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FastACl: a toolbox for
investigating auditory perception
using reverse correlation

Alejandro Osses, Azal Le Bagousse and Léo Varnet*

Laboratoire des systémes perceptifs, Departement d'études cognitives, Ecole normale supérieure,
PSL University, Centre national de la recherche scientifique, Paris, France

The fastACl toolbox provides a compilation of tools for collecting and analyzing
data from auditory reverse-correlation experiments. These experiments involve
behavioral listening tasks including one or more target sounds presented with
some random fluctuation, typically in the form of additive background noise. In
turn, the paired stimulus-response data from each trial can be used to assess
the relevant acoustic features that were effectively used by the listener while
performing the task. The results are summarized as a matrix of perceptual
weights termed auditory classification image. The framework provided by the
toolbox is flexible and it has been so far used to probe different auditory
mechanisms such as tone-in-noise detection, amplitude modulation detection,
phoneme-in-noise categorization, and word segmentation. In this article, we
present the structure of the toolbox, how it can be used to run existing
experiments or design new ones, as well as the main options for analyzing the
collected data. We then illustrate the capabilities of the toolbox through five
case studies: a replication of a pioneering reverse correlation study from 1975,
an example of reproduction of the analyses of one of our previous studies, a
comparison of the results of three phoneme-categorization experiments, and a
quantification of how noise type and estimation method affect the quality of the
resulting auditory classification image.

KEYWORDS

psychoacoustics, auditory classification image, reverse correlation, toolbox, open
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1 Introduction

Auditory reverse correlation (revcorr) is a psychophysical paradigm that allows to
determine which acoustic features in the test stimuli are effectively used as cues by
participants during a listening experiment, with only minimal prior assumptions. This
method relies on two critical ingredients: (1) the introduction of random fluctuations
into the stimulus (such as background noise) and (2) the trial-by-trial (“molecular;
or “microscopic”) analysis of the relationship between the specific noise samples and
the corresponding participant responses (Neri, 2018; Murray, 2011). By examining how
specific noise fluctuations drive specific responses from the listener or “observer;” this
technique provides a valuable insight into the perceptual process, that is not accessible
through classic (“macroscopic,” sometimes also referred to as “molar”) psychophysics
based on averaging over hundreds of trials.

The concept of a molecular approach was initially theorized by David Green, stating
that “The development of some form of molecular psychophysics seems as inevitable as the
development of more quantitative theories of sensory functions. Indeed, more and more
crucial tests of such theories will be possible on the molecular level as they become more
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exact and quantitative” (Green, 1964). Less than a decade later, this
prediction was proved to be correct when Ahumada and Lovell
applied the revcorr paradigm for the first time in a series of two
experiments focusing on the ability to detect a pure tone in a white
Gaussian noise masker. They applied a multiple regression analysis
to the spectral (Ahumada and Lovell, 1971) or spectrotemporal
(Ahumada et al., 1975) representation of the noise in each trial
to estimate the contribution of different auditory features to the
listeners’ decision regarding the presence or absence of the tone.
Their results showed that, in a tone-in-noise detection task, the
greatest perceptual weight is assigned to the signal frequency,
with negative weights at frequencies above and below the signal
frequency, and immediately before the signal. We present a
replication of these results in Section 6.1.

Since Ahumadas seminal studies, the reverse correlation
approach became very popular in psychoacoustic research. Recent
applications include studies on loudness perception (Ponsot
et al.,, 2013; Oberfeld and Plank, 2011; Fischenich et al., 2021),
tone-in-noise perception (Joosten and Neri, 2012; Schonfelder
and Wichmann, 2013; Alexander and Lutfi, 2004), modulation
perception (Joosten et al., 2016; Varnet and Lorenzi, 2022; Ponsot
et al, 2021), phoneme-in-noise perception (Brimijoin et al., 2013;
Mandel et al., 20165 Varnet et al., 2013, 2015a), word segmentation
(Osses et al., 2023), sentence recognition (Venezia et al., 2016;
Calandruccio and Doherty, 2007), and perception of paralinguistic
prosodic features (Ponsot et al., 2018; Goupil et al., 2021). The
results of reverse correlation experiments are typically displayed
as matrices of time-frequency weights, sometimes referred to as
auditory classification images (ACIs). For this reason, we will use
the terms “reverse correlation method,” “revcorr method,” and “ACI
method” interchangeably throughout this text.*

The core principle of the ACI method is to correlate
observer decisions with noisy stimulus features over large sets of
stimuli. Beyond this, the methodological details are left to the
experimenter’s discretion. For instance, the task could involve
detection or discrimination; noise levels could be fixed or adaptive;
and there could be one or multiple targets. Similarly, several
methods have been proposed for estimating the perceptual weights,
including correlation, logistic regression, or penalized regression.
All these specific experimental designs and analysis schemes can
be incorporated into a revcor experiment, provided that the noise
waveforms presented in each trial are recorded along with the
corresponding participant responses.

In this article, we introduce a framework for conducting
listening experiments and post-processing the collected data using
the reverse correlation method. Our primary motivation to develop
a new toolbox originated from the need to store all individual
waveforms used during the experimental sessions to derive the
ACI weights. Other well-established psychophysics tools, such as
those provided in the AFC (Ewert, 2013) or APEX toolboxes
(Francart et al., 2008) require the specification of target sounds, but
typically generate background noises on the fly, without tracking
the specific waveform presented with the target stimuli. A different

1 Strictly speaking, however, the auditory revcorr approach is not limited to
the auditory classification image but also encompasses other methods such

as the auditory-bubble approach (Mandel et al., 2016; Venezia et al., 2016).
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approach is adopted in tools such as the CLEESE toolbox (Burred
etal, 2019). However, while CLEESE provides a convenient means
to generate and store speech stimuli with random fluctuations
in prosody, it does not provide specific tools for running the
experiment or analyzing the collected data. A secondary motivation
for creating a new toolbox was therefore to integrate data analysis
tools within the same framework as the experiment. During data
post-processing, the revcorr method involves reading the labeled
responses and linking them with the dimensions of the test
stimuli representations, which are usually time and frequency. We
therefore decided to compile the required tools within a single
framework, enabling transparent replication of previous studies
and reproducibility of analyses. It should be highlighted, however,
that the toolbox was not designed to reanalyze existing datasets,
collected without the toolbox. Although this is possible in theory,
it would require the experimenter to reformat the datasets for
compatibility with the toolbox, as the post-processing modules
expect as input a complete data structure in a very specific format.

We aimed to make this toolbox a turnkey solution for
conducting revcorr experiments: installing the toolbox, setting
up, running, and analyzing a simple experiment should require
minimal effort from the experimenter. Another central objective
was to keep the framework flexible, allowing a straightforward
extensibility in future research. Historically, the revcorr method
has required many trial presentations—often in the order of
thousands—to derive clear time-frequency ACI weights. One long-
term goal of the project is to gradually reduce the number of trials
required to obtain ACIs. For this reason, we decided to name the
toolbox “fastACL.”? More generally, the fastACI toolbox can serve
for multiple purposes, allowing users to:

1. Conduct listening experiments, based on a single-interval yes/no
task or a two-interval forced choice, with one independent
variable (e.g., signal-to-noise ratio) that can be either adjusted
using an adaptive procedure or held constant at a predetermined
value using a constant-stimulus procedure.

2. Run listening experiments involving either human or artificial
listeners.

3. Automatically regenerate target sounds and background noises
corresponding to an experiment, even if the local waveforms are
no longer available.

4. Post-process the data collected on a listener using several
available statistical models to derive the time-frequency ACI
weights for this listener.

5. Provide an open-source framework for facilitating replication
and computational reproducibility in the field of auditory
revcorr.

In the following sections, we describe the general structure of
the fastACI toolbox (Section 2), how to run an experiment or design
new ones (Section 3), the conventions used for storing the data
(Section 4), and how to post-process the collected data (Section

2 As described in Sections 6.4 and 6.5, the tools included in the toolbox
already allow for a reduction in the number of trials needed, compared to
the traditional white noise + weighted sum approach, and additional tools

will be developed in the future to further improve efficiency.
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5). In a final section (Section 6) we illustrate the possibilities of the
toolbox through five case studies.

2 Structure of the toolbox

The fastACI toolbox—hereafter referred to as “the toolbox”—
is a command-line-based set of tools coded in MATLAB, openly
available on Zenodo (Osses and Varnet, 2021b) and hosted on
GitHub (https://github.com/LeoVarnet/fastACI). It has been tested
with Matlab versions between R2012b and R2024a on Windows,
Linux, and macOS. It borrows coding conventions from two
related packages, the AMT toolbox (Majdak et al., 2021) for the
management of parameters and naming of functions and the AFC
toolbox (Ewert, 2013) for the definition of experiments. Although
the toolbox was not designed for full compatibility with Octave, the
default pipeline can be executed with GNU Octave.?

The fastACI toolbox is based on two main modules for
data collection and data post-processing using the reverse-
correlation method. The main functions for these two modules
are fastACI_experiment.m and fastACI_getACI.m,
respectively, as indicated in the block diagram of Figure 1.

The data collection module, controlled by the function
fastACI_experiment.m, manages the entire workflow
of an auditory experiment, from generating the auditory
stimuli to presenting them to participants and recording

3 More specifically, experiments using stationary noise maskers can be run
with GNU Octave, and the simple weighted sum approach for data analysis
is supported as well. It is recommended to download AMT toolbox v1.0.0,
since later versions are no longer fully Octave-compatible. Advanced post-
processing approaches or stimulus manipulation, or simulations with an

artificial listener are not supported in Octave.

10.3389/fpsyg.2025.1668690

the behavioral responses (see Section 3). This module relies
on four experiment-specific configuration scripts - namely,
expName_cfg.m, expName_set.m, expName_init.m,
and expName_user.m - which specify the parameters of
the experimental protocol for the experiment with the custom
name “expName.” This provides an easy way for the user to
customize the experiment, such as selecting different target sounds,
turning off the feedback or the training (warm-up) session, or
modifying the rules of the adaptive procedure. The stimuli are
first generated and stored in a participant-specific folder, along
with a .mat file c¢fgcrea_*.mat summarizing all parameters used
during stimulus generation. During the data collection phase, the
auditory stimuli are retrieved from this directory and played back
to the participants. The system adjusts the sound level as well
as any other specified parameter—typically, the signal-to-noise
ratio (SNR)—to meet the experimental requirements. Participant
responses are recorded and saved in a .mat files (savegame_*.mat),
along with all parameters relevant to the experimental session,
ensuring reproducibility and transparency in data collection (see
Section 4).

The data post-processing module of the toolbox is managed
by the function fastACI_getACI.m, which implements the
reveorr analysis of the collected data (see Section 5). The function
takes as input the raw response data stored in the savegame_*.mat
file, along with several optional parameters that specify the details
of the analysis. The stimuli are either retrieved from the participant
folder or re-generated on the fly, and are then converted into
a particular matrix representation. This matrix representation is
typically a spectro-temporal representation, that can be changed
by defining an experiment-specific expName_dataload.m
function. These representations are then analyzed together with
the corresponding participant’s responses. The outcome of this
analysis is stored as a post-processed data file (ACI_*.mat). The

1. Data collection

Stimulus

Participant
initialisation

Cfg crea_*.mat Sound retrieval

Keyboard response

2. Post-processing:

Raw data
savegame_*.mat

generation

FIGURE 1

Block diagram of the data flow in the fastACI toolbox for an experiment called “experiment.” The blue blocks represent base functions and
subfunctions from the fastACl environment. The green blocks represent the elements that can be modified by the experimenter: the input arguments
to the base functions, the experiment definition consisting of four scripts (*_cfg.m, x_set.m, *_init.m, *_user.m), the noise waveforms
(generated by the *_init.m function) and the data-loading function *_dataload.m. The orange blocks represent the participants to the
experiment. The binary data generated during the experimental data collection or post-processing are indicated in gray text. An experimenter using
fastACI will start a experiment by running fastACI_experiment.m, either with the name of a pre-existing experiment or after creating a new
experiment. Then, participants interact with the experiment, while stimuli presentation and response collection are automatically handled by the
toolbox. Finally, the experimenter is able to analyze the collected data by running fastACI_experiment.m. More details are given in the text.

¥ Sound
representation
\J
Post-processed dat
ACI_*.mat
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modular design allows researchers to apply different analysis
techniques or modify parameters within fastACI_getACI.mto
explore various aspects of the results, making it a versatile tool for
auditory research.

3 Running an experiment

3.1 First-time use

Once downloaded from Zenodo (Osses and Varnet,
2021b), the fastACI toolbox can be initialized by running
startup_fastACI.m. This script automatically adds all the
necessary directories to the MATLAB path for the duration of the
current session, and checks for the required data folders (dir_data
and dir_datapost) and dependencies. Two third-party toolboxes
are mandatory: the AMT toolbox (Majdak et al., 2021) and the
LTFAT toolbox (Sondergaard et al., 2012) (included within AMT).
Additionally, several optional toolboxes may be used, such as the
AFC toolbox (Ewert, 2013), the PhaseRet toolbox (Priisa, 2017)
for generating tailored fluctuating noises (see Section 3.3), Praat
(Boersma and van Heuven, 2001) for analyzing the spectral content
of speech stimuli, and WORLD (Morise, 2016; Morise et al., 2016)
for dimensional noise approaches (not described here, see Osses
et al., 2023, for more details).

3.2 Running a pre-existing experiment

The toolbox offers a range of predefined experiments available
natively. The scripts describing each of these experiments are
stored in a separate folder under the directory ./fastACI-
main/Experiments/. A list of predefined experiments is provided in
Table 1.

