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Background: Biofeedback and neurofeedback are increasingly used in sports
psychology, yet their overall effectiveness for athletes’ mental health, athletic
performance, and cognitive performance remains unclear.

Methods: We conducted a systematic review of randomized controlled trials
across eight databases and performed Bayesian random-effects meta-analyses.
Study selection used ASReview with the SAFE rule; full-text screening was done
in Covidence; risk of bias followed Cochrane guidance; certainty of evidence
was appraised with GRADE.

Results: Forty-one studies met inclusion. Pooled effects were statistically
significant across domains: mental health y(SMD)=0.76 (95% Crl 0.44-1.09),
athletic performance p(SMD)=0.88 (0.69-1.05), and cognitive performance
pu(SMD)=0.81 (0.48-1.14).

Conclusion: Biofeedback and neurofeedback benefit athletes across mental,
athletic, and cognitive outcomes. Given heterogeneity and sample sizes, further
rigorous trials are warranted to refine the estimates.

Systematic review registration: PROSPERO registration CRD420251015094.

KEYWORDS

biofeedback, neurofeedback, mental health, athletic performance, Bayesian
meta-analysis

Introduction

As an interdisciplinary technique that integrates physiology, psychology, and neuroscience,
biofeedback training is increasingly recognized as an effective intervention for enhancing
athletes’ mental health and performance (Kloudova, 2021). Research has demonstrated a
significant positive correlation between optimal mental states and athletic performance,
wherein effective regulation of emotional reactivity and anxiety enhances decision making and
attentional control-key determinants of athletic success (Raglin, 2001; Rice et al., 2016).
Therefore, an in-depth investigation into the application value of biofeedback in enhancing
athletes’ mental health and performance represents a meaningful and timely direction in
contemporary sports science research (Blumenstein et al., 2014).

Biofeedback can be defined as a technique that uses instruments to monitor an individual’s
physiological activities in real time and provides feedback through visual or auditory means
(Egner and Gruzelier, 2004; Giggins et al., 2013; Schwartz, 2010). Herbert Benson’s “relaxation
response” theory suggests that by regulating the autonomic nervous system, biofeedback can
effectively reduce the levels of stress hormones such as cortisol in the body, thereby alleviating
the stress response (Lehrer et al., 2020). Furthermore, the core theoretical mechanism
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underlying biofeedback interventions lies in enhancing individuals’
ability to regulate autonomic nervous system activity particularly heart
rate variability (HRV) through training. This process relies on the
plasticity of vagal tone, whereby repeated practice improves the ability
to identify and control the resonance frequency per week between
heart rate and resonant frequency, thereby increasing parasympathetic
activation (Lehrer et al., 2003; Pagani et al., 2009). Additionally, from
the perspective of operant conditioning, biofeedback is a learning
process where individuals achieve intentional control over their body
states through awareness and regulation of physiological signals
(Basmajian, 1983). This process reflects the fundamental view of the
mind body interaction theory that psychological processes can have
regulatory effects on physiological functions through the central
nervous system (Blanchard and Young, 1979). Although these theories
provide important theoretical support for the application of
biofeedback training, current empirical research on it is still insufficient,
and its true effectiveness remains controversial in multiple fields
(Rydzik et al., 2023).

Recent research suggests that biofeedback training has a positive
effect on improving athletes’ mental health (Saha et al., 2013), with
statistically significant benefits observed in shooting athletes (Donghai
etal,, 2024a), and football players (Rusciano et al., 2017). Biofeedback
training can effectively attenuate the stress response by modulating
autonomic nervous system activity, thereby enhancing emotional
regulation and cognitive function (Dehghani et al., 2023). Notably, the
enhancement of physiological self-regulation through biofeedback not
only contributes to improved self-efficacy but may also indirectly
reduce anxiety (Goessl et al., 2017; Teufel et al,, 2013). Taken together,
these findings highlight that biofeedback training not only alleviates
stress and anxiety through enhanced emotional and physiological self-
regulation, but also builds a solid psychological foundation that may
benefit athletic performance.

In addition to its positive impact on mental health, research also
shows that biofeedback training has a direct promoting effect on
athletic performance itself. It is also applicable to swimming (Bar-Eli,
2004), golf (Cheng et al., 2015), judo (Pronczuk et al., 2023), winter
sports athletes (Toolis et al., 2024), and basketball players (Paul and
Garg, 2012). Furthermore, improving the regulatory ability of the
autonomic nervous system through biofeedback also helps enhance
an individual’s cognitive performance (Pronczuk et al., 2023), such as
attention control, working memory, and decision making ability.
These cognitive factors play significant roles in complex and high
speed competitive environments (Rusciano et al., 2017; Paul and Garg,
20125 Dana et al., 2019; Mikicin et al., 2015). Therefore, biofeedback
training can not only enhance the self-regulation ability of physiology
and emotion, but also support the improvement of cognitive efficiency,
thereby comprehensively promoting the improvement of athletic
performance (Brito et al., 2022; Tosti et al., 2024).

Although existing studies have to some extent verified the positive
effects of biofeedback training on improving athletes’ mental health and
performance, research in this field is still relatively scarce. Existing studies
mostly focus on a specific sport or small sample experiments, lacking
extensive coverage and in depth exploration across different sports (Paul
and Garg, 2012; Bar-Eli et al., 2002; Wilson and Bird, 1981; Yilmaz et al.,
2025). Most existing meta-analyses have primarily examined the effects
of heart rate variability biofeedback on depression and general
performance, often without specifically focusing on athlete populations
or encompassing the full range of biofeedback modalities (Lehrer et al.,
20205 Pizzoli et al., 2021). Consequently, there is a pressing need for more
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diverse and representative large-scale studies-particularly systematic
empirical investigations across various sports-to comprehensively assess
the applicability, developmental potential, and actual efficacy of
biofeedback interventions in athletic settings (Lehrer et al., 2020).

Furthermore, although the majority of studies support the
effectiveness of biofeedback training in improving mental health and
enhancing both motor and cognitive performance, notable exceptions
have also been reported. For instance, no significant differences in
attentional performance were found between the experimental and
control groups following neurofeedback training (Mirifar et al.,, 2019).
Similarly, physical flexibility significantly improved across all three
experimental groups after biofeedback training; however, the magnitude
of improvement did not differ significantly between groups, suggesting
that the specific type of training administered had no distinct effect on
flexibility outcomes (Wilson and Bird, 1981). Moreover, the interaction
between group type and training outcome was not statistically
significant, indicating that group assignment did not moderate the
training’s impact on flexibility gains (Wilson and Bird, 1981). Therefore,
these differences suggest that the effects of biofeedback or neurofeedback
training may not be universally applicable, and its benefits may depend
on a variety of factors, including the specific sport participated in, the
training program adopted, as well as the individual’s sports background
and psychological characteristics, etc. (Tosti et al., 2024).

Building upon findings from prior studies, the present research
incorporates a dose-response and moderation analysis to explore how
variations in intervention dosage-defined by intervention time
(weeks), frequency per week, and frequency per week-impact
outcomes related to mental health, athletic performance, and cognitive
performance. Using a Bayesian meta-analytic framework, this study
systematically evaluates the overall effectiveness of biofeedback
training among athletes, with the hypothesis-grounded in prior
empirical evidence and dose-effect patterns-that such training yields
significant positive effects across all three domains.

Methods

This study was registered on the PROSPERO platform
(registration number: CRD420251015094) and conducted in
accordance with the PRISMA guidelines for systematic reviews and
meta-analyses (Haddaway et al., 2022). During literature screening
and data analysis, we used R (version 4.5.1), the Python-based
ASReview tool, the Covidence platform, and GRADEprofiler to
support screening and evaluation procedures.

Inclusion criteria for screening

Literature screening followed the PICOS framework. Participants
in the included studies were athletes of any age and health status. Only
randomized controlled trials (RCTs) that used biofeedback or
neurofeedback training as the intervention were eligible. The control
group could include participants who received no psychological or
physiological training, or those who underwent alternative skill
training that did not involve biofeedback or neurofeedback.

Eligible studies were required to report outcome measures related
to mental health, athletic performance, or cognitive performance.
Publications in both English and Chinese were considered. Studies
were excluded if they met any of the following criteria: (1) master’s or
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doctoral theses and conference abstracts, which were excluded to
ensure methodological consistency and reliable data extraction; (2)
non-original articles such as letters, editorials, or commentaries; (3)
studies lacking extractable data; or (4) studies in which the
experimental and control groups received different types of
biofeedback or neurofeedback interventions.

Information retrieval

A comprehensive search strategy was developed on February 17,
2025, using both Medical Subject Headings (MeSH) and free-text
terms. Systematic searches were performed across eight databases:
Ovid, Web of Science, Scopus, PubMed, Embase, PsycINFO,
SPORTDiscus, and CNKI (China National Knowledge Infrastructure).
The keywords and MeSH terms were discussed and finalized by four
authors (XZ, ZC, SZ, and ZN). Detailed search strings for each database
are provided in Supplementary File S1. Screening was conducted using
the Covidence online platform and ASReview, a Python-based
machine learning tool for literature prioritization (van de Schoot et al.,
2021). A total of 5,527 studies were identified for further evaluation.

Screening process

All titles and abstracts were first evaluated with ASReview, a
machine learning based screening tool. ASReview predicts study
relevance by training a classification model on labeled abstracts and
continuously reprioritizes the remaining records according to their
likelihood of inclusion (Holzinger, 2016; Van de Schoot et al., 20215
Wang et al., 2020). This approach markedly reduces manual workload
by presenting the most likely relevant records first.

