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Professional development
program to promote students’
conceptual understanding
through technology-enhanced
teaching: a learner-centered
evaluation

Susanne Digel* and Jurgen Roth

Department of Natural and Environmental Sciences, Mathematics Education for Secondary Schools,
Institute for Mathematics, RPTU University of Kaiserslautern-Landau, Landau, Germany

Introduction: The digital transformation of schools is currently in progress;
yet, the beneficial utilization of technology-enhanced teaching (TET) for
students’ learning remains an intricate endeavor. Teachers report a lack of skills
in integrating technology to support learning and call for teacher professional
development programs (TPDPs) and best practice materials. This paper outlines
the concept and evaluation design of the TPDP MaTeGnu for upper secondary
schools. MaTeGnu aims to exploit the potential of technology for instructional
quality to support students’ conceptual learning with a focus on basic
mental models. Based on a research synthesis on influential factors of TPDPs
we formulate a TPDP model to facilitate the crucial transfer process from TPDP
offer to teaching and thereof discuss the alignment of the MaTeGnu design with
the model.

Methods: The present study aims to evaluate the MaTeGnu TPDP concept by
assessing the students’ understanding, as central objective of the project. This
evaluation employs an experimental-vs.-control-group design, which involves a
comparison of the utilization of basic mental models (BMM) and the conceptual
understanding of students regarding the concept of derivatives in classes, where
teachers participate in MaTeGnu TPDP (Ng; = 151) and in other classes at the
respective schools (N = 571).

Results: Students from MaTeGnu teacher educator classes demonstrate
significantly higher conceptual understanding [t(225) = 3.78, p < 0.001,
d = 0.346] and utilization of basic mental models, particularly of local rate of
change [t(267) = 5.17, p < 0.001, d = 0.474], compared to other students.
Discussion: The findings at the most distant impact level of TPDP reveal
noteworthy empirical evidence of the efficacy of the MaTeGnu approach of TET
with BMM, particularly the accompanying transfer support, as outlined in our
proposed TPDP transfer process model. The emphasis on BMM could provide
an effective strategy to implement TET beneficial for learning, even in the more
formal setting of upper secondary school mathematics.

KEYWORDS

technology-enhanced teaching, teacher professional development program, TPDP
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Over the past decade, the mathematical achievement of upper
secondary school students has become a focal point in educational
research, university teaching, and educational policy in Germany
( ). A systematic review of school performance
studies in upper secondary schools reveals that the majority of
students have significant deficiencies in mathematics competence.
More than half of the graduates do not even demonstrate basic
understanding of pre-university mathematics. In the light of these
findings, the focus on formalism in upper secondary mathematics
must be questioned. Although research has elaborated the benefits of
technology-enhanced teaching on mathematical understanding
( ), technology is still rarely used in German
classrooms ( ) and teachers often do not fully
exploit the potential of technology but use it as substitute in traditional
teaching processes ( ). Given teachers’ profound
impact on lesson design, it stands to reason that lesson development
efficacy depends on their active involvement. Thus, implementing
teacher professional development programs (TPDPs) has emerged as a
pivotal catalyst for advancement within educational institutions.
Nevertheless, TPDPs must meet certain conditions to be effective
( ,

of TPDPs that meet even fundamental aspects of these requirements.

). Unfortunately, there is a paucity

The TPDP training program, entitled “MaTeGnu” (an acronym for
“teaching mathematics with technology sustainably by fostering basic
mental models”), has established an ambitious objective: to fulfill as
many of the requirements as possible and integrate systematically as
well as structurally all relevant institutions and groups involved in
teacher education and professional development in the Rhineland-
Palatinate region. This approach is designed to ensure sustainable
teaching development on a comprehensive scale.

10.3389/fpsyg.2025.1666808

This article introduces the transfer-oriented concept of the
MaTeGnu TPDP and reports findings from an evaluation study
targeting the most distant level of TPDP impact: student learning
( ). This level is seldom examined
due to the numerous influential factors, which only allows for minor
effects. However, it is precisely this level that forms the starting point
of the MaTeGnu TPDP, namely the deficient mathematics
competences of German upper secondary school students.

2.1 Status quo

present an inventory of the findings of school
performance studies with survey dates from 1995 onwards, that
recorded the mathematics performance of upper secondary school
students in Germany. The investigation revealed that the majority of
students exhibited evident deficiencies in scientific propaedeutics.
Specifically, their capabilities were found to be limited in their ability
to engage with learning content typically encountered at the upper
secondary level, such as analysis and analytical geometry, among
others. The primary objective of the tests utilized in the school
performance studies was to evaluate conceptual understanding rather
than the application of procedural skills. The activation and utilization
of basic mental models (see Chapter 2.3) are imperative for the
successful completion of numerous tasks. To solve the sample task
illustrated in , it is necessary to employ the basic mental model
derivative as tangent slope (see Chapter 2.4) ( ).

Which of the following graphs of functions f has the derivative function f’ with the specified
properties? Check the appropriate properties for each function f!
It is possible that several or none of the properties apply!
The graph always shows the function f itself; the properties refer to its derivative function f.
(@) by (b) by () by (d) by (e) \_/“y
s i N F
X X X X X
P T *ﬁv - 1 ] 1
,/
Of'(0) >0 Of'(0)>0 Of'(0)>0 Of'(0)>0 Of'(0)>0
Of'(1)<o Of'(1)<o Of'(1)<o Of'(1)<o Of'(1)<o
O f'(x)is O f'(x)is O f'(x)is O f'(x)is O f'(x)is
always always always always always
negative negative negative negative negative
FIGURE 1
ltem Z8PC was translated from , CC BY-NC-SA 4.0.
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The secondary analysis by Rolfes et al. (2021) demonstrated
that, without exception, in all of the school performance studies
examining mathematics performance in upper secondary schools
in Germany since 1995, a significant proportion of the student
body did not achieve the educational goals of the upper secondary
level scientific

school in pre-university mathematics,

propaedeutics, and study skills.

2.2 Necessary further development

One potential explanation for these findings is the predominance
of formalisms in upper secondary school mathematics teaching,
which frequently remains beyond the grasp of students. This approach
is commonly rationalized as a preparatory phase for advanced levels
of abstraction that are typically encountered in university-level
education. However, as demonstrated by Rach and Ufer (2020),
procedural knowledge without a conceptual understanding is
insufficient for academic success, while formal representations are
dispensable. Conceptual understanding is rooted in the development
of basic mental models that guide teaching and learning (Greefrath
et al., 2023). The subsequent evolution of upper secondary school
pedagogy ought to prioritize fostering conceptual understanding and
systematically cultivating basic mental models among students.

2.3 What are basic mental models?

The
“Grundvorstellungen”) has been firmly established in the field of

concept of basic mental models (in German,
German-speaking mathematics education for a considerable period.
From a didactical perspective, it is employed to delineate the content-
related meaning that learners should ascribe to or genuinely confer
upon a mathematical concept (vom Hofe and Blum, 2016; Greefrath
etal., 2016, 2023).

Basic mental models are instrumental in representing abstract
concepts in a clear and coherent manner, thereby facilitating
connections between mathematics and real-life situations. Two

fundamental categories of basic mental models can be distinguished:

o Primary basic mental models are predicated on concrete
experiences derived from lessons or everyday life. For instance,
children can acquire fundamental cognitive frameworks for the
basic mental model correspondence of functions as early as
kindergarten, as evidenced by their ability to correctly hang their
jackets on coat rack hooks that are labeled with their pictures.

Secondary basic mental models are represented by mathematical
means of representation (e.g., number line, coordinate system,
graph, term, etc.), especially in more complex mathematical
contexts. These basic mental models are acquired and deepened
through mental or real operations with them. A secondary basic
mental model of the rate of change of a linear function can
be acquired and mentally “stored” using a slope triangle on the
function graph.

The application of basic mental models to reality is achieved
through two mechanisms. Firstly, the recognition of the corresponding
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mathematical structure in factual contexts is paramount. Secondly, the
utilization of these principles in modeling is essential.

In the realm of basic mental models, a dichotomy emerges
between individual and normative basic mental models. The
former pertains to the cognitive structures developed by students,
while the latter is shaped by subject-specific didactic discourse,
serving as a foundational framework for the conceptual
underpinnings of mathematics. The design of effective tasks and
learning environments is intended to facilitate the development
of individual basic mental models that are consistent with
established normative basic mental models. Accordingly,
normative basic mental models function as reference points for
pedagogical approaches that prioritize conceptual understanding.

2.4 Basic mental models for the concept of
derivative

In order to illustrate basic mental models that occur in upper
secondary school teaching, we present the basic mental models for the
derivative. The concept of derivative can be characterized in terms of
four basic mental models: (1) local rate of change (RC), (2) tangent
slope (TS), (3) local linearity (LL), and (4) amplification factor (AF)
(Greefrath et al., 2016, 2023).

(1) The basic mental model of derivative as local rate of change (RC)
can be worked out using the example of a running cheetah for
which the speed at a certain point in time is to be determined.
The current location of the cheetah can be determined at any
time using suitable measuring devices (e.g., from a GeoGebra-
based simulation, see Figure 2). The average velocity in the
time interval [2s, 3s] is calculated with the difference quotient

£(3s)-f(25) _333m-l6m . m

3s—2s 3s—2s s
the current speed at a certain time (e.g., xo =2s), you can

If you want to know

reduce the time interval in which you examine the average
speed further and further (Figure 2). The smaller the interval
[x, xo), i.e., the closer x approaches x = 2s, the closer the mean

m
velocity comes 14.8— the instantaneous velocity. It comes
s

arbitrarily close. The value that is approximated is called the

local rate of change. With this procedure, it is possible to

intuitively understand the limiting process from difference
(%)~ (x0)

quotient to differential quotient lim ~——+———=.
XX, X —X0

(2) The basic mental model derivative as tangent slope (TS)
approaches the derivative geometrically. Learners are
acquainted with the concept of the tangent from lower
secondary mathematics as a straight line that touches a circle
at precisely one point. This conception necessitates refinement
towards the analytical perspective of the tangent as a local line
of best fit. Otherwise, misunderstandings in the sense of
“one-point contact” are inevitable (cf. Greefrath et al., 2023).
The conventional approach to the tangent on the function
graph is typically motivated geometrically, with the aid of
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Calculation of the average speed around the time x,

®

x0:2
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146m  14.8m 15m  152m  154m  156m 15, 164m  166m  168m 17m 172m  17.4m

