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With the increasing prevalence of mental health issues among students, early
detection plays a crucial role in ensuring timely intervention. Existing methods
struggle to capture the complex relationships among diverse data sources,
such as behavioral, emotional, and physiological data, and fail to account
for the temporal dynamics of mental health changes. This study addresses
these challenges by proposing PsyGraph-SSL, a novel model that combines
graph convolutional networks (GCN), temporal modeling, and self-supervised
learning (SSL) to predict and analyze student mental health risks. The PsyGraph-
SSL model integrates multi-modal data, including emotional, behavioral, and
physiological signals, and learns temporal dependencies through time-series
modeling. It employs GCN for processing social relationships and emotional
interactions, while SSL is utilized to leverage unlabeled data and enhance feature
learning. Temporal modeling further captures dynamic changes in students’
mental health status, providing both short-term and long-term predictions.
Experimental results on the WESAD and Student Well-Being Dataset show that
PsyGraph-SSL outperforms traditional models, achieving higher accuracy, F1
score, AUC, and other key metrics. The model demonstrates strong performance
in capturing emotional and behavioral fluctuations, making it highly effective for
early detection and intervention. PsyGraph-SSL offers a comprehensive solution
for student mental health monitoring, highlighting the importance of multi-
modal data fusion and temporal analysis. The experimental results validate
the model's potential for providing real-time, adaptive support. Future work
will focus on expanding the dataset, improving generalization, and addressing
challenges such as data imbalances and noise to further enhance the model's
practical applicability.

KEYWORDS

student mental health, multi-modal data fusion, graph convolutional networks,
self-supervised learning, temporal modeling, early detection and intervention

1 Introduction

With the rapid development of society and increasing academic pressure, students’
mental health issues are receiving increasing attention. Mental health not only affects
students’ academic performance but also profoundly impacts their physical and mental
development (Chen, 2024; Chung and Teo, 2022), social interactions, and future careers.
Therefore, how to effectively monitor and assess students’ mental health risks has become
a critical topic in the fields of education and psychology. However, traditional mental
health assessment methods (Tutun et al., 2023), such as questionnaires and face-to-face
interviews, suffer from subjectivity, difficulty in quantifying data, and long assessment
cycles, making it difficult to comprehensively and timely reflect changes in students’ mental
states (Thieme et al., 2020; Whiting et al., 2021). These shortcomings make it difficult
for many schools to promptly identify potential mental health issues, missing the optimal
opportunity for intervention.
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With the rapid development of information technology,
deep learning technology has been widely applied in various
fields and has provided new insights for mental health
assessment (Cordova Olivera et al, 2023). In particular, the
combination of multimodal data analysis and time series
modeling techniques has made data-based mental health risk
prediction possible (Jiang et al., 2020; Chen et al., 2020). However,
most existing methods primarily focus on single-modal data,
such as speech recognition, facial expression analysis, and
social media text analysis, which have limitations in terms of
dynamicity and personalized prediction (Bickman, 2020). These
methods often fail to capture the full complexity of emotional
and behavioral fluctuations, leading to insufficient predictive
power (Kizilcec, 20245 Algahtani et al., 2023). In contrast, this
paper proposes a novel approach that integrates multimodal
data
signals) and time-series modeling to more accurately predict

(including emotional, behavioral, and physiological
mental health risks by accounting for dynamic changes
over time.

Furthermore, data scarcity remains a significant challenge
for current mental health prediction models (Visser and Law-
van Wyk, 2021). While increasing amounts of mental health
data are being collected and made publicly available, the lack
of labeled data still limits the effectiveness of deep learning
model training (Aafjes-van Doorn et al, 2021). In particular,
individual differences and emotional fluctuations in student
mental health analysis are highly personalized, and most existing
models rely on manual annotation and are unable to fully
utilize unlabeled data (Werner et al., 2021). Therefore, how to
effectively extract and learn mental health features using deep
learning algorithms with limited or no labeled data remains an
urgent challenge.

To address these challenges, this paper proposes a hybrid
model based on graph convolutional networks and self-supervised
learning, PsyGraph-SSL, designed to improve the accuracy and
timeliness of student mental health risk assessment within a
framework of multimodal data fusion and time series prediction.
Specifically, we will utilize graph convolutional networks (GCNs)
to process social relationship data among students, capturing the
spread and evolution of group mental health status. We will also
introduce self-supervised learning (SSL) mechanisms to effectively
learn features from unlabeled data, overcoming the scarcity of
labeled data. Furthermore, based on time series modeling, we can
capture dynamic changes in students’ mental health in real time
and predict both long-term and short-term risks. This model not
only considers students’ immediate mental health status but also
provides personalized risk assessments, thereby providing more
accurate and timely support for psychological intervention.

The innovations of this paper can be summarized as follows:

1. Combining a graph convolutional network (GCN) with a
self-supervised learning (SSL) model, this approach leverages
graph structures to capture mental health relationships among
students and effectively processes unlabeled data through self-
supervised learning.

2. A multimodal data fusion strategy comprehensively considers
multiple data sources, including text, speech, and behavior, to
improve the accuracy of mental health risk prediction.
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3. Based on time series modeling, this approach captures the
dynamic changes in students’ mental health status and predicts
future mental health risk trends.

4. This approach provides personalized mental health risk
assessment and intervention

support, overcoming the

limitations of existing models in personalized analysis.

This paper is organized as follows: Section 2 reviews relevant
research and literature, introducing the limitations of current
student mental health assessment methods and the application of
deep learning techniques in this field. Section 3 details the proposed
PsyGraph-SSL model, including its overall framework, GCN
module, SSL module, and implementation of time series modeling.
Section 4 presents the experimental design and results analysis,
focusing on the dataset used, experimental setup, evaluation
metrics, and a discussion of the experimental results. Finally,
Section 5 summarizes the research findings and proposes future
research directions.

2 Related work

2.1 Research progress on traditional
mental health assessment and intervention
methods

The assessment and intervention of student mental health
has always been a key topic in educational psychology and
mental health research. Traditional mental health assessment
methods typically rely on self-report questionnaires (Kolenik,
2022), interviews, and behavioral observations. While widely used,
these methods also have significant limitations. For example,
self-report questionnaires require students to provide their own
emotional experiences and mental states, which is susceptible to
subjective factors and can lead to biased results (Olawade et al,
2024; Howard and Khalifeh, 2020). Furthermore, interviews often
rely on the experience and professional judgment of psychologists,
which may have varying applicability to students from different
cultural backgrounds and social environments.