During this phase we applied the conservative SAFE rule, which
stops screening only after 200 consecutive records have been judged
irrelevant (Boetje and Van De Schoot, 2024). Full-text screening was
then conducted independently by two reviewers (XZ and ZC) on the
Covidence platform, as recommended in PRISMA guidelines. Eligible
articles were recorded with the Extraction 1.0 form, and any
disagreements were resolved by a third and fourth reviewer (SZ and
NZ) (Boetje and Van De Schoot, 2024).

Extract data information

For each study, the extracted features include the author,
publication year, country, intervention, study design, biofeedback
training or neurofeedback training, practice period, sample size,
gender, athlete type, age, training years and outcome. The outcomes
of mental health include anxiety, stress, anger, fatigue and depression.
The results of athletic performance include golf performance, speed,
swimming performance, balance, shooting performance, endurance,
coordination, basketball performance, bowling performance, football
performance, strength, running performance, rowing performance
and flexibility. Cognitive performance results include attentional
control, attentional focus, selective attention, task performance
metrics and working-memory performance.

The data were extracted by two authors (XZ and ZC) respectively,
and the differences were resolved through consultation with the third

Frontiers in Psychology

10.3389/fpsyg.2025.1662868

and fourth authors (SZ and ZN). The results are presented in the form
of mean =+ standard deviation (M + SD). For the data that were not
initially provided in M + SD format, we used an online tool called
Meta Analysis Accelerator for conversion (Abbas et al., 2024). Since
none of the included studies reported correlation coefficients, a
correlation coefficient of 0.5 was assumed for all analyses, following
the recommendation of Follmann et al. (1992). When data were not
provided in numerical form, we used GetData Graph Digitizer to
extract the corresponding values from the figures (Digitizer, 2020).

Risk bias assessment

The risk of bias in all included studies was independently
evaluated according to the criteria in the Cochrane Handbook of
Systematic Reviews of Interventions (Higgins et al., 2011). Two
authors (XZ and ZC) evaluated the studies in randomized controlled
trials (RCTs) through the Covidence tool in accordance with the
Cochrane Risk of bias Assessment Criteria (ROB2), covering seven
areas of bias: (1) Random sequence generation; (2) Allocation
concealment (3) Blinding of participants and staff; (4) Blinding of
outcome assessment; (5) incompleted data; (6) Selective Reporting (7)
Other biases. The risk of bias is classified as low, unclear or high. All
the assessment results were agreed upon through discussion and
recorded in the Excel template. Subsequently, the data were input into
the R software, and the bias risk summary graph was generated using
the robvis package (McGuinness and Higgins, 2021).

GRADE evidence grade evaluation

In the field of athletic performance research, this study adopts the
GRADE method to systematically assess the quality of evidence from
four core dimensions (Higgins et al., 2011). Firstly, the potential risk
of bias in the included studies was assessed-specifically, the systematic
errors that may arise during research design, implementation, or result
reporting, which could compromise the validity of the conclusions.
Secondly, heterogeneity across studies was evaluated using the I
statistic to assess the degree of inconsistency in the results. Thirdly, the
indirectness of the evidence was evaluated-specifically, whether the
interventions, study populations, and outcome measures included in
the reviewed studies directly addressed the core questions of this
analysis. Finally, the imprecision of the effect estimates was assessed.
The robustness and reliability of the conclusions were primarily
evaluated based on the width of the confidence intervals around the
effect sizes and the sample sizes of the included studies.

According to the GRADE standard, the quality of evidence is
divided into four grades: “high,” “medium,” “low” and “very low;,”
reflecting the gradient level of evidence credibility from highly certain
to highly uncertain.

Data analysis

This study conducted a meta-analysis within the framework of

Bayesian ~statistics to integrate prior information more

comprehensively and quantify the uncertainty of the estimated values.
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The overall meta-analysis was conducted using the bmeta
package (version 4.5.1) in R software (Higgins et al., 2009). Firstly,
with the help of the escalc() function of the meta forpackage,
calculate the standardized mean difference (SMD) and its variance
(vi) of each study, and then calculate the Standardized error (sei)
and accuracy (1/vi). After establishing the data object, the bmeta()
function is used to fit the random effects model (type = “ran”), and
the model type is specified as the standard normal variance
structure (model = “std.mv”). The total number of sampling
iterations of MCMC is set at 50,000 times, and the burn in period
is set to 20,000 iterations. The model output includes the estimation
of the posterior mean of the effect size, the 95% Credible interval
(Crl), and the heterogeneity parameter (tau). The heterogeneity
level was supplemented and evaluated simultaneously by
calculating the I* value through the rma() function in the
metafor package.

Subgroup analysis was accomplished using the bayesmeta (Rover,
2020) package (version 4.5.1). In addition, subgroup analyses were
performed by athlete competitive level (elite vs. amateur) to examine
potential differences in mental health, athletic performance, and
cognitive performance outcomes. Furthermore, subgroup analyses
were also performed according to blinding procedures (open-label vs.
adequate blinding) to examine whether trial design characteristics
influenced the observed effects.

Furthermore, Bayesian meta-regression models were fitted using
the brms package to evaluate potential moderators of heterogeneity,
including gender (percentage of female participants) and age (mean
age of participants) (Biirkner, 2017; Carpenter et al., 2017). The model
specification was yi | se(sei) ~ 1 + Moderator + (1 | Study), where yi
denotes the standardized mean difference and see the corresponding
standard error. Weakly informative priors (Normal(0,2) for intercepts,
Cauchy(0,1) for random-effect SDs) were applied. Models were run
with 8 chains, 4,000 iterations each (2000 warm-up), with adapt_delta
set to 0.999 and max_treedepth set to 15. Model performance was
assessed using Bayesian R* with 95% credible intervals to quantify the
proportion of variance explained.

The input includes the effect size (yi) and the standardized error
(sei). The prior of the overall effect size is set as a normal distribution
with a mean of 0 and a Standardized deviation of 5 (mu.prior.
mean = 0,mu.prior.sd = 5) (Rover, 2020; Rover and Friede, 2023), and
the heterogeneity parameter 7 is set as a non-information uniform
distribution (tau.prior = “uniform”). The bayesmeta() function was
used to fit the model, and the prior and posterior images of the overall
effect, heterogeneity, predicted distribution and their combined
distribution were plotted to comprehensively present the uncertainty
structure. All analyses were completed in R software (version 4.5.1).
The 95% confidence interval (CrI) is interpreted as the probability that
the true value of the parameter falls within this interval under the
given data and model being 95%. The overall analysis process
considers model transparency, estimation accuracy and bias test,
providing solid statistical support for the research conclusion. The
Bayesian meta-analysis used the Bmeta and Metafor escalc R packages
to calculate effect size (SMD) and variance reciprocal in each study.
The Bayesian approach is considered suitable for meta analyses
including few studies, providing evidence for both null and alternative
hypotheses, and offering complete information about credible
parameter values and the probability of any given value (Higgins et al.,
2009; Rover, 2020; Harrer et al., 2021; Kruschke and Liddell, 2018).
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Publication bias

To assess whether there was publication bias in the included
studies, this study used the bmeta package and the bayesmeta package
for the visualization analysis of funnel plots. Specifically, in the bmeta
analysis, the funnel.plot() function is used to draw the funnel plot with
the effect size as the horizontal axis and the Standardized error as the
vertical axis, and the symmetry is visually checked to determine
whether there is bias. In Bayesmeta analysis, the funnel.bayesmeta()
function is used to further verify the existence of the small sample
effect or potential bias within the Bayesian framework. Through visual
examination of the symmetry of the funnel plot, if significant
asymmetry is observed, it may suggest the existence of publication bias.

Furthermore, Egger’s regression test was performed, and both
contour-enhanced funnel plots and sunset (power-enhanced) funnel
plots were applied as complementary approaches. These methods
enabled visualization of significance contours and study-level
statistical power, thereby providing a more comprehensive assessment
of potential publication bias (Duval and Tweedie, 2000). Specifically
using the trimfill() function in the metafor package of the R language,
combined with iterative operations, the number of missing studies is
estimated, and the effect size is corrected accordingly, thereby
enhancing the robustness of the research results and further improving
the scientific nature of the conclusion.

Results

The results of this study consist of six parts: literature screening
process, summary of research characteristics, Risk of bias assessment,
results of meta-analysis, publication bias test and GRADE
evidence classification.

Literature screening process

Through systematic retrieval of eight databases (Ovid, CNKI,
Scopus, Pubmed, Embase, PsycINFO, SPORTDiscus and Web of
Science), 5,527 related literatures were initially obtained. EndNote X9
software was used to remove duplicates. 756 duplicate literatures were
eliminated, and the remaining 4,771 entered the initial screening. The
initial screening adopted ASReview for title and abstract screening.
The machine learning model automatically evaluated 1,256 literatures,
and finally 197 entered the full text screening stage. After reading the
full text, 164 studies that did not meet the inclusion criteria were
excluded, and 32 qualified studies were initially retained. To further
ensure the completeness of the literature, an additional 9 related
studies were included through citation retrospective supplementary
search. Ultimately, 41 studies met the inclusion criteria of the meta
analysis. The research screening process is detailed in Figure 1
(PRISMA flowchart).

Characteristics included in the study
A total of 41 randomized controlled trials were included in this

study, involving 1,230 athletes, including 905 males and 282 females.
Additionally, gender data were missing for 43 participants (3.50% of
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[ Search from Febrary 2025 [ Identification of New Studies via Other Methods ]
Total number of records Ovid=1395 Records identified from:
n=5527 CNKI=396 Citation searching =9
Scopus=337
l/ Pubmed=871
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Records after dilplicates removed Ps;:I;T;e0=290
D=0 SPORTDiscus=1510
l Web of Science=416
Records uploaded into ASReview
n=4771 Reports sought for retrival: Reports not retrieved
l n=9 n=0
Records screened in ASReview
n=197
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n=165
e » Wrong population (n =41) Reports assessed for eligibility: Reports excluded
Records for full-text screening o RSO e e ER) =0 =0

n=d » Wrong study design (n=27)
« Unretrievable files (n = 19)
Wrong intervention (n = 17)
» Wrong language (n = 8)

Records included

n=32

!