An  experiment can be run using function
fastACI_experiment.m, which requires as input arguments
the participant ID, the experiment name, and, optionally,
the condition to be tested. For instance, in order to start
speechACI_varnet2013  for participant “S01”
using a white noise masker, the appropriate command is:
fastACI_experiment(’'speechACI_varnet2013’,
'Se1’, 'white’).

When running fastACI_experiment .m,itis first checked
whether the participant is being run for the first time (function
Check_local_dir_data.m). If previous sessions are found,
then the next trial is resumed assuming that all stimuli are

experiment

already on disk. If no previous session is found, the participant
is first initialized (function fastACI_experiment_init.m)
before the first session can start. In particular, all target and
masker waveforms are generated and stored in a participant-
specific directory, together with a cfgcrea_* mat file containing all
configuration settings for the experiment being ran (see Section 4).
Because of the large number of waveforms required for running
the experiments, this file also stores the seed numbers used to
generate all the noise waveforms. This feature enables the toolbox
to retrieve the exact same noise waveforms at any moment if
the local stimuli are removed from the computer. This action is
automatically performed if a previously created cfgcrea_*.mat file

Frontiersin Psychology
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TABLE 1 List of published fastACIl experiments, sorted by date of
publication (more recent first).

Experiment = Task Target Reference

name sounds

replication_ Tone-in- 100-ms 500-Hz Le Bagousse and

ahumadal975 noise pure tone or Varnet, 2025;
detection silence Ahumada et al.,

1975
speechACI_ Phoneme Pairs of phonetic Osses and Varnet,
Logatome categorization | contrasts using 2024;

/aba/, /adal/, Carranante et al.,
/agal, /apal/, /ata/ 2024
from the same
male speaker
Segmentation Word Pairs of Osses et al., 2023
segmentation homophonic
sentences in
French (e.g.,
“Clest 'amie” /
“C’est la mie”)
modulationACI AM detection 4-Hz modulated Varnet and
tone or pure Lorenzi, 2022
tone
(1 kHz carrier)
speechACI_ Phoneme /aba/-/ada/, Osses and Varnet,
varnet2013 categorization | female speaker 2021a;

Varnet et al., 2013
speechACI_ Phoneme /alda/-/alga/- Varnet et al.,
varnet2015 categorization | /arda/-/arga/, 2015a,b, 2016

male speaker

AM, Amplitude modulation.

is found on disk without finding the associated waveforms (see
Section 4.4).

Once the experiment is initialized (or resumed), the script
fastACI_experiment.m takes care of running the test,
collecting and storing the participant’s data, and adjusting the
experimental variable (expvar) from one trial to the next. The
function fastACI_trial_current.m, that describes the
structure of a trial, is iteratively called until the last trial of the
session or of the experiment is reached, or the participant requires
a break.

The function fastACI_trial_current.m is central to
the toolbox. It takes as input the parameters of the experiment
(stored in the cfg_game.mat) and current state of the experiment
(the structure data_passation), executes a single stimulus-response
trial, and updates the data_passation structure. During the trial, it
displays relevant information on-screen for the participant such as
the trial number, upcoming breaks, and available response options.
The stimulus—or stimuli in the case of a two-interval task—
is generated using the experiment-specific *_user .m function
(see Section 3.3) and played back using the audioplayer.m
function from MATLAB. The function Response_keyboard.m
then displays the different response alternatives on screen and waits
for an input of the participant. There are typically three possible
answers: the names of the two target sounds (by default the names
of the wavefiles, but we encourage experimenters to overwrite this
default using the “response_names” field of the cfg_crea structure)
and “press 3 to take a break.” In case of a two-interval forced-choice
task, the first two response options are “X first and Y second” and
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“Y first and X second,” with X and Y the names of the two target
sounds. The participants response is stored in the data_passation
structure together with the target actually presented, the current
value of expvar and the response time. Finally, the value of expvar
is updated, if needed, according to the specified staircase rules.
The information displayed on screen (e.g., feedback, instructions)
is largely customizable, and the most difficult experiment may also
include probe stimuli (easy stimuli presented periodically after N
trials) or a training (warm-up) session. If a training session is
requested, the Response_keyboard.m function displays four
additional options: listening to the original noise-free targets,
listening to the noisy stimulus again, or leaving the warm-up
session to start the main experiment. During the warm-up session,
a feedback on the answer is automatically provided before the next
trial begins.

3.3 Running a new experiment

As indicated by the green blocks in Figure 1, an experiment
is implemented by defining a compulsory number of four scripts
that are named with the experiment name (“experiment”) as
prefix. For instance, for experiment speechACI_Logatome, these
scripts are:

« speechACI_Logatome_cfg.m,
« speechACI_Logatome_user.m,
« speechACI_Logatome_set.m,
« speechACI_Logatome_init.m.

In general, we will refer to these scripts as the configuration
(*_cfg.m), (*_user.m), (*_set.m),
initialization (*_init.m) files. This experiment structure was
inspired by the definitions in the AFC toolbox (Ewert, 2013). The
experiment files are briefly explained in order of execution below:

*_set.m: The set-up file contains the definition of variables
that do not change during the experiment. There are no

user set-up and

compulsory variables to be defined here, but we recommend
specifying variables such as sampling frequency (cfg _game.fs),
presentation level (cfg_game.SPL), calibration level of the
waveforms (cfg_game.dBFS) and number of targets stimuli
(cfg_game.N_target). In this script, we also provide the possibility
to overwrite default parameters, such as the calibration level of the
playback (by default equal to cfg_game.dBFS) or the number of
total trials (cfg_game.N).

*_init.m: The initialization file generates the cfgcrea_*.mat
file and, if the sound stimuli are not yet stored on disk, prepares the
target sounds and generates the background noises. This script is
only run once, at the beginning of the experimental data collection.
The default method for generating noise waveforms is through the
Generate_noise.m function, although this can be customized
as needed in the initialization file. Several predefined noise types
are available, including white noise (“white”), pink noise (“pink”),
bump noise (“bumpvip2_10dB”), and MPS noise (“sMPSv1p3”).
The last two options correspond to maskers with a flat long-
term averaged spectrum, similar to white noise, but exhibiting
larger random envelope fluctuations (see Osses and Varnet, 2024
for a more detailed description). As discussed in Section 6.4, the
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enhanced fluctuations present in bump and MPS noise make them
more efficient than white noise for deriving an ACL

*_cfg.m: The configuration file contains all remaining
details for setting up the experiment. It is executed once at
the beginning of each experiment. This file defines the entire
experimental configuration, including mandatory parameters
such as the experimental variable expvar, whether it should be
changed adaptively from one trial to the next (cfg_game.adapt),
its initial value at the beginning of each experimental session
(cfg_game.startvar), and the number of trials per session
(cfg_game.sessionN). In most cases, the experimental variable
corresponds to the stimulus dimension that is systematically
varied during the experiment. For example, in speech-in-noise
tests, the stimuli are adjusted based on the signal-to-noise ratio
(SNR), whereas in amplitude-modulation experiments they are
varied in modulation depth. When a staircase method is selected
(cfg_game.adapt = “transformed-up-down” or “weighted-up-
down”), additional parameters should be specified, including
the step size (cfg_game.start stepsize), whether the scale is
linear or logarithmic (cfg_game.step_resolution), as well as other
parameters specific to the type of staircase selected.

*_user.m: The user file defines the composition of each
trial based on the specified target and background noise, and the
experiment configuration. This function is responsible for creating
the stimulus that will be presented to the participant. In general,
it loads the pre-stored waveforms, adjusts their levels (if required),
and combines them according to the experimental variable. This
function is generally customized for each experiment. Additional
experiment-specific features can be coded here, such as integrating
hearing-loss compensation strategies within the experiment loop in
order to test hearing-impaired participants. Furthermore, fastACI
supports stereo sounds in the standard MATLAB format: an N x 2
matrix, where the first column corresponds to the left channel, and
the second to the right. This makes it possible to conduct dichotic
experiments, for instance based on localization tasks.

An example of application of this structure to a specific
experimental context can be found in Section 6.1. This example
illustrates how the four core scripts work together to define and
implement an experiment, from initializing the necessary files
and configuring the experimental variables, to generating the
background noise and stimuli.

When running fastACI_experiment.m, the function
fastACI_experiment_init.m is called and populates the
variable ‘cfgcrea’ based on information relevant to the toolbox that
is contained in the experimental *_set.m and *_cfg.m files.
Subsequently, the *_init.m file is executed generating all the
required waveforms. The waveforms are stored in a participant-
specific folder (see Section 4). The populated variable cfg crea
(after *_set.m, *_cfg.m, and *_init.m) is stored into the
cfgcrea_*.mat file (see Figure 1).

Two optional scripts can also be included in the experiment
folder:

*_dataload.m: a
specific to the experiment. If provided, this function will

custom  data-loading  function

be used during data post-processing instead of the default

fastACI_getACI_dataload.m (see Section 5.1).
*_instruction.m: a

instructions to participants, replacing the automatically generated

script  displaying customized
message.

frontiersin.org
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Table 2 lists the main parameters available to design an
experiment within the fastACI toolbox.

3.4 Running an experiment with an
artificial listener

One of our motivations to revisit the old ACI toolbox and
convert it into the fastACI toolbox was to enable a listening
experiment to be tested not only with human participants but
also to replace them by an auditory model. This way, the block
“Listener” from the diagram in Figure 1 can actually be toogled to
an artificial listener by indicating as subject ID one of the model-
reserved words. For instance, using fastACI_experiment
("speechACI_varnet2013’, 'king2019’, 'white’),
i.e, using “king 2019” as a subject ID will automatically run
the experiment “speechACI_varnet2013,” proceeding with an
automatic response simulation of the experiment using the model
by King et al. (2019).

Of course the use of reserved words is related to the availability
of an auditory model matching that name. We built this artificial-
listener mode based on the models available in the AMT toolbox,
as of its version 1.0 (Majdak et al., 2021). At the moment of this
publication, any of the monaural models available within AMT can
be used as an artificial listener by following a couple of steps. We
provide now a short and general step-by-step guide in the use of
AMT models within the fastACI framework. Given that the post-
processing of data collected in an actual listening experiment or
using an artificial listener is exactly the same, the next explanation
is only focused on getting an auditory model ready for use.

3.4.1 Artificial listener: front-end auditory model
and back-end decision module

Within fastACI, the artificial listeners need to be composed
of an auditory front-end module, sometimes referred to as a pre-
processing model, and a back-end module that provides a simple
binary decision. In such a decision scheme, an incoming sound
is labeled as the most likely target interval from a limited set of
options, based on signal detection theory. The third-party AMT
toolbox provides mainly pre-processing models. Eight of those
front-end models have been already comprehensively described
in one of our previous studies (Osses et al., 2022b). Despite the
fact that the models need to be further configured in order to be
successfully used as artificial listeners (see below), if the models
exist in the MATLAB path, the toolbox will still attempt to use them
as artificial listeners. For instance, if “king2019” is indicated, the
pre-processing model King2019 . m will be used.

For the successful use of an auditory model, however, the
back-end module providing the binary decision needs to be
appropriately configured. Two decision schemes are available in
the script aci_detect.m. Both decisions schemes are related
to the concept of optimal detector (Green and Swets, 1966)
with one of the (cfg_sim.type_decision
‘optimal_detector’) the
matching approach as described by Osses and Kohlrausch
(2021) and the other (cfg_sim.type_decision

decisions

following template-
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‘relanoiborra2019_decision’) following the decision as
used by Relano-Iborra et al. (2019) in the context of speech tests.

The decision type and other options need to be included
in a model configuration file, which has the same name as the
auditory model with the suffix “*_cfg” and needs to be visible
to MATLAB. The expected location within the toolbox is under
the folder Simulations. A number of configuration files that
we have used in previous studies can be found in the folder
Simulations/Stored_cfg/. For the case of the “king2019” model,
to use a specific configuration you can copy one of the stored
configurations, either 0ss€52022_02_AABBA_king2019.m
(Osses et al., 2022¢) or 05s€82023b_FA_king2019 .m (Osses
and Varnet, 2023)—both used in speech experiments—and paste
it into Local as king2019_cfg.m. Because these two stored
configurations were extensively used by us at the time of the
corresponding publications, the artificial listener will be hereafter
ready for a successful use within the fastACI toolbox.

3.4.2 Brief explanation of a model configuration
script

A model configuration script, called king2019_cfg.min the
case of the AMT model king2019 .m contains sections defining
the detectors, defining the template or whatever “expected signal”
might be used by a model, extra parameters to be used when
calling the model within the third-party AMT toolbox, and finally
a compulsory model initialization following the guidelines of the
third-party AFC toolbox.
Listing 1 Example of a model configuration file for the front-end model

"king2019” using the optimal_detector decision (Osses and Kohlrausch,
2021).

function def_sim = king2019_cfg(keyvals)

def_sim.modelname 'king2019";

%% Defining the detector

def_sim.decision_script

def_sim.type_decision

"optimal_detector';

optdet_params = optimal_detector_cfg(def_
sim. modelname, keyvals);

def_sim.thres_for_bias = optdet_params.
thres_for_bias;

def_sim.in_var = optdet_params.in_var;

%% Defining the template

def_sim.template_script
‘model_template';

def_sim.bStore_template 1

def_sim.template_every_trial = 9;

def_sim.templ_num 10;

def_sim.det_lev -6;

%% Optional extra parameters when calling
the AMT model

def_sim.modelpars {};

%% Common in all models, preparing AFC
toolbox. Do not modify!

global def

model_cfg;

'aci_detect';

06

The definition of the template should be matched to
the relevant parameters of the experiment. From all the list
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TABLE 2 Main parameters for designing experiments in the fastACl toolbox.