8m  fom 16.2m
Path f(x) = 15.8522803
Time x=1.99s

m

Adjust accuracy : 0.01s

e s

- — : 80 m
[; xo] ) ) e 55 - LR Vo
Xg — X 2s — 1.99s S
inii::?:Sal average velocity f(”: ):£ ixﬂ inttI::Sal average velocity ﬂsz:f ( o
[x1, %0] in the time interval [xq, x(] [x0, x2] in the time interval [x;, x;]
16m — 4.3m m 33.3m = 6m m
[1s, 2s] ~s—is 117: [2s,3s] s 2325?
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2s —1.999s s 2.001s —2s s
FIGURE 2

The mean velocity approaches the instantaneous velocity, which is defined as the local rate of change. The requisite data is derived from a GeoGebra-

based simulation (https://www.geogebra.org/m/qvjjzxct).

secants, whose slope can be readily ascertained using the
coordinates of the two intersection points and the use of slope
triangles. The second intersection point can be “dynamized”
(e.g., with GeoGebra) to approach the tangential position and
observe the difference quotients. The dynamic approach
visualizes the gap in the definition of the difference quotient
f(x)=f(x0) at the point x = x and provides students with
X—Xq
an intuitive, visual understanding of the limiting process

f(x)=£(x0)

lim ——+————~,
XX, X —Xq
(3) The basic mental model local linearity (LL) approaches the

derivative from the following vantage point: By gradually
focusing on the graph of a differentiable function at a specific
point, it becomes evident that the graph approaches a straight
line. The derivative of this function is defined as the slope of
the line. The utilization of software designed for dynamic
mathematics is particularly well-suited for the development of
this basic mental model. The process of zooming entails the
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gradual convergence of the section of the graph displayed on
the screen onto a straight line. The basic mental model of local
linearity serves as the foundation for various applications. In
the context of growth models, the temporal dynamics of
population size are frequently characterized in a local manner,
that is, within a limited time span, by a linear relationship
(Greefrath et al., 2023).

The basic mental model amplification factor (AF) posits that
the derivative functions as a proportionality factor of a
functional relationship, thereby signifying the impact of
minor variations in the independent variable on the
dependent variable. This basic mental model has only
recently been acknowledged in mathematics education
literature and plays hardly any role in mathematics teaching
(Greefrath et al., 2023). One reason for this is that, in
contrast to the other three aforementioned models, this basic
mental model is not sufficient for developing a fundamental
understanding of derivatives. Rather, it is more beneficial as
a supplementary tool for specific applications, such as in
error calculation.
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3 Technology-enhanced teaching to
support students’ conceptual
development

3.1 Meta-analysis of studies on
technology-enhanced teaching

Technology-enhanced teaching offers the opportunity to
provide support for the development of fundamental mathematical
understanding. This conclusion is supported by a comprehensive
meta-analysis based on a systematic review of studies published
since 2000 (N =92), conducted by Hillmayr et al. (2020). The
investigation sought to ascertain the potential of technological
integration to augment learning in secondary school mathematics
and science (grades 5-13). The studies compared the learning
outcomes of students who used digital tools with those of a control
group that was not taught with digital tools. The meta-analysis
revealed that the use of digital tools had a positive effect on student
learning outcomes (g=0.65, p<0.001). It is imperative to
underscore that technology itself does not inherently engender
these effects. The efficacy of these interventions is contingent upon
the specific technology employed and the manner in which it is
integrated into the educational curriculum. Digel and Roth (2022)
contrast in their pre-post-test intervention study two learning
environments on functional relationships with a combination of
hands-on and digital experiments. One setting (CR) followed the
traditional introduction to functional relationships, emphasizing
the correspondence of an element of the definition set to exactly one
element of the set of values. A second setting (CV) prioritized the
central aspect of covariation of the dependent variable when the
independent variable is varied. The covariation setting showed
significantly higher learning gains than the correspondence setting
(CR: d =0.25,p <0.001; CV: d = 0.51, p = 0.001).

3.2 Summary and necessary next steps

Findings from mathematics education research clearly indicate
that using digital learning environments contributes to developing a
conceptual understanding and basic mental models help to elicit
integration of technology beneficial for understanding. However,
schools have not exploited these findings so far. Teachers have reported
an absence of consensus on the principles of technology-enhanced
teaching that facilitate learning. They have noted a lack of teaching
materials elaborated for teaching and a high demand for professional
development programs (Mufimann et al., 2021). Thus, the paramount
issue is to transform the substantiated research findings into teaching.
The ICILS 2023 findings suggest that a crucial strategy for fostering
technology-enhanced teaching methods is implementing effective
TPDPs that focus on integrating technology in the classroom to
enhance conceptual understanding (Fraillon et al., 2025).

4 TPDP: a pivotal mechanism for the
advancement of teaching processes

Teachers can function as conduits for the implementation of
research findings in teaching practice. The initial and secondary
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phases of teacher education establish the foundation, while the tertiary
phase, designated as TPDP, entails the provision of ongoing support
to teachers throughout their professional trajectories, facilitating the
implementation of subject-specific teaching concepts. However, for
such initiatives to be effective, it is imperative that the design of TPDPs
incorporates key elements that authentically reflect the reality of
teachers’ teaching practices. The subsequent section endeavors to
furnish a synopsis of fundamental components that comprise
effective TPDP.

4.1 Characteristics of effective TPDP

Lipowsky and Rzejak (2015, 2019) systematically reviewed the
extant literature on TPDP, encompassing meta-analyses and reviews of
pertinent studies. This comprehensive review yielded 10 characteristics
that have been identified as essential to the efficacy of TPDPs. The
characteristics enumerated below are thoroughly reflected upon and
taken into account in the design of the MaTeGnu TPDP presented here.

(1) Integration of the input, testing, feedback, and reflection phases

(2) Relationship between the duration of TPDP and its effectiveness

(3) Focus on subject-specific content and the subject-specific
learning processes of students

(4) Orientation toward findings from teaching research

(5) Incorporation of scientific expertise

(6) Opportunities to experience one’s own effectiveness

(7) Think big, but start small

(8) Provision of feedback and coaching for teachers

(9) Promotion of cooperation among teachers

(10) Situated learning through working with cases and examples
from teaching practice.

4.2 Offer-and-use model for TPDP

The utilization of TPDPs to foster the advancement of professional
competencies and the transformation of pedagogical practices constitutes
a multifaceted endeavor. A multitude of conditions and factors exert a
substantial influence on the transfer process and the efficacy of TPDP. In
consideration of the aforementioned 10 characteristics of effective TPDP
and drawing upon extant literature on TPDP as well as personal
experience with TPDPs, Lipowsky developed the offer-and-use model
for TPDP. The model delineates five categories of influencing factors that
19). It is
noteworthy that the transfer process is only alluded to by Lipowsky and

affect the transfer process (Lipowsky and Rzejak, 2015, 20

Rzejak (2015, 2019) and is not thoroughly elaborated upon. In the
following list, the five categories of influencing factors mentioned by
Lipowsky and Rzejak (2015, 2019) are enumerated and briefly explained.

Offer: quality and quantity of learning opportunities during
TPDP: The offer-and-use model prioritizes the quantity and quality
of learning opportunities within a TPDP course. These opportunities
are determined by various factors, including the structural, didactic,
and technical components of the course.

Characteristics of the teacher educators: The quality of the
offerings is largely determined by the teacher educators’ knowledge,
convictions, ability to motivate, ability to convincingly convey the
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relevance of the content to the participating teachers, motivational
skills and other aspects of the teacher educator’s personality.

Use: perception and utilization of learning opportunities by
participating teachers: However, the efficacy of a TPDP is contingent,
to a considerable extent, on the manner in which the program’s
offerings are utilized and processed by the participating teachers.

Characteristics of participating teachers: This process is
influenced by a combination of motivational, social, personality-
related, and cognitive prerequisites inherent to the participating
teachers (Kennedy, 2016; Lipowsky, 2009; Santagata et al., 2010).
demonstrated that the
professionalization process of teachers and, consequently, student

School context: Research has
learning are influenced by factors related to the school context (see
Robinson and Timperley, 2007; van Veen et al,, 2012), including direct
and indirect support of teachers by school management and
colleagues, cooperation structures, and the coherence of TPDP
content with the current needs of school teaching reality.

4.3 TPDP transfer process model

The key factors contributing to the success of TPDPs are described
in the work of Lipowsky and Rzejak (2015, 2019), who provided their
offer-and-use model as a foundational framework for understanding
the influencing factors and success metrics in this domain. However,
the pivotal transfer process itself is only referenced in Lipowsky and
Rzejalds (2015, 2019) work, and not thoroughly discussed. In the
ensuing discourse, we propose a transfer process model for teacher

10.3389/fpsyg.2025.1666808

professional development programs, which we refer to as the TPDP
transfer process model (see Figure 3). It aims to answer the important
question of how this process should be designed to implement the most
effective TPDP. The TPDP transfer process model consists of four
interrelated content clusters, namely the prerequisites, the offer, the
transfer process, and the four levels of impact. These four clusters and
their chain of effects are described in detail below.

4.3.1 Prerequisites for TPDP

The TPDP transfer process model illustrates the prerequisites that
influence transfer process. With regard to the school context, the
presence or absence of direct and indirect support from school
management and colleagues, as well as the existence of cooperation
structures, are crucial for the transfer process of TPDP. Additionally,
aligning the content of TPDP with ongoing or planned school and
teaching development projects is essential. The beliefs of the
participating teachers and teacher educators regarding the core
concepts covered in the program significantly influence the transfer
process because they either promote or hinder constructive
cooperation. The potential development processes are contingent, to
a considerable extent, on the initial level of competencies exhibited by
the participating teachers and teacher educators as well as the
participants self-efficacy perception. However, as outlined briefly
above, the school context exerts a direct influence on the transfer
process and an indirect influence via the offers developed for the
TPDP. This is due to the fact that the anticipated or already known
aspects of the school context will be taken into account when
developing the program.

Transfer Process Model for Teacher Professional Development Programs

Prerequisit
School-context

Beliefs of participants & educators

Competencies of participants & educators |

Self-efficacy perceptions of participants :

Individual

Transfer Process

Implementation / Reflection X

Practical relevance

1. Reaction

acceptance
satisfaction
perceived utility

Collegial cooperation

Feedback / Coaching

2. Learning

I

Educators: Concept-teaching-experience
TPDP: Quality & appropriate duration
Teaching material: Quality & quantity
Core practices of teachers

' Deep structure features

Learning strategies

Learning opportunities: Quality & quantity

: © Changing
Transfer Prozess / Classroom-Implementation

© Unfreezing ;
Review of teaching design »
il v © Refreezing
B Consolidation of concept

[
3

Establish core practices

Review on deep structure N

Perceive efficacy

{  Awake learning strategies )

Enhancement of
knowledge
attitudes
confidence

3. Behavior

Enhancement of
teaching practices
teaching quality

4. Results

Development of
student learning
student performance

FIGURE 3

Transfer process model for teacher professional development programs (TPDP transfer process model): Inspired by concepts from Lipowsky and
Rzejak (2015, 2019), Futterer et al. (2024), and Kirkpatrick and Kirkpatrick (2016).