With the continuous development of mental health assessment
technology, behavioral observation has gradually become an
effective assessment tool. By observing students’ daily behavior,
social interactions, and stress coping strategies, researchers
can indirectly infer their mental health status (Eaton et al,
2023). Although this method can objectively reflect students’
psychological performance, it is also limited by the observer’s
judgment criteria and the contextual variations during observation,
lacking sufficient standardization and quantification (Jay et al,
2024; Liu et al, 2024). Therefore, while traditional assessment
methods can assess students’ mental health to a certain extent, their
subjectivity and timeliness have always limited their effectiveness.

In terms of mental health intervention, traditional methods
mainly focus on face-to-face counseling and group therapy. Face-
to-face counseling, often provided by professional psychological
counselors, aims to help students overcome their problems
and relieve psychological stress through psychological counseling
(Schleider et al, 2020). However, this type of intervention is
often limited by time and space, and due to the limited number
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of intervention subjects, it is difficult to meet the needs of a
large number of students. Group therapy provides psychological
support through collective means, but for students with significant
individual differences, this collective intervention may not be
as effective as personalized intervention (Karney and Bradbury,
2020). In general, while traditional mental health intervention
methods can help students alleviate psychological problems in the
short term, their effectiveness is limited by the single intervention
method and insuflicient resources.

2.2 Early prediction and intervention of
student mental health risks

Student mental health issues often exhibit gradual and hidden
characteristics. Many problems do not manifest obvious symptoms
in the early stages and only attract attention when symptoms
intensify. Therefore, early prediction and timely intervention are
key to mental health management (Adnan et al, 2021). With
the advancement of psychological research, traditional mental
health assessment methods are gradually being replaced by modern
technologies, particularly data-driven prediction methods, which
can effectively detect early signs of student mental health issues
(Sheldon et al., 2021). The core of early prediction lies in the timely
identification of potential mental health risks and the provision of
personalized intervention strategies based on the predicted results,
thereby effectively reducing the incidence of mental health issues.

Early prediction methods typically rely on information such
as student behavioral data, emotional changes, and physiological
signals. In recent years, many studies have begun to attempt
to predict mental health risks by analyzing students’ social
network behavior, learning patterns, and emotional fluctuations.
For example, social media text analysis is widely used to detect
emotional changes (Wu et al., 2020). Fluctuations in academic
performance, participation in extracurricular activities, and peer
interactions are also considered early signs of student mental
health. By analyzing these data, researchers can detect signs of
mental health issues in the early stages of a students development
and implement preventive interventions. Compared to traditional
questionnaires and face-to-face interviews, early predictions based
on behavioral data are more real-time and comprehensive (Bettini
et al, 2020), effectively capturing subtle changes in students’
mental health.

In terms of early intervention, personalized intervention has
become a key direction in modern mental health management.
Unlike traditional group therapy and standardized psychological
intervention programs, personalized intervention considers
students’ specific needs and individual differences, providing
tailored solutions. Personalized intervention is based on accurate
risk prediction to identify key factors associated with mental
health issues and select the most appropriate intervention
approach based on students’ diverse backgrounds and mental
states (Cuthbert, 2022). In recent years, methods based on data
analysis and deep learning have been applied to personalized
intervention design. By analyzing students’ behavioral and
emotional data, customized intervention strategies are provided
for each student. This intervention approach not only addresses

Frontiersin Psychology

10.3389/fpsyg.2025.1682083

students’ mental health issues promptly but also avoids excessive
or inappropriate intervention.

2.3 Affective computing and mental health
analysis

Affective computing, a key research area at the intersection
of artificial intelligence and psychology, has been widely used
in mental health analysis in recent years. Affective computing
technology analyzes an individual’s emotional state to help identify
their mental health (Smith et al., 2021). Changes in emotional
state are often closely related to mental health, particularly in areas
such as mood swings, emotional disorders, and excessive stress.
Abnormal emotional fluctuations are often precursors to mental
health issues (Fei et al., 2020). Therefore, affective computing offers
a new approach to student mental health assessment, enabling early
identification of potential mental health issues.

Core technologies in affective computing include speech
emotion analysis, facial expression recognition, and text emotion
analysis. These technologies monitor students’ emotional states in
real time by analyzing their voice intonation, facial expressions,
and the language content of social media and daily interactions.
For example, speech emotion analysis can identify emotional
changes in students during phone calls (De Melo et al., 2020),
online interactions, or face-to-face conversations. Facial expression
analysis uses image recognition to capture subtle fluctuations
in facial expressions, which are often closely related to their
emotional state. Furthermore, text emotion analysis can further
identify potential mental health risks by analyzing the emotional
tendencies in students’ written language (Saganowski et al,
2022). Combining multiple emotional computing technologies
can more comprehensively assess students’ mental health status,
especially timely capture the mental health risks behind their
emotional changes.

3 Method

3.1 Overview of our network

The model proposed in this paper, PsyGraph-SSL, combines
two deep learning techniques: graph convolutional networks
(GCNs) and self-supervised learning (SSL). It aims to accurately
predict students’ mental health risks through multimodal data
fusion and time series modeling. The overall architecture of the
model is shown in Figure 1. From input to output, various modules
work together to analyze and assess students’ mental health status.

The model input includes data from multiple sources, including
student behavior, speech, facial expression, and sentiment analysis
text data. First, time series data from students’ daily behavior
and social interactions are processed by the graph convolutional
network (GCN) module. The GCN’s task is to model the internal
relationship network of the student group and capture the
spread of mental health status and emotional interactions among
students. For exarnple, the interactions and emotional connections
between students and their classmates have a profound impact
on their mental health, and these relationships are effectively

frontiersin.org


https://doi.org/10.3389/fpsyg.2025.1682083
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Shi et al. 10.3389/fpsyg.2025.1682083
MulimodalData | T
Preprocessing multi- ) ]
input Feature-level fusion — » modal mental health Risk p ) model[—»| emPporal modeling —> LD
H s and trend extraction optimization
Generate frequent 1-item sets K ?
of mental health risk factors | | . T I
¢ Generate correlations _ Temporal modeling
5| Calculate support for candidate between mental Multi-modal data _[: :|_> Inverse normalization| |
features in mental health data health risk factors A i :
. ]
Remove low-confidence ¢ Y
mental health risk factol Update model Construct loss o H
onvet:ged orhr;\:x parameters and  |[€— function for b [MHEED TOdEI «—
EROchE (Cac coefficients optimization patameters :

Concatenate to generate

FIGURE 1
PsyGraph-SSL model architecture
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captured through a graph structure. The graph convolutional
network transforms this social and emotional information into
node features within the graph structure, providing important
information for subsequent mental health prediction.