Parameter name

10.3389/fpsyg.2025.1668690

Parameter description

Example in the case of

Unit or possible value

Structure of the experiment

Number of target

N_targets

speech_Logatome

2

Number of presentation of each target

N_presentation

2,000 (i.e., N = 4,000 trials total)

Number of trials in a block sessionsN 400

Randomize the order of presentation of the trials Randorder 1

Include a warm-up session Warmup 1

Structure of trials

Number of intervals in a trial 1 1 for yes/no paradigm (default),
2 for 2-interval forced choice

Names of the response categories response_names “aba”, “ada” default: name of the target
waveforms

Vector of correct association between target and response_correct_target [1,2] default: response n is correct for

response, useful when the number of targets and target n

response categories are different

Insert an easy stimulus every X trials probe_periodicity 0 0 = no probe

Response screen

Language of the interface Language “FR” “FR” (French), “EN” (English)

Provide feedback during the main session feedback 0

Display trial number during experiment displayN 1

Definition of stimuli

Sampling frequency fs 16,000 Hz

Full-scale for calibration dBFS 100 dB full scale

Apply a random roving (variation in level) on each | bRove_level 1

trial to discourage the use of level cues

>Range of roving (plus or minus this value) Rove_range 2.5 in expvar unit

(Most of the stimuli parameters are defined by user in function *_user .m, and are not reported here)

Experimental variable

Initial value for the experimental variable (expvar)
in the first trial of each session

startvar

in expvar unit

Type of adaptive procedure

0 = constant stimulus,
1 = transformed up-down,
2 = weighted up-down (default)

>Staircase rule : Number of consecutive trials
required to adjust expvar in “up” and “down”
directions

[11], for 1-up 1-down

>Scale of the steps

step_resolution

“linear” or “multiplicative”

>Size of the steps up and down

step down, step up

1 and 2.4130, respectively
(targeting 70.7 % correct)

in expvar unit

>Maximum possible value of experimental maxvar 10 in expvar unit
variable

>Starting step size of the adaptive procedure in start stepsize 2 in expvar unit
expvar units

>Adapt step size by ratio used applied every two adapt stepsize 0.5 in expvar unit
reversals

>Minimum possible step-size value min stepsize 0.4144 in expvar unit

«_»

Symbol “>” indicates parameters that depend on the value of a previous parameter.
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of parameters there, the most critical parameter is the field
“det_lev” which corresponds to the so-called supra-threshold
level, i.e., a value of the dependent variable at which the task
will be very easy to solve by the (artificial) listener. In the
example of the speech experiment “speechACI_varnet2013, —6
corresponds to a signal-to-noise ratio of —6 dB, at which the
“king2019” model was able to solve the speech task nearly
perfectly.

Another important field, is “modelpars.” In the example
above, that field is empty, meaning that “king2019” will only
be called using the input signal (the incoming interval sounds,
“insig”) and the corresponding sampling rate (“fs”) as input
parameters to the model, such that the processed sound “outsig”
is obtained from AMT as outsig = king2019(insig,
fs). If the user needs to force or change any of the model
optional parameters, e.g., specifying def_sim.modelpars
= {"compression_n",0.3}, then those entries will
be appended to the AMT call, resulting in: outsig =
king2019(insig, fs, “compression_n”,0.3).

4 Storing the data

When the toolbox is run for the first time, the user must
specify the location of two compulsory data directories (along
with additional folders for dependencies). The first directory,
dir_data, stores all experimental stimuli, while the second
one, dir_datapost, holds all post-processing data. By default,
both directories point to the same location, allowing analysis
results to be stored alongside raw data for convenience. Setting
dir_datapost to a separate location can be useful if one want
to re-generate easily all analysis results from scratch, because in
principle all the data to be stored under this directory can be
re-generated at any moment using the information contained
in dir_data.

The dir_data folder follows a hierarchical tree structure: main
folder > experiment folders > participant folders. By default,
each participant folder contains two subdirectories: NoiseStim
which stores waveforms of all noise stimuli presented during
the experiment (typically a very large folder) and Results which
contains the cfgcrea_*mat and savegame_*.mat files. If the
experiment involves complex targets that cannot be entirely defined
within the user function, such as in speech perception tasks,
a speech-samples subfolder is also included in the participant
directory.

If dir_datapost is set to the same location as dir_data, an
additional Results_ACI subfolder appears within each participant’s
Results folder, storing post-processed data derived from the
savegame files, including the computed ACL

The cfgcrea_*mat and savegame_*.mat files, stored in
the Results folder, are generated at different stages in the
experiment and contain partly redundant information about
the experiment initialization, and the data collection. The
final file name contains information such as the participant
ID, the time stamp of file creation, and the experimental
condition, if relevant. We provide now more details about
this information.
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4.1 cfgcrea_*.mat file: cfg_crea and
info_toolbox structures

The initialization file, cfgcrea_*.mat, contains two struct
variables cfg_crea and info_toolbox , the latter storing information
about the toolbox version. The variable cfg crea contains
compulsory and optional fields describing the experiment. Some of
these fields correspond to information provided in the experiment
files (see Section 3.3), while others are automatically obtained
during initialization, such as stim_order which defines the actual
presentation order of the trials. The information contained in
cfg_crea is then passed to the cfg_game structure.

4.2 savegame_*mat file: cfg_game and
data_passation structures

Each time a session concludes, the experiment ends, or the
participant requests a break, a new savegame_*.mat file is created
and stored in the participant’s Results folder. To avoid accidental
data loss, previous savegame files are not deleted automatically
but moved to a different subfolder Results_past_sessions. However,
since each newly created savegame file contains all information
recorded in the earlier ones, it is possible to manually remove
previous files without losing any data.

The savegame_*.mat file contains two struct variables,
cfg_game and data_passation. The cfg_game variable contains
all the fields from cfg crea, in a way that no later access to
cfg_crea is needed to post-process the collected experimental data.
Additionally, cfg_game contains information about the collected
data, in particular the responses of the participant. As for all
trial-specific variables in cfg_game, the responses are stored in
the order of the noise in the NoiseStim folder, which does not
necessarily correspond to presentation order.

The savegame_*mat file also contains a variable called
data_passation, that contains all the data that are being (or were
already) collected. This is the structure that will be processed
in later analysis stages. For this reason, the trial-by-trial data in
data_passation is arranged based on the order of presentation
(stored in cfg game.stim_order), rather than in alphabetical order
as in cfg_game and cfg_crea, making it easier to analyze and plot
data temporally. A schematic overview of the data organization for
a five-trial experiment is shown in Figure 2.

4.3 ACI_*.mat file: cfg_AClI and results
structure

Finally, the post-processing of the data, described in Section
5 results in a third type of .mat file, the ACI *.mat files.
Unless specified otherwise, they are stored in a Results_ACI
folder within the corresponding participant-specific Results
folder and are labeled using the following naming convention:
ACI-SID-expName-cond-trialtype-dataload-
fitting_function-last-expvar. In this naming scheme,
SID refers to the participant’s identifier, expName to the
experiment name, and cond to the experimental condition,
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cfg_game

n_targets_sorted

ListStim

stim_order
data_passation

n_targets

expvar
(e.g., SNR)

Llstener

n_responses

is_correct
(n_responses
equal to
n_targets?)
(decrease (increase
expvar) expvar)

Time course of the experiment
FIGURE 2

Schematic representation of the relevant fields in the variables cfg_game and data_passation, for a 5-trial experiment following a simple 1-interval
2-alternative paradigm with a 1-up 1-down staircase procedure. The variables in cfg_game (here, n_targets_sorted and ListStim) are sorted by the
number of the corresponding noise file. The variable cfg_game.stim_order defines the actual presentation order. All variables contained in
data_passation are sorted according to presentation order. Therefore, cfg_game.n_targets_sorted and data_passation.n_targets represent the same
information, sorted in different ways. data_passation also contains the tracking variable that is stored as expvar (here, the SNR) and the participants’
responses. The variable data_passation.is_correct is obtained by comparing of n_targets and n_responses. If the response is correct, the tracking
variable will be set to a down run (to a more difficult condition) and if the response is incorrect, to an up run (to an easier condition).

down P up To next trial
(decrease (increase (increase
expvar) expvar) expvar)

which might be empty if the experiment only has one condition.
The next labels correspond to the first three stages of the data
post-processing: trialtype refers to the type of trials used
for analysis (Section 5.2), dataload is a short identifier for the
data-loading function (Section 5.1), fitting_function is a
short name for the fitting function to be used (Section 5.3), last
indicates the number of the last trial—relevant if the experiment
has not been fully completed yet—, and expvar a short name for
the trial selection criterion based on dependent “expvar” variable
(Section 5.2). Although this naming convention covers the main
choices experimenters have to make when calculating an ACI, it is
not precise enough to distinguish all possible processing pipelines.
This is why the fastACI_getACI.m function, which computes
and stores the ACI, also includes an option dir_out that allows the
experimenter to indicate a different folder for storing the resulting
mat file and/or add a prefix to the name.

As for the previous cfgcrea_*.mat and savegame_*.mat files,
the ACI_*.mat file contains two data structures. cfg_ACI lists
all options selected for the computation of the ACI, as well as
the version of the toolbox used. The results structure contains
all outcome measures, in particular the estimated ACI and its
dimentions. Depending on the options used for the computation
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(see Section 5.3), it can also include information about the fitting
process such as the hyperparameter values tested and about the
validation of the final ACI (see Section 5.4). For convenience, the
final outcome of the estimation process is also stored as a matrix
variable named ACI.

4.4 Recreating the noise waveforms

Revcorr experiments typically require a substantial memory
space, as a unique set of noise is generated for each participant,
and every waveform must be stored on disk during data analysis.
For example, in the study of Carranante et al. (2024), 49 datasets
were collected, each of which contains 4,000 noise stimuli. With
each waveform being 27.3 kB, the total storage required amounted
to 5.35 GB. One important feature of the toolbox is the possibility
to store only the random seeds used to generate the noisy
stimuli, rather than the stimuli themselves. The seeds are saved
in the cfgcrea_
the data collection is completed, the experimenter can delete

*mat file during the initialization phase. After

all stimuli waveforms from disk, and re-generate them when

needed. In Carranante et al. (2024)’s study, each cfgcrea_*.mat file
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is 29.3 kB, reducing the total storage requirement to less than
1.5 MB.

For any experiment, the sound waveforms used by a participant
can be retrieved from the stored cfg_crea files using the command:
fastACI_experiment_init_from_cfg_crea(“cfg_
crea_name”). This function first checks if the corresponding
NoiseStim directory within the participants folder is empty. In
such a case the function calls the experiment-specific *_init.m
function which re-generates the noise set. Alternatively, the user
can directly call the *_init.m function with the cfg crea or
cfg_game variable as argument.

5 Post-processing of the data

The fastACI toolbox offers the possibility to post-process the
collected data through a revcorr analysis. This aims at finding a
statistical relationship between the random stimulus presented in
each trial and the corresponding response of the participant. As
for experiment design (Section 3) our objective was to make this
module as versatile as possible, in particular allowing different
types of signal representation and the fitting of different statistical
models.

The data post-processing results in a participant-specific matrix
of weights that reflects the influence of the random fluctuations
in the signal on the participant’s response. These matrices are
often referred to in the visual perception literature as “classification
images.” For this reason, we usually refer to the output of the
auditory revcorr experiments as auditory classification images
(ACIs) (Varnet et al., 2013). Other names in the literature
notably include “participant weightings” (Ahumada et al., 1975), or
“kernels” (Varnet and Lorenzi, 2022; Joosten et al., 2016).

The central function of the post-processing module is
the script fastACI_getACI.m. This script performs the
following processes in sequential order: (1) it loads all waveforms
(secondary script fastACI_getACI_dataload.m), (2) it
selects the specific trials to be further processed and applies
transformations to the data if needed (secondary script
fastACI_getACI_preprocess.m), (3) it computes the
AClISs (secondary script fastACI_getACI_calculate.m).

The fastACI_getACI.m script requires as input the
binary savegame file, from where the variables cfg game and
data_passation are loaded. If no other arguments are included,
default parameter values are used, corresponding to the simplest
analysis pipeline: a correlation analysis based on gammatone
spectrogram representations. Optional parameters can be
transmitted as additional input arguments. The main options for
computing an ACI are listed in Table 3.

5.1 Stage 1. Loading the data:
fastACI_getACI_dataload.m

The function that loads the data plays a critical role, as it reads
the stimulus waveforms and converts them into a matrix that is
subsequently used for the ACI assessment. The dimensions of this
matrix determine those of the resulting ACI, which are identical.
The default script for data loading is TastACI_dataload.m
but it can be overridden if an experiment-specific function
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named *_dataload.m is found on disk (see Section 3).
An example of such a function can be found for experiment
modulationACI_dataload.m.

