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Background: Biofeedback and neurofeedback are increasingly used in sports 
psychology, yet their overall effectiveness for athletes’ mental health, athletic 
performance, and cognitive performance remains unclear.
Methods: We conducted a systematic review of randomized controlled trials 
across eight databases and performed Bayesian random-effects meta-analyses. 
Study selection used ASReview with the SAFE rule; full-text screening was done 
in Covidence; risk of bias followed Cochrane guidance; certainty of evidence 
was appraised with GRADE.
Results: Forty-one studies met inclusion. Pooled effects were statistically 
significant across domains: mental health µ(SMD)=0.76 (95% CrI 0.44–1.09), 
athletic performance µ(SMD)=0.88 (0.69–1.05), and cognitive performance 
µ(SMD)=0.81 (0.48–1.14).
Conclusion: Biofeedback and neurofeedback benefit athletes across mental, 
athletic, and cognitive outcomes. Given heterogeneity and sample sizes, further 
rigorous trials are warranted to refine the estimates.
Systematic review registration: PROSPERO registration CRD420251015094.
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Introduction

As an interdisciplinary technique that integrates physiology, psychology, and neuroscience, 
biofeedback training is increasingly recognized as an effective intervention for enhancing 
athletes’ mental health and performance (Kloudova, 2021). Research has demonstrated a 
significant positive correlation between optimal mental states and athletic performance, 
wherein effective regulation of emotional reactivity and anxiety enhances decision making and 
attentional control-key determinants of athletic success (Raglin, 2001; Rice et  al., 2016). 
Therefore, an in-depth investigation into the application value of biofeedback in enhancing 
athletes’ mental health and performance represents a meaningful and timely direction in 
contemporary sports science research (Blumenstein et al., 2014).

Biofeedback can be defined as a technique that uses instruments to monitor an individual’s 
physiological activities in real time and provides feedback through visual or auditory means 
(Egner and Gruzelier, 2004; Giggins et al., 2013; Schwartz, 2010). Herbert Benson’s “relaxation 
response” theory suggests that by regulating the autonomic nervous system, biofeedback can 
effectively reduce the levels of stress hormones such as cortisol in the body, thereby alleviating 
the stress response (Lehrer et  al., 2020). Furthermore, the core theoretical mechanism 
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underlying biofeedback interventions lies in enhancing individuals’ 
ability to regulate autonomic nervous system activity particularly heart 
rate variability (HRV) through training. This process relies on the 
plasticity of vagal tone, whereby repeated practice improves the ability 
to identify and control the resonance frequency per week between 
heart rate and resonant frequency, thereby increasing parasympathetic 
activation (Lehrer et al., 2003; Pagani et al., 2009). Additionally, from 
the perspective of operant conditioning, biofeedback is a learning 
process where individuals achieve intentional control over their body 
states through awareness and regulation of physiological signals 
(Basmajian, 1983). This process reflects the fundamental view of the 
mind body interaction theory that psychological processes can have 
regulatory effects on physiological functions through the central 
nervous system (Blanchard and Young, 1979). Although these theories 
provide important theoretical support for the application of 
biofeedback training, current empirical research on it is still insufficient, 
and its true effectiveness remains controversial in multiple fields 
(Rydzik et al., 2023).

Recent research suggests that biofeedback training has a positive 
effect on improving athletes’ mental health (Saha et al., 2013), with 
statistically significant benefits observed in shooting athletes (Donghai 
et al., 2024a), and football players (Rusciano et al., 2017). Biofeedback 
training can effectively attenuate the stress response by modulating 
autonomic nervous system activity, thereby enhancing emotional 
regulation and cognitive function (Dehghani et al., 2023). Notably, the 
enhancement of physiological self-regulation through biofeedback not 
only contributes to improved self-efficacy but may also indirectly 
reduce anxiety (Goessl et al., 2017; Teufel et al., 2013). Taken together, 
these findings highlight that biofeedback training not only alleviates 
stress and anxiety through enhanced emotional and physiological self-
regulation, but also builds a solid psychological foundation that may 
benefit athletic performance.

In addition to its positive impact on mental health, research also 
shows that biofeedback training has a direct promoting effect on 
athletic performance itself. It is also applicable to swimming (Bar-Eli, 
2004), golf (Cheng et al., 2015), judo (Pronczuk et al., 2023), winter 
sports athletes (Toolis et al., 2024), and basketball players (Paul and 
Garg, 2012). Furthermore, improving the regulatory ability of the 
autonomic nervous system through biofeedback also helps enhance 
an individual’s cognitive performance (Pronczuk et al., 2023), such as 
attention control, working memory, and decision making ability. 
These cognitive factors play significant roles in complex and high 
speed competitive environments (Rusciano et al., 2017; Paul and Garg, 
2012; Dana et al., 2019; Mikicin et al., 2015). Therefore, biofeedback 
training can not only enhance the self-regulation ability of physiology 
and emotion, but also support the improvement of cognitive efficiency, 
thereby comprehensively promoting the improvement of athletic 
performance (Brito et al., 2022; Tosti et al., 2024).

Although existing studies have to some extent verified the positive 
effects of biofeedback training on improving athletes’ mental health and 
performance, research in this field is still relatively scarce. Existing studies 
mostly focus on a specific sport or small sample experiments, lacking 
extensive coverage and in depth exploration across different sports (Paul 
and Garg, 2012; Bar-Eli et al., 2002; Wilson and Bird, 1981; Yılmaz et al., 
2025). Most existing meta-analyses have primarily examined the effects 
of heart rate variability biofeedback on depression and general 
performance, often without specifically focusing on athlete populations 
or encompassing the full range of biofeedback modalities (Lehrer et al., 
2020; Pizzoli et al., 2021). Consequently, there is a pressing need for more 

diverse and representative large-scale studies-particularly systematic 
empirical investigations across various sports-to comprehensively assess 
the applicability, developmental potential, and actual efficacy of 
biofeedback interventions in athletic settings (Lehrer et al., 2020).

Furthermore, although the majority of studies support the 
effectiveness of biofeedback training in improving mental health and 
enhancing both motor and cognitive performance, notable exceptions 
have also been reported. For instance, no significant differences in 
attentional performance were found between the experimental and 
control groups following neurofeedback training (Mirifar et al., 2019). 
Similarly, physical flexibility significantly improved across all three 
experimental groups after biofeedback training; however, the magnitude 
of improvement did not differ significantly between groups, suggesting 
that the specific type of training administered had no distinct effect on 
flexibility outcomes (Wilson and Bird, 1981). Moreover, the interaction 
between group type and training outcome was not statistically 
significant, indicating that group assignment did not moderate the 
training’s impact on flexibility gains (Wilson and Bird, 1981). Therefore, 
these differences suggest that the effects of biofeedback or neurofeedback 
training may not be universally applicable, and its benefits may depend 
on a variety of factors, including the specific sport participated in, the 
training program adopted, as well as the individual’s sports background 
and psychological characteristics, etc. (Tosti et al., 2024).