Frontiers in Psychology

06

frontiersin.org



https://doi.org/10.3389/fpsyg.2025.1666808
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Digel and Roth

4.3.2 The offer within TPDP

The initiation of a productive transfer process necessitates the
formulation of a bespoke TPDP as an offer. This encompasses
learning opportunities that must be meticulously designed in terms
of quality and quantity. To that end, the organization requires
teacher educators who have already gained their own teaching-
experience with the training concept. This approach is instrumental
in ensuring the efficacy and quality of TPDPs, facilitating the
identification of an optimal program duration that aligns with the
program content and the intended processes. In order to design a
successful transfer process, the program must also include teaching
materials that are usable by the participating teachers, are of high
quality, and are of an appropriate quantity. An insufficient amount
of material may result in an inadequate grasp of the concepts,
while an excessive amount could overwhelm the teachers,
potentially hindering their ability to thoroughly work through the
materials. The TPDP concept must encompass emphasis on core
practices of teachers, a focus on the deep structure of the intended
teaching content, and the planned consideration of learning
strategies. It is evident that these aspects constitute the offer
incorporated into the transfer process that the participating
teachers must undergo in order to achieve levels of impact for
themselves and their students.

4.3.3 The transfer process of TPDP

The majority of the prerequisites for and aspects of offers to TPDP,
as outlined in Chapters 4.4.1 and 4.4.2, have been previously
mentioned in the offer-and-use model proposed by Lipowsky and
Rzejak (2015, 2019). In their model, Lipowsky and Rzejak (2015,
2019) clearly emphasized that all of these factors influence the transfer
process and that the effects of TPDP are predominantly moderated by
the transfer process. Consequently, the absence of any substantive
discussion on the transfer process and its design in this model is
particularly noteworthy. Our objective is to address this evident gap
in the offer-and-use-model and to propose a solution through the
implementation of the TPDP transfer process model. As demonstrated
in Figure 3, the core of this model is constituted by a detailed
sub-model of the transfer process.

The focal point of this sub-model is the individual transfer process
of each participant in a TPDP. Teachers encounter novel knowledge
and concepts within the framework of TPDP. As Fiitterer et al. (2024)
note, drawing on Lewin’s (1947) work, incorporating these elements
into one’s own teaching practice necessitates an individual transfer
process that can be conceptualized in three phases: (1) unfreezing, (2)
changing, and (3) refreezing. In the initial phase, teachers meticulously
review their lesson design, with a focus on targeted learning objectives
(unfreezing). In the subsequent phase, teachers endeavor to
reconceptualize their instructional design, revising its practical
implementation within the classroom setting. If deemed beneficial,
these modifications are implemented, albeit in a limited capacity,
within the classroom environment (changing). This phase is frequently
reiterated and characterized by a process of trial and error. Once the
practical results are perceived as satisfactory, the concept is consolidated
(refreezing).

The transfer process, initiated during the TPDP, contains two
mechanisms of support for the individual transfer processes of the
participating teachers. The first is organizational support, and the
second is conceptual support.
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Organizational support is characterized by a well-designed
framework that enables the implementation of TPDP concepts in
participants’ classes and facilitates systematic reflection on experiences
gained throughout the process. Consistent collegial cooperation must
be demanded and structurally supported. This builds and consolidates
small teams of participants who experience the practical relevance of
TPDP content together and encourage each other. In these professional
learning communities, participants provide each other with feedback
and avail themselves of coaching from accompanying teacher
educators when necessary.

The provision of conceptual support is primarily undertaken by
the teacher educators, who are required to possess the necessary
qualifications for this role, typically attained through completion of
an appropriate TPDP process. On the one hand, the teacher educators
acquire experience with the teaching materials provided in the TPDP
course by utilizing them in their own lessons and developing them
further in a team setting so that they are suitable for teaching.
Conversely, they acquire experience in imparting the fundamental
principles of the TPDP by first acquiring these principles from
experts and subsequently disseminating them in a more limited
setting. In order to provide conceptual support, it is necessary to
establish core practices, awaken learning strategies, review on deep
structure, and perceive efficacy. The concept of core practices is
elucidated by Shure et al. (2025), who define core practices for
teaching as the recurring actions and decisions through which
teachers address common challenges in instruction. Within the
TPDP transfer process model (see Figure 3), two core practices of
teaching are of particular importance: (1) the selection and adaptation
of tasks, media, and representations, and (2) the observation and
evaluation of student thinking.

In summary, the transfer process for TPDPs, as outlined in this
chapter, encompasses two aspects: first, individual transfer processes
among all participants, and second, a dual support system comprising
organizational and conceptual support.

4.34 The four levels of impact generated by TPDP
The transfer process, which is organized within the context of
TPDP, can result in impact at four distinct levels. These levels of
impact are consistent with KirkpatricK’s four levels of training
2016)
be interpreted as attainable outcomes. In the following segments,

evaluation (Kirkpatrick and Kirkpatrick, which can
we delineate and substantiate them for the TPDP transfer process
model (see Figure 3) in accordance with the perception of these levels
by Lipowsky and Rzejak (2015, 2019).

Level 1 - Reaction: The initial level, designated “Reaction,’
focuses on the extent to which the participating teachers regard the
TPDP as beneficial (perceived utility), appealing (satisfaction), and
relevant to their daily teaching practices (acceptance).

Level 2 - Learning: The second level, entitled “Learning;’
describes the degree to which participants acquire or enhance the
intended knowledge, skills, attitude, confidence, and commitment
based on their participation in the TPDP.

Level 3 - Behavior: The third level, designated “Behavior;
delineates the extent to which participants implement the insights
acquired during the TPDP in their own instructional practice in terms
of enhancement of teaching practices and teaching quality.

Level 4 - Results: The fourth level, entitled “Results,” characterizes

the degree to which a targeted development of students’ comprehension
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in terms of student learning and student performance occurs as a result
of the TPDP, the implemented support, and the provided
teaching materials.

These levels can be used to describe the possible effects as well as
serve as a theoretical basis for evaluating TPDP.

The TPDP transfer process model (see Figure 3) is comprised of
four distinct content clusters that are interconnected: prerequisites,
offer, transfer process, and four levels of impact, as well as their chain of
effects. The theoretical underpinnings of the MaTeGnu TPDP, the
subject of the ensuing chapter, are thereby delineated.

5 The MaTeGnu implementation of the
TPDP transfer process model

The project MaTeGnu is a comprehensive TPDP for all schools
with upper secondary levels in the German state of Rhineland-
Palatinate. This initiative is a collaborative effort between the Ministry
of Education of Rhineland-Palatinate and the Chair of Mathematics
Education for Secondary Schools at the RPTU University of
Kaiserslautern-Landau. The latter is responsible for (1) designing the
program and its organizational structure, (2) developing concepts and
content based on current research findings in mathematics education,
and (3) providing substantive input for TPDPs. This ensures that
MaTeGnu is based on research on teaching and learning mathematics
(Loucks-Horsley et al., 2010; Taylor et al., 2017; van Veen et al., 2012)
and, on the other hand, that scientific experts are leading the
development and design of the program (Timperley et al., 2007), two
proven essential criteria for successful TPDP. The program endeavors
to remediate the identified issues in upper secondary mathematics
education by prioritizing the cultivation of conceptual understanding
with basic mental models and leveraging technology-enhanced
teaching. MaTeGnu is meticulously developed in terms of content and
structure to address the prevalent challenges associated with TPDP,
implementing the proposed TPDP transfer process model.

5.1 Organizational support in MaTeGnu

In order to foster teaching development through TPDP in a
systematic manner, it is essential to engage all relevant institutions. For
MaTeGnu, this primarily signifies the Ministry of Education of
Rhineland-Palatinate, which bears the primary responsibility for the
province’s school education and exercises political control.
Additionally, the State Institute of Education (in German:
Pidagogisches Landesinstitut) must assume a central role, as it is
responsible for TPDP in the state and maintains a group of especially
trained teacher educators, designated as ATDs (advisors for
mathematics teaching development). And finally, the supervision of
mathematics instruction, the preparation and monitoring of upper
secondary school graduation exams, and the respective TPDPs are the
responsibility of the state’s six MCs (mathematics consultants). To
employ and reinforce this TPDP network, the group of MaTeGnu
teacher educators is composed of ATDs and MCs (see Chapter 5.1.2).

To ensure the coordinated development of mathematics teaching
as a whole it is also imperative to incorporate the two other phases of
teacher education beside the third phase (TPDP). MaTeGnu integrates
the initial phase (pre-service university teacher education) through
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the RPTU project lead and the second phase, through the participation
of three SLTs (subject leaders in mathematics at teacher training
seminars) in the MaTeGnu expert team responsible for the iterative
implementation and maturing of the MaTeGnu teaching material (see
Chapter 5.1.2).

5.1.1 MaTeGnu organizational prerequisite: school
context

A central prerequisite for TPDP, as delineated in the TPDP
transfer process model, is the school context (see Chapter 4.4.1).
While it may appear to be of minor consequence, it in fact
encompasses several elements that have the potential to impede the
efficacy of teacher training programs. For example, the absence of a
suitable mathematics class will prevent the immediate transfer process,
the paucity of support of colleagues and administration will complicate
the participation in the TPDP events. A prerequisite for every school
to participate in MaTeGnu is the endorsement of the school
administration and the mathematics department for the project and
the teacher tandem, supporting the collegial cooperation on school
level. The endorsement includes the continuous allocation of
mathematics classes to these teachers throughout the 3 years of TPDP
to ensure practical relevance for the participants and to enable
immediate implementation and reflection of the TPDP content.

5.1.2 MaTeGnu organizational prerequisite and
offer: the teacher educators

The teacher educators engaged in the MaTeGnu program are
already qualified teacher educators (MCs and ATDs) with considerable
experience in TPDP. Thus, the MaTeGnu teacher educator
qualification prioritizes the concept and content of the MaTeGnu
project. To gain intensive experience with the MaTeGnu concept and
teaching material, the central part of the teacher educator qualification
is to participate in a complete three-year cycle of MaTeGnu TPDP (see
Chapter 5.1.3) themselves. As participants they undergo the TPDP
transfer process and assess the practicality of the MaTeGnu teaching
material in a range of conditions through teaching according to
MaTeGnu in their own upper secondary mathematics class (Educators:
concept-teaching-experience).