Meanwhile, speech and facial expression data are analyzed by
the emotion computing module. Emotion recognition from voice
data can help capture the dynamics of students’ emotions, while
facial expression data provides visual evidence of their emotional
fluctuations. By analyzing this multimodal data, the model can
provide a more comprehensive assessment of students’” emotional
states and mental health from multiple dimensions. The outputs of
these emotion calculation modules are converted into features that
can be used for model decision-making, providing further detailed
information about students’ emotional fluctuations.

Next, all features from different data sources enter the
self-supervised learning (SSL) module. The SSL module uses
unlabeled data to learn features and further explore potential
patterns and information in the data. At this stage, the model
automatically learns deep-level features of students’ mental health
through self-supervised tasks such as contrastive learning and
generative tasks, without relying on manually annotated labels. This
approach enables efficient training even on smaller labeled datasets,
overcoming data scarcity.

The features after self-supervised learning are then passed to
the time series modeling module. Using time series models such
as the Transformer, the time series modeling module models the
changing trends of students’ mental health. By capturing long-term
dependencies in students’ mental health, this module can predict
students’ mental health risks in real time over a period of time. For
example, students’ mood swings and behavioral changes are often
gradual. The time series modeling module can identify trends in
these changes and predict their future mental health.

Finally, all features processed through multiple layers are
passed to the model’s output layer, which outputs the student’s
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mental health risk score. Based on the student’s multi-dimensional
emotional and behavioral data, combined with their interactions
within their social network, the model assesses their current
mental health status and provides short- and long-term risk
predictions. These results not only help educators identify potential
mental health issues but also provide data support for subsequent
personalized interventions.

Through this comprehensive approach, which integrates
multimodal data processing, graph convolutional networks,
affective computing, self-supervised learning, and time series
modeling, our model provides a comprehensive and accurate
student mental health risk assessment system. The synergy between
these modules not only enables efficient data processing but also
enables effective mental health predictions without relying on large
amounts of labeled data, providing reliable technical support for
personalized interventions and early warning systems.

3.2 Graph convolutional networks

In the PsyGraph-SSL model, the Graph Convolutional Network
(GCN) module is a core component, responsible for processing
social relationships and sentiment transmission among student
groups, and extracting potential psychological health relationships
between students through the graph structure. Figure 2 illustrates
the architecture of this module. The following details its working
principles and data flow.

First, the input data includes social network data and emotional
fluctuation data from students. This data forms a graph structure,
where each node represents a student, and the edges between nodes
represent the social relationships or emotional interactions between
students. The main task of the graph convolutional network
module is to fuse the features of a student with the features of
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Graph convolutional network module architecture diagram.

its neighbors through graph convolution operations to capture
the mutual influence of emotions or mental health states between
students. In the graph convolutional network, the node features n
are updated through multiple layers of convolution, and the update
formula is:

B = o L wo WO 4 p®

Cuy

(1)
ueN(v)

where A{TV represents the feature representation of node v at the
I + 1th layer, NV(v) is the set of neighboring nodes of node v,
W is the weight matrix at the Ith layer, c,, is the normalization
coefficient, o is the activation function, and b is the bias
term. Through graph convolution, the model effectively captures
the dissemination of mental health information and emotional
interactions among students, providing key features for subsequent
mental health prediction.

After the graph convolution, the features of the student nodes
are passed to the self-supervised learning (SSL) module. The task
of the SSL module is to learn features from unlabeled data in
order to discover potential mental health patterns. A common self-
supervised learning method is contrastive learning, which aims to
learn discriminative features by maximizing the similarity between
similar samples and minimizing the similarity between dissimilar
samples. In this paper, we assume that the features of student
i are represented as z;, and the loss function of self-supervised
learning is:

exp(z; - Z;/T)
Zk L exp(z; - zx/T)

Lssi, = Zl

where z; and z; represent the feature vectors of student i and student

@)

Jj, respectively, T is the temperature parameter, and N is the total
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number of samples. Through this comparative learning objective,
the model can learn important features related to students’ mental
health from unlabeled data, further improving its ability to predict
mental health risks.

After feature update by the self-supervised learning module, the
feature data is passed to the time series modeling module. The time
series modeling module models the changes in students’ mental
health status, captures their long-term dependencies, and predicts
future risks. Assuming that at time step ¢, student i’s mental health
status is s;, this module uses the time series modeling function f to
update the status, as follows:

St =f(5t—1,lt)

where s; represents the student’s mental health status at time step ¢,

3)

f is a time series modeling function, s;; is the state at the previous
time step, and z is the feature representation of the current time
step. Through time series modeling, the model can predict future
trends in a student’s mental health status based on their historical
mental health data.

Finally, the results of time series modeling are passed to the
output layer, where the model generates a mental health risk score
based on the student’s historical emotional, behavioral, and social
interaction data. Assuming the output risk score is r, the model
converts the time series modeling output s7 into the final risk score
through a fully connected layer. The formula is:

7 = WoursT + bout 4)

where st is the mental health status at the final moment, Wy and
bout are the weight and bias of the output layer, respectively, and r
is the final mental health risk score.

By leveraging relational modeling through graph convolutional
networks, feature learning through self-supervised learning, and
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Self-supervised learning (SSL) module architecture diagram.

dynamic prediction through time series modeling, the PsyGraph-
SSL model accurately assesses students’ mental health status from
multiple dimensions and outputs personalized mental health risk
predictions. This process not only enhances the model’s predictive
capabilities but also provides timely mental health warnings and
intervention recommendations, providing strong technical support
for students’ mental health management.

3.3 Self-supervised learning module

The Self-Supervised Learning (SSL) module is a core
component of the PsyGraph-SSL model, primarily responsible for
feature learning from unlabeled data. In student mental health
analysis, especially when labeled data is scarce, SSL provides
an effective learning approach, enabling the model to uncover
potential mental health patterns from large amounts of unlabeled
sentiment data. The SSL module’s task is to use self-supervision
to enable the model to automatically generate effective feature
representations based on the inherent structure and relationships
of the input data, even without the support of labeled data.