The dataload function returns a matrix containing the (typically
time-frequency) representations of all noise instances. By default,
the first dimension corresponds to the trial number, in ascending
order of presentation, while the second and third dimensions
are related to time and frequency, respectively. The default
representation is a time-frequency gammatone-based spectrogram,
obtained through the Gammatone_proc.m function. This
representation has a temporal resolution of 0.01 s and a spectral
respolution of 0.5 in the Equivalent Rectangular Bandwidth
Number scale (ERBy). The frequency dimension is obtained from
a critical filter bank covering center frequencies between 45.8 Hz
(1.69 ERBy) and 8,000 Hz (33.19 ERBy). This results in 64
frequency “bins,” followed by an envelope extractor based on a
simplified inner-hair-cell processing (Osses et al., 2022b).
like the one
described above, offer an intuitive way of interpreting the

Although time-frequency representations,

perceptual weights, the second and third dimensions can contain
any alternative stimulus feature estimate. The third dimension
is optional; if it is not specified, the obtained ACIs will only be
two-dimensional. Using an experiment-specific data-load function
can be useful if the experimenter is interested in exploring specific
dimensions of the stimuli. There are two situations where this
option might be particularly relevant:

o First, if the experiment involves background noise covering
the entire time-frequency space, but the experimenters are
only interested in a specific acoustic feature, it can be beneficial
to perform the revcorr analysis on this dimension alone. This
is the approach followed in experiment modulationACI
(Varnet and Lorenzi, 2022), where the experiment focused
on the role of the envelope in a single frequency band. In
this case, the experimenters defined anexperiment-specific
data-load function (modulationACI_dataload.m) to
represent only the envelope in the selected frequency band.

o Second, if the experiment is based on a customized
*_user.m instead  of the  default
Generate_noise.m, defining the data-load function
accordingly is advisable. A good example of this is the prosodic

function

revcorr experiment, where the targets are not embedded in
a background noise but are resynthesized with a random
prosody (Osses et al., 2023, experiment segmentation). In
this case, the segmentation_user .m function generates
the stimuli and stores the trial-by-trial parameters of the
random prosody, while the segmentation_dataload.m
function loads these parameters and organizes them into a
2-dimensional data matrix.

5.2 Stage 2. Selecting the trials:
fastACI_getACI_preprocess.m

This pre-processing step optionally prepares the matrix
obtained from the data-loading function before it is analyzed by
the fastACI_getACI_calculate.m function. The primary
role of this stage is trial selection. Although the default option is to
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TABLE 3 Main parameters for post-processing the data in the fastACI toolbox.

10.3389/fpsyg.2025.1668690

Parameter description Parameter name Default Unit or possible value
Loading the data

Check that the stimuli stored in the NoiseStim folder consistency_check 1

correspond to the ones described in cfg_game

Skip the data loading process by transmitting the data Data_matrix

matrix directly. This is useful if several ACIs are

computed on the same dataset.

>Force data loading even when the data matrix is force_dataload

transmitted as a parameter

Type of representation used TF_type “gammatone” “spect,” “gammatone”
IF “spect”

>window length spect_Nwindow 512 Nb of samples
>number of DFT points spect_NFFT 512 Nb of samples
>overlap between successive windows spect_overlap 0 percent

>amplitude scale spect_unit “dB” {“dB,” “linear”}

IF “gammatone”

>Auditory channel bandwidths bwmul 0.5 Equivalent rectangular bandwidth
>Temporal resolution binwidth 0.01 s

Frequency range f_limits [110,000] Hz

Temporal range t_limits [01] s

Z-scoring the data (independently in each pixel) zscore 1

Any customized representation can be used by including an experiment-specific *_dataload.m function

Trial selection

positive and negative answers left

Discard all trials before the Nth reversal within each expvar_after_reversal 0

block

Discard all trials outside a certain range of expvar expvar_limits [ expvar unit
Discard a number of trial so that there are as many no_bias 0

Restrict to a particular type of trials

trialtype_analysis

“total,” “incorrect;”
“correct,” “t1)” “t2”

Getting an ACI

wider Gaussian basis elements)

Do not compute if a corresponding ACI file is already skip_if_on_disk 1

present in the folder

Type of analysis glmfct correlation “correlation,” “weighted_sum,”
“glmy “glm_L27
“glm_L1_GB; “lm_L1_GB”

IF “glm_L2"

>starting value for the hyperparameter lambda0 5

>maximum number of iteration in the crossvalidation maxiter 30

>criterion for stop precision 0.05

>progression step for the hyperparameter stepsize 5

IF “glm_L1_GB”

>Nb of levels in the Gaussian basis (larger indicates lasso_Nlevel 5
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TABLE 3 (Continued)

10.3389/fpsyg.2025.1668690

Parameter description Parameter name Default Unit or possible value
>lower level of the Gaussian basis (if >1, do not lasso_Nlevelmin 2

include the original representation)

>impose values for the hyperparameter lambda

IF “glm_L1_GB; “glm_L2” “lm_L1_GB”

>Nb of folds for crossvalidation N_folds 10

Validating the ACI

Run a permutation test permutation

>Nb of random permutations N_perm 100

Path to the ACI file to be used in the cross-validation ACI_crosspred

Symbol “>” indicates parameters that depend on the value of a previous parameter.

bypass this step and conduct the revcorr analysis on all trials, there
are situations where it is beneficial to exclude specific trials prior
to further analysis. Trial selection is controlled by four parameters
that can be fully combined:

“trialtype_analysis”: This parameters allows for the selection of
specific trials. By default, the ACI is computed across all trials using
the parameter value “total.” However, separate calculations for
target-present and target-absent trials can provide valuable insights
into the influence of nonlinear auditory processing (Ahumada et al.,
1975). In particular, the target-absent ACI is considered a better
estimate of the true underlying internal or “mental” template of
the participant in the presence of non-linearities in the processing.
Such target-specific analyses can be carried with parameter values
“t1” and “t2) selecting the trials depending on the number of
the target that was presented (1 or 2, respectively). Alternatively,
it may be useful to restrict the analysis to correct or incorrect
trials only, as was done by Osses and Varnet (2024). This can
be achieved by specifying the parameter values “incorrect” or
“correct,” respectively.

This
exclusion of initial trials in a staircase procedure. In an adaptive

“expvar_after_reversal”: parameter controls the
experiment, the trials at the beginning of each block correspond
to the convergence of the staircase, transitioning from the initial
expvar value (startvar) to the perceptual threshold defined by the
staircase rules (see Section 3.3). However, these early trials typically
provide little information for the ACI but tend to introduce noise
into the estimation, as expvar can take very large or very low values.
For this reason, they are often rejected from analysis. Any value
larger than zero for the “expvar_after_reversal” parameter specifies
the number of staircase reversals to exclude from further analysis.

“expvar_limits”: Similarly, it can be useful to discard
trials corresponding to extreme expvar values throughout the
experiment. For instance, if expvar correspond to the SNR in dB
at which targets are presented, very low expvar values correspond
to trials where the target is virtually inaudible and the participant
may respond at random. Therefore, these trials do not provide
any valuable information on the underlying auditory mechanisms.
Conversely, very high expvar values correspond to easy trials where
the noise has no impact on the decision. As such, these trials do
not contribute either to the ACI estimation and removing them
typically results in more reliable estimates.
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“bias”/“no_bias”: This last parameter explicitly controls for the
balance between the two types of responses. If the flag “no_bias” is
included, a number of trials will be selectively removed to balance
the responses. In other words, if a participant indicated “response
17 53% of the times and “response 2” 47% of the times, a number
of “response 1” trials, corresponding to 6% of the total, will be
excluded. For reasons mentioned above, trials are discarded based
on the absolute distance from the mean expvar, so that the trials
with the most extreme expvar values are excluded first.

Another optional pre-processing step is controlled by the
parameter “zscore.” When this parameter is set to 1 (the default),
the data matrix after trial exclusion is z-scored independently
for each element in the representation (that is, along the first
dimension only). In the context of the typical target-in-noise task,
this option is especially useful when the noise energy does not
have the same variability across every time-frequency pixel (see
Figure 3). Z-scoring normalizes the ACI weights, allowing them
to be interpreted as perceptual weights. If the experimenter has
specified a custom *_user .m function, z-scoring can also be
useful as it allows expressing all ACI weights on a consistent,
unitless scale. This normalization facilitates comparison across
different dimensions of the stimulus.

5.3 Stage 3. Getting an ACI:
fastACI_getACI_calculate.m

In this critical stage, the pre-processed data matrix from the
previous step is analyzed together with the response vector, to
examine the influence of noise on perception. This is achieved
through a revcorr approach, which identifies the statistical
relationship between the random fluctuations of the noise
presented in a given trial and the corresponding binary response of
the listener (“target 1”7 or “target 2”). The outcome of this analysis
is summarized as an auditory classification image (ACI) with the
same dimensions as the stimulus representation chosen in the
previous stage (typically, time-frequency).

More specifically, the ACI analysis allows to identify which
features in the noise bias the decision of the listener toward
one alternative or another. In other words, this computation
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highlights the (typically time-frequency) regions of the stimulus
that the listener relies on as cues for resolving the task. The ACI
represents these cues by associating individual weights to each
pixel in the noise representation, quantifying how much each
particular element contributes to the final decision. These weights
are often interpreted as estimates of the “perceptual weights” the
participant attaches to each acoustic features, while the ACI is
sometimes considered as a visualization of the internal or “mental”
representation of the target sounds, that are formed, stored and
used by the participants. A discussion of the limitations of these
interpretations is beyond the scope of this paper. Suffice it to say
that the analysis itself does not rely on any assumption about
the existence or nature of any perceptual weights or internal
representation. As Neri (2018) argued, classification images can be
regarded as a descriptive statistics summarizing the data, much like
the mean or the median, rather than as estimates of underlying
perceptual components.

The fastACI_getACI_calculate.m
handles the revcorr analysis. Currently, the toolbox offers

function

five main computational options for this stage, each based on a
different statistical model: “correlation,” “weighted_sum,” “glm,”
“glm_L1_GB,” and “glm_L2.” Each of them takes as input the noise
matrix (N) and the vector of behavioral responses (r) and return

an ACI matrix (ACI). With Ny the number of selected trials for

10.3389/fpsyg.2025.1668690

the analysis, Nf the number of bins for the first dimension of the
stimulus representation (typically, frequency), and N; the number
of bins for the second dimension of the stimulus representation
(typically, time), N is a Nyig-by-Ny-by-N; matrix, r is a binary
vector of length ‘Niyia» and ACI is a Ny-by-N; matrix. In the
following, we will denote ACI the ACI matrix in its vector form
(i.e. a Ny x Ni-by-1 vector) and N; the vectorization of the noise
matrix for trial 7.

The next sections present the mathematical framework for
the five main options for computing an ACI, as well as their
limitations. The result of these different estimation methods
applied on a single set of data are shown in Figure 3. In Section
6.5, the different options are compared with regards to the
goodness of the fit.

5.3.1 Correlation and weighted sum

A straightforward and intuitive way to summarize the
relationship between stimuli and participant’s responses is to
compute their correlation. In this case, the value of the ACI in
each time-frequency pixel j, denoted as ACIj, is simply given
by the Pearson correlation coeflicient between the corresponding
pixel in the stimuli representation Nj; and the vector of responses

correlation GLM, L2 norm penality GLM, L1 norm, Gaussian basis
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FIGURE 3
ACls derived from a single dataset [participant S04 from Osses and Varnet (2024), 4,000 trials of aba-ada categorization in bump noise] analyzed
using different algorithms. The top row shows the recommended approaches: correlation (left), GLM with L2 norm penality (center), GLM with L1
norm penality on a Gaussian Basis (right). The bottom row presents approaches that do not yield easily interpretable AClIs in general (see text):
weighted sum without z-scoring (left) and GLM with Maximum Likelihood estimation (right). Apart from the type of analysis, all parameters are set to
their default value. All ACls are normalized in maximum absolute weight.
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r; across all trials i. This method is implemented through the
‘correlation’ option.

vj, ACI; = corr(Njj, i) (1)

Another very common approach is the so-called “weighted
sum” ACI, which is calculated by subtracting the average
noise representation for “response 2” from the average noise
representation for “response 1.” This method is available via the
“weighted_sum” option.

ACI = E[N;|r; = “response 2”] — E[Nj|r; = “response 1”] = (2)

It can be shown that the weighted sum and correlation methods
are equivalent up to a multiplicative factor, under the assumptions
that the noise is centered with a constant variance (this is ensured if
the “zscore” option is enabled) and that the participant is unbiased,
i.e., P(r; = “response 1”) = P(r; = “response 2”) = 0.5.

Because of their simplicity, these two options are fast to
compute. Furthermore, they only rely on the general assumptions,
common to all revcorr approaches, that cue detection is influenced
by random fluctuations introduced in the stimuli and that cues
are confined to the dimensions of the representation. Importantly,
these methods do not make assumptions about the specific shape
of the cues. However, a downside of these approaches is that the
resulting ACI is often relatively noisy due to overfitting: when the
number of predictors (i.e., the number of bins in the stimulus
representation, Ny - Ny) is relatively large compared to the number
of trials Ny, the ACI can capture spurious correlations in the
noisy data, which may obscure the relevant features.

An example of ACI obtained through the correlation procedure
is shown in Figure 3 (top left), which results in an accurate
(although noisy) ACI, with larger positive and negative weights in
the regions corresponding to the cues. The weighted-sum approach
with z-scoring yields an identical result (not shown in Figure 3).
The bottom left panel of Figure 3 shows an ACI computed using
the weighted sum approach without z-scoring. Due to the non-
uniform distribution of noise across the time-frequency space,
caused, for example, by the use of fade-in and fade-out ramps
in this experiment, this second ACI displays a distinct weight
pattern. Here, the weights reflect both the participant’s responses
and aspects of the noise’s statistical distribution. In particular,
the smaller variability at stimulus onset and offset, yields smaller
weights in these regions, regardless of whether the information
is actually used by the participant. This approach can complicate
the interpretation of the ACI, as it becomes difficult to disentangle
whether a given weight reflects the statistics of the stimulus or the
participant’s response, and it should therefore generally be avoided.

5.3.2 Linear regression

Assuming that the variance of the noise is the same in
each pixel (true if the “zscore” option is enabled) the previous
ACI approaches are equivalent, up to a multiplicative factor, to
performing independent linear regressions on each pixel j:

vj, P(r; = “response 17) = N - ACI; + ¢; (3)
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with ACI; and ¢; corresponding to the regression coefficient, fitted
by maximum likelihood.

This naturally suggests gathering all predictors within a single
linear model, as in Ahumada et al. (1975):

P(r; = “response 1”) = N; - ACI + ¢ (4)

This multiple linear regression approach is rarely used as
it generally suffers from three issues: overfitting (as highlighted
above), multicollinearity, and heteroscedasticity.