Concurrently, the MaTeGnu expert team has been constituted
responsible for the maturing of the teaching material. It comprises the
MaTeGnu teacher educators, research-based university mathematics
pre-service teacher educators from the MaTeGnu management team
and the SLTs of the second phase of teacher education. The conceptual
framework and teaching materials are refined in the group and
elaborated based on the experiences in their individual transfer
processes of the MaTeGnu TPDP cycle.

5.1.3 MaTeGnu organizational offer and support:
the MaTeGnu TPDP cycle

The objective of MaTeGnu is to provide systematic support
for teachers in upper secondary mathematics teaching. This
encompasses a wide range of topics (derivatives, integrals,
analytic geometry, matrix calculus, statistics, and exponential
functions). For the necessary focus on subject-specific content
and student learning processes in TPDP (Darling-Hammond et al.,
2017; Timperley et al.,, 2007; van Veen et al., 2012) and for an
appropriate relationship between the duration of the program and
the desired goals (Timperley et al., 2007; Lipowsky and Rzejak,
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2015, 2019), it is imperative that MaTeGnu TPDP encompass the
entirety of the upper secondary school cycle, which entails a
duration of 3 years. Hence, participating teachers are literally
accompanied with their upper secondary school mathematics
class through the complete cycle over 3 years (implementation;
practical relevance; appropriate duration). Figure 4 illustrates the
MaTeGnu program cycle’s structure, meticulously aligned to the
mathematics curriculum (practical relevance). Over the course of
these 3 years, the participants are engaged in biannual full-day
TPDP events focused on the MaTeGnu concept and teaching
materials (quality and quantity of learning opportunities). They
are administered by research-based university mathematics
educators and establish the foundation for the subsequent
implementation of MaTeGnu concept in the participants’
teaching during the ensuing school semester (core practices of
teachers; deep structure features).

5.1.4 MaTeGnu organizational support:
professional learning communities

The heart of the MaTeGnu transfer process support is each
regional professional learning community (PLC), organized and led
by a MaTeGnu teacher educator. The PLCs address the subsequent
pivotal factors conducive to efficacious TPDP (see Chapter 4.1):

Integration of the input, testing, feedback, and reflection phases
(Darling-Hammond et al., 2017)

« Opportunities to experience one’s own effectiveness (Guskey,
2002; Timperley et al., 2007)

Provision of feedback and coaching for teachers (Kalinowski
etal. (2019); Darling-Hammond et al., 2017)

« Promotion of cooperation among teachers (DuFour, 2004;
2011; 2017;

Lomos et al, al.,

Kennedy, 2016)

Darling-Hammond et

10.3389/fpsyg.2025.1666808

« Situated learning through working with cases and examples from
teaching practice (Richter et al., 2013; van Veen et al., 2012)

Within these PLCs, MaTeGnu teachers (1) seek support for and
exchange ideas about the implementation of the concept and teaching
material (coaching; collegial cooperation), (2) discuss (feedback) and
reflect collectively on their teaching experiences and their transfer
process (implementation/reflection), (3) identify best practice and
analyze student interaction (perceive efficacy) and (4) receive specific
support from MaTeGnu teacher educators (feedback/coaching). The
deployment of MaTeGnu teacher educators as leaders of the PLCs is
contingent upon the attainment of intensive teaching experience with
the concept and materials in their own TPDP cycle (Educators:
concept-teaching-experience).

5.2 Conceptual support in MaTeGnu TPDP

In addition to the previously delineated organizational support,
the MaTeGnu TPDP concept encompasses a comprehensive array of
measures designed to furnish conceptual support for the individual
transfer process of the participating teachers.

5.2.1 MaTeGnu conceptual offer and support: TET
core practices of teachers

Participation in a TPDP focused on TET for the development of
fundamental mathematical understanding has been shown to
significantly enhance instructional practice, facilitated by collaboration
(Konstantinidou and Scherer, 2022). The MaTeGnu concept is
predicated on the integration of a focus on conceptual understanding
with the development of TET skills regarding the universal digital
mathematics tool GeoGebra through a combination of TPDP events
and collaboration in PLCs. Specifically, the MaTeGnu events and PLCs

MaTeGnu TPDP structure

]
Derivative

Module 1
Derivative

Module 2
Integral

Analytical Geometry /
Matrices
]

Exponential Functions /
Graduation Exams
]

Module 3
Analytical
Geometry /
Matrices

Module 4
Statistics

Module 5
Exponential
Functions /

Exams

Module 6
Graduation
Exams

Integral Statistics
v ' Exams
Oth school 1st school 1 2nd school 3rd school ' 4th school 5th school
semester semester : semester semester : semester semester

Module: Joint TPDP events with lectures and workshops PLC: Meetings of professional learning communities

Graduation

FIGURE 4
MaTeGnu TPDP structure.
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FIGURE 5

GeoGebra applet that displays tangential segments on the graph of the function f: left initial state, right target state (https://mategnu.de/m/I1e).

aim to develop and consolidate TET core practices in the use of digital
learning environments and GeoGebra with the following means:

(1) Field-tested teaching material of digital learning environments
(namely GeoGebra) with didactical TET implementation notes
(see Chapter 5.2.2).

)

©)

Accumulating workshops on TET core practices for the specific
teaching material at the full-day events.
Accompanying monthly digital how-to and best-practice

workshops [TET classroom practice (Simsek and Clark-
Wilson, 2025) and noticing (McCulloch et al, 2023),
technology-related learning strategies of students and
technology-enhanced assessment], to provide customized
support, catering to individual needs and objectives.

Since the integration of technology-related prior knowledge and
22

L)y

beliefs amplify the efficacy of these programs (Bowman et al., 20
MaTeGnu offers a one-year basic qualification already including the
PLCs prior to MaTeGnu TPDP to integrate and balance TET
knowledge, address TET-related beliefs and establish the PLCs
(prerequisites/offer: beliefs/competencies of participants).

5.2.2 MaTeGnu conceptual offer and support:
teaching material

According to Drose et al. (2025), combining material transfer
strategies with TPDPs is the most promising approach when
implementing instructional innovations (implementation). MaTeGnu
TPDP provides teaching materials online as material packages,
grouped according to the teaching modules (Module 1 derivatives:
https://mategnu.de/m/l1e).

These material packages invariably contain the following (teaching
material: quality and quantity):

(1) Instructional grid with phases of teaching sequence, TET and

BMM notes and clear reference to the mathematics curriculum.
This facilitates rapid access to ideas and concepts, enabling
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teacher educators in the PLCs to underscore the significance of
critical phases for conceptual understanding.

Didactical TET and BMM implementation notes for each
instructional phase, providing a concise overview of

@

fundamental structural elements and guidance on
methodological design (incl. awaking learning strategies for
students working with the digital learning material).

(3) Digital learning material: worksheets, GeoGebra applets, and

digital learning environments (adaption to own teaching is

established as TET core practice).

References to compatible supplementary material in

(4)

mathematics textbooks and digital textbooks.*

The packages have been designed and developed by the
mathematics education research group at Chair of Mathematics
Education for Secondary Schools at the RPTU University of
Kaiserslautern-Landau and have matured in the expert team based on
the diverse implementation processes of the MaTeGnu teacher
educators. Through this collaborative adaptation and revision process,
MaTeGnu teacher educators, are uniquely positioned to provide
conceptual support on the materials and their diverse implementation
in the classroom (educator: transfer of concept and teaching
with material).

The following section exemplifies the learning material with a
dynamic GeoGebra applet from a worksheet for graphing the derivative
function, utilizing the basic mental model of derivative as tangent slope
(see Chapter 2.4). As illustrated in Figure 5, it displays minute line
segments alongside the function graph that can be tangentially aligned
by dragging the green endpoints. The movement of the line segments is
accompanied by the movement of the small red squares representing the
slope of the tangential segment at the orange point. The configuration

1
2

https://o-mathe.de

https://m2.net-schulbuch.de
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of the red squares provides an effective delineation of the graph of the
derivative to f. The students can subsequently draw an approximation
of the graph of the derivative function with the pencil tool.

5.2.3 MaTeGnu conceptual offer and support:
BMM as deep structure features

An essential aspect of the conceptual support provided by
MaTeGnu is to familiarize teachers with the essential basic mental
models, as well as to provide them with a meaningful sequence and
weighting for addressing the relevant basic mental models. Regarding
the basic mental models of derivatives, this signifies the establishment
of conceptual understanding based on the local rate of change (RC)
(see Chapter 2.4) and subsequently the graphical interpretation with
the tangent slope (TS). There are several advantages to approaching
the concept of derivation as a transition from the average rate of
change to the local rate of change. Firstly, the kinematic context is part
of young people’s everyday experiences (e.g., road traffic, computer
games and sports). Furthermore, changes in speed over time are
conceptually transparent to students and facilitate the understanding
of the concept of the second derivative (acceleration). Therefore, the
fundamental mental model of the derivative as the local rate of change
(RC) serves as an effective starting point for the conceptual
understanding of derivatives and facilitates their application to reality.

6 Evaluation of MaTeGnu

As delineated in Chapter 4.3, the TPDP transfer process model is to
be employed in the evaluation of the MaTeGnu project, with the objective
of encompassing all four Kirkpatrick levels. The present study is situated
on the fourth level of training impact, which is the furthest remote from
the training itself and seldom evaluated in studies concerning the
effectiveness of training (Arthur et al., 2003; Stahnke et al., 2025). The
objective of this study is to develop conceptual understanding among
upper secondary school students of MaTeGnu trained teachers as a result
of and concerning the major aim of MaTeGnu TPDP, which is to foster
understanding with a focus on basic mental models.

The present study investigates the conceptual understanding of
derivatives in relation to the utilization of the basic mental models of
derivatives (see Chapter 2.4) and formal expression of derivatives.
Initially, we seek empirical evidence for the supportive role of basic
mental models in conceptual understanding:

RQI: Do preferences for the utilization of basic mental models or
formal expressions of derivatives relate to the understanding of
the concept of derivatives?

To evaluate the actual effects of the TPDP on the students’ learning,
a comparison was made between students in mathematics classes
participating in MaTeGnu and those in regular mathematics classes
regarding their preferences for the utilization of basic mental models or
formal expressions and their conceptual understanding in the topic
of derivatives:

RQ2a: Do students in MaTeGnu mathematics classes show
different preferences to use explanations of derivative with basic
mental models or formal expressions than students in regular
mathematics courses?
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RQ2b: Does the understanding of the concept of derivatives of
students in MaTeGnu mathematics classes differ from that of
students in regular mathematics classes?

Level four is the most remote in the effect chain of the
TPDP. Considering the complex transfer process and the numerous
factors influencing it, as delineated in the TPDP transfer process
model (Figure 3), rather low effects are to be assumed for RQ2a and
b. Nonetheless, it is a central objective of MaTeGnu with the three-
year perspective as well as intensive peer interaction and coaching
network to initiate, accompany and foster the transfer process.