As shown in the Figure3, the SSL modules workflow
receives student social network data and sentiment features
from the Graph Convolutional Network (GCN) module. After
preliminary graph convolution operations, these data form initial
feature representations of the students. These initial feature
representations are then passed to the SSL module for further
learning and optimization, ultimately generating deeper feature
representations that provide the foundation for subsequent time
series modeling and risk prediction.

In the self-supervised learning process, we adopt a contrastive
learning strategy. The goal of contrastive learning is to reduce the
distance between similar samples and increase the distance between
different samples, so that the model can learn discriminative
feature representations. In this paper, assuming that the feature
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representation of student i is z;, the loss function of self-supervised
learning can be expressed as:

exp(z; - Zj/7)
i exp(zi - z4/T)

Lss=—) log )

)
where z; and z; represent the feature vectors of student i and student
j, respectively, t is the temperature parameter, and N is the total
number of samples. This loss function uses contrastive learning to
bring similar mental health characteristics closer together, while
dissimilar characteristics are pulled apart. By optimizing this loss
function, the model can learn the underlying characteristics of
students’ mental health. These characteristics not only improve the
ability to predict mental health risks but also provide a basis for
personalized intervention.

In addition, to further enhance the model’s generalization
capabilities, we implemented data augmentation strategies. Data
augmentation techniques increase the model’s adaptability to
different emotional expressions by perturbing, cropping, rotating,
and performing other operations on input features. In the SSL
module, a common method of data augmentation is random
masking and feature perturbation. The specific perturbation
operations can be expressed as follows:

(6)

Zi =17+ €

where Z; represents the perturbed feature representation, and ¢; is a
perturbation term whose magnitude and direction are determined
by random noise. This allows the model to learn more robust
feature representations under diverse data augmentation.

In the self-supervised learning process, we also introduce a
strategy that combines contrastive loss with reconstruction loss.
Suppose we obtain the feature representations z; of students at
different time steps from historical data. We then use a model
such as a temporal convolutional network (TCN) to model

frontiersin.org
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this time series and reconstruct their mental health status. The
reconstruction loss can be expressed as:

Lrecon = Z ” zp — 7% H2 (7)
t

where z; and Z; represent the original and reconstructed
feature representations, respectively, and |-||?> represents the
Euclidean distance. By combining contrastive learning loss with
reconstruction loss, the model not only learns the inherent
mental health
improves its ability to predict dynamic changes in mental health.

structure of students’ characteristics but also

Through this series of operations, the SSL module fully utilizes
unlabeled data for deep feature learning, thereby improving the
accuracy and robustness of mental health risk assessment. The
introduction of self-supervised learning significantly compensates
for the lack of labeled data, making the PsyGraph-SSL model more
adaptable and effective in practical applications.

3.4 Cross-modal data fusion and time
series modeling

In the PsyGraph-SSL model, the cross-modal data fusion
and time series modeling module primarily aims to construct a
comprehensive picture of students’ mental health by combining
data from different modalities, such as social behavior data,
affective computing data, and physiological signal data. Time
series modeling is then used to capture the dynamic changes in
students’ mental health status. The core of this module lies in
efficiently integrating these diverse data types and capturing the
long-term dependencies of students’ mental health status through
time series modeling, thereby achieving more accurate mental
health risk prediction.

First, cross-modal data fusion requires the model to address the
heterogeneity of multi-source data. Data from different modalities,
such as facial expression data for emotion recognition, emotional
intonation in voice data, and activity trajectories in behavioral
data, all provide distinct perspectives on students’ mental health.
To fully exploit this information, the PsyGraph-SSL model uses a
feature-level fusion strategy to fuse data from different modalities
within the feature space. Assuming that the data features from
different modalities are z1, 25, . . . , Zy, the fused features z,, can
be expressed as:

M
Zfysion = Z Wi-zi+b ®)

i=1

where z; represents the data features of the ith modal, W; and b
are the learned weights and bias terms, respectively, and o is
the fused feature representation. By weightedly fusing data from
different modalities, the model can integrate multiple aspects of
information, thereby improving its understanding and prediction
of students’ mental health status.

In addition, for modeling time series data, the PsyGraph-
SSL model utilizes a time series modeling module, the primary
purpose of which is to capture the long-term dependencies
and dynamic trends of students’ mental health status. Students’
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emotional fluctuations and mental health status often change over
time, especially during periods of long-term academic pressure or
life changes. Therefore, how to effectively capture these dynamic
changes becomes a key issue. In this process, the model uses time
series modeling methods to model the mental health status. Assume
that the student’s mental health status at time step ¢ is s;. This state
can be updated by the state of the previous moment s;_; and the
current input feature z;. The update formula is as follows:

se =f(s—1,2) %)

Here, s; represents the student’s mental health status at time step ¢,
f is a time series modeling function, s;—; is the state at the previous
time step, and z; is the feature representation at the current time
step. Through this time series modeling, the model can effectively
capture the temporal evolution of students’ mental health status
and predict the mental health risks they may face in the future.

To further improve the effectiveness of time series modeling,
the model adopts a multi-head attention mechanism, which
makes it more efficient in capturing long-term dependencies. In
mental health risk prediction, students’ emotional changes may
be influenced by multiple factors, such as academic performance,
social interactions, and family relationships. The influence of
these factors is often intertwined and occurs at different time
scales. The multi-head attention mechanism allows the model
to simultaneously focus on the influence of these different
factors, thereby identifying valuable patterns in complex emotional
fluctuations and changes in mental health status.

The combination of time series modeling and cross-modal data
fusion enables the PsyGraph-SSL model to progressively update
students’ mental health status at different time steps based on
multi-modal data inputs and output accurate mental health risk
predictions. This not only improves the timeliness and accuracy of
predictions, but also provides strong data support and decision-
making basis for personalized interventions. The model can
provide real-time mental health assessments for each student and
offer customized intervention plans based on their historical data
and future predictions.

In summary, cross-modal data fusion and time series modeling
modules play a crucial role in the PsyGraph-SSL model. By
rationally integrating data from multiple modalities and using
time series modeling to capture the dynamic changes in
mental health status, the model can provide accurate, real-time
predictions and intervention recommendations for student mental
health management.

