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Objective: Intention is widely regarded as the most proximal predictor of 
behavior. But, physical activity (PA) intentions do not invariably translate into 
actual exercise behavior, leaving a intention-behavior (I-B) gap. The study 
integrates psychological and technological frameworks to examine the 
mechanisms that moderate the PA I-B gap.
Methods: Unlike traditional dichotomous measures of the PA I-B gap, this study 
employs baseline correction to derive a standardized continuous measure that 
quantifies the magnitude of the gap. Using survey data from 1,334 Chinese adults, 
we combined the Health Belief Model and the Unified Theory of Acceptance 
and Use of Technology within an explainable machine-learning framework to 
identify important predictors and their non-linear interactions.
Results: The machine learning based optimal XGBoost model (R2 = 0.647) 
significantly outperforms traditional regression approaches. Perceived barriers, 
self efficacy, intention to use smart tools and social support emerge as the 
four core predictors of the PA I-B gap. Higher levels of perceived barriers and 
late night frequency enlarge the gap whereas greater self efficacy, perceived 
exercise benefits, intention to use smart tools, social support, social influence 
and personal innovation narrow it. The psychological cognition dimension 
exhibits significantly stronger predictive power than smart sports tools. These 
tools function primarily as auxiliary resources, and their facilitative effects differ 
across distinct psychological cognition levels.
Conclusion: Psychological cognition and smart sports tools jointly predict the 
PA I-B gap. The study’s conclusions are constrained by its reliance on self-
reported measures and its cross-sectional design. Future research should 
adopt longitudinal or experimental protocols, supplemented by objective data 
from wearable devices, to delineate causal pathways and illuminate the finer 
mechanisms underlying the gap.

KEYWORDS

physical activity, intention-behavior gap, double machine learning, SHAP explainable 
method, Health Belief Model (HBM), unified theory of acceptance and use of 
technology (UTAUT)

OPEN ACCESS

EDITED BY

Pedro Forte,  
Higher Institute of Educational Sciences of 
the Douro, Portugal

REVIEWED BY

Rafael Peixoto,  
Instituto Superior de Ciências Educativas, 
Portugal
Soukaina Hattabi,  
University of Jendouba, Tunisia

*CORRESPONDENCE

Jianguang Cai  
 1252339263@qq.com

RECEIVED 01 July 2025
ACCEPTED 15 September 2025
PUBLISHED 25 September 2025

CITATION

Li Y and Cai J (2025) Psychological and 
technological predictors of the physical 
activity intention-behavior gap: an 
explainable machine learning analysis.
Front. Psychol. 16:1657506.
doi: 10.3389/fpsyg.2025.1657506

COPYRIGHT

© 2025 Li and Cai. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  25 September 2025
DOI  10.3389/fpsyg.2025.1657506

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2025.1657506&domain=pdf&date_stamp=2025-09-25
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1657506/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1657506/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1657506/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1657506/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1657506/full
mailto:1252339263@qq.com
https://doi.org/10.3389/fpsyg.2025.1657506
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2025.1657506


Li and Cai� 10.3389/fpsyg.2025.1657506

Frontiers in Psychology 02 frontiersin.org

1 Introduction

Regular physical activity (PA) is universally acknowledged as 
essential for enhancing health and preventing diseases. It plays a 
crucial role in both mitigating noncommunicable diseases such as 
cardiovascular conditions, cancers, and diabetes, and alleviating 
psychological issues like depression and anxiety. These benefits extend 
across various life stages, profoundly influencing overall well-being 
(World Health Organization, 2024). Despite a widespread intention to 
PA, translating these intentions into consistent PA poses a significant 
challenge. According to latest WHO data, 31% of adults worldwide do 
not achieve the recommended minimum of 150 min of moderate-
intensity PA weekly (Strain et al., 2024). Despite strong PA intentions, 
individuals often refrain from acting on intended behaviors due to 
various barriers (e.g., high stress, other priorities, and waning 
motivation), which is a phenomenon widely recognized as the PA I-B 
gap (Rhodes and de Bruijn, 2013; Englert et al., 2023).