Building upon findings from prior studies, the present research 
incorporates a dose–response and moderation analysis to explore how 
variations in intervention dosage-defined by intervention time 
(weeks), frequency per week, and frequency per week-impact 
outcomes related to mental health, athletic performance, and cognitive 
performance. Using a Bayesian meta-analytic framework, this study 
systematically evaluates the overall effectiveness of biofeedback 
training among athletes, with the hypothesis-grounded in prior 
empirical evidence and dose-effect patterns-that such training yields 
significant positive effects across all three domains.

Methods

This study was registered on the PROSPERO platform 
(registration number: CRD420251015094) and conducted in 
accordance with the PRISMA guidelines for systematic reviews and 
meta-analyses (Haddaway et al., 2022). During literature screening 
and data analysis, we  used R (version 4.5.1), the Python-based 
ASReview tool, the Covidence platform, and GRADEprofiler to 
support screening and evaluation procedures.

Inclusion criteria for screening

Literature screening followed the PICOS framework. Participants 
in the included studies were athletes of any age and health status. Only 
randomized controlled trials (RCTs) that used biofeedback or 
neurofeedback training as the intervention were eligible. The control 
group could include participants who received no psychological or 
physiological training, or those who underwent alternative skill 
training that did not involve biofeedback or neurofeedback.

Eligible studies were required to report outcome measures related 
to mental health, athletic performance, or cognitive performance. 
Publications in both English and Chinese were considered. Studies 
were excluded if they met any of the following criteria: (1) master’s or 
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doctoral theses and conference abstracts, which were excluded to 
ensure methodological consistency and reliable data extraction; (2) 
non-original articles such as letters, editorials, or commentaries; (3) 
studies lacking extractable data; or (4) studies in which the 
experimental and control groups received different types of 
biofeedback or neurofeedback interventions.

Information retrieval

A comprehensive search strategy was developed on February 17, 
2025, using both Medical Subject Headings (MeSH) and free-text 
terms. Systematic searches were performed across eight databases: 
Ovid, Web of Science, Scopus, PubMed, Embase, PsycINFO, 
SPORTDiscus, and CNKI (China National Knowledge Infrastructure). 
The keywords and MeSH terms were discussed and finalized by four 
authors (XZ, ZC, SZ, and ZN). Detailed search strings for each database 
are provided in Supplementary File S1. Screening was conducted using 
the Covidence online platform and ASReview, a Python-based 
machine learning tool for literature prioritization (van de Schoot et al., 
2021). A total of 5,527 studies were identified for further evaluation.

Screening process

All titles and abstracts were first evaluated with ASReview, a 
machine learning based screening tool. ASReview predicts study 
relevance by training a classification model on labeled abstracts and 
continuously reprioritizes the remaining records according to their 
likelihood of inclusion (Holzinger, 2016; Van de Schoot et al., 2021; 
Wang et al., 2020). This approach markedly reduces manual workload 
by presenting the most likely relevant records first.

During this phase we applied the conservative SAFE rule, which 
stops screening only after 200 consecutive records have been judged 
irrelevant (Boetje and Van De Schoot, 2024). Full-text screening was 
then conducted independently by two reviewers (XZ and ZC) on the 
Covidence platform, as recommended in PRISMA guidelines. Eligible 
articles were recorded with the Extraction 1.0 form, and any 
disagreements were resolved by a third and fourth reviewer (SZ and 
NZ) (Boetje and Van De Schoot, 2024).

Extract data information

For each study, the extracted features include the author, 
publication year, country, intervention, study design, biofeedback 
training or neurofeedback training, practice period, sample size, 
gender, athlete type, age, training years and outcome. The outcomes 
of mental health include anxiety, stress, anger, fatigue and depression. 
The results of athletic performance include golf performance, speed, 
swimming performance, balance, shooting performance, endurance, 
coordination, basketball performance, bowling performance, football 
performance, strength, running performance, rowing performance 
and flexibility. Cognitive performance results include attentional 
control, attentional focus, selective attention, task performance 
metrics and working-memory performance.

The data were extracted by two authors (XZ and ZC) respectively, 
and the differences were resolved through consultation with the third 

and fourth authors (SZ and ZN). The results are presented in the form 
of mean ± standard deviation (M ± SD). For the data that were not 
initially provided in M ± SD format, we used an online tool called 
Meta Analysis Accelerator for conversion (Abbas et al., 2024). Since 
none of the included studies reported correlation coefficients, a 
correlation coefficient of 0.5 was assumed for all analyses, following 
the recommendation of Follmann et al. (1992). When data were not 
provided in numerical form, we used GetData Graph Digitizer to 
extract the corresponding values from the figures (Digitizer, 2020).

Risk bias assessment

The risk of bias in all included studies was independently 
evaluated according to the criteria in the Cochrane Handbook of 
Systematic Reviews of Interventions (Higgins et  al., 2011). Two 
authors (XZ and ZC) evaluated the studies in randomized controlled 
trials (RCTs) through the Covidence tool in accordance with the 
Cochrane Risk of bias Assessment Criteria (ROB2), covering seven 
areas of bias: (1) Random sequence generation; (2) Allocation 
concealment (3) Blinding of participants and staff; (4) Blinding of 
outcome assessment; (5) incompleted data; (6) Selective Reporting (7) 
Other biases. The risk of bias is classified as low, unclear or high. All 
the assessment results were agreed upon through discussion and 
recorded in the Excel template. Subsequently, the data were input into 
the R software, and the bias risk summary graph was generated using 
the robvis package (McGuinness and Higgins, 2021).

GRADE evidence grade evaluation

In the field of athletic performance research, this study adopts the 
GRADE method to systematically assess the quality of evidence from 
four core dimensions (Higgins et al., 2011). Firstly, the potential risk 
of bias in the included studies was assessed-specifically, the systematic 
errors that may arise during research design, implementation, or result 
reporting, which could compromise the validity of the conclusions. 
Secondly, heterogeneity across studies was evaluated using the I2 
statistic to assess the degree of inconsistency in the results. Thirdly, the 
indirectness of the evidence was evaluated-specifically, whether the 
interventions, study populations, and outcome measures included in 
the reviewed studies directly addressed the core questions of this 
analysis. Finally, the imprecision of the effect estimates was assessed. 
The robustness and reliability of the conclusions were primarily 
evaluated based on the width of the confidence intervals around the 
effect sizes and the sample sizes of the included studies.

According to the GRADE standard, the quality of evidence is 
divided into four grades: “high,” “medium,” “low” and “very low,” 
reflecting the gradient level of evidence credibility from highly certain 
to highly uncertain.

