .
10
" 00 . "
3800 o o ° 1 o 0 0 -§- o o o 0 o o ol © o o o o o o
© £ 33
3 3 e 3
3y il s
L 0 $e %
R - 7 s ’ 120 0 1 B Fi. o 0 2 0 1 3 1 £3 o . ) 0
< S 3
6
» 0
£ o n 1 a £ 2 o - o 2 o 3 o 0 i " »
< S 3
"
© -1
e °
§-2ta s s ° 7 82 1 8- o 0 5 o 0 6 o ) v 2 o 1 o o
s 9
e 20 z 2
£- o 3 0 o 0 3 ° 2 - o 0 0 o 0 ) z 2.9 o o o o ° o )
< S 3
. . . . . . . . -0 t 9 -0 : 3 . -0
Class0  Class1  Class2  Class3  Classé  Class5  Class6  Class 7 Class0  Classl Class2 Cass3 Classé Casss  Casse  Class 7 Cais0 sl Qa2 Qi) Gemd  Gemd  Gemd  Cowd
Predicted Label Predic e | abiel Predicted Labe's
FIGURE 7

Confusion matrices of MMTED model vs. GSR-only models vs. eye-only models. (a) MMTED Model, (b) GSR-Only Models, (c) Eye-Only Models.

confident predictions and well-defined decision boundaries across
most emotion classes. Conversely, the eye-tracking unimodal

model shows substantial off-diagonal activation, revealing

higher classification uncertainty and vulnerability to sample
variations or feature deficiencies. This demonstrates the fusion

strategy’s effectiveness in mitigating overfitting/underfitting
limitations of unimodal approaches while improving
generalizability.

Experimental results confirm the attention mechanism’s
significant impact, boosting accuracy by 3.6% and validating its
feature-weighting efficacy. Furthermore, single-modality ablation
tests prove bimodal synergy substantially outperforms either
isolated modality, with the fusion layer playing a critical role in
integrating heterogeneous features.

Collectively, the proposed fusion model not only surpasses
the
integration,

baselines in overall performance but also validates

contribution of each component (multimodal
deep feature extraction) to its superiority, establishing a

transferable framework for future multimodal affective

computing research.

6 Conclusion

The shortage of datasets and the limited generalizability
of multimodal models have posed significant challenges to
emotion research in VR. To address the lack of VR emotion
recognition datasets, the study expands the VREED dataset
through new experiments. We developed VR scenarios for
emotion induction, integrating multimodal stimuli such as
auditory and visual content to elicit users’ emotional responses
across different dimensions. A total of 38 participants were
recruited and required to watch 10 carefully selected videos,
during which their electrodermal activity (EDA) and eye-tracking
data were continuously recorded. Based on the eye-tracking
signals, dynamic metrics such as fixations, saccades, and blinks
were extracted. The extracted features encompass time-domain
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statistics, frequency-domain measures, and dynamic behavioral
indicators, collectively forming the input vectors required for
model training.

To improve the accuracy of emotion recognition, the paper
designed a novel multimodal emotion recognition approach
named MMTED, which integrates convolutional neural networks
(CNN), Transformer, and attention mechanisms. By combining
subjective dimensions of emotion modeling with objective
signal features, a more discriminative recognition framework
was constructed. During model training and analysis, single-
modality and multi-modality strategies were compared, validating
that multi-source signal fusion enhances emotion recognition
performance. An end-to-end modeling approach based on CNN-
Transformer and pure Transformer architectures was applied
to process multimodal signals directly from raw physiological
data to emotional states. Experimental results showed that
MMTED achieved a highest average accuracy of 89.27% in
multi-class tasks, outperforming traditional machine learning
models. Ablation studies analyzing the contribution of attention
mechanisms and each modality further revealed the effectiveness
and complementarity of multimodal fusion. In response to the need
for personalized feedback in VR scenarios, an adaptive emotional
feedback mechanism was proposed, providing a theoretical
foundation for future personalized emotional interaction in VR
environments.

While the study has achieved certain results in physiological
signal-based emotion recognition in VR settings, several limitations
and areas for improvement remain. The sample size and data
diversity were limited, and issues such as data distribution bias, data
augmentation, and model generalization capability need further
addressing.
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