Multicollinearity and overfitting will be discussed in the next
sections. Heteroscedasticity refers to non-uniformly distribution of
prediction errors. In the case of the models above, this is evident
from the fact that, while the left-hand member is a probability
bounded between 0 and 1, the right-hand member can theoretically
vary from -oco to +oo. Although this does not necessarily pose
a problem in practice, as the probabilities rarely approach floor
and ceiling values in a revcorr experiment, this incompatibility of
the distributions described by the two members of the equation
prompts us to look for a more adequate model.

5.3.3 Generalized linear model with maximum
likelihood estimation

A natural solution, introduced by Knoblauch and Maloney
(2008) and implemented within the toolbox (“glm” option),
consists in replacing the linear regression by a generalized linear
model (GLM). As the dependent variable (the response of the
participant) follows a binomial distribution, it is better modeled
through a normal cumulative distribution function @, linking
the linear combination of predictors to the probability P(r; =
“response 17):

P(r; = “response 17) = ®(N; - ACI + ¢) (5)

The approach described in Equation 5 is particularly useful
when the experiment has a limited number of predictors relative to
the number of trials, and each of these predictors are statistically
independent one of each other. This is for instance the case in
the study by Osses et al. (2023), for which their statistical model
had 16 variables (each corresponding to an independent Gaussian
distribution), that was individually fitted to 800 observations of
each participant. In the general case, however, these conditions
may not be met, and the model will lead to highly noisy AClIs.
This is the case for instance when this approach is applied to
the data of Osses and Varnet (2024) (Figure 3 bottom right), as
there is a large number of predictors (Nyqs = 4,000 and each
noise is described using 5,504 time-frequency bins), which are
highly correlated to each other. These two factors can give rise to
overfitting and multicollinearity issues, respectively, each of which
compromising the accuracy of the estimation.

Overfitting arises when the number of predictors is large
relative to the number of observations and results in a lack of
generalization ability. This is because, in this case, the statistical
model is able to capture not only the meaningful patterns in the
data but also spurious correlation. Multicollinearity refers to the
presence of correlations between predictors within a statistical
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model. It can lead to counter-intuitive results where none of the
predictors appear to be directly related to the dependent variable,
even though, in reality, all predictors are associated with it.*
Multicollinearity can therefore lead to a severe underestimation
of the ACI. However, if the predictors in Equation 4 are chosen
to be statistically independent of each other, multicollinearity is
no longer an issue, and this approach becomes equivalent to the
previous one, from Equation 3. Note that the independent linear
regression approach, as well as the equivalent correlation and
weighted sum approaches, are immune to multicollinearity as each
predictor enters a separate statistical model.

5.3.4 Generalized linear model with regularizers

The fitting of statistical models presented in the previous
sections is most often performed using maximum likelihood
estimation. However, as we have pointed out, this approach can
lead to inconsistent parameter values or imprecise estimates. One
possible solution to address both overfitting and multicollinearity
in regression is by introducing a regularizing prior, through
penalized regression. In the context of classification images, this
solution was proposed by Knoblauch and Maloney (2008) and later
adopted by Mineault et al. (2009). Two regularizing priors are
currently implemented in the toolbox: L2 regularization (“glm_L2”
option) and LI regularization on a Gaussian basis (“glm_L1_GB”
option). A detailed description of each of these priors can be
found in the studies by Varnet et al. (2013) and Osses and Varnet
(2024), respectively. Here, we summarize the general framework of
penalized regression.

As the name indicates, the maximum likelihood approach
identifies the parameter values (ACI and c¢) that maximize the
likelihood L({ACI; c}) given the observations. This is equivalent to
minimizing the negative logarithm of the likelihood, also known
as the negative log-likelihood. Penalized regression consists in
minimizing both the negative log-likelihood and an additional
penalty term P({ACI; c}), which also depends on the parameters.
The relative weight assigned to these two terms is determined by a
hyperparameter A, leading to the following minimization objective:

— log(L({ACI: c})) + A - P({ACI; ¢}) (6)

The penalty term reflects prior knowledge about the plausible
values of the parameters. For example, Varnet et al. (2013, 2015a)
employed a smoothing penalty (L2 regularization) based on the
assumption that the estimated ACI should not exhibit abrupt
discontinuities—a relatively natural assumption given the spectral
and temporal resolution of the human auditory system. Conversely,
the approach followed by Osses and Varnet (2024) and Carranante
et al. (2024) is based on a lasso penalty (L1 regularization) applied
to a Gaussian basis. This approach assumes that most ACI weights
are zero, except in specific regions with a Gaussian shape in the
time-frequency space. As these regularizers implement slightly
different assumptions, they result in different ACIs (see Figure 3
top row, center and right panels). The selection of a specific prior

4 Although multicollinearity is often treated as a challenge for accurate

estimation, it is, in fact, fundamental to the principle of statistical control.

Frontiersin Psychology

10.3389/fpsyg.2025.1668690

is therefore critical and should be informed by our understanding
of the perceptual processes involved (Mineault et al., 2009). In the
case of consonant perception, for instance, it is well-established that
listeners rely on acoustic cues that occur within relatively narrow
time windows and frequency bands. Therefore, L1 regularization
on a Gaussian basis is advisable in this case, and yields better
estimates (see Section 6.5).

The relative importance of the regularization and the likelihood
(i.e., between the data and the a priori knowledge injected into the
estimation) is controlled by the hyperparameter A in Equation 6.
As the name hyperparameter indicates, A is not a parameter
of the statistical model of Equation5, but of the estimation
itself. Any predetermined hyperparameter value will result in a
particular fit of the model with a particular influence of the
regularizer: high A estimates are exaggeratedly distorted by the
regularization, while the solution approaches that of maximum
likelihood when X approaches zero. As represented in Figure 4, an
intermediate A value (here A = 0.024) corresponds to a realistic
estimate. The greater reliability of the corresponding ACI can be
quantified by its out-of-sample predictive accuracy: typically, the
ability to predict new data is low for small values of lambda, as
overfitting would lead to poor model generalizability. For very
large A values, the penalty term becomes predominant over the
data, resulting in a decline in predictive quality. Out-of-sample
predictive accuracy is assessed in terms of cross-validated deviance
(see Section 5.4.3).

Penalized regression adresses both the multicollinearity and
overfitting issue. It recognizes the presence of dependencies in
the prediction and explicitly uses them in the fitting process
to reduce the number of effective predictors, thus lowering
the risk of multicollinearity. Moreover, as explained above, the
hyperparameter selection criterion is based on the ability of the
GLM to generalize, protecting the estimation against potential
overfitting effects.

Regardless of the estimation option selected, the
fastACI_getACI_calculate.m function handles the
fitting process, returning the final ACI, along with any relevant
variables computed during the estimation. This script chooses
the final ACI as the one that has the A value that minimizes the
cross-validated deviance. Several optional parameters can be
specified, including, e.g., the range of A values considered (see
Table 3).

5.4 Stage 4. Validating the ACI

Regardless of the statistical framework used for the estimation,
ACIs inherently involve some amount of estimation error,
complicating the interpretation of the results. In the context of an
experimental study, it is crucial to conduct statistical validation on
the obtained images, to assess whether the ACI genuinely reflects
the listener’s strategy or is simply the result of estimation noise.
In the following paragraphs we describe several statistical methods
implemented within the toolbox. Although they are referred to as a
separate post-processing stages, the computations are often nested
with those of Stage 3.

There are two primary types of validation methods available: (1)
global validation of the ACI, by evaluating whether the underlying
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FIGURE 4
Illustration of the hyperparameter selection process, based on the data from participant SO1 in the MPSN condition in Osses and Varnet (2024). Top
panel: Cross-validated deviance as a function of the value of the hyperparameter A used for the fit. Bottom panels: ACls estimated using four
hyperparameter 1 values (indicated by stars in the top panel). The third ACI corresponds to the optimal hyperparameter value (here, 1 = 0.024).

model can reliably predict new data from the same participant or
from another, and (2) validation of specific weights in the ACI to
determine if a cue is present at a particular time-frequency location,
using regression coefficient statistics or a model-independent
permutation test. No correction for multiple testing is applied to the
weight-specific statistics, because such corrections are inherently
linked to the specific hypotheses being tested. However, unless
the experimenters are interested only in the significance a single
predefined weight or group of weights, it is recommended that
they implement an appropriate form of multiple testing correction
adapted to their needs.

The results of the validation process are returned alongside the
estimated ACI itself, as described in Section 4.

5.4.1 Regression coefficient statistics

Most estimation approaches described in Section 5.3 rely on a
specific statistical model (linear model for correlation approach,
generalized linear model for all GLM-based approaches). When
fitting these models, the procedure does not only estimate the
optimal weights for the ACI but also calculates the corresponding
test statistics and p-values, which reflect the significance of
each weight. These statistics are automatically included in the
ACI output, providing information about the reliability of the
estimated weights.

Frontiersin Psychology 16

5.4.2 Permutation test

A common way of assessing which weights in the ACI are large
enough to be considered significantly different from zero is through
a permutation test. This procedure provides a way to compare
the observed weights to a distribution of weights generated under
the null hypothesis (i.e., assuming random responses from the
participant). The procedure involves generating a large number
of random permutations of the participant’s responses (typically
100 permutations or more), and computing an ACI for each
of these permutations. The resulting distribution of weights
under the null hypothesis is then compared to the observed
ACI, allowing experimenters to determine which weights are
significantly different from zero.

Although the permutation test can theoretically be combined
with any of the ACI estimation methods described in Section 5.3,
it can become computationally expensive, especially when using
GLM-based approaches.

In the toolbox, the computation of the permutation test can be
requested through the flag “permutation,” together with an optional
parameter “N_perm” indicating the number of permutations
(default: 100). The procedure generates Npe, new datasets by
randomly permuting the order of the responses in the original
dataset, then computes an ACI for each of these permuted datasets.
For each pixel, the 5-th and 95-th percentiles are calculated. The
final output includes the Npern new ACIs as well as the 90%
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confidence interval, providing a statistical validation of which
weights can be confidently attributed to the participant’s response.

5.4.3 Within-participant cross-validation

The two statistical validation methods described above are
meant to identify significant regions in the ACI. However, it
can also be useful to assess whether the ACI as a whole can
be considered a good representation of the participant’s listening
strategy in the task. This is usually performed by measuring the
ability of the ACI to predict new data from the same participant,
using cross-validation. Note that this validation step and the
following are for the moment limited to the “glm_L1_GB” option,
but they should be extended to “glm_L2 “correlation,” and
“weighted_sum” in a following release.

Two measures of goodness of fit are computed in the toolbox:
the prediction accuracy and the deviance (Osses and Varnet, 2024).
Prediction accuracy corresponds to the percentage of correctly
predicted binary answers, considering that the model described
in Equation 5 responds “1” if P(r; = “response1”) > 0.5 and
responds “2” otherwise. Prediction accuracy is an intuitive metric,
but it is usually less precise than deviance. Deviance is the standard
goodness-of-fit measure for GLMs, directly related to the log-
likelihood.

When the same set of data is used to train and evaluate
the model, the goodness of fit is usually overestimated, due to
overfitting (see Section 5.3). A solution to obtain an unbiased
measure of prediction performance is cross-validation. During
cross-validation, the dataset is divided into Ny,4 disjoint subsets of
equal size. Ny —1 of these subsets are used to derive an ACI, whose
prediction accuracy and deviance is evaluated on the remaining
subset. The same procedure is repeated Ny,j4 times to ensure each
subsets is used once as the validation set. In this way, the model
is never tested on the same trial used for training. The measures
obtained for these N,y model fits can then be averaged to obtain
the average cross-validated prediction accuracy and cross-validated
deviance. Furthermore, the dispersion of the Ny,4 cross-validated
metrics can be used to summarize the reliability of the estimation
procedure as a confidence interval (Osses and Varnet, 2024).

5.4.4 Between-participant cross-validation

The above goodness-of-fit metrics measure the ability of an
ACI, fitted on a subset of the participant’s data, to predict unseen
data from the same participant. Complementary to these “within-
participant” cross-prediction measures, it can be useful to assess
the goodness of fit of an ACI on a test set extracted from a
different participant (“between-participant” cross-prediction). For
this purpose, we extended the cross-validation algorithm to allow
for the computation of the prediction based on a different ACI.
The cross validation can be computed from another participant, as
used by Carranante et al. (2024), or from the same participant in a
different condition, as used by Osses and Varnet (2024). The cross
validations are controlled by the option “ACI_crosspred” indicating
the path to the ACI_*.mat file to be used for the prediction. The
between-participant cross-validation uses the same subsets as the
within-participant cross-validation, making it possible to directly
compare the estimated goodness-of fit metrics.
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Unlike previous validation analyses, the results of the between-
participant cross-validation are not saved in the ACI_*.mat file.
This is because the ACI of the participant is usually computed
before running any between-participant analyses and, more
importantly, there might be too many ways of cross validate data,
so that there is no straightforward way of defining what is the
most useful way to provide a cross validation framework that suits
the needs of every curent and future user of the fastACI toolbox.
Our current solution is to generate a separate file containing the
cross-validation data, a Crosspred_*.mat file, that will be located (if
requested) within the corresponding participant’s Result folder.

6 Case studies

In this section, we illustrate the possibilities offered by
the toolbox through a series of case studies. These examples
demonstrate how the toolbox can be used to replicate existing
studies, reproduce published results, and compare different
experimental setups, different noise types and different estimation
methods. Together, these case studies highlight the toolbox’s
versatility and reliability in various research contexts.