Data analysis

This study conducted a meta-analysis within the framework of 
Bayesian statistics to integrate prior information more 
comprehensively and quantify the uncertainty of the estimated values.
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The overall meta-analysis was conducted using the bmeta 
package (version 4.5.1) in R software (Higgins et al., 2009). Firstly, 
with the help of the escalc() function of the meta forpackage, 
calculate the standardized mean difference (SMD) and its variance 
(vi) of each study, and then calculate the Standardized error (sei) 
and accuracy (1/vi). After establishing the data object, the bmeta() 
function is used to fit the random effects model (type = “ran”), and 
the model type is specified as the standard normal variance 
structure (model = “std.mv”). The total number of sampling 
iterations of MCMC is set at 50,000 times, and the burn in period 
is set to 20,000 iterations. The model output includes the estimation 
of the posterior mean of the effect size, the 95% Credible interval 
(CrI), and the heterogeneity parameter (tau). The heterogeneity 
level was supplemented and evaluated simultaneously by 
calculating the I2 value through the rma() function in the 
metafor package.

Subgroup analysis was accomplished using the bayesmeta (Röver, 
2020) package (version 4.5.1). In addition, subgroup analyses were 
performed by athlete competitive level (elite vs. amateur) to examine 
potential differences in mental health, athletic performance, and 
cognitive performance outcomes. Furthermore, subgroup analyses 
were also performed according to blinding procedures (open-label vs. 
adequate blinding) to examine whether trial design characteristics 
influenced the observed effects.

Furthermore, Bayesian meta-regression models were fitted using 
the brms package to evaluate potential moderators of heterogeneity, 
including gender (percentage of female participants) and age (mean 
age of participants) (Bürkner, 2017; Carpenter et al., 2017). The model 
specification was yi | se(sei) ~ 1 + Moderator + (1 | Study), where yi 
denotes the standardized mean difference and see the corresponding 
standard error. Weakly informative priors (Normal(0,2) for intercepts, 
Cauchy(0,1) for random-effect SDs) were applied. Models were run 
with 8 chains, 4,000 iterations each (2000 warm-up), with adapt_delta 
set to 0.999 and max_treedepth set to 15. Model performance was 
assessed using Bayesian R2 with 95% credible intervals to quantify the 
proportion of variance explained.

The input includes the effect size (yi) and the standardized error 
(sei). The prior of the overall effect size is set as a normal distribution 
with a mean of 0 and a Standardized deviation of 5 (mu.prior.
mean = 0,mu.prior.sd = 5) (Röver, 2020; Röver and Friede, 2023), and 
the heterogeneity parameter τ is set as a non-information uniform 
distribution (tau.prior = “uniform”). The bayesmeta() function was 
used to fit the model, and the prior and posterior images of the overall 
effect, heterogeneity, predicted distribution and their combined 
distribution were plotted to comprehensively present the uncertainty 
structure. All analyses were completed in R software (version 4.5.1). 
The 95% confidence interval (CrI) is interpreted as the probability that 
the true value of the parameter falls within this interval under the 
given data and model being 95%. The overall analysis process 
considers model transparency, estimation accuracy and bias test, 
providing solid statistical support for the research conclusion. The 
Bayesian meta-analysis used the Bmeta and Metafor escalc R packages 
to calculate effect size (SMD) and variance reciprocal in each study. 
The Bayesian approach is considered suitable for meta analyses 
including few studies, providing evidence for both null and alternative 
hypotheses, and offering complete information about credible 
parameter values and the probability of any given value (Higgins et al., 
2009; Röver, 2020; Harrer et al., 2021; Kruschke and Liddell, 2018).

Publication bias

To assess whether there was publication bias in the included 
studies, this study used the bmeta package and the bayesmeta package 
for the visualization analysis of funnel plots. Specifically, in the bmeta 
analysis, the funnel.plot() function is used to draw the funnel plot with 
the effect size as the horizontal axis and the Standardized error as the 
vertical axis, and the symmetry is visually checked to determine 
whether there is bias. In Bayesmeta analysis, the funnel.bayesmeta() 
function is used to further verify the existence of the small sample 
effect or potential bias within the Bayesian framework. Through visual 
examination of the symmetry of the funnel plot, if significant 
asymmetry is observed, it may suggest the existence of publication bias.

Furthermore, Egger’s regression test was performed, and both 
contour-enhanced funnel plots and sunset (power-enhanced) funnel 
plots were applied as complementary approaches. These methods 
enabled visualization of significance contours and study-level 
statistical power, thereby providing a more comprehensive assessment 
of potential publication bias (Duval and Tweedie, 2000). Specifically 
using the trimfill() function in the metafor package of the R language, 
combined with iterative operations, the number of missing studies is 
estimated, and the effect size is corrected accordingly, thereby 
enhancing the robustness of the research results and further improving 
the scientific nature of the conclusion.

Results

The results of this study consist of six parts: literature screening 
process, summary of research characteristics, Risk of bias assessment, 
results of meta-analysis, publication bias test and GRADE 
evidence classification.

Literature screening process

Through systematic retrieval of eight databases (Ovid, CNKI, 
Scopus, Pubmed, Embase, PsycINFO, SPORTDiscus and Web of 
Science), 5,527 related literatures were initially obtained. EndNote X9 
software was used to remove duplicates. 756 duplicate literatures were 
eliminated, and the remaining 4,771 entered the initial screening. The 
initial screening adopted ASReview for title and abstract screening. 
The machine learning model automatically evaluated 1,256 literatures, 
and finally 197 entered the full text screening stage. After reading the 
full text, 164 studies that did not meet the inclusion criteria were 
excluded, and 32 qualified studies were initially retained. To further 
ensure the completeness of the literature, an additional 9 related 
studies were included through citation retrospective supplementary 
search. Ultimately, 41 studies met the inclusion criteria of the meta 
analysis. The research screening process is detailed in Figure  1 
(PRISMA flowchart).

Characteristics included in the study

A total of 41 randomized controlled trials were included in this 
study, involving 1,230 athletes, including 905 males and 282 females. 
Additionally, gender data were missing for 43 participants (3.50% of 
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the total sample), as reported in two of the included studies (Mikicin 
et al., 2015; Maszczyk et al., 2020). Among all the studies, 29 used 
biofeedback training as an intervention, and 12 used neurofeedback 
training. In terms of the geographical distribution of the studies, 22 
studies were from Asia (accounting for 53.66%), 14 from Europe 
(accounting for 34.15%), 4 from North America (accounting for 
9.76%), and 1 from Oceania (accounting for 2.44%). It should be noted 
that the age information of the subjects was not reported in 12 studies, 
accounting for 29.27% of the total included trials. For detailed 
characteristics of each study, please refer to the 
Supplementary Material S2.