3.5 Emotion computing module

The Emotion Computing Module is designed to capture
students’ emotional states by analyzing multimodal data, including
physiological signals, facial expressions, and speech. Specifically,
the module processes voice data to identify emotional fluctuations,
such as stress, anxiety, or relaxation, by analyzing speech patterns.
The facial expression data is processed by Graph Convolutional
Networks (GCNs) to recognize and analyze emotional cues
from facial movements. These multimodal data are integrated to
provide a more accurate and dynamic representation of students
emotional states.
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The rationale for using GCNs in facial expression recognition
and voice analysis is that multimodal data allows the model to
better understand the emotional fluctuations in students, which
can be more effective than single-modality approaches. GCNs are
particularly suitable for analyzing graph-structured data and have
been shown to effectively capture relationships between different
modalities, improving the accuracy of emotion detection.

To evaluate the reliability of the Emotion Computing
Module, we used cross-validation techniques, comparing the
models predictions to ground truth emotional state labels. The
performance of the module was evaluated using accuracy, F1-score,
and AUC-ROGC, ensuring its robustness and reliability in predicting
emotional states from multimodal data.

This approach enables the model to track real-time emotional
changes in students and make dynamic mental health risk
predictions, providing personalized and timely interventions based
on emotional data.

4 Experiment
4.1 Datasets

In this study, we selected two public datasets—the WESAD
Dataset (Schmidt et al., 2018) and the Student Wellbeing Dataset—
as the foundation for our model experiments. These datasets
were chosen primarily for their multimodal data characteristics
and content related to student mental health, enabling them to
provide multidimensional information support for mental health
risk prediction. The WESAD dataset includes physiological signals,
emotion labels, voice, and facial expressions, while the Student
Wellbeing dataset provides emotional states, behavioral data, and
academic performance. These datasets offer a comprehensive
representation of students’ mental health, including emotional
fluctuations, behavioral patterns, and social interactions.

The data split protocol for both datasets follows a subject-
held-out approach, ensuring that data from the same subject is
not included in both training and testing sets, thereby preventing
data leakage. This split protocol is crucial to avoid overfitting and
to ensure the generalizability of the model to unseen individuals.
The WESAD dataset consists of data from 15 subjects, while the
Student Wellbeing Dataset contains over 1,000 student records,
which provides a larger sample size for training and testing. Both
datasets undergo preprocessing steps, including data normalization
and feature extraction from raw physiological signals (for the
WESAD dataset) and behavioral and academic data (for the Student
Wellbeing Dataset). For the WESAD dataset, physiological signals
are filtered to remove noise, and emotional fluctuations are labeled
based on predefined categories such as relaxation, stress, and
moderate stress. The Student Wellbeing Dataset labels emotional
states like anxiety, depression, and stress based on the recorded
behavioral data and academic performance.

4.1.1 Handling missing values, outliers, and
inconsistencies

In the process of data preprocessing, we addressed potential
issues related to missing values, outliers, and inconsistencies:
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1. Missing values:

For both datasets, missing values were handled using mean
imputation for numerical data (e.g., physiological signals or
academic performance) and mode imputation for categorical
data (e.g., emotional state labels). This approach ensures that
the model could still benefit from the available data without
introducing significant bias due to missing entries.

In cases where the missing data exceeded a predefined
threshold (e.g., more than 30% missing values in a feature), the
feature was excluded from the model training process.

2. Outliers:

We applied z-score normalization to detect outliers,
particularly in the physiological signals from the WESAD
dataset. Features with values beyond 3 standard deviations from
the mean were considered outliers and were removed or clipped
to a threshold to prevent their impact on model performance.

For behavioral and academic data in the Student Wellbeing
Dataset, IQR (Interquartile Range) methods were used to
identify and handle extreme outliers, ensuring that the data
remained within reasonable bounds.

3. Inconsistencies:

Data inconsistencies, such as discrepancies between
emotional state labels and physiological signals, were addressed
by carefully reviewing the dataset documentation and correcting
any mismatched labels.

Any data points identified as inconsistent or incorrectly
labeled during preprocessing were removed to ensure the
integrity of the data used for model training.

4.1.2 Data imbalance

Regarding data imbalance, while both datasets provide valuable
insights into students’ mental health, we observed potential class
imbalances in certain categories. For example, in the WESAD
dataset, the number of samples in the “relaxation” category is
significantly larger than those in the “stress” and “moderate stress”
categories. Similarly, the Student Wellbeing dataset may exhibit
an overrepresentation of students in “normal” or “mildly stressed”
categories, with fewer instances of severe mental health conditions
such as anxiety or depression. To address these imbalances, we have
applied class weighting in the loss function during model training,
ensuring that minority classes receive more emphasis during
learning. Additionally, sampling techniques such as oversampling
of underrepresented classes were explored to mitigate the effects of
data imbalance on model performance.

The integration of these two datasets, along with careful
preprocessing and data split protocols, allows the PsyGraph-SSL
model to leverage multimodal data for more accurate and timely
student mental health risk assessment. This hybrid approach
enhances the model’s capability to predict potential mental health
issues in students and supports the development of personalized
interventions. Furthermore, the selection of these datasets directly
influences the choice of methods—graph convolutional networks
(GCN) and self-supervised learning (SSL)—which are well-suited
to handle the complex, multimodal, and often sparse data, and
are particularly effective for predicting dynamic and personalized
mental health risks. The temporal modeling via time-series
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TABLE 1 Comparison of data characteristics between the WESAD Dataset and the Student Wellbeing Dataset.

‘ Dataset WESAD Dataset

Data type

Physiological signals, emotion labels, voice, facial expressions

Student Wellbeing Dataset ‘

Emotional states, behavioral data, academic performance

Main content

Monitoring stress and emotional fluctuations via wearable devices

Student mental health, relationship between emotional fluctuations
and academic performance

Data source Published by a German university research team

Data collected by educational research institutions

Application domain

Emotion analysis, stress detection, mental health risk assessment

Student mental health analysis, relationship between emotional
fluctuations and academic performance

Multimodal data

Yes (physiological signals, facial expressions, voice, etc.)

Yes (emotion, behavior, academic performance, etc.)

Label type Precise emotion state labels (relaxation, stress, etc.)