Total number of records included

n=41

FIGURE 1
PRISMA flowchart of study selection.

the total sample), as reported in two of the included studies (Mikicin
et al., 2015; Maszcezyk et al., 2020). Among all the studies, 29 used
biofeedback training as an intervention, and 12 used neurofeedback
training. In terms of the geographical distribution of the studies, 22
studies were from Asia (accounting for 53.66%), 14 from Europe
(accounting for 34.15%), 4 from North America (accounting for
9.76%), and 1 from Oceania (accounting for 2.44%). It should be noted
that the age information of the subjects was not reported in 12 studies,
accounting for 29.27% of the total included trials. For detailed
each  study, refer to the

characteristics  of please

Supplementary Material S2.

Risk of bias

As shown in Figure 2, the risk of bias was evaluated across key
methodological domains. In Sequence Generation, a small proportion
(7.1%) of studies were rated as having some concerns due to
insufficient detail about the randomization process; no study was
considered high risk. In the field of allocation concealment, most
studies were rated as high concern, with 85.4% rated as some concerns
and 2.4% as high risk, mainly because concealment methods were not
reported or were clearly inadequate. In the field of Blinding of
Participants and Personnel, 65.9% of studies had some concerns and
4.9% were at high risk, often due to a lack of reported blinding in trials
involving subjective outcomes. Similarly, in the field of Blinding of
Outcome Assessors, 56.1% had some concerns and 4.9% were rated as
high risk due to insufficient reporting on whether blinding was
performed or absent when outcome evaluation could be influenced.
For Incomplete Outcome Data and Selective Reporting, all studies
were at low risk, reflecting proper data handling and transparent

Frontiers in Psychology

05

reporting. Overall, more than 45% of studies had at least some risk of
bias, primarily due to missing or insufficient reporting on allocation
and blinding procedures.

Meta-analysis

The meta-analysis included 41 studies and focused on three
primary outcomes: mental health, athletic performance, and cognitive
performance in athletes. Specifically, 15 studies with 394 athletes
examined the effects on mental health, 24 studies involving 2,320
athletes focused on athletic performance, and 11 studies with 348
athletes assessed cognitive performance. The results indicate that
biofeedback and neurofeedback training have positive effects across
all three domains, effectively improving athletes’ mental health,
athletic
cognitive performance.

enhancing performance, and  strengthening

Mental health

The results analysis revealed that the biofeedback intervention had
a significant moderate effect on improving the mental health of
athletes [#(SMD) =0.76; 95% Crl: 0.44 to 1.09; z(tau)=0.99;
Rhat = 1.001], indicating an overall positive impact on psychological
well-being (Figure 3).

Athletic performance

The analysis demonstrated that the biofeedback intervention was
found a statistical significance on enhancing athletic performance
[4(SMD) = 0.88; 95% Crl: 0.69 to 1.05; 7(tau) = 2.24; Rhat = 1.001],
indicating strong evidence of improved Athletic performance among
athletes (Figure 4).
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Sequence Generation

Allocation Concealment

Blinding of Participants and Personnel
Blinding of Outcome Assessors
Incomplete Outcome data

Selective Outcome Reporting

Other bias

Overall

2

0

25%

50% 75% 100%

. Low risk of bias |:| Some concerns . High risk of bias

FIGURE 2
Risk of bias summary.
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Cognitive performance

The results indicated statistically significant effects of biofeedback
and neurofeedback training on cognitive performance [1(SMD) = 0.81;
95% Crl: 0.48 to 1.14; 7(tau) = 1.42; Rhat = 1.001], demonstrating
overall enhancements in cognitive performance (Figure 5).

Subgroup analysis based on intervention
type (biofeedback vs. neurofeedback)
Mental health (biofeedback and neurofeedback)

In terms of mental health, biofeedback interventions
demonstrated a statistically significant effect [¢(SMD) = 0.76; 95%

Frontiers in Psychology

Crl: 0.42 to 1.10; z(tau) = 1.01], indicating robust improvements in
athletes’ psychological well-being. Neurofeedback, however, was
represented by a single study only, yielding an effect estimate of
[4(SMD) = 0.61; 95% Crl: —0.28 to 1.51; z(tau) not estimable]. The
forest each provided in

plots  for subgroup  are

Supplementary Document S4.

Athletic performance (biofeedback and
neurofeedback)

In terms of athletic performance, both biofeedback and
neurofeedback interventions demonstrated statistically significant
effects, with biofeedback yielding an effect size of [(SMD) = 0.85;
95% Crl: 0.46 to 1.26; z(tau) = 0.89] and neurofeedback training
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FIGURE 4
The forest plot in athletic performance.
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FIGURE 5
The forest plot in cognitive performance.

[#(SMD) = 0.89; 95% CrI: 0.68 to 1.09; z(tau) = 0.64]. The forest plots
for each subgroup are provided in Supplementary Document S4.

Cognitive performance (biofeedback and
neurofeedback)

In terms of cognitive performance, both biofeedback
[#(SMD) =0.97; 95% Crl: 0.40 to 1.54; z(tau)=1.44] and
neurofeedback [¢(SMD) = 0.81; 95% CrlI: 0.50 to 1.12; z(tau) = 0.58]
demonstrated Statistical significance. Forest plots for each subgroup
are presented in Supplementary Document S4.

Subgroup analysis based on specific
psychological and performance outcomes

Biofeedback training

A total of 10 outcome domains were included in the subgroup
analysis of biofeedback training. Statistically significant effects were
observed in basketball performance [p(SMD) = 1.59; 95% Crl: 0.61-
2.59; z(tau) = 0.66], pressure reduction [p(SMD)=0.72; 95% Crl:
0.35-1.10; z(tau) = 0.89] and anxiety reduction [¢(SMD) = 1.02; 95%
Crl: 0-2.04; 7(tau) = 1.56]. No statistical significance was found in other
outcomes. Forest plots are presented in Supplementary Document S4.

Neurofeedback training

A total of six outcome domains were included in the
neurofeedback analysis. Statistically significant effects were
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observed in both balance [£(SMD) = 1.17; 95% CrI: 0.95 to 1.40;
7(tau) = 0.52] and attentional control [¢(SMD) = 0.68; 95% Crl:
0.03 to 1.39; z(tau) = 0.69]. No statistically significant effects were
found in the remaining athletic performance or cognitive
performance domains. Forest

plots are provided in

Supplementary Document S4.

Subgroup analysis based on athlete competitive
level

For mental health, elite athletes showed an estimated effect of
1 =0.86 (95% Crl: 0.46-1.25; 7=1.11, 95% Crl: 0.78-1.46), while
amateur athletes showed y = 0.29 (95% CrI: —0.08-0.66; 7 = 0.22, 95%
Crl: 0.00-0.58).

For athletic performance, the effect for elite athletes was y = 0.76
(95% Crl: 0.23-1.31; 7 = 1.16, 95% Crl: 0.68-1.69), compared with
1=094 (95% Crl: 0.76-1.12; 7=0.56, 95% Crl: 0.40-0.72) for
amateur athletes.

For cognitive performance, elite athletes showed y = 1.01 (95%
Crl: 0.47-1.58; t=1.15, 95% Crl: 0.69-1.66), whereas amateur
athletes showed p =0.52 (95% Crl: 0.17-0.89; 7 =0.44, 95% Crl:
0.00-0.83).

Overall, these findings suggest some variation by competitive
level, with elite athletes tending to show higher estimates in
mental health and cognitive performance, and amateur athletes
showing relatively higher estimates in athletic performance. Forest
these
Supplementary Document S4.

plots  for subgroups are  provided in

frontiersin.org


https://doi.org/10.3389/fpsyg.2025.1662868
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Zhang et al.

Subgroup analysis based on blinding

Subgroup analyses based on blinding procedures revealed
differential patterns across outcome domains. For mental health,
open-label studies indicated a moderate effect with greater
uncertainty [p#(SMD) = 0.63; 95% Crl: —0.16 to 1.43; z(tau) = 1.58],
whereas adequately blinded trials demonstrated a more precise and
significant effect [u(SMD)=0.83; 95% Crl: 0.46 to 1.21;
7(tau) = 0.99].

For athletic performance, open-label studies showed negligible
effects [u(SMD) = 0.01; 95% Crl: —2.17 to 2.18; z(tau) = 1.45], while
adequately blinded trials yielded significant
[4(SMD) = 0.86; 95% Crl: 0.48 to 1.25; z(tau) = 0.97].

Regarding cognitive performance, adequately blinded studies
showed statistically significant benefits [¢(SMD) = 0.86; 95% Crl:
0.44-1.29; 7 = 1.00].

Opverall, adequately blinded trials consistently yielded statistically

improvements

significant effects, whereas open-label trials did not show significant
results. Forest plots for these subgroups are provided in
Supplementary Document S4.

Subgroup analysis based on biofeedback
dose

This section presents exploratory analyses of the relationship
between different intervention dosages, categorized by intervention
time (weeks), session length (minutes), and weekly frequency
(sessions/week), and their effects on mental health, athletic
performance, and cognitive performance outcomes. In the subgroup
analyses across these outcome domains, interventions were
consistently classified according to three dimensions to allow for
systematic comparison. Based on intervention time (weeks),
interventions were divided into three groups: less than 5 weeks, 6 to
10 weeks, and more than 10 weeks. In terms of session length, they
were categorized as sessions lasting less than 20 min, 21 to 40 min, or
41 to 60 min. Regarding weekly frequency, interventions were
classified as occurring 3 or fewer times per week, 4 to 5 times per
week, or 6 to 7 times per week. These consistent classification criteria
provided a comprehensive basis for evaluating the effectiveness of
interventions across varying time frames and intensities. These
intended as

analyses are exploratory and are not

dosage recommendations.