7 Methodology

To address the research questions, a test on conceptual
understanding of derivatives (CUD) is administered in conjunction
with a test on basic mental models of derivatives (BMMD). These
instruments are utilized to evaluate the learning outcomes of students
following a series of lessons on derivatives. The combined test (CUD,
BMMD) is delineated in a multi-matrix design, comprising a total of 58
items, which are distributed across six distinct booklets with 14 anchor
items. Each booklet comprises 11 tasks, of which four are designated as
anchor tasks. The test is scheduled to last for a duration of 45 min.

In order to address RQ1 we conducted correlation analyses of both
test results using item response theory (IRT) with multi-dimensional
Rasch models (see Chapter 7.3 for details). For RQ2a and b, an
experimental-vs.-control-group design is employed, wherein the
experimental group consists of students, who were instructed by
MaTeGnu teachers according to the MaTeGnu concept. The control
group consists of students from other mathematics classes at the
same schools.

7.1 Test on conceptual understanding
(CUD)

The FALKE2 test (accessible at Klinger, n.d.) serves as the
foundation of our assessment of conceptual understanding of
derivatives (CUD). FALKE?2 is part of an evaluation framework for
conceptual understanding in the domain of functions and early
calculus with a broad theoretical and empirical validation base
(Klinger, 2018, 2021). It is constructed as a post-test based on an
overarching classification model consisting of three dimensions of
conceptual understanding of functions:

1. LAYOUT, as the ability to use different representations (graph,
situation, symbol) and to translate between them in a
flexible way,

2. LAYER, as the mental images of functions, which are the basic
mental models of functions (correspondence, covariation and
object) as well as the action, process and object conceptions of
a function (for details see Digel and Roth, 2022), and

3. LEVEL, as the handling of a stand-alone function or a function
in conjunction with a transformation of the function or a
function in conjunction with its derivative.

FALKE?2 is validated as one dimensional construct and shows
good reliability measures in the validation study (ac=0.79 and
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relgappy = 0.79; Klinger, 2018, 2021). For the CUD, only those of the
26 items in FALKE2, that address the LEVEL derivative and at least
one of the LAYERS are selected. Items that exclusively target
procedural knowledge are excluded (e.g., state the equation of the
derivative for a given functional equation). Table 1 lists all selected
items with their content, item type, aspects of the 3L-Framework, and
their solution rates in the validation study (Klinger, 2018, 2021).

The prompt in task Y2VKa-c (see Figure 6) offers a graph
representing the distance of a plane from its origin as a function of the
duration of the flight and a description of the situation.

In item Y2VKa, students are tasked with estimating the mean
velocity of the plane over the entire flight period displayed. They are also
required to determine the instantaneous velocity at two distinct times in
items Y2VKDb and c. All three items aim at the LAYOUT situation and
graph, the LEVEL function and derivative, and the LAYER covariation.
The task can also be discussed from the perspective of basic mental
models of derivatives, in particular the local rate of change. Determining
the mean velocity (Y2VKa) demands an understanding of the mean rate
of change. Consequently, students can apply the concept of rate of change
as a relative size of two quantities, whereas for the instantaneous velocity
(Y2VKb d ), as the local rate of change requires an understanding of
rate of change as a limit of quotients (Byerley et al,, 2012).

7.2 Test on basic mental models (BMMD)

Greefrath et al. (2021) have developed a test to assess students’
characteristics of basic mental models of derivatives (GV-A,

TABLE 1 Selected items of FALKE2.

10.3389/fpsyg.2025.1666808

accessible at https://hal.archives-ouvertes.fr/hal-03103685) with an
empirically separate, reliable scale for each basic mental model
(Cronbach’s alpha ac = 0.76 RC/0.79 TS/0.86 LL/0.90 AF; Greefrath
etal, 2023). Each of the 13 tasks presents a mathematical situation
(four of them set in a context) and offers four correct explanations,
one corresponding to each basic mental model. The students are
asked to rate the accordance of each explanation with their own
thinking on a unipolar five-point Likert-Scale. To contrast the four
understanding-based explanations we add an explanation with a
formal-symbolic focus (FS) to each task. Due to limited test time,
we selected eight tasks for our test on basic mental models of
derivatives (BMMD). Following the idea of different LAYOUTS in
FALKE2 we included all three tasks without graphs in the prompt
and with respect to different LAYERS eliminated tasks with identical
content focus (i.e., explanation of the situation at the inflection point
of a graph) and finally balanced the number of inner-mathematical
and contextualized items.

In line with the understanding of basic mental models as mental
representations that enable operative action on the level of thought
and recognition of mathematical structures within contexts
(Hefendehl-Hebeker et al., 2019), we modified the prompts in the
GV-A towards a utilization perspective of basic mental models,
asking the students to rate the suitability of the explanations
(corresponding to the basic mental models RC, LL, TS, AE, and
formal-symbolic FS) for their own explanation of the situation to a
classmate. Finally, to force a decision we use a four-point Likert-Scale
(see Figure 7 for an inner-mathematical and a contextualized sample
task of BMMD).

Content Solution rate 3L-framework CUD booklet = CUD subscale
pilot Layout-Layer-Level
J9SE FillVesselDraw OA 48.6 SG-CV-F(D) anchor SIT
Y2VKa Airplane MCSS 69.4 SG-C-D 1;4;5 SIT
Y2VKb Airplane MCSS 67.6 SG-C-D 1;4;5 SIT
Y2VKc Airplane MCSS 35.5 SG-C-D 1,45 SIT
W7CK ZoomlIn MCSS 74.7 G-O-FD 1;4;5 SIT
Z8PCa SignDeriv MCMS 18.4 GF-CVO-FD 1,45 GF
Z8PCb SignDeriv MCMS 25.8 GF-CVO-FD 1,45 GF
Z8PCc SignDeriv MCMS 37.4 GF-CVO-FD 1,45 GF
Z8PCd SignDeriv MCMS 15.7 GF-CVO-FD 1,45 GF
Z8PCe SignDeriv MCMS 20.8 GF-CVO-FD 1,45 GF
D6LGa DerivParab MCSS 86.9 GF-CV-FTD 2;3;6 GF
D6LGb DerivParabReason OA 37.0 GF-CV-FTD 2;3;6 GF
X4TP GraphDerivSel MCSS 35.7 SG-O-FTD 1;4 GD
U3TP GraphDeriv OA 73.3 G-CV-FD anchor GD
V3RKa GraphDerivMap MCMS 56.5% G-CV-FD 2;3;6 GD
V3RKb GraphDerivMap MCMS 56.5% G-CV-FD 2;3;6 GD
V3RKc GraphDerivMap MCMS 56.5% G-CV-FD 2;3;6 GD
S3AB GraphDerivDraw OA 43.6 G-CV-FD 2;3;6 GD

LAYOUT §, Situation; G, Graph; F, Formal-symbolic. LEVEL F, stand-alone Function; T, Function and Transformation; D, Function and Derivative; LAYER C, Correspondence; V,
Covariation; O, Object. CUD, Test on conceptual understanding of derivatives (booklets 1-6); CUD Subscale SIT, situational context; GF, formal-symbolic with graph; GD, graphical

derivation. *Rated in the validation study as one single item.
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of the flight was at 10:00 am.

9-hour period shown?

The graph shows the distance traveled (in kilometers)
by an aircraft as a function of time (in hours). The start

a) What is the average speed of the aircraft over the

b) What is the current speed of the airplane at 12:00?
¢) What is the current speed of the airplane at 18:00?
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FIGURE 6

Task Y2VKa-c of FALKE2 test was translated from Klinger (n.d.), https://www.falke-test.de/, CC BY-NC-SA 4.0.

7.3 Data analysis

The open answer items in the CUD test are coded with the solution
criteria provided by the FALKE2 code manual and transferred to a
dichotomous rating using predefined criteria thresholds (Klinger, 2018).
The responses provided in BMMD (Likert-Scale) are then aggregated to
form dichotomous coding (1 =suitable, 0=not suitable). The
dichotomous data from both tests is analyzed using IRT to answer RQ1.
For RQ2a, the four-point Likert-Scale of the BMMD is assumed to be an
interval scale (4 = very suitable to 1 = not suitable) in accordance with the
validation study of the GV-A (Greefrath et al., 2023) to calculate the
descriptive statistics for the five subscales (RC, TS, LL, AF, and FS) over
all eight tasks. To determine differences between EG and CG we perform
a Welch-Test on the individual mean values (as individual rating score
instead of sum scores) of the distinct subscales of BMMD for RQ2a and
the person ability scores in CUD from the Rasch model for RQ2b (Rasch
etal, 2011). All analyses were conducted using R?

7.4 Study sample

The sample of the evaluation study presented in this paper is
drawn from the MaTeGnu teacher educator qualification (see Chapter
5.1.2). 14 ATDs and 4 MCs participated in the MaTeGnu TPDP with
their mathematics classes (8 advanced/7 basic mathematics classes, 12
grammar/3 comprehensive schools). The students of these classes
underwent a combined test (CUD, BMMD) after completing their
MaTeGnu lesson series on derivatives and formed the experimental
group (EG). This subsample consists of Ny = 151 students (76 female,
75 male, 0 diverse) with an average age of M = 17.0. Data was collected
from June to December 2024.

Prior to the start of the MaTeGnu teacher educator qualification,
45 mathematics classes (10 comprehensive/35 grammar school classes,
23 advanced/22 basic mathematics classes) from the schools of the
teacher educators participated in the combined test. This subsample
forms the control group (CG) where no MaTeGnu TPDP treatment

3 https://www.r-project.org
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took place before and during teaching of derivatives. It consists of
Neg = 571 students (276 female, 294 male, 1 diverse) with an average
age of M = 17.1. Data was collected from June to November of 2023.
The study was approved by the state school administration (ADD). All
participants and, in the case of minors, their legal guardians, were
informed of the study’s protocol and data confidentiality and gave
their consent to participate.

8 Results

8.1 Correlation between understanding
and basic mental models

The objective of this study was to investigate the relationship
between the conceptual understanding of derivatives and the
utilization of basic mental models. To this end, the dichotomous data
from both tests (CUD, BMMD) from the entire data sample
(experimental and control group together, N = 722) was analyzed
using IRT. As one subscale of the BMMD is formed by formal-
symbolic explanations and not based on basic mental models, the
BMMD is split into two dimensions, resulting in a three-dimensional
Rasch model with the concept test CUD on the first dimension, the
subscales of all basic mental models (RC/LL/TS/AF) of the
dichotomous BMMD on the second, and the formal-symbolic
subscale (FS) on the third dimension.