Risk of bias

As shown in Figure 2, the risk of bias was evaluated across key 
methodological domains. In Sequence Generation, a small proportion 
(7.1%) of studies were rated as having some concerns due to 
insufficient detail about the randomization process; no study was 
considered high risk. In the field of allocation concealment, most 
studies were rated as high concern, with 85.4% rated as some concerns 
and 2.4% as high risk, mainly because concealment methods were not 
reported or were clearly inadequate. In the field of Blinding of 
Participants and Personnel, 65.9% of studies had some concerns and 
4.9% were at high risk, often due to a lack of reported blinding in trials 
involving subjective outcomes. Similarly, in the field of Blinding of 
Outcome Assessors, 56.1% had some concerns and 4.9% were rated as 
high risk due to insufficient reporting on whether blinding was 
performed or absent when outcome evaluation could be influenced. 
For Incomplete Outcome Data and Selective Reporting, all studies 
were at low risk, reflecting proper data handling and transparent 

reporting. Overall, more than 45% of studies had at least some risk of 
bias, primarily due to missing or insufficient reporting on allocation 
and blinding procedures.

Meta-analysis

The meta-analysis included 41 studies and focused on three 
primary outcomes: mental health, athletic performance, and cognitive 
performance in athletes. Specifically, 15 studies with 394 athletes 
examined the effects on mental health, 24 studies involving 2,320 
athletes focused on athletic performance, and 11 studies with 348 
athletes assessed cognitive performance. The results indicate that 
biofeedback and neurofeedback training have positive effects across 
all three domains, effectively improving athletes’ mental health, 
enhancing athletic performance, and strengthening 
cognitive performance.

Mental health
The results analysis revealed that the biofeedback intervention had 

a significant moderate effect on improving the mental health of 
athletes [μ(SMD) = 0.76; 95% CrI: 0.44 to 1.09; τ(tau) = 0.99; 
Rhat = 1.001], indicating an overall positive impact on psychological 
well-being (Figure 3).

Athletic performance
The analysis demonstrated that the biofeedback intervention was 

found a statistical significance on enhancing athletic performance 
[μ(SMD) = 0.88; 95% CrI: 0.69 to 1.05; τ(tau) = 2.24; Rhat = 1.001], 
indicating strong evidence of improved Athletic performance among 
athletes (Figure 4).

FIGURE 1

PRISMA flowchart of study selection.
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Cognitive performance
The results indicated statistically significant effects of biofeedback 

and neurofeedback training on cognitive performance [μ(SMD) = 0.81; 
95% CrI: 0.48 to 1.14; τ(tau) = 1.42; Rhat = 1.001], demonstrating 
overall enhancements in cognitive performance (Figure 5).

Subgroup analysis based on intervention 
type (biofeedback vs. neurofeedback)

Mental health (biofeedback and neurofeedback)
In terms of mental health, biofeedback interventions 

demonstrated a statistically significant effect [μ(SMD) = 0.76; 95% 

CrI: 0.42 to 1.10; τ(tau) = 1.01], indicating robust improvements in 
athletes’ psychological well-being. Neurofeedback, however, was 
represented by a single study only, yielding an effect estimate of 
[μ(SMD) = 0.61; 95% CrI: −0.28 to 1.51; τ(tau) not estimable]. The 
forest plots for each subgroup are provided in 
Supplementary Document S4.

Athletic performance (biofeedback and 
neurofeedback)

In terms of athletic performance, both biofeedback and 
neurofeedback interventions demonstrated statistically significant 
effects, with biofeedback yielding an effect size of [μ(SMD) = 0.85; 
95% CrI: 0.46 to 1.26; τ(tau) = 0.89] and neurofeedback training 

FIGURE 2

Risk of bias summary.

FIGURE 3

The forest plot in mental health.
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FIGURE 4

The forest plot in athletic performance.
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[μ(SMD) = 0.89; 95% CrI: 0.68 to 1.09; τ(tau) = 0.64]. The forest plots 
for each subgroup are provided in Supplementary Document S4.

Cognitive performance (biofeedback and 
neurofeedback)

In terms of cognitive performance, both biofeedback 
[μ(SMD) = 0.97; 95% CrI: 0.40 to 1.54; τ(tau) = 1.44] and 
neurofeedback [μ(SMD) = 0.81; 95% CrI: 0.50 to 1.12; τ(tau) = 0.58] 
demonstrated Statistical significance. Forest plots for each subgroup 
are presented in Supplementary Document S4.

Subgroup analysis based on specific 
psychological and performance outcomes

Biofeedback training
A total of 10 outcome domains were included in the subgroup 

analysis of biofeedback training. Statistically significant effects were 
observed in basketball performance [μ(SMD) = 1.59; 95% CrI: 0.61–
2.59; τ(tau) = 0.66], pressure reduction [μ(SMD) = 0.72; 95% CrI: 
0.35–1.10; τ(tau) = 0.89] and anxiety reduction [μ(SMD) = 1.02; 95% 
CrI: 0–2.04; τ(tau) = 1.56]. No statistical significance was found in other 
outcomes. Forest plots are presented in Supplementary Document S4.

Neurofeedback training
A total of six outcome domains were included in the 

neurofeedback analysis. Statistically significant effects were 

observed in both balance [μ(SMD) = 1.17; 95% CrI: 0.95 to 1.40; 
τ(tau) = 0.52] and attentional control [μ(SMD) = 0.68; 95% CrI: 
0.03 to 1.39; τ(tau) = 0.69]. No statistically significant effects were 
found in the remaining athletic performance or cognitive 
performance domains. Forest plots are provided in 
Supplementary Document S4.

Subgroup analysis based on athlete competitive 
level

For mental health, elite athletes showed an estimated effect of 
μ = 0.86 (95% CrI: 0.46–1.25; τ = 1.11, 95% CrI: 0.78–1.46), while 
amateur athletes showed μ = 0.29 (95% CrI: −0.08–0.66; τ = 0.22, 95% 
CrI: 0.00–0.58).

For athletic performance, the effect for elite athletes was μ = 0.76 
(95% CrI: 0.23–1.31; τ = 1.16, 95% CrI: 0.68–1.69), compared with 
μ = 0.94 (95% CrI: 0.76–1.12; τ = 0.56, 95% CrI: 0.40–0.72) for 
amateur athletes.

For cognitive performance, elite athletes showed μ = 1.01 (95% 
CrI: 0.47–1.58; τ = 1.15, 95% CrI: 0.69–1.66), whereas amateur 
athletes showed μ = 0.52 (95% CrI: 0.17–0.89; τ = 0.44, 95% CrI: 
0.00–0.83).