6.1 Replication of a pioneering reverse
correlation study

To illustrate the practical application of the toolbox in the case
of simple non-linguistic stimuli, we describe here the replication
of the seminal experiment detailed in Ahumada et al. (1975),
considered as one of the earliest examples of auditory reverse
correlation studies. At the time, extensive investigation of the
perceptual cues underlying tone-in-noise detection had been
conducted using conventional psychoacoustic procedures (see
in particular Green and Swets, 1966; Sherwin et al.,, 1956). In
1975, Ahumada et al. addressed this question following a revcorr
approach. They analyzed the relationship between fine acoustic
details of the noise and subject responses, on a trial-by-trial basis.
Doing so, they expected to determine the sound characteristics
that are extracted and used by the listener to detect the target. In
this section, we re-implement their experiment within the fastACI
toolbox to demonstrate the versatility of the framework. We also
present the data collected on four participants and compare the
results with Ahumada et al.’s original findings.

The experiment is available in the toolbox under the name
replication_ahumada1975. As in the original study, a
sampling frequency of 10 kHz was used. A total of 3,200 stimuli
were presented, each consisting in 500-msec Gaussian white noise
ranging from 0 to 5 kHz. Half of these stimuli also included a 100-
msec, 500-Hz tone, added to the temporal middle of the masker
with a fixed signal-to-noise ratio [10log,,(Es;/No) = 11.8 dB with
E, the tone power Ny the power spectral density of the noise]. Tone-
present and tone-absent stimuli were presented in a random order,
through headphones, at a 65 dB sound pressure level. Given the
difficulty of the experiment, probe trials with a more favorable SNR
(31 dB higher, although note that this parameter was not specified
in the original article) were presented every tenth stimulus.
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In the interest of the demonstration, we chose to deviate from
the original experiment in three respects. First, participants were
instructed to provide a yes/no response (tone present or tone
absent) instead of a 4-point Likert scale judgment. The use of binary
responses was preferred because it aligns with modern reverse
correlation studies and it is more compatible with the different
post-processing pipelines described in Section 5.3. Second, the
initial study included only a single block of 400 stimuli repeated
eight times in random order. As this methodological choice was
likely guided by computational constraints at the time, we decided
to generate 3,200 independent stimuli instead, divided into 8
blocks of 400 trials. Finally, stimuli were presented at a level of
65 dB instead of 85 dB, as the latter was deemed too loud by the
participants.

As indicated in  Section 3.3, the experimental
design is entirely described by a set of four scripts
(replication_ahumada1975_cfg.m, replication

_ahumadal1975_set.m, replication_init.m,
replication_ahumadal975_user.m),
the Experiments folder of the toolbox. The set-up file contains the

located  within
generic parameters related to calibration, sampling rate, number
of trials and number of targets (this tone-detection task has two
targets: tone present and tone absent). As this script is executed
only once, it is also used at the same time to generate and store
the 500-Hz target tone. The initialization file generates 3,200 white
noise backgrounds which are stored in a NoiseStims folder. The
configuration file specifies all experimental parameters, including
the number of trials per experimental session, the absence of a
warmup phase, the SNR, the fixation of this experimental variable
over the course of the experiment (cfg_inout.adapt = 0) except for
the easy “probes” every tenth trial (cfg_inout.probe_periodicity
= 10). Finally, the user file creates the stimulus for a given trial,
depending on the identifier of the corresponding noise background
waveform, the SNR, and whether the target is present or not.

with the study, the
representation of the noise was obtained by computing the

In line original time-frequency
energy values in a 5-by-5 matrix defining 25 regions (or “pixels”)
with a frequency and time resolution of 50-Hz and 100-ms,
respectively. In this representation, the central pixel corresponds
to the location of the tone in target-present trials, while the 24
other pixels contain only noise. An ideal observer should therefore
pay attention only to the energy in the central pixel. These coarse
spectrograms were analyzed together with the behavioral responses
through the “classical_revcorr” estimation procedure (Section
5.3). This is mathematically equivalent (up to a scaling factor)
to the linear model used by Ahumada et al. This processing
of the sounds is carried by an experiment-specific function
replication_ahumadal1975_dataload.m which shadows
the default fastACI_getACI_dataload.m function.

As the deviations from the original protocol were only minor,
we expected to replicate the main result of the original study.
Thus, the presence of noise energy in the region of the target tone
should correlate positively with the perception of a tone. A similar
positive correlation should be found in the segments following
the tone, in the same frequency band. Conversely, the correlation
should be negative in higher and lower frequency bands during the
signal interval.
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The resulting images for N = 4 normal-hearing participants
are shown in Figure 5. The pattern of correlations supports
Ahumada et al’s observation that the presence of noise energy on
the signal interval (central pixel), but also in the following intervals,
biases the listener toward perceiving a tone. Our participants also
appear to anticipate the tone to some extent, as the preceding
interval at the target frequency is also associated with a positive
correlation, a feature that was not present in Ahumada et al’s data.
Furthermore, the listeners gave overall negative weight to energy
surrounding the target frequency, consistent with the original
study. A more detailed description of these replication results is
provided in Le Bagousse and Varnet (2025).

6.2 Reproducing published results

One fundamental goal of a scientific workflow is to ensure
that the final publish work is computationally reproducible, that is,
that anyone can use the same data to reproduce the same results
and figures. The use of an open-source toolbox allows researchers
to systematically document their workflows, standardize their
procedures, and ensure that all the described analyses can be
accurately replicated by others. Using a consistent and transparent
set of tools also helps minimizing variability and errors, making
it easier to verify findings and build on previous work. A central
objectives of the fastACI toolbox is to make it easier to retrieve
the experimental sound stimuli, reproduce analyses and re-generate
figures. This section provides an example based on one of our
recent publication (Osses and Varnet, 2024).

6.2.1 Retrieving the experimental sound stimuli

The first step for reproducing the analysis from a published
study is to retrieve the data, in particular the stimuli used in the
experiment. In auditory revcorr experiment, this typically involves
downloading a large number of .wav files, which can be time-
consuming and requires a fast and stable internet connection. The
toolbox offers a way to bypass this issue by instead downloading
the random seeds, stored in the cfgcrea_*.mat file, and recreating
the waveforms locally, as decribed in Section 4.4.

The thirty-six datasets used in Osses and Varnet (2024)
experiments are openly available on Zenodo (https://zenodo.
org/records/7476407). To regenerate the sounds using the
toolbox, users only need to download the configuration
files (available in folder 02-Raw-data.zip). Then the function
fastACI_experiment_init_from_cfg_crea.m can
be executed with the cfg crea variable as input to regenerate
the set of 4000 stimuli corresponding to one participant in
one condition. For this particular study, we implemented a
script  publ_osses2022b_preregistration_0_init_
participants.mto iterate the procedure on the 12 participants
and the 3 conditions.® Once generated, the noises are stored in

5 Note that for recreating the MPS noises, the PhaseRet toolbox needs to
be installed and compiled. No extra dependencies are required to reproduce

the white and bump noises.
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ACls for four participants in the replication_ahumada1975 experiment. Red (positive) weights mark regions where the presence of noise energy
increases "tone present” responses. Blue (negative) weights mark regions favoring “tone absent” responses. The central pixel indicates the target tone

separate folders within the participant directory named NoiseStim-
white, NoiseStim-bump, and NoiseStim-MPS, each of them
containing 4,000 waveforms.

The folder 02-Raw-data.zip also contains the behavioral data
collected from each participant, stored in the three savegame_*.mat
files, corresponding to the three conditions.

6.2.2 Recreating all study figures
Once the data is on disk, all figures from the main text and
supplementary materials can be reproduced using the fastACI
publ_osses2023c_JASA_figs.m.
Figure 1 from Osses and Varnet (2024) can be obtained with the
command publ_osses2023c_JASA_figs(“figl”).
Implementing an analysis workflow as a unique script that can

script For instance,

easily be executed by any reader necessarily requires extra effort
from the experimenters. However, the consistent structure of the
toolbox ensures that scripts follow a common format, making it
straightforward to adapt existing scripts for new analyses.

6.3 Effect of target utterances

A limitation of the ACI paradigm, particularly in its application
to speech perception, is that each response category (e.g., each
phoneme) is typically associated with a limited number of target
sounds (e.g., one single utterance of that phoneme). Although
it is in theory possible to use multiple utterances of each
phonemes, as in Varnet et al. (2015a), this necessarily leads to less
clearly defined images when data are aggregated over the entire
experiment, as the exact spectrotemporal positions of the cues vary
across utterances. Consequently, experimenters usually restrict the
number of speech targets to one exemplar of each categories (e.g.,
one recording of /aba/ and one recording of /ada/, Varnet et al,
2013; Osses and Varnet, 2024). Such a “frozen speech” task is rather
unnatural as speech production typically involves a large amount
of variability. Furthermore the time-intensive nature of the revcorr
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paradigm may encourage participants to rely on fortuitous acoustic
differences between the speech utterances, rather than on speech
cues used in natural listening conditions. It is therefore legitimate
to ask how dependent the findings are from the particular acoustic
characteristics of the target sounds.

Figure 6 presents the results of the same participant on a fixed
phonetic contrast ([aba] / [ada]) using different pairs of utterances.
The pairs of targets in ABDA21 and ABDA24 corresponded to
natural recordings of /aba/ and /ada/ from OLLO (two different
locutors, male and female). The targets in each pair were equalized
in syllable duration and intensity. The target pair in ABDA13
was artificially modified: a/a/ sound, produced in isolation, was
combined with a recording of /ba/ or a recording of /da/. Therefore,
unlike natural speech sounds, the initial vowel in ABDA13 contains
no coarticulatory information about the following consonant. The
parameters that differ between the three experiments are indicated
in Table 4. The time-frequency representations of the targets
used in each of the three experiments are presented in Figure 6
together with the resulting ACIs estimated using a GLM with L1
regularization on a Gaussian basis.

The ACIs for experiments ADBA13, ABDA24, and ABDA21
reveal a clear pattern of weights, confirming that the participant is
actively extracting information from the noisy stimuli to perform
the task. For each of the three experiments, the strongest weights
are localized in the time-frequency regions corresponding to the
second formant (F,) transition, at the onset of the second syllable.
More precisely, all ACIs showed a similar pattern of weights in this
region, organized vertically, with a positive (red) cluster below a
negative (blue) cluster. This results, consistent with the obtained by
other participants in the same task (Varnet et al., 2013; Osses and
Varnet, 2024; Carranante et al., 2024), confirms the critical role of
the F, onset as a cue for [b]-[d] categorization, as demonstrated
using other psycholinguistic methods (Liberman et al, 1952).
Therefore, despite the natural variability between speech targets
(e.g., variability in the exact spectrotemporal positions of the F,
onset), the method is able to reliably identify the primary speech
cue for the considered phonetic contrast.
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Results of three ACI experiments performed on different [abal-[ada] pairs by the same participant. The rows correspond to the three experiments
described in , with the time-frequency representations of the targets in the first ([abal) and second ([adal) columns, and the ACI obtained in
the third column. ACls are calculated using a penalized GLM with L1 regularization on a Gaussian basis, and normalized in maximum absolute value
Formant and fy trajectories are indicated on the spectrograms, and they are reproduced on the corresponding ACI to facilitate interpretation.

TABLE 4 List of parameters used in each [aba]-[ada] discrimination experiment considered.

ABDA24 White noise Male 1 4,000 Weighted 1-up 1-down +2.5dB
ABDA21 Bump noise Female 2 5,000 Weighted 1-up 1-down No
ABDA13 White noise Female 1 10.000 Transformed 1-up 2-down No

The adaptive procedures used in different experiments targeted the same overall performance score of 70.7%. Further details are given in the body text. Nyzs = total number of collected trials.

Although the F; onset cue is identified in all three experiments,
the ACIs also reveal some variability in the listening strategies
used by the same participant when performing the same task
with different /aba/-/ada/ pairs. The listener seems to be able
to rely more or less on secondary speech cues to distinguish
between targets, including the F; transition near the onset of
the second syllable (ABDA24 and ABDAZ21), the presence of
high frequency energy within the intervocalic interval (ABDA21),
matching the spectrotemporal position of a potential consonant
release burst, and the F, transition at the offset of the first
syllable (ABDA13). The perceptual weights associated to these
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cues, when present, are weaker and therefore they appear as
a secondary source of information for performing the tasks
(see ) )-
Listeners are able to adapt their weighting strategy depending
on the availability and robustness of a cue. It is therefore no
surprise that the auditory revcorr method applied to different
pairs of targets results in different sets of weights. For example,
the use of a coarticulation cue in the first syllable may depend
on the relative energy (and therefore the audibility) of this
syllable, low in ABDA2023 but high in ABDA2013 (
).


https://doi.org/10.3389/fpsyg.2025.1668690
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Osses et al.

10.3389/fpsyg.2025.1668690

WN

MPSN

8000
5115
3241
2024
1315
774 F
422
194
46

T
-

Frequency (Hz)

aba

L T

0.2 0.4

Time (s)

0.6 0.8 0.2

FIGURE 7

Mean ACl across 12 participants, obtained for each of the three noise conditions: white noise (WN), bump noise (BN), MPS noise (MPSN).