The three-dimensional model shows good to acceptable reliability
relwip.; = 0.80/0.74/0.70. There are moderate to weak correlations
(Dancey and Reidy, 2020) between all three dimensions. The
correlation r = 0.56 between conceptual understanding (CUD) and
basic mental models (RC/TS/LL/AF) is significantly higher (Cohen
et al,, 2003) than the correlation r = 0.48 between formal-symbolic
(FS) and understanding (CUD) (z=2.471, p<0.01) and the
correlation r = 0.42 between formal-symbolic (FS) and basic mental
models (RC/TS/LL/AF) (z = 4.426, p < 0.001).

For a closer look we separate the basic mental models of BMMD, with
each model constituting a single dimension. The six-dimensional Rasch
model (CUD, RC, LL, TS, AE ES) demonstrates acceptable reliability
(George and Mallery, 2019) for the whole data sample rely;;
¢=0.79/0.69/0.72/0.70/0.68/0.70. Table 2 presents the latent correlations
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factor; FS, formal-symbolic.
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Task 1: The derivative f’ of a function f at Task 2: The -

point x can be explained in different ways. figure shows =

Please rate the suitability of the following the alfutude h a8

explanations for use when explaining it to functlop of time -

a classmate. ofasailplane . t [flight time

ﬂlght. b in minutes]

RC The derivative indicates the local rate of change at The rate of change of the altitude is largest at the

the point x. time t = 60.

The derivative indicates the slope of the tangent at a . . _
TS point on the graph of f. The slope of the graph is largest at the time t = 60.

The graph can be approximated well by a straight The graph can be approximated by a straight line at
LA | line in the vicinity of x. The derivative indicates the | any point. This line has the largest slope at the time

gradient of this straight line. t = 60.

I.f you move a small distance Ax fT"m X to the For a fixes At the height changes by Ah =~ h' - At.
AF | right or left, the value of the function changes .. - _

. This is largest at the time t = 60.

by Ay = f'(x) - Ax.
FS The derivative at point x is the limit of the At the time t = 60 the limit value of the difference

difference quotient w for h = 0. quotient w for h — 0 is largest.

FIGURE 7

Sample tasks (inner-mathematical left, contextualized right) of BMMD. RC, local rate of change; TS, tangent slope; LL, local linearity; AF, amplification

TABLE 2 Latent correlations of the six-dimensional RASCH-model of dichotomous CUD total scale BMMD (joint data of experimental and control

group).
CUD total BMMD BMMD BMMD BMMD BMMD
scale subscale RC subscale TS subscale LL subscale AF subscale FS
CUD 1 0.58 0.60 057 032 0.48
RC - 1 0.66 0.56 0.38 0.36
TS - - 1 0.72 037 0.47
LL - - - 1 0.40 0.45
AF - - - - 1 0.42

CUD, conceptual understanding of derivatives test; BMMD. basic mental models of derivatives test, with the scales; RC, local rate of change; TS, tangent slope; LL, local linearity; AF,

amplification factor; FS, formal-symbolic.

between the six dimensions of the Rasch model. The highest correlation
was found between the dimensions tangent slope and local linearity
(r=0.72), followed by tangent slope and rate of change (r = 0.66), and the
lowest between amplification factor and conceptual understanding
(r=032).

While the three dimensions RC, TS and LL of basic mental models
show significantly higher correlations (one-sided test; Cohen et al.,
2003) to conceptual understanding (r = 0.58; r = 0.60; = 0.57) than
formal-symbolic (r = 0.48) to conceptual understanding (z = 2.995,
P <0.001; z=3.949, p < 0.001; z = 2.862, p < 0.005), the correlation
between the basic mental model dimension AF and conceptual
understanding (r = 0.32) is significantly lower than between formal-
symbolic and conceptual understanding (z = —4.489, p < 0.001). The
basic mental model dimension amplification factor (AF) also exhibits
significantly lower correlations to the other basic mental model
dimensions (RC, TS, LL) than the correlations among these
dimensions (e.g., LL ~ AF vs. LL ~ TS z = —10.345, p < 0.001; LL ~ AF
vs. LL ~ RC z = —4.636, p < 0.001).
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8.2 Basic mental models

The four-point Likert-Scale data of BMMD demonstrates good to
questionable reliability (George and Mallery, 2019) across all subscales
(RGC, LL, TS, AE FS) in both the control and the experimental group.
Beside Cronbach’s alpha values for reliability Table 3 also displays the
mean values and standard deviations for each subscale in the control and
the experimental group and the results of the Welch-tests between
both groups.

Students in the MaTeGnu classes (experimental group)
exhibit significantly higher utilization scores for the basic mental
models (RC) rate of change (#(267) = 5.17, p < 0.001) and (LL)
local linearity (#(295) = 2.81, p < 0.005) than students in the
control group. The utilization scores of the basic mental models
(TS) tangent slope (EG: M =3.08, SD = 0.89; CG: M = 2.96,
SD =0.97) and (AF) amplification factor (EG: M = 2.06,
SD =0.84; CG: M =1.95, SD =0.89) are also higher in the
experimental group, but not statistically significant. In contrast
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TABLE 3 Cronbach’s alpha reliability, mean value, standard deviation and effect size of the subscales of BMMD and iSubscale TS subscales in
experimental (EG) and control group (CG).

Subscale RC Subscale TS Subscale LL Subscale AF Subscale FS
ac 0.67 0.51 0.81 0.60 0.78 0.56 0.65 0.54 0.66 0.50
M 2.78 3.02 2.96 3.08 278 2.93 1.95 2.06 2.15 2.09
SD 0.92 0.85 0.97 0.89 0.88 0.85 0.89 0.84 1.04 0.94
Welch-Test £(267) = 5.17 p < 0.001 #(286) = 2.04 p = 0.021 £(295) = 2.81 p < 0.005 #(570) = 2.23 p = 0.013 #(289) = —0.92 p = 0.179
d 0.474 0.187 0.258 0.205 —0.084

RC, local rate of change; TS, tangent slope; LL, local linearity; AF, amplification factor; FS, formal-symbolic. ac, Cronbach’s alpha reliability; M, mean value; SD, standard deviation; d, Cohen’s

d effect size; significant effects are shown in bold.

to the basic mental mo.els, the score of the formal-symbolic
explanations (FS) in the experimental group is lower (EG:
M =2.09,SD =0.94.CG: M = 2.15, SD = 1.04). Yet, the difference
is not statistically significant (see Table 3 for further details).

A more thorough examination of the utilization scores across the
different tasks reveals some distinctions. Table 4 presents the mean
values of the subscales (RC, LL, TS, AF, FS) for the respective tasks of
BMMD separately for both groups (CG, EG). There are higher
utilization scores for the basic mental models in the contextualized
tasks than in the inner-mathematical tasks.

There are higher mean values for the basic mental models and
at the same time lower for the formal-symbolic subscale in the
contextualized tasks than in the inner-mathematical tasks, but the
differences between control group and experimental group are not
observably greater or smaller in contextualized tasks than in
inner-mathematical tasks. In tasks than present graphs in the
prompt the mean values for tangent slope and local linearity
are higher.

Figure 8 illustrates these patterns. It shows the distribution of
ratings (as percentage) in all subscales (RC, LL, TS, AF, FS) for an
inner-mathematical tasks (without a graph in the prompt) and a
contextualized tasks (with a graph in the prompt). Darker colors
represent higher ratings (very suitable, suitable, less suitable, not
suitable) and the grey color is used to separate the formal-symbolic
subscale (FS) from those of basic mental models.

There is a noticeable increase in positive ratings in the
experimental group compared to the control group in both tasks
for the three basic mental models local rate of change (RC),
tangent slope (TS) and local linearity (LL) and a slight decrease
for formal-symbolic (FS) explanations. The level of positive
ratings in RC/TS/LL is higher and in FS lower in the
contextualized task and in this task the differences between
experimental and control group are greater. The level of positive
rating for amplification factor is very low in both tasks and even
drops in the experimental group in the contextualized task.
Figure 9 gives an insight into all tasks of the BMMD. It displays
all ratings grouped by the different scales.

The ratings of rate of change vary most, between tasks and
between experimental group and control group. The ratings for the
basic mental models and the formal-symbolic explanation vary over
the different tasks, except for tangent slope, which has consistently
high positive ratings in all tasks but task 6.
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8.3 Conceptual understanding of
derivatives

The dichotomous data of CUD shows acceptable to questionable
reliability (George and Mallery, 2019) for the total scale and good to
poor reliability for the subscales situational (SIT), formal (GF) and
graphical derivation (GD) in the control and experimental group.
Table 5 lists Cronbach’s alpha values for reliability, mean values and
standard deviations for each subscale in the control and experimental
group and the results of the Welch-tests between both groups.

Students in the MaTeGnu classes (EG) exhibit significantly higher
conceptual understanding (#(225) = 3.78, p < 0.001, d = 0.346) than
students in the control group (EG: M = 6.06, SD = 9.01; CG: M = 5.03,
SD = 8.20) with a small to medium effect (Cohen, 1988). In the
subscale (SIT), formed by the contextualized tasks of the CUD, the
score of MaTeGnu students is significantly higher (EG: M =2.27,
SD =2.73; CG: M = 1.54, SD = 2.46) with an almost medium effect
(1(225) =4.92, p<0.001, d=0.451). The difference between
experimental and control group in the subscale with formal tasks,
where a graph is presented (GF), is also significant (#(210) = 2.93,
p<0.01, d=0.268) with a small effect size, but this result has to
be interpreted with caution, since the reliability of the scale is not
satisfactory (see Table 5). The scores in the subscale for graphical
derivations is slightly lower in the experimental group (EG: M = 1.69,
SD=1.93; CG: M=1.84, SD=2.42), but the difference is not
significant (#(257) = —1.08, p=0.140) and the reliability of the
subscale in the experimental group is not acceptable.

In comparison to the solution rates of the different tasks reported
by Klinger (2018) in the validation study of the FALKE2-test, those in
the control group and experimental group of our study are higher on
average, but the pattern is similar (see Table 6). However, several items
of task Z8PC and item D6LGb demonstrate considerably higher
solution rates in our study than in the validation study.

9 Discussion

The present study evaluates the effects of the TPDP MaTeGnu on
student understanding of derivatives. As a first step we investigate the core
assumption of the TPDP, to foster understanding with basic mental
models (RQI). Based on that we compare students whose teachers
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TABLE 4 Mean value and standard deviation of the subscales of BMMD of aSubscale LL tasks in experimental (EG) and control group (CG).