Scholars have been investigating the critical factors that influence 
the transition from PA intentions to actual behavior, recognizing the 
importance of bridging the I-B gap for enhancing PA levels and public 
health outcomes. Huang and Zhang (2024) empirical research on the 
I-B gap identified perception variables within the Health Belief Model 
and Theory of Planned Behavior as pivotal in converting PA intentions 
into tangible actions. Furthermore, the use of smart sports tools, 
including fitness applications (Anderberg et al., 2025) and wearable 
technology (Song et al., 2018), has been shown to bolster individual 
motivation and enhance athletic performance through monitoring 
and support. Healthy psychological cognition serves as an internal 
drive for behavior, while intelligent sports offer external support and 
behavioral interventions, collectively facilitating the successful 
translation of PA intentions into practice.

Current research predominantly employs traditional econometric 
methods to examine the relationships between influencing factors and 
the PA I-B gap. However, behavioral mechanisms frequently exhibit 
non-linear and high-dimensional interactive characteristics that 
simple parametric specifications cannot fully capture, potentially 
leading to biased estimates (Zhuo and Yunsong, 2025). In recent years, 
machine learning algorithms have become essential tools for 
prediction tasks in complex settings because of their capacity to 
handle high-dimensional covariates, capture non-linear relationships 
and reduce model bias. Within behavioral research, these algorithms 
have already been applied to learning (Su et  al., 2022), internet 
addiction (Gan et al., 2025) and sports (Liu et al., 2023), establishing 
a new research paradigm. Nevertheless, machine learning prioritizes 
predictive accuracy, which is fundamentally different from the 
objective of causal inference—namely, the unbiased estimation of 
parameters or effects (Mullainathan and Spiess, 2017). Consequently, 
relying solely on predictive algorithms is insufficient for obtaining 
unbiased causal estimates of the relationship between independent 
and dependent variables.

To address this limitation, Double Machine Learning (DML) 
integrates high-dimensional machine learning techniques with 
traditional causal identification strategies by incorporating residual 
orthogonalization and cross-validation into a conventional causal 
framework. When numerous observable confounders are present, 
DML delivers causal effect estimates accompanied by confidence 
intervals. This approach demonstrates clear advantages in handling 
high-dimensional data, relaxing functional form assumptions, 

estimating conditional treatment effects, and enhancing the accuracy 
and reliability of causal inference (Chernozhukov et al., 2018).

Despite these strengths, complex algorithms are often perceived 
as black boxes, restricting the interpretability of their decision-making 
processes. The SHAP (SHapley Additive exPlanations) algorithm, 
grounded in Shapley value theory, decomposes model predictions into 
the marginal contributions of individual features, quantifying the 
influence of each variable on the outcome and presenting key 
pathways and threshold effects through intuitive visualizations 
(Lundberg and Lee, 2017).

Building on these considerations, our study first employs 
machine-learning algorithms to construct predictive models of the PA 
I-B gap and subsequently applies Double Machine Learning to 
conduct causal inference. SHAP is then introduced to provide 
transparent visual explanations. By systematically evaluating the 
predictive and causal impacts of psychological cognition and smart 
sports, this study aims to furnish rigorous evidence for the design of 
precise and actionable intervention strategies.

1.1 Physical activity intention-behavior gap

Within the domain of PA research, intention has consistently 
emerged as a paramount and dependable predictor, serving as a 
critical proximal determinant of behavioral enactment (Hagger and 
Chatzisarantis, 2009; Roberts et  al., 2010). Nonetheless, while 
intentions hold significant predictive power, empirical assessments of 
their predictive efficacy have demonstrated that they seldom account 
for all variances in behavior. As highlighted in a meta-analysis by 
Rhodes and Dickau (2012), modest shifts in intent correspond to 
minimal behavioral alterations. This divergence between intended and 
actual behavior is termed the PA I-B gap, which constitutes the central 
focus of the present study.