0.4
Time (s)

ada

0.6 0.8 0.2 0.4

Time (s)

0.6 0.8

The main cue on F seems to be present in all three experiments,
while only secondary cue weights are subject to variability.® This
leads to the question whether the strategies revealed with the ACI
method are entirely contingent on the choice of particular targets,
as the listener would be able to learn target-specific cues over
the course of the experiment. In particular, do they depend on
the presence/absence of a particular cue in the target? The case
of experiment ABDA13 is particularly interesting in that respect.
As noted above, in this experiment the initial vowel contains no
relevant information for the task, unlike natural speech sounds,
as both targets begin with exactly the same /a/. Nevertheless, the
ACI shows large weights in the F, region in this segment. This
highlights an important property of the revcorr method: it can
reveal cues that listeners expect to find in the stimuli, even if
they are not actually present in the chosen set of targets. This
property has already been demonstrated in visual psychophysics
(Gold et al., 2000; Gosselin and Schyns, 2002, 2003). In particular,
the so-called “superstitious” revcorr protocols in which the stimuli
contain only noise (without any target) nevertheless allow for
the calculation of stable kernels, reflecting the expectations that
participants “project” onto the stimuli (Gosselin and Schyns, 2003;
Liu et al, 2014). In other words, the results of the ABDA2013
experiment illustrates that participants are not able to adapt, over
the course of the experiment, to the absence of a particular cue in
the target.

In conclusion, this short case study illustrates that, while the
ACIs depend on the particular choice of targets, the listeners’ ability
to adapt their strategies to extract additional, superficial, acoustic
cues seems to be limited and does not directly challenge the efficacy
of the method. The ACI method can reveal the acoustic cues that
are audible, or expected to be audible, in the targets, but it does not
necessarily provide an exhaustive list of all possible cues used for a
given contrast.

6 The same is true with respect to interindividual variability, as noted in
Carranante et al. (2024).
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6.4 Comparing between different noise
types

In this section, we focus on the effect of the statistics of the
background noises with respect to the efficiency and robustness of
the method. Three different noise types are considered that have
a flat long-term spectrum, but differ in the amount of temporal
envelope fluctuations: White noise (WN), white noise low-pass
filtered in the modulation-power-spectrum (MPS) domain, and
bump noise (BN) (see Osses and Varnet, 2024, for a description
of these three types of masker). In Osses and Varnet (2024)
N = 12 participants performed 4,000 trials of the same [aba]-
[ada] categorization task in each of the three noise conditions
(12,000 trials/participant). The averaged ACI obtained in each noise
condition are shown in Figure 7.” The out-of-sample prediction
accuracy of the GLM fitted using the “glm_L1_GB” option
was measured separately for the three noise conditions (see
Section 5.4.3). The findings indicated that the GLM reached
higher prediction performances in the BN and MPSN conditions
compared to the WN condition (13.3% and 11.8% vs. 8.1% above
chance level, respectively). This suggests that noise maskers with
larger modulations in the low-frequency range (BN and MPSN)
interfere with the phoneme categorization process in a more
systematic way (i.e., yielding more predictable errors), therefore
potentially resulting in a more robust estimation of the ACIL.

In this case study, we confirm this finding using two additional
metrics. For this purpose, we re-analyzed the data from Osses and
Varnet (2024). In order to quantify the speed of convergence, each

7 Although the auditory system is generally able to adapt its cue-weighting
strategy to the statistics of the background noise, assigning higher weights
to more robust cues, it is noteworthy that the three ACls are quite similar to
each other. This similarity is likely due to the fact that all three masker types
have a white-noise-like long-term spectrum, resulting in similar local SNR for
each cue across the three conditions. The only exception is the bump noise,
which shows a larger weight in the burst cue region for the bump noise. This
may be because the bumps in the masker are more likely to be confused with

a release burst sound.
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Convergence of the estimated ACI throughout the experiment, for the three types of noise. All ACI are computed on the same group of 12
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I
3

o
o

o o
P

o
w

Pearson's correlation

o
¥

o

o

2000 3000 4000

Number of trial

1000

FIGURE 9

Convergence of the fit throughout the experiment, for the three estimation methods. Same legend as in Figure 8. For penalized regression methods
(glm_L2 and glm_L1_GB), only datapoints corresponding to estimations that successfully converged for at least 8 of the 12 participants are shown.

Cue-to-noise ratio

—WN
——BN ~
104} |——MPSN AN
—e—correlation Ve
- #-gim_L1_GB ,’
—-8--glm_L2 ’
103 s ,"\? *
e LN . *
¥ “ * N /,1-
¥ PA S
102 S .-
10!
100 ‘ ; EE
1000 2000 3000 4000
Number of trial

dataset (one participant in one condition) was first randomized,
then divided into 10 subsets corresponding to the first k blocks of
400 trials (total number of trials n = k - 400 with k € [[1,10]).
For each subset, a “partial” ACI was derived using the “correlation”
approach—see the following section for the results of the “glm_12”
and “glm_L1_GB” options. For each of these partial ACIs, two
metrics were computed: the correlation with the final ACI and the
cue-to-noise ratio.

1. Correlation with the final ACI: In order to quantify the speed

of convergence, the similarity of each partial ACI with the final
ACI (corresponding to n = 4,000) was measured using Pearson
correlation. This is a widely used and straightforward metrics for
assessing the convergence of the revcorr method (e.g., Burred
et al., 2019; Varnet et al, 2013). However a major downside of
this metrics is that it assumes that the final ACI correspond to
the “true” template, which is rarely the case in practice. As a
result, all correlation metrics necessarily converge to 1, making
it difficult to compare the accuracy of convergence between
different conditions.
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Cue-to-noise ratio: Although a direct comparison between the
estimated template and the true template is usually not feasible,
as the true template is generally unknown, in this specific task
we can capitalize on our understanding of relevant cues to assess
the accuracy of the estimation. Specifically, in [b]-[d] phoneme
discrimination tasks, the F, onset is known to play a major
role (see previous section). This finding has been replicated
many times in the psycholinguistic literature, and the F2 cue
was observed in every participant in our previous ACI studies
(Osses and Varnet, 2024; Carranante et al., 2024; Varnet et al,,
2013). Conversely, no cue is expected to be found in the same
frequency range during the silent segment after the end of the
second syllable. Therefore, we define the cue-to-noise ratio as
the mean squared weights in the time-frequency region of the
F, onset (1 to 2 kHz, 0.25 to 0.3 s) divided by the mean squared
weights in the non-relevant time-frequency region (1 to 2 kHz,
0.551t0 0.8 s).

The comparison of the three different noise types in terms
correlation analysis and cue-to-noise ratio yielded results
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consistent with the prediction accuracy metrics (Figure 8). The
analysis showed that the reverse correlation method applied to
a consonant-in-noise discrimination task converges more quickly
and more robustly to a stable template when the background
noises contain dominant components in the low modulation
frequency range (between 0 and 40 Hz), which is the case for
MPSN and BN. The prominent envelope fluctuations in this
range lead to more systematic confusion errors compared to white
noise and, therefore, to higher prediction accuracy and more
robust reverse correlation results. In particular, the BN noise
yields a slightly better cue-to-noise ratio (=3.2 at n = 4,000 trials)
compared to the two other types of noise (2.4 for MPSN, 1.8
for WN). Put differently, only about 1,200 BN trials are required
to reach the cue-to-noise ratio achieved with 4,000 WN trials.
This pattern was confirmed using other fitting procedures (see
following section).

6.5 Comparing between different
estimation methods

In this section, the same set of data used in Section 6.4
was subjected to three separate pipelines of analysis. All analysis
parameters were the same except for the fitting method which
was set to one of the three options presented in Section 5.3:
“correlation,” “glm_L1_GB,” or “glm_L2.”

Two main conclusions can be drawn from Figure 9. First, for
small datasets (here approximately n < 2,400), only the standard
correlation procedure is able to produce a reliable result. The
obtained templates are only slightly to moderately correlated with
the final ACI, with a low cue-to-noise ratio in the range 1-3. This
approach can still be useful for experiments that are interested
in gathering data from a large sample of participants, even at
the expense of the quality of individual data. In this case, it is
still possible to post-process the estimated images to improve the
quality (for example using a simpler two-dimensional smoothing).

On the contrary, the “glm_L1_GB” and “glm_L2” approaches
require a minimum of & 2,400 trials to ensure the convergence of
the hyperparameter. When this condition is met, they consistently
produce better estimates that the correlation approach, with
an improvement of the cue-to-noise ratio by a factor 2 in the
case of “glm_L2” and by a factor of 12 or higher in the case
of “glm_L1_GB.” While this finding may appear to support a
preference for using the option “glm_L1_GB” over “glm_L2 it is
crucial to acknowledge that this conclusion is contingent upon the
adequacy of the prior for the specific task and targets considered.
In the present case, as highlighted in Section 5.3, “glm_L1_GB”
is more appropriate as the acoustic cues for stop consonant
discrimination are highly localized in the time-frequency space.

7 Conclusion

The fastACI toolbox implements a type of psychoacoustics
experiments that have been used in auditory science for over
fifty years. During this time, revcorr experiments have often been
conducted with a wide range of parameters, both in terms of
experimental design (e.g., yes/no or two-intervals forced-choice
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tasks, psychophysical staircases or constant stimuli, background
noise or random signal modifications) and analysis methods
(e.g., spectrogram or auditory-based representation, simple linear
regression or regularized GLM). This lack of standardization
has made it difficult to compare results across studies and has
limited reproducibility. By integrating these options within a
consistent and flexible framework, fastACI enables, for the first
time, systematic comparisons across different configurations. The
toolbox is also designed to be as “plug-and-play” as possible,
allowing researchers unfamiliar with the reverse correlation
approach to easily apply it to their own research questions. Finally,
fastACI is open source, supporting transparent, replicable, and
computationally reproducible research.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found below: https://zenodo.
org/records/14972392 for Section 6.1, https://zenodo.org/records/
7476407 for Sections 6.2-6.5.

Ethics statement

The studies involving humans were approved by Comité
d’éthique de la recherche Université Paris Cité. The studies were
conducted in accordance with the local legislation and institutional
requirements. The participants provided their written informed
consent to participate in this study.

Author contributions

AO: Validation, Data curation, Methodology, Formal analysis,
Software, Conceptualization, Writing - original draft. ALB: Formal
analysis, Data curation, Writing — review & editing. LV: Writing
- original draft, Methodology, Software, Funding acquisition,
Writing - review & editing, Formal analysis, Conceptualization,
Supervision.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This study was funded
by the ANR grants “fastACI” (Grant No. ANR-20-CE28-0004),
“DRhyaDS” (Grant No. ANR-22-FRAL-0003), and “FrontCog”
(Grant No. ANR-17-EURE-0017).

Conflict of interest
The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

frontiersin.org


https://doi.org/10.3389/fpsyg.2025.1668690
https://zenodo.org/records/14972392
https://zenodo.org/records/14972392
https://zenodo.org/records/7476407
https://zenodo.org/records/7476407
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Osses et al.

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Ahumada, Jr, A. J., and Lovell, J. (1971). Stimulus features in signal detection. J.
Acoust. Soc. Am. 49, 1751-1756. doi: 10.1121/1.1912577

Ahumada, Jr, A. J, Marken, R, and Sandusky, A. (1975). Time and
frequency analyses of auditory signal detection. J. Acoust. Soc. Am. 57, 385-390.
doi: 10.1121/1.380453

Alexander, J. M., and Lutfi, R. A. (2004). Informational masking in hearing-
impaired and normal-hearing listeners: sensation level and decision weights. J. Acoust.
Soc. Am. 116, 2234-2247. doi: 10.1121/1.1784437

Boersma, P., and van Heuven, V. (2001). Praat, a system for doing phonetics by
computer. Glot Int. 5, 341-345.

Brimijoin, W. O., Akeroyd, M. A, Tilbury, E., and Porr, B. (2013). The internal
representation of vowel spectra investigated using behavioral response-triggered
averaging. J. Acoust. Soc. Am. 133, EL118-122. doi: 10.1121/1.4778264

Burred, J. J., Ponsot, E., Goupil, L., Liuni, M., and Aucouturier, J.-J. (2019). CLEESE:
an open-source audio-transformation toolbox for data-driven experiments in speech
and music cognition. PLoS ONE 14:0205943. doi: 10.1371/journal.pone.0205943

Calandruccio, L., and Doherty, K. A. (2007). Spectral weighting strategies for
sentences measured by a correlational method. J. Acoust. Soc. Am. 121, 3827-3836.
doi: 10.1121/1.2722211

Carranante, G., Cany, C., Farri, P., Giavazzi, M., and Varnet, L. (2024). Mapping the
spectrotemporal regions influencing perception of French stop consonants in noise.
Sci. Rep. 14:27183. doi: 10.1038/541598-024-77634-w

Ewert, S. D. (2013). “AFC - A modular framework for running psychoacoustic
experiments and computational perception models,” in Proceedings of AIA-DAGA 2013
(Merano), 4.

Fischenich, A., Hots, J., Verhey, J., and Oberfeld, D. (2021). Temporal
loudness ~ weights are frequency specific.  Front.  Psychol.  12:588571.
doi: 10.3389/fpsyg.2021.588571

Francart, T., van Wieringen, A., and Wouters, J. (2008). APEX 3: a multi-purpose
test platform for auditory psychophysical experiments. J. Neurosci. Methods 172,
283-293. doi: 10.1016/j.jneumeth.2008.04.020

Gold, J. M., Murray, R. F,, Bennett, P. J., and Sekuler, A. B. (2000). Deriving
behavioural receptive fields for visually completed contours. Curr. Biol. 10, 663-666.
doi: 10.1016/S0960-9822(00)00523-6

Gosselin, F., and Schyns, P. G. (2002). RAP: a new framework for visual
categorization. Trends Cogn. Sci. 6, 70-77. doi: 10.1016/S1364-6613(00)01838-6

Gosselin, F., and Schyns, P. G. (2003). Superstitious perceptions reveal properties of
internal representations. Psychol. Sci. 14, 505-509. doi: 10.1111/1467-9280.03452

Goupil, L., Ponsot, E., Richardson, D., Reyes, G., and Aucouturier, J.-J. (2021).
Listeners™ perceptions of the certainty and honesty of a speaker are associated with a
common prosodic signature. Nat. Commun. 12:861. doi: 10.1038/s41467-020-20649-4

Green, D. M. (1964). Consistency of auditory detection judgments. Psychol. Rev. 71,
392-407. doi: 10.1037/h0044520

Green, D. M., and Swets, J. A. (1966). Signal Detection Theory and Psychophysics.
Newport Beach: Peninsula Publishing.