Mental health

Statistically significant effects were observed for duration
<5 weeks [¢(SMD) = 0.76; 95% Crl: 0.48-1.04], weekly frequency 4-5
sessions/week [¢(SMD) = 1.06; 95% Crl: 0.73-1.41], and session
length 21-40 min [¢(SMD) = 1.06; 95% CrI: 0.58-1.55]. Other bins
did not consistently reach statistical significance. Detailed results and
corresponding forest plots are presented in Supplementary
Documents S4, S5.

Athletic performance

Statistically significant effects were observed for duration
6-10 weeks [¢(SMD) = 1.11; 95% Crl: 0.89-1.34], weekly frequency
4-5 sessions/week [(SMD) = 1.25; 95% Crl: 0.62-1.83], and session
length 21-40 min [u(SMD) = 0.81; 95% CrI: 0.25-1.37]. Other bins
did not consistently reach statistical significance. Detailed results and
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corresponding forest plots are presented in Supplementary
Documents $4, S5.

Cognitive performance

Statistically significant effects were observed for duration
<5 weeks [¢(SMD) = 0.98; 95% Crl: 0.34-1.64], weekly frequency 3
sessions/week [¢(SMD) = 0.91; 95% Crl: 0.58-1.27], and session
length <20 min [¢(SMD) = 0.53; 95% CrI: 0.05-1.02] and 41-60 min
[#(SMD) = 1.03; 95% CrI: 0.41-1.63]. Other bins did not consistently
reach statistical significance. Detailed results and corresponding forest
plots are presented in Supplementary Documents 54, S5.

Moderator analyses

Using Bayesian meta-regressions, we examined demographic
moderators. In these models, R* denotes the proportion of between-
study variance explained by the moderator, with higher values
indicating that more of the heterogeneity across studies is
accounted for.

For gender (percentage female), the estimated associations were:
mental health, 0.48 (95% CrI: —0.91 to 1.92; R* = 0.74, 95% CrlI: 0.55—
0.88); athletic performance, —1.08 (—1.87 to 0.31; R* = 0.59, 0.42—
0.76); cognitive performance, —0.97 (—2.47 to 0.56; R* = 0.72, 0.46—
0.89). None of these associations reached statistical significance,
although negative trends were observed for athletic performance and
cognitive performance.

For age (mean years), estimates were close to zero across domains-
mental health, 0.00 (—0.08 to 0.09; R> = 0.83, 0.65-0.94); athletic
performance, 0.01 (—0.07 to 0.08; R*=0.61, 0.42-0.78); cognitive
performance, 0.05 (—0.07 to 0.16; R* = 0.74, 0.40-0.93). Moderator
effect plots are provided in Supplementary Document Sé.

Publication bias

In this meta-analysis, we assessed potential publication bias across
the three outcome domains (mental health, athletic performance, and
cognitive performance).

Mental health: The funnel plot showed clear asymmetry, and
Egger’s regression confirmed statistical significance (intercept = —2.48,
95% CI [—3.33, —1.62], p < 0.001). However, the trim-and-fill method
did not impute additional studies, and the adjusted pooled effect size
remained significant (SMD = 0.75, p < 0.001), suggesting that the
main conclusions were not driven by publication bias.

Athletic performance: Egger’s test did not detect evidence of
asymmetry (intercept = 0.89, 95% CI [0.53, 1.25], p = 0.98), and visual
inspection of the funnel plot also suggested a symmetrical distribution
of effect sizes, supporting the robustness of findings in this domain.

Cognitive performance: The funnel plot appeared asymmetric,
and Egger’s regression provided evidence of small-study effects
(intercept = —1.15, 95% CI [—1.66, —0.65], p < 0.001). Nonetheless,
the trim-and-fill method did not impute additional studies, and the
adjusted  effect (p <0.001)
(Figures 6-8).

Beyond these conventional approaches, complementary analyses

remained statistically significant

using contour-enhanced and sunset (power-enhanced) funnel plots
also indicated potential small-study effects in mental health and
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cognitive performance, whereas results for athletic performance
remained symmetrical. All extended funnel plot analyses are provided
in Supplementary Figure S7.

GRADE evidence grade evaluation

The GRADE assessment of the evidence regarding the effects of
biofeedback and neurofeedback training on mental health, athletic
performance, and cognitive performance indicated that the overall
certainty of evidence was low to very low. Specifically, the quality of
evidence for mental health outcomes was rated as low, while the
evidence for athletic performance and cognitive performance was
rated as very low. This downgrading was primarily due to moderate
risk of bias in most studies, high heterogeneity, and insufficient sample
sizes (Figure 9). The subgroup GRADE assessment charts are provided
in Supplementary Document S8.

Discussion

This study is the first to employ the Bayesian meta-analysis to
explore the effects of biofeedback training on the mental health and
performance of athletes. This systematic review and meta-analysis
synthesize information about the impact of (1) biofeedback or
neurofeedback on mental health, (2) athletic performance (3) and
cognitive performance.

Research findings

The results of this meta-analysis demonstrate that both
biofeedback and neurofeedback training have statistically significant
effects on athletes’ mental health, athletic performance, and cognitive
performance. Subgroup analyses further elucidated the specific
effectiveness of these interventions across different outcome domains.

Biofeedback training demonstrated statistically significant effects
in improving mental health and enhancing athletic performance.
These effects were most pronounced in improvements in anxiety
reduction and basketball performance. Other outcome domains did
not exhibit statistical significance under biofeedback interventions.

Neurofeedback training produced statistical significance in
cognitive performance, particularly in enhancing attentional control.
No other outcome domains reached statistical significance in the
neurofeedback subgroup.

In the main analysis, the heterogeneity for cognitive performance
was high (7 = 1.4). However, subgroup analysis further revealed that
biofeedback contributed a higher heterogeneity (r = 1.44) compared
to neurofeedback (z = 0.58), indicating that most of the heterogeneity
in  cognitive  performance outcomes stemmed from
biofeedback interventions.

Exploratory analyses suggested that some intervention dosage
ranges may be associated with larger improvements. For mental
health, effects appeared greater when interventions lasted 5 weeks or
less, were delivered 4-5 times per week, and each session lasted
21-40 min. For athletic performance, relatively larger effects were
observed with interventions lasting 6-10 weeks, conducted 4-5 times

per week, with sessions of 41-60 min. For cognitive performance,

Frontiers in Psychology

10.3389/fpsyg.2025.1662868

Q
c
NG ]
P2
g 5 o oo ¥l
@ ° %0 & 00
= °
o | 5\
=
o
T T T T T T T
6 4 2 0 2 4 6
effect
FIGURE 6
Funnel plot in mental health.
O o
b5
o | AN
° Yoodea,
0
N3 A A i YN
] / L TIN
- Pod ko N
b5 °
0 el
s o
T T T T T T T
6 4 2 0 2 4 6
effect
FIGURE 7
Funnel plot in athletic performance.
(S JES(
e il
o /’ “.
< & o ;‘7
2 & | .o
= 3 o Seds,
N N
g s ‘ O, \‘? o
Y o o
T T T T T T T
6 4 2 0 2 4 6
effect
FIGURE 8
Funnel plot in cognitive performance

improvements were observed in subgroups with interventions lasting
5 weeks or less, performed 3 times per week, and with sessions of
either 20 min or less or 41-60 min. However, these patterns were not
consistent across outcomes and the certainty of evidence was low;
thus, they should be interpreted as exploratory findings and do not
constitute dosage recommendations. Subgroup analyses based on
athlete competitive level indicated that elite athletes benefited more in
mental health and cognitive outcomes, while amateur athletes showed
greater improvements in athletic performance. These findings suggest
that the competitive background of athletes may moderate the
effectiveness of biofeedback and neurofeedback interventions.
Moderator analyses revealed that gender did not significantly
influence the effectiveness of biofeedback and neurofeedback
interventions, while age accounted for a comparatively larger share of
variance in athletic performance outcomes, although its effect was not
statistically significant. According to the R* values, part of the
heterogeneity across studies may be explained by demographic factors
such as age and gender. These findings suggest that demographic
characteristics should be considered as potential contributors to
heterogeneity in future research. In addition, the subgroup analysis by
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FIGURE 9

The GRADE summary in mental health, athletic performance and cognitive ability.

blinding suggested that adequately blinded trials tended to produce
more consistent and reliable estimates with lower heterogeneity,
underscoring the importance of rigorous blinding procedures in
minimizing bias.

The observed domain-specific effects may be explained by
Biofeedback
interventions, particularly heart rate variability and stress-

underlying  neurophysiological mechanisms.
regulation protocols, primarily target autonomic nervous system
activity. By enhancing vagal tone and promoting parasympathetic
dominance, biofeedback improves emotional regulation and stress
recovery, which are especially relevant for psychological outcomes
such as anxiety reduction and for sports like basketball where
mental resilience and decision-making under pressure are crucial
(Lehrer et al., 2003; Goessl et al., 2017; Paul and Garg, 2012). In
contrast, neurofeedback protocols directly modulate cortical activity
patterns, particularly within EEG frequency per bands associated
with attentional control and sensorimotor integration. By
reinforcing adaptive brain states-such as increasing SMR or frontal
midline theta power while reducing maladaptive theta activity
neurofeedback strengthens attentional focus and postural control,
which may explain its stronger effects on cognitive outcomes and
balance-related performance (Cheng et al., 2015; Dana et al., 2019;
Gong et al., 2021; Yalfani et al., 2024; Enriquez-Geppert et al., 2017;
Ros et al., 2020). Together, these mechanistic differences suggest
that biofeedback and neurofeedback optimize complementary
domains of athletic functioning, with biofeedback more closely
aligned to stress resilience and psychological regulation, and
neurofeedback more directly enhancing neural efficiency in
attention and balance.