Subscale RC Subscale TS Subscale LL Subscale AF Subscale FS
M SD M M M SD
Task 2— CcG 3.09 091 3.27 091 3.07 0.93 2.04 0.87 2.03 0.97
GVAbWp9
Sailplane height EG 3.34 0.67 3.28 0.82 3.18 0.88 1.91 0.78 2.03 0.80

inflection point

Task 3— CG 2.48 0.91 2.99 1.05 2.86 0.94 2.03 0.86 1.99 1.27
GVAbMax2

Cars in tunnel EG 2.51 0.80 3.06 0.97 2.92 1.00 2.18 0.87 2.01 0.97
maximum

Task 4— CG 2.87 0.91 3.08 0.94 2.92 0.94 2.16 0.95 2.05 1.00
GVAbWp3

Bicycle path EG 2.98 0.91 2.98 0.91 3.06 0.80 2.22 0.80 2.12 0.86

inflection point

Task 7—GVAbfg12 CcG 2.82 0.86 3.28 0.84 3.09 0.86 2.22 0.96 1.95 0.92
number of bacteria EG 3.25 0.80 3.36 0.76 3.17 0.89 2.34 0.91 1.81 0.84
Task 8— CcG 2.69 0.82 3.03 0.94 3.02 0.95 1.96 0.89 2.10 1.06
GVADbNd13
Explain with

EG 2.97 0.82 3.23 0.87 3.05 0.95 2.24 0.78 1.96 0.96
graphs not
differentiable
Task 1— CG 2.83 0.92 3.09 0.95 2.58 0.98 1.67 0.79 2.22 1.08
GVADbStX1

EG 3.15 0.88 3.14 0.83 2.67 0.87 1.74 0.80 2.23 1.02
Explain f* (nG)
Task 5—GVAbNd4 CcG 2.39 0.82 2.89 0.91 2.80 0.89 2.19 0.92 2.29 1.00
Explain not

EG 2.55 0.74 2.95 0.84 2.65 0.91 2.36 0.90 2.40 0.99
differentiable (nG)
Task 6— CcG 2.78 0.94 2.34 0.91 2.70 0.90 2.02 0.88 2.15 1.02
GVAbDop10
Double f doubles {” EG 3.06 0.89 232 0.81 2.81 0.87 1.94 0.65 2.04 0.98
(nG)

RG, local rate of change; TS, tangent slope; LL, local linearity; AF, amplification factor; FS, formal-symbolic. nG, no Graph in task presented; M, mean value; SD, standard deviation.

GVABStX1 - f' GVAbWp9 - Sailplane
100% 100%
90% 90%
80% 80%
70% 70%
60% 60%
50% 50%
40% 40%
30% 30%
20% 20% I
10% . 10% I
0% . 0%
CG EG | CG EG | CG EG | CG EG CG  EG cG EG | CG EG | CG EG  CG EG = CG EG
RC IS LL AF FS RC IS LL AF FS
FIGURE 8
Rating distributions of two tasks (inner-mathematical left, contextualized right) of BMMD. RC, local rate of change; TS, tangent slope; LL, local linearity;
AF, amplification factor; FS, formal-symbolic; EG, experimental group; CG, control group.
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FIGURE 9
Likert-scale ratings of all tasks in control group (CG, left) and experimental group (EG, right) grouped by scales of BMMD.

TABLE 5 Cronbach’s alpha reliability, mean value, standard deviation and effect size of the CUD and its subscales in experimental (EG) and control
group (CQ).

Total Scale Subscale SIT Subscale GF Subscale GD
CG EG CG EG CG EG CG EG
ac 0.57 0.60 0.70 0.80 0.46 0.55 0.65 0.50
M 5.03 6.06 1.54 2.27 1.66 2.07 1.84 1.69
SD 8.20 9.01 2.46 2.73 1.83 2.50 242 1.93
Welch-Test £(225) = 3.78 p < 0.001 £(225) = 4.92 p < 0.001 £(210) = 2.93 p < 0.01 #(257) = —1.08 p = 0.140
d 0.346 0.451 0.268 -0.099

CUD Subscale SIT, situational context; GE, formal-symbolic with graph; GD, graphical derivation. «, Cronbach’s alpha reliability; M, mean value; SD, standard deviation; d, Cohen’s d effect
size; significant effects are shown in bold.

participate in MaTeGnu with their mathematics class and teach derivatives 9.1 The relation of basic mental models
according to MaTeGnu (experimental group), to students from other ~@and conceptual understanding

mathematics classes (control group). We investigate their utilization of

basic mental models and formal-symbolic explanations (RQ2a) as well as As delineated in Chapter 2.3, basic mental models provide
their conceptual understanding (RQ2b). content-related interpretations to abstract mathematical concepts,
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TABLE 6 Solution rates of the CUD tasks in validation study (VAL),
experimental group (EG) and control group (CG).

Item Subscale Solution Solution Solution
rate VAL rate CG rate EG
JOSE SIT 486 45.7% 53.1%
Y2VKa SIT 69.4 71.4% 72.7%
Y2VKb SIT 67.6 68.2% 75.5%
Y2VKc SIT 355 34.4% 34.7%
W7CK SIT 74.7 76.1% 84.8%
Z8PCa GF 18.4 27.4% 40.4%
Z8PCb GF 25.8 51.7% 47.5%
Z8PCc GF 374 37.3% 61.6%
Z8PCd GF 15.7 24.7% 34.3%
Z8PCe GF 20.8 35.5% 49.5%
D6LGa GF 86.9 83.8% 82.0%
D6LGb GF 37.0 83.1% 78.4%
X4TP GD 357 35.7% 44.3%
U3TP GD 733 75.3% 70.7%
V3RKa GD 56.5% 78.0% 82.4%
V3RKb GD 56.5% 51.3% 47.1%
V3RKc GD 56.5% 51.3% 47.1%
S3AB GD 436 33.2% 40.0%

CUD Subscale SIT, situational context; GE, formal-symbolic with graph; GD, graphical
derivation. *Rated in the validation study as one single item.

giving them a meaning. It seems more than feasible that meaningful
acquisition of mathematical concepts should enhance understanding.
But especially on high-school level the question remains whether
students can make use of these meaningful concepts in mathematical
tasks or if arguing on a formal-symbolic level is more profitable for
solving the tasks.

The satisfactory reliability of the IRT modeling demonstrates the
suitability of both test instruments for this study. The results of our
correlation analyses of the Rasch-modelled dichotomous test-data
(see Chapter 8.1) show a strong correlation between basic mental
models and conceptual understanding (Cohen, 1988), also an
indicator for the validity of both tests. The correlations between basic
mental models and conceptual understanding are significantly higher
than those of formal-symbolic explanations and conceptual
understanding. Thus, students who prefer the use of basic mental
models for explanations over formal-symbolic expressions show
higher conceptual understanding of derivatives. Hence, we can assume
that a focus on basic mental models when developing the mathematical
concept of derivative fosters conceptual understanding.

But in our study not all basic mental models are strongly tied to
conceptual understanding. The amplification factor (AF) shows low
utilization scores in the BMMD and a weak correlation to
understanding. AF is also only weakly related to the other basic
mental models. This is in accordance with previous studies on the
structure of students’ basic mental models (Greefrath et al., 2023),
where explanations based on AF also showed the lowest agreement
and AF was only loosely related to tangent slope (TS) and local
linearity (LL), but opposed to our results AF showed a medium to
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strong correlation to rate of change (RC) in their study. The strong
correlation between TS and LL is also a replication of the results in the
validation study and can be explained by their broad common
theoretical grounds as discussed by Tall (2012).

Regarding RQ1 we can conclude that preferences for the
utilization of rate of change, tangent slope and local linearity are
strongly related to the understanding of the concept of derivatives,
whereas preferences for the utilization of amplification factor (AF) or
formal-symbolic explanations (FS) only play a subordinate role for
conceptual understanding.

The results provide empirical support for the concept of
MaTeGnu, especially its focus on the deep structure of teaching
(TPDP transfer process model, see Figure 3) in two ways. First, they
underpin the central aim of MaTeGnu to foster conceptual
understanding through the development of basic mental models.
Second, the subordinate role of amplification factor for conceptual
understanding and the high correlation between local linearity and
tangent slope sustain the MaTeGnu focus on rate of change and
tangent slope for the concept of derivatives (see Chapter 5.2.3). Put
together, the MaTeGnu approach, which systematically addresses
BMMs as deep structure feature of teaching throughout the TPDP, in
the events, the field-tested teaching materials, and the coaching and
reflection in the PLCs (conceptual offer and support, see Chapter 5.2),
appears to facilitate the transfer process.

9.2 Utilization of basic mental models in
MaTeGnu classes compared to others

As outlined in Chapter 7.3 we assume the data of BMMD (Likert-
Scale) as interval scale in accordance with the authors of the
underlying GV-A test instrument to compare the findings with their
evaluation study (Greefrath et al., 2023). This idealization is widely
used in educational research context but not undisputed (Wu and
Leung, 2017). As for our study, the idealization together with the even
number of response options, which is required for our dichotomous
analysis to answer RQ1, and missings resulting from the multi-matrix-
design might explain the mediocre reliability values of the subscales
of the BMMD in the experimental group (Kusmaryono et al., 2022).

The largest difference between experimental and control group
with an almost medium effect shows the utilization ratings for the
basic mental model rate of change (RC), followed by local linearity
(LL) with a small effect. The ratings of tangent slope (TS) and
amplification factor (AF) are also higher in the experimental group,
but the difference is not significant, which might be explained by the
general high (in case of TS) respectively low (in case of AF) level of
ratings. There is also a slight non-significant decrease of agreement for
formal-symbolic (FS) explanations in the experimental group.

The low level of AF ratings is in line with previous research,
reporting students’ difficulties with and reluctance of the use of this
basic mental model (Mamolo and Zazkis, 2012). The high ratings for
TS are in line with the observations from research on classroom
discourse, where teachers commonly illustrate the concept of
derivative with the transition from secant to tangent line (Park, 2015).
Above these levels our results clearly demonstrate a considerable
impact of the MaTeGnu TPDP on students’ conceptual understanding.

On the level of individual tasks, ratings for the basic mental
models RC, TS, LL are higher and ratings for FS are lower in both
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groups in contextualized tasks (2, 3, 4 and 7) than in other tasks,
which empirically underpins the role of basic mental models as
facilitator for the connection between mathematics and real-life
situation (see Chapter 2.3).