Joosten, E. R. M., and Neri, P. (2012). Human pitch detectors are tuned on a fine
scale, but are perceptually accessed on a coarse scale. Biol. Cybern. 106, 465-482.
doi: 10.1007/s00422-012-0510-x

Joosten, E. R. M., Shamma, S. A., Lorenzi, C., and Neri, P. (2016). Dynamic
reweighting of auditory modulation filters. PLoS Comput. Biol. 12:¢1005019.
doi: 10.1371/journal.pcbi.1005019

King, A., Varnet, L., and Lorenzi, C. (2019). Accounting for masking of frequency
modulation by amplitude modulation with the modulation filter-bank concept. J.
Acoust. Soc. Am. 145, 2277-2293. doi: 10.1121/1.5094344

Frontiersin

24

10.3389/fpsyq.2025.1668690

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
of the publisher,
the editors and the reviewers. Any product that may be

their affiliated organizations, or those

evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Knoblauch, K., and Maloney, L. T. (2008). Estimating classification images with
generalized linear and additive models. J. Vision 8, 10.1-19. doi: 10.1167/8.16.10

Le Bagousse, A., and Varnet, L. (2025). “50 years of reverse correlation: replicating
Ahumada et al.’s pioneering study,” in Recueil Des Résumés et Des Actes Du 17e Congreés
Frangais d’Acoustique (Paris, France), 297-303.

Liberman, A. M., Delattre, P. C., and Cooper, F. S. (1952). The role of selected
stimulus-variables in the perception of the unvoiced stop consonants. Am. J. Psychol.
65, 497-516. doi: 10.2307/1418032

Liu, J., Li, J., Feng, L., Li, L, Tian, ], and Lee, K. (2014). Seeing Jesus
in toast: Neural and behavioral correlates of face pareidolia. Cortex 53, 60-77.
doi: 10.1016/j.cortex.2014.01.013

Majdak, P., Hollomey, C., and Baumgartner, R. (2021). AMT 1.0: The toolbox
for reproducible research in auditory modeling. Acta Acust. Acustica. 6:19.
doi: 10.1051/aacus/2022011

Mandel, M. I, Yoho, S. E., and Healy, E. W. (2016). Measuring time-frequency
importance functions of speech with bubble noise. J. Acoust. Soc. Am. 140:2542.
doi: 10.1121/1.4964102

Mineault, P. J., Barthelmé, S., and Pack, C. C. (2009). Improved classification images
with sparse priors in a smooth basis. J. Vision 9, 17.1-24. doi: 10.1167/9.10.17

Morise, M. (2016). D4C, a band-aperiodicity estimator for high-quality speech
synthesis. Speech Commun. 84, 57-65. doi: 10.1016/j.specom.2016.09.001

Morise, M., Yokomori, F., and Ozawa, K. (2016). WORLD: a vocoder-
based high-quality speech synthesis system for real-time applications.
IEICE Trans. Inf Syst. E99.D, 1877-1884. doi: 10.1587/transinf.2015ED
P7457

Murray, R. F. (2011). Classification images: a review. J. Vis. 11:2. doi: 10.1167/11.5.2

Neri, P. (2018). Classification images as descriptive statistics. J. Math. Psychol. 82,
26-37. doi: 10.1016/j.jmp.2017.10.004

Oberfeld, D., and Plank, T. (2011). The temporal weighting of loudness:
effects of the level profile. Attent. Percept. Psychophys. 73, 189-208.
doi: 10.3758/s13414-010-0011-8

Osses, A., and Kohlrausch, A. (2021). Perceptual similarity between piano notes:
Simulations with a template-based perception model. J. Acoust. Soc. Am. 149,
3534-3552. doi: 10.1121/10.0004818

Osses, A., Lorenzi, C., and Varnet, L. (2022a). “Assessment of individual listening
strategies in amplitude-modulation detection and phoneme categorisation tasks,” in
24th International Congress on Acoustics (ICA 2022) (Gyeongju, South Korea), ABS-
0173.

Osses, A., Spinelli, E., Meunier, F., Gaudrain, E., and Varnet, L. (2023). Prosodic cues
to word boundaries in a segmentation task assessed using reverse correlation. JASA
Express Lett. 3:095205. doi: 10.1121/10.0021022

Osses, A., and Varnet, L. (2021a). “Consonant-in-noise discrimination using
an auditory model with different speech-based decision devices,” in DAGA,
47th Annual Conference on Acousticc DAGA 2021 Wien (Vienne, Austria),
298-301.

Osses, A., and Varnet, L. (2021b). fastACI toolbox: the MATLAB toolbox
for investigating auditory perception wusing reverse correlation. Zenodo.
doi: 10.5281/zenodo.5500138

Osses, A., and Varnet, L. (2023). “Using auditory models to mimic human listeners
in reverse correlation experiments from the fastACI toolbox,” in Forum Acusticum
(Turin, Italy).

Osses, A., and Varnet, L. (2024). A microscopic investigation of the effect of
random envelope fluctuations on phoneme-in-noise perception. J. Acoust. Soc. Am.
155, 1469-1485. doi: 10.1121/10.0024469


https://doi.org/10.3389/fpsyg.2025.1668690
https://doi.org/10.1121/1.1912577
https://doi.org/10.1121/1.380453
https://doi.org/10.1121/1.1784437
https://doi.org/10.1121/1.4778264
https://doi.org/10.1371/journal.pone.0205943
https://doi.org/10.1121/1.2722211
https://doi.org/10.1038/s41598-024-77634-w
https://doi.org/10.3389/fpsyg.2021.588571
https://doi.org/10.1016/j.jneumeth.2008.04.020
https://doi.org/10.1016/S0960-9822(00)00523-6
https://doi.org/10.1016/S1364-6613(00)01838-6
https://doi.org/10.1111/1467-9280.03452
https://doi.org/10.1038/s41467-020-20649-4
https://doi.org/10.1037/h0044520
https://doi.org/10.1007/s00422-012-0510-x
https://doi.org/10.1371/journal.pcbi.1005019
https://doi.org/10.1121/1.5094344
https://doi.org/10.1167/8.16.10
https://doi.org/10.2307/1418032
https://doi.org/10.1016/j.cortex.2014.01.013
https://doi.org/10.1051/aacus/2022011
https://doi.org/10.1121/1.4964102
https://doi.org/10.1167/9.10.17
https://doi.org/10.1016/j.specom.2016.09.001
https://doi.org/10.1587/transinf.2015EDP7457
https://doi.org/10.1167/11.5.2
https://doi.org/10.1016/j.jmp.2017.10.004
https://doi.org/10.3758/s13414-010-0011-8
https://doi.org/10.1121/10.0004818
https://doi.org/10.1121/10.0021022
https://doi.org/10.5281/zenodo.5500138
https://doi.org/10.1121/10.0024469
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Osses et al.

Osses, A., Varnet, L., Carney, L. H., Dau, T., Bruce, I. C.,, Verhulst, S., et al. (2022b).
A comparative study of eight human auditory models of monaural processing. Acta
Acustica 6:17. doi: 10.1051/aacus/2022008

Osses, A., Varnet, L., and Lorenzi, C. (2022c). “Simulating the perception of
soundscapes, speech-, AM- and FM- sounds,” in Aural Assessment by Means of Binaural
Algorithms (AABBA) Meeting.

Ponsot, E., Burred, J. J., Belin, P., and Aucouturier, J.-J. (2018). Cracking the social
code of speech prosody using reverse correlation. Proc. Nat. Acad. Sci. 115, 3972-3977.
doi: 10.1073/pnas.1716090115

Ponsot, E., Susini, P., Saint Pierre, G., and Meunier, S. (2013). Temporal loudness
weights for sounds with increasing and decreasing intensity profiles. J. Acoust. Soc. Am.
134, EL321-6. doi: 10.1121/1.4819184

Ponsot, E., Varnet, L., Wallaert, N., Daoud, E., Shamma, S. A. Lorenzi,
C., et al. (2021). Mechanisms of spectrotemporal modulation detection for
normal- and hearing-impaired listeners. Trends Hear. 25:2331216520978029.
doi: 10.1177/2331216520978029

Praga, Z. (2017). “The phase retrieval toolbox,” in AES International Conference On
Semantic Audio (Erlangen, Germany).

Relafio-Iborra, H., Zaar, J, and Dau, T. (2019). A speech-
based  computational  auditory  signal = processing  and  perception
model. ]  Acoust. Soc. Am. 146, 3306-3317. doi: 10.1121/1.51
29114

Schonfelder, V. H., and Wichmann, F. A. (2013). Identification of stimulus cues in
narrow-band tone-in-noise detection using sparse observer models. J. Acoust. Soc. Am.
134, 447-463. doi: 10.1121/1.4807561

Frontiersin

25

10.3389/fpsyq.2025.1668690

Sherwin, C. W., Kodman, J.r,, F.,, Kovaly, J. J., Prothe, W. C., and Melrose, J.
(1956). Detection of signals in noise: a comparison between the human detector and
an electronic detector. J. Acoust. Soc. Am. 28, 617-622. doi: 10.1121/1.1908424

Sendergaard, P. L., Torrésani, B., and Balazs, P. (2012). The linear time
frequency analysis toolbox. Int. J. Wavelets Multir. Anal. Inf. Proc. 10:1250032.
doi: 10.1142/50219691312500324

Varnet, L., Knoblauch, K., Meunier, F., and Hoen, M. (2013). Using auditory
classification images for the identification of fine acoustic cues used in speech
perception. Front. Hum. Neurosci. 7:865. doi: 10.3389/fnhum.2013.00865

Varnet, L., Knoblauch, K., Serniclaes, W., Meunier, F., and Hoen, M. (2015a). A
psychophysical imaging method evidencing auditory cue extraction during speech
perception: a group analysis of auditory classification images. PLoS ONE 10:e0118009.
doi: 10.1371/journal.pone.0118009

Varnet, L., and Lorenzi, C. (2022). Probing temporal modulation detection in white
noise using intrinsic envelope fluctuations: a reverse-correlation study. J. Acoust. Soc.
Am. 151, 1353-1366. doi: 10.1121/10.0009629

Varnet, L., Meunier, F., Troll¢, G., and Hoen, M. (2016). Direct viewing of dyslexics’
compensatory strategies in speech in noise using auditory classification images. PLoS
ONE 11:¢0153781. doi: 10.1371/journal.pone.0153781

Varnet, L., Wang, T., Peter, C., Meunier, F., and Hoen, M. (2015b). How musical
expertise shapes speech perception: evidence from auditory classification images. Sci.
Rep. 5:14489. doi: 10.1038/srep14489

Venezia, J. H., Hickok, G., and Richards, V. M. (2016). Auditory “bubbles”: efficient
classification of the spectrotemporal modulations essential for speech intelligibility. J.
Acoust. Soc. Am. 140, 1072-1088. doi: 10.1121/1.4960544


https://doi.org/10.3389/fpsyg.2025.1668690
https://doi.org/10.1051/aacus/2022008
https://doi.org/10.1073/pnas.1716090115
https://doi.org/10.1121/1.4819184
https://doi.org/10.1177/2331216520978029
https://doi.org/10.1121/1.5129114
https://doi.org/10.1121/1.4807561
https://doi.org/10.1121/1.1908424
https://doi.org/10.1142/S0219691312500324
https://doi.org/10.3389/fnhum.2013.00865
https://doi.org/10.1371/journal.pone.0118009
https://doi.org/10.1121/10.0009629
https://doi.org/10.1371/journal.pone.0153781
https://doi.org/10.1038/srep14489
https://doi.org/10.1121/1.4960544
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

	FastACI: a toolbox for investigating auditory perception using reverse correlation
	1 Introduction
	2 Structure of the toolbox
	3 Running an experiment
	3.1 First-time use
	3.2 Running a pre-existing experiment
	3.3 Running a new experiment
	3.4 Running an experiment with an artificial listener
	3.4.1 Artificial listener: front-end auditory model and back-end decision module
	3.4.2 Brief explanation of a model configuration script


	4 Storing the data
	4.1 cfgcrea_*.mat file: cfg_crea and info_toolbox structures
	4.2 savegame_*.mat file: cfg_game and data_passation structures
	4.3 ACI_*.mat file: cfg_ACI and results structure
	4.4 Recreating the noise waveforms

	5 Post-processing of the data
	5.1 Stage 1. Loading the data: fastACI_getACI_dataload.m
	5.2 Stage 2. Selecting the trials: fastACI_getACI_preprocess.m
	5.3 Stage 3. Getting an ACI: fastACI_getACI_calculate.m
	5.3.1 Correlation and weighted sum
	5.3.2 Linear regression
	5.3.3 Generalized linear model with maximum likelihood estimation
	5.3.4 Generalized linear model with regularizers

	5.4 Stage 4. Validating the ACI
	5.4.1 Regression coefficient statistics
	5.4.2 Permutation test
	5.4.3 Within-participant cross-validation
	5.4.4 Between-participant cross-validation


	6 Case studies
	6.1 Replication of a pioneering reverse correlation study
	6.2 Reproducing published results
	6.2.1 Retrieving the experimental sound stimuli
	6.2.2 Recreating all study figures

	6.3 Effect of target utterances
	6.4 Comparing between different noise types
	6.5 Comparing between different estimation methods

	7 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


	Button1: 
	Button2: 
	Button3: 
	Button4: 
	Button5: 
	Button6: 
	Button7: 
	Button8: 
	Button9: 