Overall, these findings suggest some variation by competitive 
level, with elite athletes tending to show higher estimates in 
mental health and cognitive performance, and amateur athletes 
showing relatively higher estimates in athletic performance. Forest 
plots for these subgroups are provided in 
Supplementary Document S4.

FIGURE 5

The forest plot in cognitive performance.
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Subgroup analysis based on blinding
Subgroup analyses based on blinding procedures revealed 

differential patterns across outcome domains. For mental health, 
open-label studies indicated a moderate effect with greater 
uncertainty [μ(SMD) = 0.63; 95% CrI: −0.16 to 1.43; τ(tau) = 1.58], 
whereas adequately blinded trials demonstrated a more precise and 
significant effect [μ(SMD) = 0.83; 95% CrI: 0.46 to 1.21; 
τ(tau) = 0.99].

For athletic performance, open-label studies showed negligible 
effects [μ(SMD) = 0.01; 95% CrI: −2.17 to 2.18; τ(tau) = 1.45], while 
adequately blinded trials yielded significant improvements 
[μ(SMD) = 0.86; 95% CrI: 0.48 to 1.25; τ(tau) = 0.97].

Regarding cognitive performance, adequately blinded studies 
showed statistically significant benefits [μ(SMD) = 0.86; 95% CrI: 
0.44–1.29; τ = 1.00].

Overall, adequately blinded trials consistently yielded statistically 
significant effects, whereas open-label trials did not show significant 
results. Forest plots for these subgroups are provided in 
Supplementary Document S4.

Subgroup analysis based on biofeedback 
dose

This section presents exploratory analyses of the relationship 
between different intervention dosages, categorized by intervention 
time (weeks), session length (minutes), and weekly frequency 
(sessions/week), and their effects on mental health, athletic 
performance, and cognitive performance outcomes. In the subgroup 
analyses across these outcome domains, interventions were 
consistently classified according to three dimensions to allow for 
systematic comparison. Based on intervention time (weeks), 
interventions were divided into three groups: less than 5 weeks, 6 to 
10 weeks, and more than 10 weeks. In terms of session length, they 
were categorized as sessions lasting less than 20 min, 21 to 40 min, or 
41 to 60 min. Regarding weekly frequency, interventions were 
classified as occurring 3 or fewer times per week, 4 to 5 times per 
week, or 6 to 7 times per week. These consistent classification criteria 
provided a comprehensive basis for evaluating the effectiveness of 
interventions across varying time frames and intensities. These 
analyses are exploratory and are not intended as 
dosage recommendations.

Mental health
Statistically significant effects were observed for duration 

<5 weeks [μ(SMD) = 0.76; 95% CrI: 0.48–1.04], weekly frequency 4–5 
sessions/week [μ(SMD) = 1.06; 95% CrI: 0.73–1.41], and session 
length 21–40 min [μ(SMD) = 1.06; 95% CrI: 0.58–1.55]. Other bins 
did not consistently reach statistical significance. Detailed results and 
corresponding forest plots are presented in Supplementary  
Documents S4, S5.

Athletic performance
Statistically significant effects were observed for duration 

6–10 weeks [μ(SMD) = 1.11; 95% CrI: 0.89–1.34], weekly frequency 
4–5 sessions/week [μ(SMD) = 1.25; 95% CrI: 0.62–1.83], and session 
length 21–40 min [μ(SMD) = 0.81; 95% CrI: 0.25–1.37]. Other bins 
did not consistently reach statistical significance. Detailed results and 

corresponding forest plots are presented in Supplementary  
Documents S4, S5.

Cognitive performance
Statistically significant effects were observed for duration 

<5 weeks [μ(SMD) = 0.98; 95% CrI: 0.34–1.64], weekly frequency 3 
sessions/week [μ(SMD) = 0.91; 95% CrI: 0.58–1.27], and session 
length <20 min [μ(SMD) = 0.53; 95% CrI: 0.05–1.02] and 41–60 min 
[μ(SMD) = 1.03; 95% CrI: 0.41–1.63]. Other bins did not consistently 
reach statistical significance. Detailed results and corresponding forest 
plots are presented in Supplementary Documents S4, S5.

Moderator analyses

Using Bayesian meta-regressions, we  examined demographic 
moderators. In these models, R2 denotes the proportion of between-
study variance explained by the moderator, with higher values 
indicating that more of the heterogeneity across studies is 
accounted for.

For gender (percentage female), the estimated associations were: 
mental health, 0.48 (95% CrI: −0.91 to 1.92; R2 = 0.74, 95% CrI: 0.55–
0.88); athletic performance, −1.08 (−1.87 to 0.31; R2 = 0.59, 0.42–
0.76); cognitive performance, −0.97 (−2.47 to 0.56; R2 = 0.72, 0.46–
0.89). None of these associations reached statistical significance, 
although negative trends were observed for athletic performance and 
cognitive performance.

For age (mean years), estimates were close to zero across domains-
mental health, 0.00 (−0.08 to 0.09; R2 = 0.83, 0.65–0.94); athletic 
performance, 0.01 (−0.07 to 0.08; R2 = 0.61, 0.42–0.78); cognitive 
performance, 0.05 (−0.07 to 0.16; R2 = 0.74, 0.40–0.93). Moderator 
effect plots are provided in Supplementary Document S6.

Publication bias

In this meta-analysis, we assessed potential publication bias across 
the three outcome domains (mental health, athletic performance, and 
cognitive performance).

Mental health: The funnel plot showed clear asymmetry, and 
Egger’s regression confirmed statistical significance (intercept = −2.48, 
95% CI [−3.33, −1.62], p < 0.001). However, the trim-and-fill method 
did not impute additional studies, and the adjusted pooled effect size 
remained significant (SMD = 0.75, p < 0.001), suggesting that the 
main conclusions were not driven by publication bias.

Athletic performance: Egger’s test did not detect evidence of 
asymmetry (intercept = 0.89, 95% CI [0.53, 1.25], p = 0.98), and visual 
inspection of the funnel plot also suggested a symmetrical distribution 
of effect sizes, supporting the robustness of findings in this domain.

Cognitive performance: The funnel plot appeared asymmetric, 
and Egger’s regression provided evidence of small-study effects 
(intercept = −1.15, 95% CI [−1.66, −0.65], p < 0.001). Nonetheless, 
the trim-and-fill method did not impute additional studies, and the 
adjusted effect remained statistically significant (p < 0.001) 
(Figures 6–8).

Beyond these conventional approaches, complementary analyses 
using contour-enhanced and sunset (power-enhanced) funnel plots 
also indicated potential small-study effects in mental health and 
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cognitive performance, whereas results for athletic performance 
remained symmetrical. All extended funnel plot analyses are provided 
in Supplementary Figure S7.