In recent years, scholars have examined the mechanisms 
underlying the translation of PA intention into behavior from two 
complementary perspectives: the individual and the environment. At 
the individual level, research has primarily focused on the intrinsic 
properties of intention itself, including psychological attributes such 
as self-efficacy (Hou et al., 2022), habit strength (Di Maio et al., 2021) 
and personality traits (MacCann et  al., 2015). Simultaneously, 
demographic variables including gender, age, educational attainment 
and health status have been demonstrated to exert differential 
influences on this relationship (Yang et al., 2025; Knapova et al., 2024). 
At the environmental level, earlier studies have shown that objective 
factors such as the availability and accessibility of sports facilities 
(Santinha et al., 2022), together with subjective factors such as social 
support (Schumacher et  al., 2021) and cross-cultural variations 
between individualistic and collectivistic exercise cultures (Gurleyik 
et  al., 2022), have moderated the I-B pathway. Collectively, these 
elements have formed a complex, intertwined network of 
potential confounders.

Despite this progress, extant research has predominantly relied on 
traditional statistical techniques, namely linear regression 
(Schumacher et al., 2021) and mediation or moderation models (Hou 
et al., 2022; Yang et al., 2025; Knapova et al., 2024). Although these 
approaches have established several significant associations, they have 
remained limited in their capacity to identify critical variables 
precisely within high-dimensional feature spaces and to characterize 
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nonlinear relationships adequately. Moreover, minor alterations in 
model specifications have yielded divergent interpretations (Rebar 
et al., 2019), thereby undermining the robustness and generalisability 
of the findings.

Much of the existing research employs a categorical framework to 
measure the I-B gap, categorizing individuals into quadrants based on 
their intentions (intentioned/non-intentioned) and outcomes 
(successful/unsuccessful)(Sheeran, 2002). Additionally, some studies 
have evaluated the correlation between intention strength and 
behavior through fixed statements, such as I plan to engage in PA at 
least N times per week, coupled with response scales that have gauged 
the degree of agreement (Maltagliati et al., 2025). Although these 
methods have been prevalent in PA research, they have exhibited 
inherent limitations: they have failed to provide quantitative analyses 
of the gap’s magnitude and have struggled to capture individual 
nuances. For instance, existing measurement techniques have been 
unable to differentiate accurately and quantify the gap between 
individuals who have aimed for seven weekly PA sessions but have 
achieved only five and those who have intended to exercise once but 
have failed to do so (Burnett et al., 2018). Consequently, comparing 
I–B gaps across individuals with varying baseline levels has remained 
challenging, thereby constraining the precise assessment of the 
gap’s extent.

1.2 HBM-UTAUT theoretical model

This study centrally aims to investigate the discrepancy between 
individuals’ PA intentions and their actual behaviors. The majority of 
prior research has concentrated on intra-individual factors, including 
personality differences (Maltagliati et al., 2025), PA procrastination 
(Miao et  al., 2024) and PA preferences (Rebar et  al., 2016), often 
neglecting the impact of external environmental factors on the I-B 
relationship. Amidst the rising prevalence of digital lifestyles, the 
significance of smart sports tools as convenient and efficient 
instruments for enhancing PA intentions and PA has garnered 
increasing attention (Yang and Koenigstorfer, 2021). By integrating 
the Health Belief Model with the Unified Theory of Acceptance and 
Use of Technology (UTAUT), this study establishes a comprehensive 
theoretical framework that encapsulates both psychological cognition 
and technological support. This psycho-technology dual-path model 
offers a holistic view to elucidate the disparities between PA intentions 
and behaviors, thereby furnishing a theoretical foundation for 
devising effective intervention strategies.