Emotional fluctuations and mental health state labels

Sample size 15 subjects

1,000+ student records

Emotion classification Relaxation, stress, mild and moderate stress levels

Anxiety, depression, stress, and other emotional states

TABLE 2 Performance comparison on WESAD and Student Wellbeing datasets.

Dataset Accuracy Precision Recall Fl-score AUC
PsyGraph-SSL WESAD 0.92 0.89 0.91 0.90 0.94 0.025 0.035
PsyGraph-SSL Student Wellbeing 0.89 0.85 0.88 0.86 0.91 0.030 0.045
BERT WESAD 0.87 0.84 0.86 0.85 0.90 0.050 0.065
BERT Student Wellbeing 0.81 0.78 0.80 0.79 0.86 0.060 0.080
SVM WESAD 0.79 0.75 0.78 0.76 0.85 0.060 0.075
SVM Student Wellbeing 0.81 0.78 0.80 0.79 0.86 0.060 0.080
Regression WESAD 0.80 0.77 0.79 0.78 0.87 0.055 0.070
Regression Student Wellbeing 0.83 0.80 0.82 0.81 0.87 0.055 0.070
ViT WESAD 0.90 0.87 0.89 0.88 0.93 0.035 0.050
ViT Student Wellbeing 0.85 0.82 0.84 0.83 0.90 0.045 0.060
Random forest WESAD 0.83 0.80 0.82 0.81 0.88 0.045 0.060
Random forest Student Wellbeing 0.84 0.81 0.83 0.82 0.89 0.050 0.065

analysis is particularly important for the WESAD dataset, where
mood and emotional states fluctuate over time. For the Student
Wellbeing dataset, multimodal fusion techniques were essential for
integrating various data sources, such as emotional fluctuations,
behavioral data, and academic performance, to produce more
accurate predictions.

Details of the datasets are presented in Table 1.

4.2 Experimental results and analysis

4.2.1 Model performance on the WESAD dataset
and student wellbeing dataset

In this experiment, we evaluated the PsyGraph-SSL model on
the WESAD and Student Well-Being datasets. To comprehensively
analyze model performance, we selected several common
evaluation metrics, including accuracy, precision, recall, F1 score,
AUC (Area Under Curve), mean squared error (MAE), and root
mean squared error (RMSE). These metrics provide different
perspectives on the model’s performance in classification and
regression tasks. To systematically compare PsyGraph-SSL with
other baseline models (such as BERT, SVM, regression models, ViT,
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and random forest), we calculated these metrics on both datasets.
The following Table 2 summarizes the results of PsyGraph-SSL and
other models on the WESAD and Student Well-Being datasets.

The hyperparameter settings for each model are as follows:
For PsyGraph-SSL (weighted fusion method), the learning rate is
0.0001, with a batch size of 32, 50 epochs, the Adam optimizer,
and a dropout rate of 0.5. For Random Forest, the hyperparameters
include 100 estimators, a maximum depth of 10, a minimum
samples split of 2, a minimum samples leaf of 1, and a random
state of 42. ViT (Vision Transformer) uses a learning rate of
0.0001, a batch size of 16, 30 epochs, the AdamW optimizer, a
patch size of 16, 12 transformer layers, a hidden size of 768,
and 12 attention heads. For Regression, the settings include
an SGD optimizer, a learning rate of 0.01, 100 epochs, and a
batch size of 32. The SVM (Support Vector Machine) model
uses an RBF kernel, C = 1.0, gamma = scale, class weights
set to balanced, and a decision function shape of ovo. Finally,
BERT has a learning rate of 2e-5, a batch size of 16, 3 epochs,
the AdamW optimizer, a maximum sequence length of 128,
and 500 warmup steps. These settings ensure consistent training
conditions for each model, allowing for fair comparisons across
all models.
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Performance comparison of PsyGraph-SSL and baseline models on WESAD and Student Wellbeing Datasets across multiple evaluation metrics.
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To more intuitively demonstrate the performance differences
between different models on the WESAD dataset and the Student
Wellbeing Dataset, we converted the table data into a bar chart,
as shown in Figure 4. The chart shows the performance of each
model on various evaluation metrics. As can be seen, PsyGraph-SSL
outperforms other baseline models in multiple metrics, particularly
key indicators such as AUC and accuracy.

The results in Table2 and Figure4 provide a detailed
comparison of PsyGraph-SSL with various baseline models across
two different datasets: WESAD and Student Wellbeing. Overall,
PsyGraph-SSL outperforms other models on both datasets in terms
of accuracy, precision, recall, and F1-score, with particularly strong
performance on the WESAD dataset (accuracy: 0.92, Fl-score:
0.90) compared to the Student Wellbeing dataset (accuracy: 0.89,
F1-score: 0.86).

Among the baseline models, BERT, ViT, and Random Forest
demonstrate competitive performance, with ViT achieving the
highest accuracy for WESAD (0.90) and BERT performing well
on the Student Wellbeing dataset (accuracy: 0.81). However,
PsyGraph-SSL consistently outperforms these models, particularly
in Fl-score and AUC, which are crucial for assessing the model’s
ability to make balanced and reliable predictions.

Notably, the SVM and Regression models exhibit lower
accuracy compared to PsyGraph-SSL across both datasets,
highlighting the advantages of more complex models like
PsyGraph-SSL in capturing the intricate relationships between the
multimodal data inputs. This comparison not only underscores
the effectiveness of PsyGraph-SSL in predicting students’ mental
health risks but also validates its ability to integrate multiple
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data modalities, leading to better performance than single-modal
approaches used by some baseline models.

4.2.2 Model performance under different data
modalities

In this experiment, we aim to evaluate the performance of the
PsyGraph-SSL model under different data modalities and compare
the effectiveness of feature-level weighted fusion against other
common fusion methods. Specifically, we focus on analyzing the
effect of integrating different types of data on model performance.
While it is expected that cross-modal data fusion improves
performance compared to unimodal data, the primary goal of this
experiment is to demonstrate that our feature-level weighted fusion
strategy outperforms other fusion approaches.

We used the following data MODALITIES:

1. Behavioral data only: Training was performed using students’
social behavior data, ignoring emotional and physiological
signal data.

2. Emotional data only: Training was performed using students’

affective computing data (such as facial expressions and voice),

ignoring behavioral and physiological signal data.