A peculiar result is the low rating for task 6, where students are
presented with the inner-mathematical problem to explain why the
derivative function is doubled when the function itself is doubled. The
tangent slope with the ideas of secant and gradient triangle or the
amplification factor seem useful here from a theoretical perspective,
but the data shows the opposite in both groups. Although the formal-
symbolic explanation seems close to the algebraic expressions in the
prompt of the task, the ratings in both groups are low. The students
seem to see no benefit of formal expression when explaining this
formal situation. The high ratings for rate of change might be due to
the potential of this basic mental model to connect a context to the
algebraic representation (Crawford and Scott, 2000). Following this
argumentation the higher ratings in this task in the experimental
group might indicate, that the MaTeGnu students seem to be more
capable to exploit this benefit of rate of change. Local linearity has only
slightly lower scores, which might be attributable to the focus on linear
functions in lower secondary school mathematics.

Regarding RQ2a we can conclude that students in MaTeGnu
mathematics classes show significant higher utilization of basic mental
models, especially rate of change and local linearity than in other
mathematics classes. The utilization of tangent slope is high for all
students, except for the task addressing the algebraic representation
(task 6), where all students utilize rate of change and local linearity
with a slight lead for the MaTeGnu students. Formal-symbolic
explanations show relatively low utilization, in the group of MaTeGnu
students even lower.

The overall high level of utilization of tangent slope and the
striking ratings in task 6 together with the high correlation between
tangent slope and local linearity (as presented in the previous chapter)
provides further empirical support for the teaching concept for
derivatives as outlined in Chapter 5.2.3, i.e., to set a strong focus on
rate of change for conceptualization of derivatives (as proposed by
Crawford and Scott, 2000) and then relate to the graphical
representation with tangent slope.

The significantly higher utilization of the basic mental models rate
of change, tangent slope and local linearity by MaTeGnu students is
remarkable empirical evidence of the success of the MaTeGnu TPDP,
particularly the accompanying transfer, according to our TPDP
transfer process model (see Figure 3), since the results are located on
the most distal level of impact. The MaTeGnu concept, in particular
with its conceptual and organizational support (cooperation and
coaching at PLCs, aligned content, core practices; see Chapter 5.1 and
5.2 for details) enables the teachers to develop their teaching towards
fostering their students’ development of basic mental models of
derivatives and their utilization of basic mental models.

9.3 Conceptual understanding in MaTeGnu
classes compared to others

The mediocre level of reliability of the CUD test as total scale can

be partly explained by the planned missingness of the multi-matrix-
design of the study. The good reliability measure of the CUD in the
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Rasch-model (see Chapter 8.1), which is more robust to missings,
supports this argument and justifies the use of the test.

In the CUD MaTeGnu students demonstrate a notably higher
level of conceptual understanding than other students. They score
most different from other students in the contextualized tasks, a
significant and almost medium effect. In the formal-symbolic tasks
with graphs (GF) MaTeGnu students show higher results (EG:
M =2.07; CG: M = 1.66) than students in other mathematics classes
as well, but the significance level and effect size reported in Chapter
7.3 can only be regarded as indications due to the reliability of the
subscale. MaTeGnu students achieve slightly lower scores in the tasks
of graphical derivation (GD) than other students. These tasks mainly
address tangent slope, which is dominant in the control group. In
addition, students often rely on trained routines when working with
function graphs on derivatives (Asiala et al., 1997). Accordingly, the
students in the control group could be somewhat more successful in
these tasks by using solution routines.

Compared to Klinger’s (2018) validation study, our results reveal
higher solution rates, particularly in the experimental group and
difficult tasks show the largest differences. This suggests that the
MaTeGnu teaching approach, which emphasizes understanding,
provides a broader range of students with access to solutions for more
difficult tasks.

Remarkably the solution rates of task Z8PC from the formal-
symbolic subscale (GF) roughly double in the MaTeGnu group. In this
task with a focus on TS students must decide upon properties of the
derivative function based on the graph of the function. In contrast to
the GD tasks, they cannot use routines here but must apply TS
productively. MaTeGnu’s teaching concept seems particularly effective
here. It supports the connection between the derivative concept and
algebraic expressions by introducing TS as graphical interpretation
relatively late, after the derivative concept has been established as the
local rate of change.

Regarding RQ2b we can conclude that students in MaTeGnu
mathematics classes show significant higher conceptual understanding
than students in other mathematics classes. MaTeGnu students
particularly use their understanding productively in contextualized
tasks. Regarding the MaTeGnu TPDP concept, the results at the most
distant level of TPDP impact show that focusing specifically on the
transfer process (TPDP transfer process model, see Figure 3) is
effective. This finding underscores the efficacy of the conceptual and
organizational support framework within MaTeGnu, particularly
evident in the initial implementation of the adapted teaching concept
by participating teachers within the MaTeGnu mathematics classes.

9.4 Limitations of the study

As alluded in the discussion above, one of the empirical limitations
is the reliability of the CUD and the simplification of the BMMD as
interval scale in the analysis, but the good reliability scores of both
tests in the IRT analysis demonstrate the suitability of the test
instruments for this study.

Another restriction of the empirical data is the unbalanced sample
of experimental and control group, which is due to joint data
collection for all MaTeGnu topics of the control group (derivatives,
integrals, analytical geometry and matrices, statistics). The test time
was predetermined and the teachers of the participating mathematics
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classes decided upon the topic of their test depending on the previous
teaching topic. This led to a considerable overlap of test data for the
topic derivatives.

The ratings of utilization of basic mental models are only a
predictor of the actual use of basic mental models in problem solving
and the students’ own conceptual reasoning. An accompanying
validation study, in the form of cued retrospective think-aloud
interviews on the contextualized CUD tasks, is planned for the next
evaluation cycle of MaTeGnu in the topic of derivatives.

The experimental group of this study is drawn from the MaTeGnu
teacher educator qualification cycle. The teachers who participate in
this cycle are experienced teacher educators (as outlined in Chapter
5.1.2) and hence incorporate high qualifications and deepened
insights into contemporary teaching. This might lead to a higher level
of teaching quality before the start of the TPDP and through
dissemination at their schools to higher CUD and BMMD scores in
the control group (drawn from mathematics classes of the schools of
the teacher educators right before the start of MaTeGnu) and thus
lower effects visible. On the other hand, the MaTeGnu teacher
educators probably incorporate a special motivation to transfer the
MaTeGnu teaching concept into their own teaching to gain experience
for their work as MaTeGnu teacher educators, especially in the PLCs
(see Chapter 5.1.4) and for their contribution to the maturation of the
MaTeGnu teaching material in the expert team (see Chapter 5.2.2).
Overall, we assume that the two effects roughly balance each other out
and that this study is a good proxy for the evaluation cycle with the
first cohort of teachers, who just started in summer 2025.

The TPDP is implemented as a state-wide professional
development program, tailored to the state mathematics curriculum
and the data is collected in schools throughout the state. However, the
nationwide graduation exams and educational standards ensure the
applicability of MaTeGnu in other states of Germany. On international
level it might be necessary to realign the content to the local
curriculum to ensure relevance of content and tailored support for
implementation. The TPDP transfer process model presented in this
article provides the criteria to adjust the specific MaTeGnu content
and outline to the local prerequisites. However, we would recommend
engaging all relevant institutions in the program as outlined for
MaTeGnu in Chapter 5.1 to foster teaching development systematically.

10 Conclusion

MaTeGnu, a professional teacher development program for
technology-enhanced teaching, aims to address two significant
deficiencies in mathematics education at the upper secondary level:

1. The considerable number of students who fail to attain even a
basic level of mathematical competence by the end of upper
secondary education,

2. The low and even declining digital proficiency of German
students, and the low proportion of teachers who incorporate
digital technologies into mathematics classes.

MaTeGnu’s distinctive approach to addressing these issues
involves the integration of digital technology to facilitate conceptual
understanding through emphasizing basic mental models. The TPDP
incorporates a meticulously structured concept that spotlights the
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transfer into teaching (TPDP transfer process model, Figure 3) and
involves key stakeholders of the educational environment (see Chapter
5.1). The presented evaluation study offers results at the most distant
level of TPDP impact, that is the students’ learning, which corroborate
this transfer centered approach.

Students
significantly higher utilization of basic mental models together with

in MaTeGnu mathematics classes demonstrate
significantly higher conceptual understanding. Consequently, it can
be concluded that the MaTeGnu approach of TET with BMM
promotes teaching with technology that fosters conceptual
understanding. An in-depth analysis of the tasks reveals that the BMM
local rate of change appears to facilitate the effective utilization of the
BMM tangent slope. This finding lends empirical support to the
particular design of the digital learning environments, in which
derivatives are conceptualized as a local rate of change and
subsequently represented graphically as tangent slope. In light of the
findings, it can be recommended to employ this design for the teaching
of derivatives, even on an international scale. Furthermore, it is advised
that a corresponding remark be incorporated into curricula. The
specific teaching material® has been developed based on the regional
mathematics curriculum and is fully compliant with the German
educational standards in mathematics, i.e., it is applicable throughout
Germany. In order to ensure optimal functionality on an international
scale, a comprehensive review of the compatibility of individual
components with national curricula is imperative. This evaluation
process enables the selection of components that are compatible with
the specific educational standards and objectives of each nation.

The evaluation concept of MaTeGnu incorporates empirical
studies on each of the five topic modules (derivatives, integrals,
analytical geometry and matrices, statistics, and exponential
functions). The preliminary data analysis on conceptual understanding
and utilization of basic mental models on integrals shows similar
results. Consequently, our data indicates that the prioritization of
BMM may offer an effective strategy to leverage technology’s benefits
for learning and to overcome teachers’ perceptions mindless working
when teaching with technology (Thurm and Barzel, 2022). This
approach has the potential for application even in the more formal
setting of upper secondary school mathematics.

The distinct results on the most distant level of TPDP impact also
underpin MaTeGnu’s effort to support the participating teachers in
their transfer process from TPDP to actual teaching (TPDP transfer
process model, see Figure 3). Given the assumption that focusing on
understanding using basic mental models (deep structure) necessitates
a substantial realignment of rather formal teaching directed towards
academic aptitude, MaTeGnu particularly addresses the transfer
process with conceptual and organizational support.

This support of the transfer process also incorporates the
paradigm of constructive alignment of learning and assessment
(Biggs, 1996) in the PLCs. This process encompasses an additional
dimension of MaTeGnu’s evaluation framework, situated at impact
level three: the teaching practice. The respective study compares the
assessments MaTeGnu teachers pose before the start of TPDP and in
the TPDP regarding the addressed basic mental models and

4 https://mategnu.de/m/lle
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conceptual understanding. Preliminary analyses indicate an increase
in both aspects for assessments on derivatives.

In summary, the tangible concept for the use of technology to
promote understanding, implemented in evidence-based teaching
material, in conjunction with the facilitation of the transfer process
into the teacher’s pedagogical practice appears to be the pivotal
combination for the efficacy of MaTeGnu.
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