The Health Belief Model (HBM) encompasses components such 
as perceived benefits, perceived barriers, perceived severity and self-
efficacy, which are pivotal in assessing attitudes toward health 
conditions (Rahmati-Najarkolaei et al., 2015). It stands as one of the 
seminal theories in behavioral health. This model, renowned for its 
ability to identify, elucidate, and forecast health-related behaviors, as 
well as to guide preventive measures, has been extensively applied to 
anticipate and interpret the motivational factors driving PA across 
diverse demographics, including the elderly (Qiao et  al., 2021), 
pregnant women (Shafieian and Kazemi, 2017) and college students 
(Sheng et al., 2023). Given its relevance to the study of individual PA, 
and considering its frequent application in examining the PA I-B gap, 
the HBM is integrated into the theoretical framework of the 
present research.

The Unified Theory of Acceptance and Use of Technology 
(UTAUT), introduced by Venkatesh et  al. (2003), offers a 
comprehensive framework that synthesizes insights from eight 
pre-existing models. This theory primarily utilizes four core 
constructs—performance expectations, effort expectancy, social 
influence and facilitating conditions—to elucidate users’ intentions 
and behaviors regarding the adoption of specific technologies, 
alongside other significant factors. Smart sports refers to the use of 
smart devices, apps, virtual reality and other technical means to 
provide individuals with PA guidance, feedback and motivation. 
Studies have shown that UTAUT is a robust predictive model of 
technology acceptance, and it is widely used to study smart sports 
initiatives, including live sports video platforms (Xiang et al., 2024), 
fitness applications (Liu et al., 2019), and smart wearables (Seol et al., 
2017). The UTAUT model goes beyond the binary analysis of 
technology use to delve into how various attributes of intelligent 
motion affect the motor I-B gap (Wei et  al., 2021) and proves 
particularly good at assessing users’ propensity to accept new 
technologies. Therefore, this study integrates UTAUT into its 
theoretical framework to enhance the understanding of the adoption 
of intelligent motor technology and its impact on motor behavior.

1.3 Double machine learning

Over the past decade, machine-learning algorithms have been 
widely adopted by social scientists for data generation and prediction 
tasks. Across economics, sociology and psychology, causal 
identification has become the central concern of empirical inquiry 
(Abadie and Cattaneo, 2018). For machine-learning algorithms 
engaged in data prediction, it is sufficient to establish correlations 
among variables; causal relationships are not required. Yet Kleinberg 
points out that the principal goal of most machine-learning models is 
prediction: observable correlations between features and outcomes 
suffice, and causal structure is dispensable (Kleinberg et al., 2015). 
This orientation leads many algorithms to neglect the underlying 
causal chain, focusing solely on predictive performance and thereby 
creating a methodological gap with the mainstream causal-
identification literature in the social sciences. Nevertheless, machine 
learning and causal inference are not inherently incompatible. 
Chernozhukov et al. (2018) integrate the high-dimensional flexibility 
of machine learning with the identification strategies of classical 
causal inference to propose Double Machine Learning (DML). By 
retaining the adaptability of machine-learning algorithms while 
leveraging residual orthogonalization and cross-validation, DML 
delivers unbiased estimates of causal effects and offers a novel and 
important technical pathway for causal identification in the 
social sciences.

DML is implemented in two stages. The first stage is a pure 
prediction task aimed at obtaining highly accurate forecasts of the 
outcome variable. Guided by variable types and data structure, 
researchers use cross-validation to select the best performing model 
from among SVM, Random Forest and XGBoost, and extract 
residuals for subsequent orthogonalization. The second stage 
estimates the causal effect of the treatment variable on the outcome. 
Given the potential non-linear relationships among variables, 
polynomial regression or non-parametric strategies such as causal 
random forests are typically employed. Non-parametric approaches 
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avoid prespecified functional forms and allow confidence intervals 
to be  constructed through bootstrap sampling, with traditional 
hypothesis tests or interval estimates providing the statistical basis 
for inference (Chernozhukov et  al., 2018). It should be  noted, 
however, that DML is not without limitations; in particular, 
algorithmic opacity and insufficiently revealed parameter 
heterogeneity remain concerns. Consequently, after obtaining 
causal-effect estimates, one can incorporate the SHAP explainable 
machine-learning framework to decompose model predictions into 
the marginal contributions of individual features and to conduct 
case-level heterogeneity analyses.