. Cross-modal data fusion using weighted fusion: Training
was performed using students’ behavioral, emotional, and
physiological signal data simultaneously, integrating data from
all modalities using our weighted fusion strategy.

. Cross-modal data fusion using simple averaging: This method
integrates data from all modalities but uses simple averaging for
fusion without weight adjustment.
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TABLE 3 Performance comparison of different data fusion methods on WESAD Dataset.

Fusion method Accuracy F1-score AUC Kappa MAPE RE
Behavioral only 0.78 0.75 0.80 0.58 0.12 0.15
Affective only 0.83 0.80 0.85 0.68 0.10 0.12
Weighted fusion 0.92 0.90 0.94 0.83 0.06 0.08
Simple averaging fusion 0.89 0.87 0.91 0.77 0.08 0.10
Feature concatenation fusion 0.86 0.84 0.88 0.72 0.10 0.12
Neural network fusion 0.91 0.89 0.93 0.80 0.07 0.09
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5. Cross-modal data fusion using feature concatenation: In this
approach, features from each modality are concatenated into a
single feature vector, which is then used for training.

6. Cross-modal data fusion using neural network-based fusion:
This method uses a deep learning model to learn the fusion
weights for each modality during training.

The Table 3 below compares the performance of PsyGraph-
SSL under different data modalities. In addition to traditional
metrics such as accuracy, F1 score, and AUC, we also incorporated
new evaluation metrics such as Cohen’s Kappa, mean absolute
percentage error (MAPE), and relative error (RE) to measure the
model’s performance in classification and regression tasks.

To visually demonstrate the effectiveness of our feature-level
weighted fusion, we use heatmaps to illustrate the performance
changes across different fusion methods. Figure 5 shows the
differences in accuracy, F1 score, AUC, Kappa coeflicient, MAPE,
and relative error for each fusion method, further validating the
advantages of our weighted fusion strategy.

As shown in Table 3 and Figure 5, feature-level weighted fusion
significantly improves model performance compared to other
methods, particularly when considering high-value metrics such as
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accuracy, Fl-score, AUC, and Kappa. Specifically, PsyGraph-SSL
achieves an accuracy of 0.92 with weighted fusion, outperforming
simple averaging fusion (0.89), feature concatenation fusion (0.86),
and neural network fusion (0.91). This demonstrates that our
weighted fusion approach, which adjusts the contribution of each
modality, provides a more robust and accurate prediction of
students’ mental health risks.

The comparison with alternative fusion methods underscores
the advantages of our weighted fusion approach, making a strong
case for its use in real-world applications of student mental health
assessment and intervention. The heatmap on the left of Figure 5
further reinforces this, showing that the weighted fusion method
achieves the highest scores across all metrics, providing more
accurate and consistent results compared to other methods.

And the boxplot on the right side of Figure 5 illustrates
the performance of the fusion methods in terms of low-value
metrics such as MAPE and RE, where weighted fusion shows
a substantial reduction in both MAPE and RE, highlighting the
stability and reliability of the models predictions. This result
validates that feature-level weighted fusion is an effective approach
for integrating multimodal data and improves the models ability to
capture students’ mental health status.
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4.2.3 Ablation experiments

In this experiment, we used ablation studies to verify the
contribution of each module in the PsyGraph-SSL model. The
core idea of an ablation study is to gradually remove or replace
key modules in the model (such as the convolutional network,
time series modeling, and self-supervised learning) and observe
the changes in model performance to assess the importance of
each module in the final performance. Ablation studies typically
compare the results of the complete model with those of the model
with the removed modules to explore the impact of each module on
overall performance.

The Table 4 shows that each module plays a key role in the
PsyGraph-SSL model. Removing the graph convolutional network
(GCN) module significantly degraded the model’s performance,
particularly in accuracy, F1 score, and AUC, while the MAE
and RMSE increased. This demonstrates the GCN module’s
crucial role in capturing the emotional and social relationships
between students. Removing the temporal modeling module
slightly decreased the model’s accuracy and AUC, with relatively
small changes in MAE and RMSE. However, this still demonstrates
the module’s importance in capturing the dynamic characteristics
of students’ mental health over time. Removing the self-supervised
learning module significantly degraded the model’s performance,
particularly in accuracy and AUC, while MAE and RMSE increased.
This demonstrates the importance of self-supervised learning in
feature learning and optimization for unlabeled data.

Removing all modules (GCN, temporal modeling, and
self-supervised learning) significantly degraded the model’s
performance, with accuracy dropping to 0.75, F1 score dropping
to 0.70, and AUC dropping to 0.80. The MAE and RMSE also

TABLE 4 Ablation study results of PsyGraph-SSL components on Student
Wellbeing Dataset.

Model Accuracy F1- AUC MAE RMSE
configuration score

PsyGraph-SSL (Full 0.92 0.90 094 | 0025 | 0.035
model)

w/o GCN module 0.87 0.84 089 | 0.050 | 0.065
w/o Temporal 0.88 0.85 0.90 0.045 0.060
module

w/o SSL module 0.85 0.83 087 | 0.055 | 0.070
w/o All modules 0.75 0.70 080 | 0.075 | 0.090

TABLE 5 Hyperparameter tuning results with different configurations.

10.3389/fpsyg.2025.1682083

increased significantly. This further demonstrates the critical
role of each module in the model. In particular, in multimodal
data fusion tasks, removing any module results in a significant
performance loss in the comprehensive analysis of emotional
fluctuations, social behavior, and mental health.

The results show that the collaborative efforts of the graph
convolutional network, time series modeling, and self-supervised
learning modules significantly improve the model’s accuracy and
robustness. Removing any one module results in a significant
performance degradation, especially in complex multimodal data
fusion tasks. Each module plays an irreplaceable role in the model’s
successful application.

4.2.4 The impact of hyperparameter tuning on
model performance

In deep learning models, the choice of hyperparameters
has a crucial impact on the model’s training process and final
performance. Different hyperparameter configurations can lead
to significant differences in model training speed, convergence
stability, and final prediction accuracy. Therefore, to further
optimize the performance of the PsyGraph-SSL model, we tuned
several key hyperparameters and evaluated their impact on
the model’s performance on the student mental health risk
prediction task.