These findings suggest domain specific strengths for different
types of biofeedback-based interventions.
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The impact of biofeedback training on
mental health and performance

The results of this meta-analysis confirm that biofeedback training
significantly enhances athletes’ mental health. Specifically, it helps
reduce anxiety and alleviate stress. Biofeedback is not merely a tool for
physiological regulation; it also plays a critical role in managing
psychological stress. Existing studies support these findings, showing
that biofeedback can effectively help athletes cope with anxiety and
stress (Donghai et al., 2024a; Dziembowska, 2015; Tirinnanzi, 2022),
By fostering greater interoceptive awareness and top down control
over stress reactivity, Biofeedback helps athletes shift from reactive to
proactive coping strategies by enhancing self-regulation and
physiological awareness, thereby improving their mental toughness in
high pressure environments (Donghai et al, 2024a). Notably,
biofeedback induced improvements in autonomic regulation are
closely linked to enhanced emotional regulation and cognitive control,
both of which are critical in moderating anxiety responses during
performance situations (Goessl et al., 2017; Teufel et al., 2013). These
mechanisms offer a compelling explanation for the expanding role of
biofeedback in sports psychology and athlete preparation.

Recent studies increasingly support the psychological and
performance benefits of biofeedback training in athletic contexts
(Vilmaz et al., 2025; Makaraci et al., 2023). This paragraph reviews key
meta-analytic findings that validate its effectiveness, particularly in
cognitively demanding sports (Tosti et al., 2024). Biofeedback training
has demonstrated clear benefits across various sports, including
basketball, football, swimming, and endurance disciplines (Saha et al.,
2013; Paul and Garg, 2012). A recent systematic review (Pagaduan
et al., 2022) highlight the positive effects of heart rate variability
biofeedback on improving physiological regulation and performance
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outcomes in athletes particularly in basketball, shooting, and long
distance running by enhancing respiratory mechanics, improving
autonomic regulation, and reducing psychophysiological stress.
Through the application of this technique, athletes can adjust their
breathing frequency per week and enhance parasympathetic nervous
system activity, optimizing both physiological responses and mental
states. The importance of emotional regulation in improving
performance is also underscored, especially under interventions that
promote optimal heart rate variability and autonomic regulation.
Therefore, the foundational concept proposed by Bar-Eli (2004) and
later echoed by Yilmaz et al. (2025) which posits that biofeedback
enhances athletic performance by simultaneously optimizing
psychological and physiological states (Bar-Eli, 2004; Yilmaz et al.,
2025; Pagaduan et al., 2022).

Biofeedback, particularly heart rate variability and biomechanical
biofeedback, plays a critical role in enhancing both cognitive and
athletic performance in athletes. This has been supported by multiple
studies, including those by Gorman et al. (2021), Paul et al. (2012),
and Saha et al. (2013), which collectively underscore the effectiveness
of real-time physiological feedback in improving reaction time,
concentration, and overall athletic execution. These findings highlight
biofeedback as a valuable tool for athletes-not only for enhancing
physical performance but also for sharpening cognitive functions
under pressure. By training individuals to regulate both physiological
responses and emotional states, biofeedback helps athletes achieve a
state of optimal performance, particularly in high-stress, cognitively
demanding sports contexts (Saha et al., 2013; Gorman et al., 2021;
Paul et al., 2012).

In summary, current evidence highlights biofeedback as an
effective intervention for improving both mental health and
performance in athletes (Donghai et al., 2024b). By supporting
physiological regulation and emotional control, it helps athletes
manage stress, maintain focus, and perform more effectively under
pressure (Goessl et al., 2017). These findings suggest that biofeedback
holds strong potential for integration into athlete training and
performance enhancement programs (Pagaduan et al., 2020).

The impact of neurofeedback training on
performance

Compared with the scarcity of research in the field of mental
health, the promoting effect of neurofeedback training on athletic
performance has received broader empirical support. Multiple studies
have shown that neurofeedback training has significant effects in a
series of sports that have high requirements for fine motor control,
sensory and perceptual integration, and attention regulation,
especially in golf, shooting, sprinting, static and dynamic balance
events (Toolis et al., 2024; Dana et al., 2019; Yalfani et al., 2024;
Bakhtafrooz et al., 2025; Chen et al., 2022). These sports usually
require athletes to have a high degree of sensorimotor coordination,
continuous concentration and moderate muscle relaxation to achieve
precise and stable movement performance (Tosti et al., 2024).
Neurofeedback training can improve these key neural mechanisms by
regulating the characteristics of electroencephalogram (EEG)
activities, thereby optimizing motor performance (Gong et al., 2021).
Consistent with our subgroup findings, recent studies have
demonstrated that neurofeedback training significantly improves
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balance-related athletic performance, particularly in sports requiring
postural control and stability (Dana et al., 2019; Yalfani et al., 2024).

In athlete populations, neurofeedback training has shown notable
efficacy in enhancing core cognitive performance that are closely tied
to athletic performance, such as attention. Cognitive performance are
crucial for optimizing decision making under pressure, maintaining
performance consistency, and adapting rapidly to dynamic
competitive environments (Tosti et al, 2024). Beyond motor
performance, neurofeedback training has also been shown to
significantly enhance attentional functioning, which is a key cognitive
factor influencing athletic success. In sports settings, attention is
critical for maintaining situational awareness, making rapid decisions,
and sustaining consistent performance under pressure (Rydzik et al.,
2023). Empirical studies have found that neurofeedback training
protocols targeting the modulation of specific EEG bands such as
enhancing sensorimotor rhythm (SMR) and beta activity while
suppressing theta waves can lead to measurable improvements in
various aspects of attention, including alertness, orienting efficiency,
and conflict monitoring (Dana et al., 2019; Mikicin et al., 2015;
Balkhtafrooz et al., 2025). These improvements reflect neurofeedback
training capacity to promote adaptive cortical arousal states, reduce
cognitive interference, and strengthen athletes’ ability to maintain task
relevant focus (Cheng et al., 2024). Collectively, this evidence suggests
that neurofeedback training serves as a dual function intervention,
meanwhile, optimize the performance of the athlete population (Tosti
etal., 2024).

Therefore, neurofeedback training may enhance performance
through a dual mechanism: by optimizing sensorimotor control
essential for precise physical execution, and by reinforcing attentional
regulation that supports consistency and adaptability in high-pressure
environments (Cheng et al., 2024). This convergence of motor and
cognitive improvements reinforces neurofeedback’s unique value in
sports contexts where both physical precision and mental toughness
are critical for success (Tosti et al., 2024).

Dose reporting

While the majority of studies in our meta-analysis support the
effectiveness of biofeedback and neurofeedback in improving
psychological self-regulation and athletic performance, significant
variability was observed across intervention duration (weeks), weekly
frequency (sessions/week), and session length (minutes). This
variation underscores the need for a more standardized approach to
biofeedback intervention protocols and reporting. These subgroup
findings are  exploratory and do not  constitute
dosage recommendations.

Furthermore, Onagawa et al. (2023) highlighted the importance
of intervention duration, noting that programs extending beyond
10 weeks may yield reduced incremental benefits (Onagawa et al,,
2023) Our findings are consistent with this possibility in some
subgroups; however, the evidence is limited. These ranges need to
be tested in preregistered randomized trials that systematically
manipulate duration, session length, and weekly frequency.

Taken together, the results suggest that intervention duration,
weekly frequency, and session length may influence the effectiveness
of biofeedback. To ensure consistent evaluation and replication, future

studies should adopt standardized dose reporting [e.g., the Consensus
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on the Reporting and Experimental Design of Neurofeedback studies,
CRED-nf checklist (Ros et al., 2020; Onagawa et al., 2023; Yu et al,,
20255 Schulz et al., 2010; Hassan et al., 2022), and preregister trial
protocols, specifying planned dose ranges and analyses to enable
robust assessment of long-term impact].

Strengths and limitations

This study adopted the Bayesian meta-analysis for the first time to
systematically evaluate the effects of biofeedback and neurofeedback
training on athletes’ mental health, athletic performance and cognitive
performance. Compared with the traditional Frequentist statistical
methods, Bayesian analysis can provide more robust effect estimation
and allow for the direct calculation of the probability distribution of
the intervention effect, thereby enhancing the interpretability of the
research conclusion (Van De Schoot et al., 2021). To ensure high data
quality and reliability of the results, a rigorous literature screening
process was implemented using the PICOS framework, comprehensive
subgroup analyses, and a transparent inclusion protocol. In particular,
this study employed ASReview, a machine learning-assisted
systematic review tool, to improve efficiency and objectivity in the
screening process. ASReview significantly reduces reviewer bias and
enhances reproducibility by prioritizing relevant studies based on
active learning algorithms, making the screening both faster and more
evidence driven compared to traditional manual methods.

Although biofeedback training demonstrated statistically
basketball
performance, and pressure management, the benefits did not

significant improvements in anxiety reduction,
generalize across all measured domains. Among the 10 outcome
indicators analyzed under biofeedback, only three reached statistical
significance, suggesting domain specificity in its effectiveness.
Additionally, this study did not systematically compare the differential
effects of various types of biofeedback, such as heart rate variability
feedback and electromyography feedback, limiting our ability to
identify which modalities are most effective.