2 Methods

2.1 Data source

To ensure the representativeness and validity of the smart-sport 
dimension data, the sampling framework was aligned with the gender 
and age distribution of habitual smart-sport users. Under the 
constraint of an approximately balanced gender ratio, the target 
population was restricted to adults aged 18–45 years. Accordingly, 
questionnaires were distributed via Wenjuanxing to residents in 
Changsha, Zhuzhou and Xiangtan, Hunan Province, between 1 and 
20 April 2025. The study protocol and online informed consent form 
were approved by the Ethics Committee of Hunan University of 
Science and Technology, and all participants gave written informed 
consent before they began the questionnaire. A total of 1,428 
questionnaires were received; after excluding questionnaires 
completed in <5 min or >10 min and those with clearly consistent 
answers, 1,334 valid questionnaires were retained. The final sample 
comprised 49.1% males and 50.9% females; 86.9% were aged 18–45. 
Educational attainment ranged from below junior high to master’s 
degree, with 87.9% having completed senior high school or higher. 
The two most common occupational categories were private-sector 
employees (27.8%) and students (27.3%). The sample’s demographic 
composition closely mirrors the actual user profile of smart-sports 
technologies, indicating strong representativeness for the population 
of interest.

2.2 Variable description

2.2.1 Physical activity intention-behavior gap (PA 
I-B gap)

Based on the Physical Activity Rating Scale-3 (PARS-3) 
(Liang, 1994), operationalisation proceeded in two steps. First, 
each participant’s actual PA score was calculated as intensity × 
duration × frequency (maximum = 100). Second, under 
unconstrained conditions, each participant’s ideal PA score was 
computed as ideal intensity × ideal duration × ideal frequency 
(maximum = 100). Because baseline PA levels differ markedly 
between individuals, a simple raw difference can misrepresent the 
true gap: for example, an absolute discrepancy of 20 points is less 
consequential for a high-achiever (actual = 60, ideal = 80) than for 
a low-achiever (actual = 20, ideal = 40). Following standard 
practice in medical research, we applied baseline correction to 
convert the absolute difference into a relative index, ΔZ = (Ideal 

− Actual)/σ_actual, where σ_actual denotes the standard 
deviation of the actual scores across the entire sample. This index 
quantifies how many standard deviations an individual’s I-B gap 
deviates from the population mean gap, while preserving the 
validity of PARS-3 and eliminating baseline heterogeneity. The 
formula as follows:

	

Ideal Actual .
_actual

Z
σ

−
∆ =

To evaluate the utility of ΔZ, a machine-learning model with 
ten-fold cross-validation was used to compare its predictive performance 
with that of the traditional absolute gap (Z). ΔZ achieved R2 = 0.647, 
significantly outperforming Z (R2  = 0.47), thereby demonstrating 
superior statistical performance and interpretability and establishing ΔZ 
as a robust, comparable core variable for subsequent analyses.

2.2.2 Health Belief Model (HBM) and the Unified 
Theory of Acceptance and Use of Technology 
(UTAUT)

Drawing on the PA health belief scale designed by Huang and 
Zhang (2024) and Dai et al. (2011), this study assessed individual HBM 
across five dimensions: perceived benefits (BEN), affective attitude (AT), 
perceived barriers (BAR), perceived severity (SEV), and self-efficacy 
(SE). Smart sports tools refer to intelligent products that enhance the 
athletic experience through the application of smart technology, which 
primarily include fitness apps, smart wearable devices and exercise-
focused short videos. Building on the UTAUT (Unified Theory of 
Acceptance and Use of Technology) scale designs by Venkatesh et al. 
(2003) and Featherman and Pavlou (2003), this study measures 
respondents’ perceptions of smart sports tools across seven dimensions: 
performance expectancy (PE), effort expectancy (EE), social influence 
(SI), facilitating conditions (FC), personal innovation (PN), perceived 
risk (PR), social support(SS) and usage intention (UI). All items were 
evaluated using a 7-point Likert scale.