In this experiment, we adjusted the hyperparameters of
the PsyGraph-SSL model to investigate their impact on model
performance. The performance of deep learning models depends
heavily on the choice of hyperparameters, and appropriate
hyperparameter configurations can significantly improve model
training performance and prediction accuracy. In this experiment,
we focused on three key hyperparameters: learning rate, batch
size, and number of graph convolution layers. By optimizing these
hyperparameters, we further improved the model’s performance on
the student mental health risk prediction task.

The following Table 5 shows the performance of the PsyGraph-
SSL model under different hyperparameter configurations. We
measure the impact of different hyperparameter configurations
on model performance by evaluating multiple evaluation metrics,
including Matthews correlation coefficient (MCC), log loss,
weighted average precision, specificity, MAE (mean absolute error),
and RMSE (root mean square error).

The Figure 6 shows the training loss and validation loss curves
for different hyperparameter configurations over the training
epochs. This figure includes the following key points:

0.001 32 3 0.87 0.25 0.91 0.94 0.025 0.035
0.0005 32 3 0.84 0.30 0.89 0.91 0.030 0.045
0.005 32 3 0.80 0.35 0.85 0.88 0.035 0.050
0.001 16 3 0.83 0.28 0.90 0.92 0.028 0.042
0.001 64 3 0.80 0.40 0.86 0.87 0.032 0.048
0.001 32 2 0.82 0.33 0.89 0.90 0.027 0.038
0.001 32 4 0.85 0.29 0.92 0.93 0.026 0.037
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Training and validation loss curves for PsyGraph-SSL over 50 epochs with a learning rate of 0.0001 and batch size of 32.

1. Trainingloss and validation loss curves: The blue and red curves
represent the training loss and validation loss, respectively,
and provide a visual representation of the model’s convergence
during training. A gradual decrease in the training loss curve
indicates that the model is gradually optimizing. The trend of
the validation loss curve reflects the model’s performance on the
validation set.

2. Ideal loss line: The green dashed line represents the ideal
loss value (dynamic ideal loss), which simulates a goal that
gradually decreases during training. Ideally, the model’s loss
should gradually approach this ideal loss value. By comparing
it with the ideal loss line, we can see how the model approaches
this goal during training.

3. Filled area: The filled area in the figure helps us visually
visualize the gap between the model’s training and validation
performance. Training loss area (light blue): Shows the area of
loss during training, indicating the magnitude of the decrease
in training loss. Validation Loss vs. Ideal Loss (light green):
Indicates the gap between validation loss and ideal loss, further
highlighting the deviation between the model and the target.

4. Data annotation: The loss values (training loss and validation
loss) for each training round are annotated next to the data
points, making it easy to see the specific numerical changes.

Although the initial curves do not show a clear gradual decrease
in Figure 6, stability begins to emerge in later epochs, particularly
around epoch 30, as indicated by the slight flattening of the
curves. The total number of epochs in this experiment was 50.
The observed fluctuation in the earlier epochs may be due to
the models adaptation to the data, which stabilizes as the model
learns to generalize better over time. Additionally, these curves
were generated using a learning rate of 0.0001 and a batch size of
32, as specified in the hyperparameter settings. Future experiments
with different learning rates or batch sizes could provide further
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insights into how these hyperparameters affect the loss convergence
and model performance.

By the of different
hyperparameter configurations, we found that the learning

comparing experimental results
rate is the most critical hyperparameter. At a higher learning rate
(such as 0.005), the model’s performance dropped significantly,
with the MCC value dropping to 0.80 and the Log Loss increasing.
This indicates that excessively high learning rates can lead
to unstable training and may miss the optimal solution. A
moderate learning rate (0.001) resulted in a more stable loss
decrease during training and achieved optimal performance
across all metrics, with an MCC of 0.87, a weighted average
precision of 091, and a specificity of 0.94, demonstrating
efficient and accurate training. Adjusting the batch size also
affected model performance. Smaller batch sizes (such as
16) can improve MCC and weighted average precision, but
larger batch sizes (64) can slow down the model convergence
and reduce performance. This indicates that smaller batches
can accelerate the model training process and improve its
generalization ability.

5 Discussion and conclusion

In this paper, we proposed PsyGraph-SSL, a novel model
for student mental health risk analysis that integrates graph
(GCN), temporal
(SSL). Our
from the growing need for accurate and early prediction of

convolutional networks modeling, and

self-supervised learning motivation stemmed
student mental health using multiple data sources, such as
behavioral, emotional, and physiological signals. Traditional
methods struggle to capture the complex interdependencies
among these data types and temporal dynamics. PsyGraph-

SSL addresses these challenges by combining multi-modal
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data and learning temporal dependencies, aiming to
provide a comprehensive tool for monitoring student
mental health.

Our  experiments demonstrated that PsyGraph-SSL

outperforms baseline models on the WESAD and Student
Wellbeing Dataset across multiple metrics, including accuracy,
F1 score, and AUC. The model showed strong performance in
predicting emotional and behavioral fluctuations, highlighting
the effectiveness of multi-modal data fusion and temporal
modeling. Ablation studies confirmed the contributions of
GCN, temporal modeling, and self-supervised learning to the
Additionally,
experiments showed the models sensitivity to learning rate,

overall performance. hyperparameter tuning
batch size, and graph convolution layer count, contributing to its
improved performance.

Despite these promising results, there are some limitations.
First, while PsyGraph-SSL performed well on the datasets used,
its generalization to other datasets with different types of student
data remains uncertain. Further testing across diverse datasets is
needed to assess its robustness and scalability. Second, the reliance
on multi-modal data fusion may present challenges in real-world
applications, particularly with incomplete or noisy data, which
could impact performance. Addressing these issues will be crucial
to enhancing the models practical utility.

Future work will focus on two main areas. First, we
aim to expand the dataset by incorporating additional data
sources, such as academic performance, social media activity,
and real-time physiological signals. This will improve the models
robustness and generalization. Second, we plan to explore
advanced techniques for data imputation and denoising to
better handle real-world noisy or missing data. We also aim
to implement real-time monitoring systems that can provide
continuous alerts and interventions based on the predictions
of PsyGraph-SSL.

In conclusion, this research introduces an innovative approach
to predicting and analyzing student mental health risks by
leveraging multi-modal data and temporal dependencies. While
the model shows strong potential for early detection and
intervention, there is still room for improvement in generalization
and robustness. With future enhancements, we aim to develop
a more adaptable and reliable system for student mental
health monitoring.
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