GRADE evidence grade evaluation

The GRADE assessment of the evidence regarding the effects of 
biofeedback and neurofeedback training on mental health, athletic 
performance, and cognitive performance indicated that the overall 
certainty of evidence was low to very low. Specifically, the quality of 
evidence for mental health outcomes was rated as low, while the 
evidence for athletic performance and cognitive performance was 
rated as very low. This downgrading was primarily due to moderate 
risk of bias in most studies, high heterogeneity, and insufficient sample 
sizes (Figure 9). The subgroup GRADE assessment charts are provided 
in Supplementary Document S8.

Discussion

This study is the first to employ the Bayesian meta-analysis to 
explore the effects of biofeedback training on the mental health and 
performance of athletes. This systematic review and meta-analysis 
synthesize information about the impact of (1) biofeedback or 
neurofeedback on mental health, (2) athletic performance (3) and 
cognitive performance.

Research findings

The results of this meta-analysis demonstrate that both 
biofeedback and neurofeedback training have statistically significant 
effects on athletes’ mental health, athletic performance, and cognitive 
performance. Subgroup analyses further elucidated the specific 
effectiveness of these interventions across different outcome domains.

Biofeedback training demonstrated statistically significant effects 
in improving mental health and enhancing athletic performance. 
These effects were most pronounced in improvements in anxiety 
reduction and basketball performance. Other outcome domains did 
not exhibit statistical significance under biofeedback interventions.

Neurofeedback training produced statistical significance in 
cognitive performance, particularly in enhancing attentional control. 
No other outcome domains reached statistical significance in the 
neurofeedback subgroup.

In the main analysis, the heterogeneity for cognitive performance 
was high (τ = 1.4). However, subgroup analysis further revealed that 
biofeedback contributed a higher heterogeneity (τ = 1.44) compared 
to neurofeedback (τ = 0.58), indicating that most of the heterogeneity 
in cognitive performance outcomes stemmed from 
biofeedback interventions.

Exploratory analyses suggested that some intervention dosage 
ranges may be  associated with larger improvements. For mental 
health, effects appeared greater when interventions lasted 5 weeks or 
less, were delivered 4–5 times per week, and each session lasted 
21–40 min. For athletic performance, relatively larger effects were 
observed with interventions lasting 6–10 weeks, conducted 4–5 times 
per week, with sessions of 41–60 min. For cognitive performance, 

improvements were observed in subgroups with interventions lasting 
5 weeks or less, performed 3 times per week, and with sessions of 
either 20 min or less or 41–60 min. However, these patterns were not 
consistent across outcomes and the certainty of evidence was low; 
thus, they should be interpreted as exploratory findings and do not 
constitute dosage recommendations. Subgroup analyses based on 
athlete competitive level indicated that elite athletes benefited more in 
mental health and cognitive outcomes, while amateur athletes showed 
greater improvements in athletic performance. These findings suggest 
that the competitive background of athletes may moderate the 
effectiveness of biofeedback and neurofeedback interventions.

Moderator analyses revealed that gender did not significantly 
influence the effectiveness of biofeedback and neurofeedback 
interventions, while age accounted for a comparatively larger share of 
variance in athletic performance outcomes, although its effect was not 
statistically significant. According to the R2 values, part of the 
heterogeneity across studies may be explained by demographic factors 
such as age and gender. These findings suggest that demographic 
characteristics should be  considered as potential contributors to 
heterogeneity in future research. In addition, the subgroup analysis by 

FIGURE 6

Funnel plot in mental health.

FIGURE 7

Funnel plot in athletic performance.

FIGURE 8

Funnel plot in cognitive performance.
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blinding suggested that adequately blinded trials tended to produce 
more consistent and reliable estimates with lower heterogeneity, 
underscoring the importance of rigorous blinding procedures in 
minimizing bias.

The observed domain-specific effects may be  explained by 
underlying neurophysiological mechanisms. Biofeedback 
interventions, particularly heart rate variability and stress-
regulation protocols, primarily target autonomic nervous system 
activity. By enhancing vagal tone and promoting parasympathetic 
dominance, biofeedback improves emotional regulation and stress 
recovery, which are especially relevant for psychological outcomes 
such as anxiety reduction and for sports like basketball where 
mental resilience and decision-making under pressure are crucial 
(Lehrer et al., 2003; Goessl et al., 2017; Paul and Garg, 2012). In 
contrast, neurofeedback protocols directly modulate cortical activity 
patterns, particularly within EEG frequency per bands associated 
with attentional control and sensorimotor integration. By 
reinforcing adaptive brain states-such as increasing SMR or frontal 
midline theta power while reducing maladaptive theta activity 
neurofeedback strengthens attentional focus and postural control, 
which may explain its stronger effects on cognitive outcomes and 
balance-related performance (Cheng et al., 2015; Dana et al., 2019; 
Gong et al., 2021; Yalfani et al., 2024; Enriquez-Geppert et al., 2017; 
Ros et al., 2020). Together, these mechanistic differences suggest 
that biofeedback and neurofeedback optimize complementary 
domains of athletic functioning, with biofeedback more closely 
aligned to stress resilience and psychological regulation, and 
neurofeedback more directly enhancing neural efficiency in 
attention and balance.

These findings suggest domain specific strengths for different 
types of biofeedback-based interventions.

The impact of biofeedback training on 
mental health and performance

The results of this meta-analysis confirm that biofeedback training 
significantly enhances athletes’ mental health. Specifically, it helps 
reduce anxiety and alleviate stress. Biofeedback is not merely a tool for 
physiological regulation; it also plays a critical role in managing 
psychological stress. Existing studies support these findings, showing 
that biofeedback can effectively help athletes cope with anxiety and 
stress (Donghai et al., 2024a; Dziembowska, 2015; Tirinnanzi, 2022), 
By fostering greater interoceptive awareness and top down control 
over stress reactivity, Biofeedback helps athletes shift from reactive to 
proactive coping strategies by enhancing self-regulation and 
physiological awareness, thereby improving their mental toughness in 
high pressure environments (Donghai et  al., 2024a). Notably, 
biofeedback induced improvements in autonomic regulation are 
closely linked to enhanced emotional regulation and cognitive control, 
both of which are critical in moderating anxiety responses during 
performance situations (Goessl et al., 2017; Teufel et al., 2013). These 
mechanisms offer a compelling explanation for the expanding role of 
biofeedback in sports psychology and athlete preparation.