Reliability analysis revealed that the Cronbach’s alpha coefficients 
for all latent variables ranged from 0.72 to 0.89, exceeding the 
threshold of 0.70, indicating strong internal consistency of the scales. 
Exploratory factor analysis demonstrated that the KMO values for the 
HBM and UTAUT scales were 0.848 and 0.786, respectively (both 
above 0.60), and Bartlett’s test of sphericity yielded a significance level 
of p < 0.001, confirming the structural validity of the questionnaire for 
factor analysis. Confirmatory factor analysis indicated that the 
composite reliability (CR) for each factor was greater than 0.7, and the 
average variance extracted (AVE) was greater than 0.5, suggesting that 
all dimensions in this study have good construct reliability and 
convergent validity, aligning with theoretical expectations. The 
operationalization of the items for each variable and their validity 
assessment results are presented in Table 1. It should be noted that the 
standardized factor loading for BAR1 (The area where I reside lacks 
suitable sports facilities) is at the threshold level (loading = 0.504), yet 
it still exceeds the customary lower bound of 0.50. As a core measure 
of objective environmental accessibility, this item has been empirically 
demonstrated in the extant literature to significantly facilitate PA 
behavior by modulating psychological states (Xue and Li, 2023). 
Balancing empirical evidence with theoretical relevance, we retained 
BAR1 to enhance the model’s coverage of contextual factors.

https://doi.org/10.3389/fpsyg.2025.1657506
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Li and Cai� 10.3389/fpsyg.2025.1657506

Frontiers in Psychology 05 frontiersin.org

TABLE 1  Operationalized items and validity test results.

Variables Latent 
variables

Operationalize the item Standard load 
factor

AVE CR

HBM

BEN BEN1 PA can promote health 0.850 0.778 0.875

BEN2 PA can prevent or control chronic diseases 0.913

AT AT1 Moderate PA level is very enjoyable for me. 0.897 0.742 0.851

AT2 Moderate PA level is very easy for me 0.824

BAR BAR1 The area where I reside lacks suitable sports facilities 0.504 0.546 0.797

BAR2 I have not yet found a suitable form of exercise 0.728

BAR3 I find exercise is too exhausting, too painful and lacks joy 0.730

BAR4 I do not have much time and energy to engage in regular exercise 0.741

BAR5 I find it difficult to maintain exercise due to a lack of companions 0.651

SEV SEV1 Lack of PA can make me feel tired and listless 0.723 0.613 0.825

SEV2 Lack of PA can increase my risk of chronic disease 0.761

SEV3 Lack of PA can make me susceptible to anxiety or depression 0.858

SE SE1 I believe that I will be able to learn new PA content 0.829 0.787 0.936

SE2 Even if I encounter difficulties in PA, I believe I can do it 0.934

SE3 I believe I can overcome various difficulties in pursuing PA 0.942

SE4 I believe I can complete a pre-made PA plan 0.837

UTAUT

PE PE1 Smart sports tools are very helpful to me 0.915 0.816 0.947

PE2 Smart sports tools improve exercise efficiency 0.938

PE3 Smart sports tools enhance sports knowledge and skills 0.919

PE4 Smart sports tools aid in long-term exercise adherence 0.844

EE EE1 Using smart sports tools is very easy for me 0.900 0.832 0.939

EE2 Smart sports tools are powerful and user-friendly 0.915

EE3 I can conveniently use smart sports tools for training support 0.921

SI SI1 People around me use smart sports tools 0.836 0.798 0.922

SI2 Important people in my life use smart sports tools 0.955

SI3 Important people in my life recommend me use smart sports tools 0.884

FC FC1 I have the smart sports hardware, like apps and fitness trackers 0.820 0.706 0.878