Interpretation of the findings is complicated by high between-
study heterogeneity across all three primary outcomes (z = 0.99 for
mental health; 2.24 for athletic performance; 1.42 for cognitive
performance). Subgroup analyses by intervention type, dose, blinding,
and competitive level, as well as moderator analyses (age, gender),
reduced-but did not eliminate this variability. Inconsistencies in
blinding procedures and variability in study quality may also have
contributed to the instability of the results, underscoring the need for
Trim-and-fill
adjustments did not materially alter the pooled estimates, whereas

future high-quality, rigorously blinded trials.
contour- and power-enhanced funnel plots indicated small study
effects in the mental health and cognitive domains; findings for these
outcomes should therefore be interpreted with caution. Given the
diversity of study designs, intervention protocols, participant
characteristics, and outcome measures across the included RCTs,
residual heterogeneity remained despite these analytic controls. In
addition, a few studies reported extremely small variances, which
disproportionately increased their statistical weights and led to
unstable estimates of between-study heterogeneity (t) in some
subgroups. These cases should therefore be interpreted with caution
(Pronczuk et al., 2023; Dziembowska, 2015; Bakhtafrooz et al., 2025).

Future studies should adopt more consistent protocols and
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standardized outcome definitions to improve comparability
and precision.

The number of studies using neurofeedback training as an
intervention was relatively limited, and their sample sizes were
generally small. Among the outcome domains analyzed, only
attentional control and balance reached statistical significance,
whereas other domains did not demonstrate consistent effects. In the
domain of mental health, only one study on neurofeedback training
(Faridnia et al., 2012) was available, which limited the reliability of
subgroup findings. Although an effect size could be estimated, the
scarcity of evidence precludes firm conclusions, thereby restricting the
generalizability of neurofeedbacK’s effects on mental health. Future
research with larger samples and more rigorous designs is necessary
to better understand the effectiveness of neurofeedback across
various domains.

While the dose-response analysis indicated statistically significant
effects for certain categories of intervention time (weeks), frequency
per week, and time per session, most other subgroups did not reach
significance, reflecting variability in the impact of intervention doses.
In addition, only six trials included any form of follow up, and none
extended beyond 6 months, which limited the ability to evaluate the
long-term sustainability of intervention effects. Furthermore, the
certainty of evidence assessed by the GRADE framework was rated as
low for mental health outcomes and very low for both athletic and
cognitive performance outcomes. These ratings underscore that,
despite statistically significant pooled effects, the strength of evidence
remains limited due to factors such as risk of bias, heterogeneity, small
sample sizes, and potential publication bias. Consequently, the
findings should be interpreted with caution and future high-quality
trials are warranted to strengthen the evidence base.

Future research should address several limitations identified in
this study. First, more detailed comparisons of different biofeedback
modalities (e.g., heart rate variability vs. electromyography) are
needed to determine which are most effective for various outcomes.
Larger sample sizes and more neurofeedback studies, especially in
mental health, would increase the reliability of findings. Standardizing
outcome measures and reducing study heterogeneity through
subgroup analyses could improve consistency across studies. Long-
term follow-ups should be incorporated to assess the sustainability of
intervention effects, as most current studies only track short-term
outcomes. Additionally, more robust dose-response analyses are
needed to identify the optimal intervention time (weeks), frequency
per week, and frequency per week of interventions. Addressing these
gaps will help refine the understanding of biofeedback and
neurofeedback training’s effects on athletes. Future studies should also
adopt standardized methodological frameworks such as the BEST
toolbox and the CONSORT guidelines, in addition to the CRED-nf
checklist, to further improve methodological consistency, reduce
heterogeneity, and enhance the reproducibility of findings in this field
(Ros et al., 2020; Schulz et al., 2010; Hassan et al., 2022).

Conclusion

This meta-analysis provides evidence that biofeedback training
has statistically significant effects on improving athletes’ mental
health, particularly through reductions in anxiety and improved
pressure management. Significant improvements were also found in
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athletic in basketball.
neurofeedback training demonstrated statistically significant effects

performance, especially Meanwhile,
primarily in the domain of cognitive performance, with notable gains
in attentional control and balance.

Exploratory subgroup analyses suggested that intervention dosage
may influence the observed effects. Some dose ranges appeared to
show larger improvements (e.g., mental health: intervention time
<5 weeks, frequency 4-5 times per week, time per session 21-40 min;
athletic performance: intervention time 6-10 weeks, frequency 4-5
times per week, time per session 41-60 min; cognitive performance:
intervention time <5 weeks, frequency 3 times per week, time per
session either <20 min or 41-60 min). These findings provide
preliminary evidence of potential dosage effects, particularly for
biofeedback on mental health. Future studies are needed to generate
more robust and confirmatory evidence.

These findings support the use of biofeedback and
neurofeedback as targeted interventions to improve specific
psychological and performance outcomes in athletes. Further
research is needed to explore the mental health effects of
neurofeedback, standardize intervention protocols, and evaluate
long-term outcomes. This study provides a comprehensive
evaluation of the effects of biofeedback training on athletes’ mental
health and performance through systematic review and Bayesian
meta-analysis, offering practical guidance and significant
theoretical and practical value.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

XZ: Formal analysis, Data curation, Project administration,
Writing - review & editing, Validation, Methodology, Investigation,
Software, Writing — original draft. ZC: Writing - review & editing,
Investigation, Supervision. SZ: Formal analysis, Methodology,
Supervision, Software, Writing — review & editing. ZN: Resources,
Project administration, Methodology, Writing - review & editing.

References

Abbas, A., Hefnawy, M. T., and Negida, A. (2024). Meta-analysis accelerator: a
comprehensive tool for statistical data conversion in systematic reviews with meta-
analysis. BMC Med. Res. Methodol. 24:243. doi: 10.1186/512874-024-02356-6

Bakhtafrooz, S., Kavyani, M., Farsi, A., and Alboghebeish, S. (2025). The effect of infra
low frequency-neurofeedback training on pistol shooting performance and attention in
semi-skilled players. Front. Hum. Neurosci. 19:1487737. doi: 10.3389/fnhum.2025.1487737

Bar-Eli, M. (2004). Performance enhancement in swimming: the effect of mental
training with biofeedback. Oxford, UK: Oxford University Press.

Bar-Eli, M., Dreshman, R., Blumenstein, B., and Weinstein, Y. (2002). The effect of
mental training with biofeedback on the performance of Young swimmers. Oxford, UK:
Oxford University Press.

Basmajian, J. (1983). BIOFEEDBACK: principles and practice for clinicians.
Baltimore, MD: Williams & Wilkins.

Frontiers in Psychology

10.3389/fpsyg.2025.1662868

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

We sincerely appreciate professor and all the students who
contributed to this meta-analysis.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative Al statement

The authors declare that no Gen Al was used in the creation of
this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure accuracy,
including review by the authors wherever possible. If you identify any
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1662868/
full#supplementary-material

Blanchard, E. B., and Young, L. D. (1979). “Clinical applications of biofeedback
training: a review of evidence” in Mind/body integration. eds. E. Peper, S. Ancoli and
M. Quinn (New York, NY: Springer US), 77-110.

Blumenstein, B., and Orbach, 1. (2014). “Biofeedback for sport and performance
enhancement” in Oxford handbook topics in psychology. ed. Oxford Handbooks
Editorial Board. Ist ed (Oxford, UK: Oxford University Press). doi:
10.1093/0xfordhb/9780199935291.013.001

Boetje, J., and Van De Schoot, R. (2024). The SAFE procedure: a practical stopping
heuristic for active learning-based screening in systematic reviews and meta-analyses.
Syst. Rev. 13:81. doi: 10.1186/s13643-024-02502-7

Brito, M. A. D., Fernandes, J. R., Esteves, N. S., Miiller, V. T, Alexandria, D. B.,
Valenzuela Pérez, D. 1, et al. (2022). The effect of neurofeedback on the reaction time
and cognitive performance of athletes: a systematic review and meta-analysis. Front.
Hum. Neurosci. 16:868450. doi: 10.3389/fnhum.2022.868450

frontiersin.org


https://doi.org/10.3389/fpsyg.2025.1662868
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1662868/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1662868/full#supplementary-material
https://doi.org/10.1186/s12874-024-02356-6
https://doi.org/10.3389/fnhum.2025.1487737
https://doi.org/10.1093/oxfordhb/9780199935291.013.001
https://doi.org/10.1186/s13643-024-02502-7
https://doi.org/10.3389/fnhum.2022.868450

Zhang et al.

Biirkner, P. C. (2017). Brms: An R package for Bayesian multilevel models using Stan.
J. Stat. Softw. 80, 1-28. doi: 10.18637/jss.v080.i01

Carpenter, B., Gelman, A., Hoffman, M. D,, Lee, D., Goodrich, B., Betancourt, M.,
et al. (2017). Stan: a probabilistic programming language. J Stat Soft. 76, 1-32. doi:
10.18637/jss.v076.i01

Chen, T. T., Wang, K. P,, Chang, W. H., Kao, C. W,, and Hung, T. M. (2022). Effects of
the function-specific instruction approach to neurofeedback training on frontal midline
theta waves and golf putting performance. Psychol. Sport Exerc. 61:102211. doi:
10.1016/j.psychsport.2022.102211

Cheng, M. Y., Huang, C. J., Chang, Y. K., Koester, D., Schack, T., and Hung, T. M.
(2015). Sensorimotor rhythm neurofeedback enhances golf putting performance.
J. Sport Exerc. Psychol. 37, 626-636.

Cheng, M. Y, Yu, C. L., An, X., Wang, L., Tsai, C. L., Qi, F, et al. (2024). Evaluating
EEG neurofeedback in sport psychology: a systematic review of RCT studies for insights
into mechanisms and performance improvement. Front. Psychol. 15:1331997. doi:
10.3389/fpsyg.2024.1331997

Dana, A., Rafiee, S., and Gholami, A.. The effect of neurofeedback training on working
memory and perceptual-motor development in athlete boys. (2019).