Recent studies increasingly support the psychological and 
performance benefits of biofeedback training in athletic contexts 
(Yılmaz et al., 2025; Makaracı et al., 2023). This paragraph reviews key 
meta-analytic findings that validate its effectiveness, particularly in 
cognitively demanding sports (Tosti et al., 2024). Biofeedback training 
has demonstrated clear benefits across various sports, including 
basketball, football, swimming, and endurance disciplines (Saha et al., 
2013; Paul and Garg, 2012). A recent systematic review (Pagaduan 
et  al., 2022) highlight the positive effects of heart rate variability 
biofeedback on improving physiological regulation and performance 

FIGURE 9

The GRADE summary in mental health, athletic performance and cognitive ability.
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outcomes in athletes particularly in basketball, shooting, and long 
distance running by enhancing respiratory mechanics, improving 
autonomic regulation, and reducing psychophysiological stress. 
Through the application of this technique, athletes can adjust their 
breathing frequency per week and enhance parasympathetic nervous 
system activity, optimizing both physiological responses and mental 
states. The importance of emotional regulation in improving 
performance is also underscored, especially under interventions that 
promote optimal heart rate variability and autonomic regulation. 
Therefore, the foundational concept proposed by Bar-Eli (2004) and 
later echoed by Yılmaz et al. (2025) which posits that biofeedback 
enhances athletic performance by simultaneously optimizing 
psychological and physiological states (Bar-Eli, 2004; Yılmaz et al., 
2025; Pagaduan et al., 2022).

Biofeedback, particularly heart rate variability and biomechanical 
biofeedback, plays a critical role in enhancing both cognitive and 
athletic performance in athletes. This has been supported by multiple 
studies, including those by Gorman et al. (2021), Paul et al. (2012), 
and Saha et al. (2013), which collectively underscore the effectiveness 
of real-time physiological feedback in improving reaction time, 
concentration, and overall athletic execution. These findings highlight 
biofeedback as a valuable tool for athletes-not only for enhancing 
physical performance but also for sharpening cognitive functions 
under pressure. By training individuals to regulate both physiological 
responses and emotional states, biofeedback helps athletes achieve a 
state of optimal performance, particularly in high-stress, cognitively 
demanding sports contexts (Saha et al., 2013; Gorman et al., 2021; 
Paul et al., 2012).

In summary, current evidence highlights biofeedback as an 
effective intervention for improving both mental health and 
performance in athletes (Donghai et  al., 2024b). By supporting 
physiological regulation and emotional control, it helps athletes 
manage stress, maintain focus, and perform more effectively under 
pressure (Goessl et al., 2017). These findings suggest that biofeedback 
holds strong potential for integration into athlete training and 
performance enhancement programs (Pagaduan et al., 2020).

The impact of neurofeedback training on 
performance

Compared with the scarcity of research in the field of mental 
health, the promoting effect of neurofeedback training on athletic 
performance has received broader empirical support. Multiple studies 
have shown that neurofeedback training has significant effects in a 
series of sports that have high requirements for fine motor control, 
sensory and perceptual integration, and attention regulation, 
especially in golf, shooting, sprinting, static and dynamic balance 
events (Toolis et  al., 2024; Dana et  al., 2019; Yalfani et  al., 2024; 
Bakhtafrooz et  al., 2025; Chen et  al., 2022). These sports usually 
require athletes to have a high degree of sensorimotor coordination, 
continuous concentration and moderate muscle relaxation to achieve 
precise and stable movement performance (Tosti et  al., 2024). 
Neurofeedback training can improve these key neural mechanisms by 
regulating the characteristics of electroencephalogram (EEG) 
activities, thereby optimizing motor performance (Gong et al., 2021). 
Consistent with our subgroup findings, recent studies have 
demonstrated that neurofeedback training significantly improves 

balance-related athletic performance, particularly in sports requiring 
postural control and stability (Dana et al., 2019; Yalfani et al., 2024).

In athlete populations, neurofeedback training has shown notable 
efficacy in enhancing core cognitive performance that are closely tied 
to athletic performance, such as attention. Cognitive performance are 
crucial for optimizing decision making under pressure, maintaining 
performance consistency, and adapting rapidly to dynamic 
competitive environments (Tosti et  al., 2024). Beyond motor 
performance, neurofeedback training has also been shown to 
significantly enhance attentional functioning, which is a key cognitive 
factor influencing athletic success. In sports settings, attention is 
critical for maintaining situational awareness, making rapid decisions, 
and sustaining consistent performance under pressure (Rydzik et al., 
2023). Empirical studies have found that neurofeedback training 
protocols targeting the modulation of specific EEG bands such as 
enhancing sensorimotor rhythm (SMR) and beta activity while 
suppressing theta waves can lead to measurable improvements in 
various aspects of attention, including alertness, orienting efficiency, 
and conflict monitoring (Dana et  al., 2019; Mikicin et  al., 2015; 
Bakhtafrooz et al., 2025). These improvements reflect neurofeedback 
training capacity to promote adaptive cortical arousal states, reduce 
cognitive interference, and strengthen athletes’ ability to maintain task 
relevant focus (Cheng et al., 2024). Collectively, this evidence suggests 
that neurofeedback training serves as a dual function intervention, 
meanwhile, optimize the performance of the athlete population (Tosti 
et al., 2024).

Therefore, neurofeedback training may enhance performance 
through a dual mechanism: by optimizing sensorimotor control 
essential for precise physical execution, and by reinforcing attentional 
regulation that supports consistency and adaptability in high-pressure 
environments (Cheng et al., 2024). This convergence of motor and 
cognitive improvements reinforces neurofeedback’s unique value in 
sports contexts where both physical precision and mental toughness 
are critical for success (Tosti et al., 2024).

Dose reporting

While the majority of studies in our meta-analysis support the 
effectiveness of biofeedback and neurofeedback in improving 
psychological self-regulation and athletic performance, significant 
variability was observed across intervention duration (weeks), weekly 
frequency (sessions/week), and session length (minutes). This 
variation underscores the need for a more standardized approach to 
biofeedback intervention protocols and reporting. These subgroup 
findings are exploratory and do not constitute 
dosage recommendations.

Furthermore, Onagawa et al. (2023) highlighted the importance 
of intervention duration, noting that programs extending beyond 
10 weeks may yield reduced incremental benefits (Onagawa et al., 
2023) Our findings are consistent with this possibility in some 
subgroups; however, the evidence is limited. These ranges need to 
be  tested in preregistered randomized trials that systematically 
manipulate duration, session length, and weekly frequency.

Taken together, the results suggest that intervention duration, 
weekly frequency, and session length may influence the effectiveness 
of biofeedback. To ensure consistent evaluation and replication, future 
studies should adopt standardized dose reporting [e.g., the Consensus 
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on the Reporting and Experimental Design of Neurofeedback studies, 
CRED-nf checklist (Ros et al., 2020; Onagawa et al., 2023; Yu et al., 
2025; Schulz et al., 2010; Hassan et al., 2022), and preregister trial 
protocols, specifying planned dose ranges and analyses to enable 
robust assessment of long-term impact].