FC2 I have the environment needed for smart sports tools 0.871

FC3 I can solve exercise issues through smart sports tools 0.828

PN PN1 Smart sports tools recommend plans based on my preferences‌ 0.867 0.789 0.937

PN2 Smart sports tools customize training intensity based on my fitness level‌ 0.864

PN3 Smart sports tools offer flexible workout plans and locations 0.925

PN4 Smart sports tools provide multiple options for my choice 0.895

PR PR1 I am worried that smart sports tools may leaking my data 0.663 0.606 0.883

PR2 I am worried that smart recommendations will not meet my needs 0.819

PR3 I am worried that paid memberships or courses will not achieve the desired results 0.858

PR4 I am worried that I must buy specific gear to use core smart features‌ 0.746

PR5
I am worried that virtual guidance may not be as effective as instruction from a real 

coach.

0.822

SS SS1 I can find like-minded exercise partners through smart sports tools 0.737 0.679 0.894

SS2 I can discuss data generated by smart sports tools with my friends. 0.814

SS3 I feel supported and encouraged through smart sports tools 0.864

SS4 I gain social recognition through smart sports tools 0.875

UI UI1 I plan to keep using smart sports tools in the future 0.929 0.844 0.956

UI2 I am willing to recommend smart sports tools to others 0.936

UI3 I intend to continue using smart sports tools 0.883

UI4 I will maintain or increase use of smart sports tools 0.927
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2.2.3 Characteristics of PA
Research indicates that PA I-B gap is shaped by a multifaceted 

profile of PA engagement, including: (1) the proficiency level in PA, 
which indicates an individual’s experience and skill in PA (Gao et al., 
2021) and is a pivotal predictor of PA behavioral intentions; (2) modes 
of exercise engagement, which cover various participation formats 
such as individual workouts, partnered activities, and club-based 
sessions (Gut et al., 2020), influencing the frequency and consistency 
of PA; (3) exercise motivations, reflecting the range of reasons 
individuals have for engaging in sports, including health, leisure, 
socializing, weight management, and personal interests (Liu et al., 
2023), with different motivations correlating with the vigor and 
persistence of PA; and (4) the economic investment in sports, which 
pertains to the financial outlay on sports gear and gym subscriptions 
(Chen et  al., 2024). These dimensions collectively contribute to 
understanding and potentially narrowing the I-B gap in PA.

2.2.4 Basic demographic information
This study selects demographic and health-related behavioral 

variables to control for potential confounding factors. Demographic 
variables include gender, age, education level, current occupation and 
monthly income level; health-related characteristics primarily consist 
of perceived health status, frequency of staying up late, and Body Mass 
Index (BMI), all of which are incorporated into the statistical analysis. 
The assignment of values to each variable and descriptive statistical 
analysis are presented in Table 2.

Based on the questionnaire design, 68 sub-variables were 
systematically encoded and integrated into 30 composite variables, 
consisting of one outcome variable and 29 predictor variables, with no 
missing observations. Among the predictors, continuous variables 
were standardized to a mean of zero and a standard deviation of one 
via the z-score method, whereas categorical variables were recoded 
using one-hot encoding. Subsequent Pearson correlation analyses 
revealed that all predictors were<0.60, confirming independence and 
absence of multicollinearity, which allowed the variables to be entered 
into the subsequent modelling procedures.

2.3 Double machine learning construction

Compared with traditional regression, Double Machine Learning 
(DML) offers clear advantages in handling high-dimensional 
covariates, multicollinearity and nonlinear relationships. Its core logic 
is a two-step procedure: first, a high-precision predictive model is 
constructed; second, causal effects are estimated using parametric or 
non-parametric strategies. Guided by this paradigm, the present study 
established the following analytical pipeline.