Dehghani, A., Soltanian-Zadeh, H., and Hossein-Zadeh, G. A. (2023). Neural
modulation enhancement using connectivity-based EEG neurofeedback with
simultaneous fMRI for emotion regulation. Neurolmage 279:120320. doi:
10.1016/j.neuroimage.2023.120320

Digitizer, G. G.. Getdata-Graph-Digitizer. (2020). Available online at: https://getdata-
graph-digitizer.com/ (accessed May 16, 2025)

Donghai, H., Abdul Wahab, M. N., and Xiuling, Z. (2024a). Effect of heart rate
variability biofeedback training on score and stress level of shooting athletes. E-BPJ 9,
115-122. doi: 10.21834/e-bpj.v9iS120.6101

Donghai, H., Abdul Wahab, M. N., Xiuling, Z., and Dongya, J. (2024b). Effects of
biofeedback training on shooters” performance, stress levels, and HRV. jABs 9, 37-52.
doi: 10.21834/jabs.v9i28.446

Duval, S., and Tweedie, R. (2000). A nonparametric “trim and fill” method of
accounting for publication Bias in Meta-analysis. J. Am. Stat. Assoc. 95, 89-98. doi:
10.1080/01621459.2000.10473905

Dziembowska, I. (2015). Effects of heart rate variability biofeedback on EEG alpha
asymmetry and anxiety symptoms in male athletes: a pilot study. Appl Psychophysiol
Biofeedback.

Egner, T, and Gruzelier, J. H. (2004). EEG biofeedback of low beta band components:
frequency-specific effects on attention and ERPs. Clin. Neurophysiol. 115, 131-139.
(Elsevier).

Enriquez-Geppert, S., Huster, R. J., and Herrmann, C. S. (2017). EEG-neurofeedback
as a tool to modulate cognition and behavior: a review tutorial. Front. Hum. Neurosci.
11:11. doi: 10.3389/fnhum.2017.00051

Faridnia, M., Shojaei, M., and Rahimi, A. (2012). The effect of neurofeedback training
on the anxiety of elite female swimmers. Ann. Biol. Res. 3, 1020-1028.

Follmann, D., Elliott, P., Suh, I, and Cutler, J. (1992). Variance imputation for
overviews of clinical trials with continuous response. J. Clin. Epidemiol. 45, 769-773.
doi: 10.1016/0895-4356(92)90054-Q

Giggins, O. M., Persson, U. M., and Caulfield, B. (2013). Biofeedback in rehabilitation.
J. Neuroeng. Rehabil. 10:60. doi: 10.1186/1743-0003-10-60

Goessl, V. C., Curtiss, J. E., and Hofmann, S. G. (2017). The effect of heart rate
variability biofeedback training on stress and anxiety: a meta-analysis. Psychol. Med. 47,
2578-2586. doi: 10.1017/S0033291717001003

Gong, A., Gu, E, Nan, W, Qu, Y, Jiang, C., and Fu, Y. (2021). A review of
neurofeedback training for improving sport performance from the perspective of user
experience. Front. Neurosci. 15:638369. doi: 10.3389/fnins.2021.638369

Gorman, A. J., Willmott, A. P, and Mullineaux, D. R. (2021). The effects of concurrent
biomechanical biofeedback on rowing performance at different stroke rates. J. Sports Sci.
39, 2716-2726. doi: 10.1080/02640414.2021.1954349

Haddaway, N. R., Page, M. J., Pritchard, C. C., and McGuinness, L. A. (2022).
PRISMA2020: An R package and shiny app for producing PRISMA 2020-compliant flow
diagrams, with interactivity for optimised digital transparency and open synthesis.
Campbell Syst. Rev. 18:¢1230. doi: 10.1002/cl2.1230

Harrer, M., Cuijpers, P,, Furukawa, T. A., and Ebert, D. D. (2021). Doing meta-analysis
with R: a hands-on guide. Ist Edn. Boca Raton, FL: Chapman and Hall/CRC.
Hassan, U, Pillen, S., Zrenner, C., and Bergmann, T. O. (2022). The brain

electrophysiological recording and STimulation (BEST) toolbox. Brain Stimul. 15,
109-115. doi: 10.1016/j.brs.2021.11.017

Higgins, J. P. T., Altman, D. G., Gotzsche, P. C,, Jini, P., Moher, D., Oxman, A. D,, et al.
(2011). The Cochrane collaboration’s tool for assessing risk of bias in randomised trials.
BM]J 343:5928. doi: 10.1136/bm;j.d5928

Higgins, J. P. T., Thompson, S. G., and Spiegelhalter, D. J. (2009). A re-evaluation of
random-effects Meta-analysis. J. Royal Stat. Soc. Series A Stat. Soc. 172, 137-159. doi:
10.1111/j.1467-985x.2008.00552.x

Holzinger, A. (2016). Interactive machine learning for health informatics: when do
we need the human-in-the-loop? Brain Inf. 3, 119-131. doi: 10.1007/540708-016-0042-6

Frontiers in Psychology

15

10.3389/fpsyg.2025.1662868

Kloudova, G. (2021). Coping with stress reactions using biofeedback therapy in elite
athletes: case report. Cogn Remediat J. 10, 1-8. doi: 10.5507/crj.2021.003

Kruschke, J. K., and Liddell, T. M. (2018). The Bayesian new statistics: hypothesis
testing, estimation, meta-analysis, and power analysis from a Bayesian perspective.
Psychon. Bull. Rev. 25, 178-206. doi: 10.3758/s13423-016-1221-4

Lehrer, P, Kaur, K., Sharma, A., Shah, K., Huseby, R., Bhavsar, J., et al. (2020). Heart
rate variability biofeedback improves emotional and physical health and performance:
a systematic review and meta analysis. Appl. Psychophysiol. Biofeedback 45, 109-129. doi:
10.1007/s10484-020-09466-z

Lehrer, P. M., Vaschillo, E., Vaschillo, B, Lu, S. E., Eckberg, D. L., Edelberg, R, et al.
(2003). Heart rate variability biofeedback increases Baroreflex gain and peak expiratory
flow. Psychosom. Med. 65, 796-805. doi: 10.1097/01.psy.0000089200.81962.19

Makaraci, Y., Makaraci, M., Zorba, E., and Lautenbach, F. (2023). A pilot study of the
biofeedback training to reduce salivary cortisol level and improve mental health in
highly-trained female athletes. Appl. Psychophysiol. Biofeedback 48, 357-367. doi:
10.1007/s10484-023-09589-z

Maszczyk, A., Dobrakowski, P, Nitychoruk, M., Zak, M., Kowalczyk, M., and
Toborek, M. (2020). The effect of neurofeedback training on the visual processing
efficiency in judo athletes. J. Hum. Kinet. 71, 219-227. doi: 10.2478/hukin-2019-0097

McGuinness, L. A., and Higgins, J. P. T. (2021). Risk-of-bias VISualization (robvis): an
R package and shiny web app for visualizing risk-of-bias assessments. Res. Synth.
Methods 12, 55-61. doi: 10.1002/jrsm.1411

Mikicin, M., Orzechowski, G., Jurewicz, K., Paluch, K., Kowalczyk, M., and Wrébel, A.
(2015). Brain-training for physical performance: a study of EEG-neurofeedback and alpha
relaxation training in athletes. Acta Neurobiol. Exp. 75,434-445. doi: 10.55782/ane-2015-2047

Mirifar, A., Keil, A., Beckmann, J., and Ehrlenspiel, E (2019). No effects of
neurofeedback of beta band components on reaction time performance. J. Cogn. Enhanc.
3,251-260. doi: 10.1007/s41465-018-0093-0

Onagawa, R., Muraoka, Y., Hagura, N., and Takemi, M. (2023). An investigation of
the effectiveness of neurofeedback training on motor performance in healthy adults: a
systematic  review and  meta-analysis.  Neurolmage  270:120000.  doi:
10.1016/j.neuroimage.2023.120000

Pagaduan, J. C., Chen, Y. S,, Fell, J. W,, and Wu, S. S. X. (2020). Can heart rate
variability biofeedback improve athletic performance? A systematic review. J. Hum.
Kinet. 73, 103-114. doi: 10.2478/hukin-2020-0004

Pagaduan, J. C,, Chen, Y. S,, Fell, J. W,, and Xuan Wu, S. S. (2022). A preliminary
systematic review and meta-analysis on the effects of heart rate variability biofeedback
on heart rate variability and respiration of athletes. J. Complement Integr Med 19,
817-826. doi: 10.1515/jcim-2020-0528

Pagani, M., Pizzinelli, P, Traon, A. P. L., Ferreri, C., Beltrami, S., Bareille, M. P, et al.
(2009). Hemodynamic, autonomic and baroreflex changes after one night sleep deprivation
in healthy volunteers. Auton. Neurosci. 145, 76-80. doi: 10.1016/j.autneu.2008.10.009

Paul, M., and Garg, K. (2012). The effect of heart rate variability biofeedback on
performance psychology of basketball players. Appl. Psychophysiol. Biofeedback 37,
131-144. doi: 10.1007/s10484-012-9185-2

Paul, M., Garg, K., and Sandhu, J. S. (2012). Role of biofeedback in optimizing psychomotor
performance in sports. Asian J. Sports Med. 3, 29-40. doi: 10.5812/asjsm.34722

Pizzoli, S. F. M., Marzorati, C., Gatti, D., Monzani, D., Mazzocco, K., and Pravettoni, G.
(2021). A meta-analysis on heart rate variability biofeedback and depressive symptoms.
Sci Rep 11:6650. doi: 10.1038/s41598-021-86149-7

Pronczuk, M., Trybek, G., Terbalyan, A., Markowski, ., Pilch, ., Krzysztofik, M., et al.
(2023). The effects of EEG biofeedback training on visual reaction time in judo athletes.
J. Hum. Kinet. 89, 247-258. doi: 10.5114/jhk/174272

Raglin, J. S. (2001). Psychological factors in sport performance: the mental health
model revisited. Sports Med. 31, 875-890. doi: 10.2165/00007256-200131120-00004