Strengths and limitations

This study adopted the Bayesian meta-analysis for the first time to 
systematically evaluate the effects of biofeedback and neurofeedback 
training on athletes’ mental health, athletic performance and cognitive 
performance. Compared with the traditional Frequentist statistical 
methods, Bayesian analysis can provide more robust effect estimation 
and allow for the direct calculation of the probability distribution of 
the intervention effect, thereby enhancing the interpretability of the 
research conclusion (Van De Schoot et al., 2021). To ensure high data 
quality and reliability of the results, a rigorous literature screening 
process was implemented using the PICOS framework, comprehensive 
subgroup analyses, and a transparent inclusion protocol. In particular, 
this study employed ASReview, a machine learning–assisted 
systematic review tool, to improve efficiency and objectivity in the 
screening process. ASReview significantly reduces reviewer bias and 
enhances reproducibility by prioritizing relevant studies based on 
active learning algorithms, making the screening both faster and more 
evidence driven compared to traditional manual methods.

Although biofeedback training demonstrated statistically 
significant improvements in anxiety reduction, basketball 
performance, and pressure management, the benefits did not 
generalize across all measured domains. Among the 10 outcome 
indicators analyzed under biofeedback, only three reached statistical 
significance, suggesting domain specificity in its effectiveness. 
Additionally, this study did not systematically compare the differential 
effects of various types of biofeedback, such as heart rate variability 
feedback and electromyography feedback, limiting our ability to 
identify which modalities are most effective.

Interpretation of the findings is complicated by high between-
study heterogeneity across all three primary outcomes (τ = 0.99 for 
mental health; 2.24 for athletic performance; 1.42 for cognitive 
performance). Subgroup analyses by intervention type, dose, blinding, 
and competitive level, as well as moderator analyses (age, gender), 
reduced-but did not eliminate this variability. Inconsistencies in 
blinding procedures and variability in study quality may also have 
contributed to the instability of the results, underscoring the need for 
future high-quality, rigorously blinded trials. Trim-and-fill 
adjustments did not materially alter the pooled estimates, whereas 
contour- and power-enhanced funnel plots indicated small study 
effects in the mental health and cognitive domains; findings for these 
outcomes should therefore be  interpreted with caution. Given the 
diversity of study designs, intervention protocols, participant 
characteristics, and outcome measures across the included RCTs, 
residual heterogeneity remained despite these analytic controls. In 
addition, a few studies reported extremely small variances, which 
disproportionately increased their statistical weights and led to 
unstable estimates of between-study heterogeneity (τ) in some 
subgroups. These cases should therefore be interpreted with caution 
(Pronczuk et al., 2023; Dziembowska, 2015; Bakhtafrooz et al., 2025). 
Future studies should adopt more consistent protocols and 

standardized outcome definitions to improve comparability 
and precision.

The number of studies using neurofeedback training as an 
intervention was relatively limited, and their sample sizes were 
generally small. Among the outcome domains analyzed, only 
attentional control and balance reached statistical significance, 
whereas other domains did not demonstrate consistent effects. In the 
domain of mental health, only one study on neurofeedback training 
(Faridnia et al., 2012) was available, which limited the reliability of 
subgroup findings. Although an effect size could be estimated, the 
scarcity of evidence precludes firm conclusions, thereby restricting the 
generalizability of neurofeedback’s effects on mental health. Future 
research with larger samples and more rigorous designs is necessary 
to better understand the effectiveness of neurofeedback across 
various domains.

While the dose–response analysis indicated statistically significant 
effects for certain categories of intervention time (weeks), frequency 
per week, and time per session, most other subgroups did not reach 
significance, reflecting variability in the impact of intervention doses. 
In addition, only six trials included any form of follow up, and none 
extended beyond 6 months, which limited the ability to evaluate the 
long-term sustainability of intervention effects. Furthermore, the 
certainty of evidence assessed by the GRADE framework was rated as 
low for mental health outcomes and very low for both athletic and 
cognitive performance outcomes. These ratings underscore that, 
despite statistically significant pooled effects, the strength of evidence 
remains limited due to factors such as risk of bias, heterogeneity, small 
sample sizes, and potential publication bias. Consequently, the 
findings should be interpreted with caution and future high-quality 
trials are warranted to strengthen the evidence base.

Future research should address several limitations identified in 
this study. First, more detailed comparisons of different biofeedback 
modalities (e.g., heart rate variability vs. electromyography) are 
needed to determine which are most effective for various outcomes. 
Larger sample sizes and more neurofeedback studies, especially in 
mental health, would increase the reliability of findings. Standardizing 
outcome measures and reducing study heterogeneity through 
subgroup analyses could improve consistency across studies. Long-
term follow-ups should be incorporated to assess the sustainability of 
intervention effects, as most current studies only track short-term 
outcomes. Additionally, more robust dose–response analyses are 
needed to identify the optimal intervention time (weeks), frequency 
per week, and frequency per week of interventions. Addressing these 
gaps will help refine the understanding of biofeedback and 
neurofeedback training’s effects on athletes. Future studies should also 
adopt standardized methodological frameworks such as the BEST 
toolbox and the CONSORT guidelines, in addition to the CRED-nf 
checklist, to further improve methodological consistency, reduce 
heterogeneity, and enhance the reproducibility of findings in this field 
(Ros et al., 2020; Schulz et al., 2010; Hassan et al., 2022).

Conclusion

This meta-analysis provides evidence that biofeedback training 
has statistically significant effects on improving athletes’ mental 
health, particularly through reductions in anxiety and improved 
pressure management. Significant improvements were also found in 
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athletic performance, especially in basketball. Meanwhile, 
neurofeedback training demonstrated statistically significant effects 
primarily in the domain of cognitive performance, with notable gains 
in attentional control and balance.

Exploratory subgroup analyses suggested that intervention dosage 
may influence the observed effects. Some dose ranges appeared to 
show larger improvements (e.g., mental health: intervention time 
<5 weeks, frequency 4–5 times per week, time per session 21–40 min; 
athletic performance: intervention time 6–10 weeks, frequency 4–5 
times per week, time per session 41–60 min; cognitive performance: 
intervention time <5 weeks, frequency 3 times per week, time per 
session either <20 min or 41–60 min). These findings provide 
preliminary evidence of potential dosage effects, particularly for 
biofeedback on mental health. Future studies are needed to generate 
more robust and confirmatory evidence.

These findings support the use of biofeedback and 
neurofeedback as targeted interventions to improve specific 
psychological and performance outcomes in athletes. Further 
research is needed to explore the mental health effects of 
neurofeedback, standardize intervention protocols, and evaluate 
long-term outcomes. This study provides a comprehensive 
evaluation of the effects of biofeedback training on athletes’ mental 
health and performance through systematic review and Bayesian 
meta-analysis, offering practical guidance and significant 
theoretical and practical value.
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