Rice, S. M., Purcell, R,, De Silva, S., Mawren, D., McGorry, P. D., and Parker, A. G.
(2016). The mental health of elite athletes: a narrative systematic review. Sports Med. 46,
1333-1353. doi: 10.1007/s40279-016-0492-2

Ros, T., Enriquez-Geppert, S., Zotev, V., Young, K. D., Wood, G., Whitfield-Gabrieli, S.,
et al. (2020). Consensus on the reporting and experimental design of clinical and
cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain 143,
1674-1685. doi: 10.1093/brain/awaa009

Rover, C. (2020). Bayesian random-effects meta-analysis using the bayesmeta R
package. J. Stat. Softw. 93:106. doi: 10.18637/js5.v093.106

Rover, C., and Friede, T. (2023). Using the bayesmeta R package for Bayesian random-
effects meta-regression. Comput. Methods Prog. Biomed. 229:107303. doi:
10.1016/j.cmpb.2022.107303

Rusciano, A., Corradini, G., and Stoianov, I. (2017). Neuroplus biofeedback improves
attention, resilience, and injury prevention in elite soccer players. Psychophysiology 54,
916-926. doi: 10.1111/psyp.12847

Rydzik, L., Wasacz, W., Ambrozy, T., Javdaneh, N., Brydak, K., and Kopanska, M.
(2023). The use of neurofeedback in sports training: systematic review. Brain Sci. 13:660.
doi: 10.3390/brainscil 3040660

Saha, S., Saha, S., Mazlan, M. A. B. M., and Arriffin, M. I. B. M. (2013). Effect of
emotional regulation on performance of soccer skills. Procedia. Soc. Behav. Sci. 91,
594-605. doi: 10.1016/j.sbspro.2013.08.459

frontiersin.org


https://doi.org/10.3389/fpsyg.2025.1662868
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1016/j.psychsport.2022.102211
https://doi.org/10.3389/fpsyg.2024.1331997
https://doi.org/10.1016/j.neuroimage.2023.120320
https://getdata-graph-digitizer.com/
https://getdata-graph-digitizer.com/
https://doi.org/10.21834/e-bpj.v9iSI20.6101
https://doi.org/10.21834/jabs.v9i28.446
https://doi.org/10.1080/01621459.2000.10473905
https://doi.org/10.3389/fnhum.2017.00051
https://doi.org/10.1016/0895-4356(92)90054-Q
https://doi.org/10.1186/1743-0003-10-60
https://doi.org/10.1017/S0033291717001003
https://doi.org/10.3389/fnins.2021.638369
https://doi.org/10.1080/02640414.2021.1954349
https://doi.org/10.1002/cl2.1230
https://doi.org/10.1016/j.brs.2021.11.017
https://doi.org/10.1136/bmj.d5928
https://doi.org/10.1111/j.1467-985x.2008.00552.x
https://doi.org/10.1007/s40708-016-0042-6
https://doi.org/10.5507/crj.2021.003
https://doi.org/10.3758/s13423-016-1221-4
https://doi.org/10.1007/s10484-020-09466-z
https://doi.org/10.1097/01.psy.0000089200.81962.19
https://doi.org/10.1007/s10484-023-09589-z
https://doi.org/10.2478/hukin-2019-0097
https://doi.org/10.1002/jrsm.1411
https://doi.org/10.55782/ane-2015-2047
https://doi.org/10.1007/s41465-018-0093-0
https://doi.org/10.1016/j.neuroimage.2023.120000
https://doi.org/10.2478/hukin-2020-0004
https://doi.org/10.1515/jcim-2020-0528
https://doi.org/10.1016/j.autneu.2008.10.009
https://doi.org/10.1007/s10484-012-9185-2
https://doi.org/10.5812/asjsm.34722
https://doi.org/10.1038/s41598-021-86149-7
https://doi.org/10.5114/jhk/174272
https://doi.org/10.2165/00007256-200131120-00004
https://doi.org/10.1007/s40279-016-0492-2
https://doi.org/10.1093/brain/awaa009
https://doi.org/10.18637/jss.v093.i06
https://doi.org/10.1016/j.cmpb.2022.107303
https://doi.org/10.1111/psyp.12847
https://doi.org/10.3390/brainsci13040660
https://doi.org/10.1016/j.sbspro.2013.08.459

Zhang et al.

Schulz, K. E, Altman, D. G., and Moher, D.for the CONSORT Group (2010).
CONSORT 2010 statement: updated guidelines for reporting parallel group randomised
trials. BMJ 340:¢332. doi: 10.1136/bmj.c332

Schwartz, M. S. (2010). A new improved universally accepted official definition of
biofeedback: Where did it come from? Why? Who did it? Who is it for? What’s next?
New York, NY: The Guilford Press (4th ed.).

Teufel, M., Stephan, K., Kowalski, A., Késberger, S., Enck, P,, Zipfel, S., et al. (2013).
Impact of biofeedback on self-efficacy and stress reduction in obesity: a randomized
controlled pilot study. Appl. Psychophysiol. Biofeedback 38, 177-184. doi:
10.1007/s10484-013-9223-8

Tirinnanzi, P. (2022). The effects of the PowerMens methodology on the measurement
and training of attention in young footballers: a pilot study. NR 9, 2-15. doi:
10.15540/nr.9.1.2

Toolis, T., Cooke, A., Laaksonen, M. S., and McGawley, K. (2024). Effects of
neurofeedback training on frontal midline theta power, shooting performance and
attentional focus with experienced biathletes. J. Clin. Sport Psychol. 18, 450-472. doi:
10.1123/jcsp.2022-0035

Tosti, B., Corrado, S., Mancone, S., di Libero, T., Carissimo, C., Cerro, G., et al. (2024).
Neurofeedback training protocols in sports: a systematic review of recent advances in
performance, anxiety, and emotional regulation. Brain Sci. 14:1036. doi:
10.3390/brainscil4101036

Frontiers in Psychology

16

10.3389/fpsyg.2025.1662868

Van De Schoot, R., Depaoli, S., King, R., Kramer, B., Martens, K., Tadesse, M. G., et al.
(2021). Bayesian statistics and modelling. Nat Rev Methods Primers. 1:1. doi:
10.1038/s43586-020-00001-2

van de Schoot, R., de Bruin, J., Schram, R., et al. (2021). An open source machine

learning framework for efficient and transparent systematic reviews. Nat Mach Intell. 3,
125-133. doi: 10.1038/542256-020-00287-7

Wang, Z., Nayfeh, T., Tetzlaff, J., O’Blenis, P., and Murad, M. H. (2020). Error rates of
human reviewers during abstract screening in systematic reviews. PLoS One
15:€0227742. doi: 10.1371/journal.pone.0227742

Wilson, V. E., and Bird, E. I. (1981). Effects of relaxation and/or biofeedback training
upon hip flexion in gymnasts. Biofeedback Self Regul. 6, 25-34. doi: 10.1007/BF00998790

Yalfani, A., Azizian, M., and Gholami-Borujeni, B. (2024). Adding neurofeedback
training to neuromuscular training for rehabilitation of chronic ankle instability: a 3-arm
randomized controlled trial. Sports Health 16, 797-807. doi: 10.1177/19417381231219198

Yilmaz, E., Aktop, A., Abdioglu, A., Melekoglu, T., and Nalbant, M. (2025). The effect
of heart rate variability biofeedback on recovery after aerobic exercise. Appl.
Psychophysiol. Biofeedback 50, 95-106. doi: 10.1007/5s10484-024-09672-z

Yu, C,, Cheng, M., An, X, Yu, C. L., Cheng, M. Y., Chueh, T. Y,, et al. (2025). The effect
of EEG neurofeedback training on sport performance: a systematic review and meta-
analysis. Scand. J. Med. Sci. Sports 35:¢70055. doi: 10.1111/sms.70055

frontiersin.org


https://doi.org/10.3389/fpsyg.2025.1662868
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.1136/bmj.c332
https://doi.org/10.1007/s10484-013-9223-8
https://doi.org/10.15540/nr.9.1.2
https://doi.org/10.1123/jcsp.2022-0035
https://doi.org/10.3390/brainsci14101036
https://doi.org/10.1038/s43586-020-00001-2
https://doi.org/10.1038/s42256-020-00287-7
https://doi.org/10.1371/journal.pone.0227742
https://doi.org/10.1007/BF00998790
https://doi.org/10.1177/19417381231219198
https://doi.org/10.1007/s10484-024-09672-z
https://doi.org/10.1111/sms.70055

	The effects of biofeedback training on athletes’ mental health and performance: a systematic review and Bayesian meta-analysis
	Introduction
	Methods
	Inclusion criteria for screening
	Information retrieval
	Screening process
	Extract data information
	Risk bias assessment
	GRADE evidence grade evaluation
	Data analysis
	Publication bias

	Results
	Literature screening process
	Characteristics included in the study
	Risk of bias
	Meta-analysis
	Mental health
	Athletic performance
	Cognitive performance
	Subgroup analysis based on intervention type (biofeedback vs. neurofeedback)
	Mental health (biofeedback and neurofeedback)
	Athletic performance (biofeedback and neurofeedback)
	Cognitive performance (biofeedback and neurofeedback)
	Subgroup analysis based on specific psychological and performance outcomes
	Biofeedback training
	Neurofeedback training
	Subgroup analysis based on athlete competitive level
	Subgroup analysis based on blinding
	Subgroup analysis based on biofeedback dose
	Mental health
	Athletic performance
	Cognitive performance
	Moderator analyses
	Publication bias
	GRADE evidence grade evaluation

	Discussion
	Research findings
	The impact of biofeedback training on mental health and performance
	The impact of neurofeedback training on performance
	Dose reporting
	Strengths and limitations

	Conclusion

	References