2.3.1 Construction of a high-precision predictive 
model

To quantify the PA I-B gap, we  systematically evaluated the 
explanatory power of five algorithms—ordinary least squares (OLS), 
decision tree (D-Tree), support vector machine (SVM), random forest 
(R-Forest) and extreme gradient boosting (XGBoost)—against a high-
dimensional, nonlinear data structure. The workflow comprised three 
sequential stages: training, validation, and hyper-parameter 
optimisation. After an 80:20 random split of the data into training and 
testing sets, a five-fold cross-validated grid search was performed on 

the training data. Model performance was adjudicated using mean 
squared error (MSE), root-mean-square error (RMSE), mean absolute 
error (MAE), and the coefficient of determination (R2).

Table 3 summarized the comparative results. XGBoost achieved 
the lowest MSE, RMSE, and MAE, while simultaneously registering the 
highest R2(0.613), thereby outperforming the alternative algorithms by 
a clear margin. Accordingly, the grid-optimized XGBoost model was 
selected as the base learner for the subsequent causal-inference pipeline.

2.3.2 Causal effect estimation
Upon validating the superior predictive performance of the 

XGBoost model, we  incorporated it into the ‌Causal Forest DML‌ 
framework to estimate the ‌Average Treatment Effect (ATE)‌ of key 
features on the ‌PA I-B gap‌. In this framework, the continuous outcome 
variable Y represents the PA I-B gap, the treatment variable T consists 
of the core features selected via XGBoost-SHAP importance analysis, 
and the confounding variables W include all observed covariates 
except the specific treatment variable under investigation. To eliminate 
the influence of confounding variables and ensure unbiased estimation 
of the causal effect θ of T on Y, the estimation process strictly follows 
the canonical two-stage procedure of DML, incorporating residual 
orthogonalization and cross-fitting techniques.

	 1.	 Cross-Fitting and Residual Estimation. By leveraging the 
XGBoost model to assess the impact of the confounding variable 
W on the dependent variable Y and the treatment variable T, the 
estimated values ĝ(W) and ĥ(W) are obtained, respectively. 
Subsequently, the residuals Ey and Et of the two predictive models 
are computed, with the specific formulas as follows:

	 ( ) ( ) ( )y ˆ ˆE Y W , W E Y|Wg g= − =

	 ( ) ( ) ( )t
ˆ ˆE Y W , W E Y|Wh h= − =

	 2.	 ATE Estimation. The residual Et is employed to fit Ey，aiming 
to estimate the parameter θ, which serves as an unbiased 
estimator of the ATE between T and Y:‌

	 y 0 tE E∗= θ +∈

	 3.	 Mitigation of Overfitting Bias through Cross-Fitting. To ensure 
the robustness of the estimation, the K-Fold cross-validation 
method is adopted, where the data are partitioned into K folds, 
and the estimation process is repeated K times. This separation of 
model training and residual calculation effectively controls the 
systematic errors in the residuals. The final estimate of the causal 
effect is given by:

	

k

k
1

1
K

θ = θ∑

In brief, the core procedure of DML consists of two stages: first, 
XGBoost is employed to model both the outcome variable Y and the 
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treatment variable T, and the residuals of Y and T are obtained by 
subtracting the predicted values from the observed values; second, a 
non-parametric model is used to fit the relationship between these 
residuals, thereby estimating the causal effect of the key feature on 
Y. Repeating the above steps via K-fold cross-fitting effectively controls 
overfitting bias and yields a robust and interpretable estimate of the 
ATE along with its confidence interval.

3 Results

3.1 Construction of the optimal model

To ensure the robustness of the model, this study employed a 
method of multiple random splits to mitigate the stochastic effects of 
data partitioning. Specifically, the sample was divided using 20 distinct 
random seeds for proportional stratification, followed by a grid search 
with 10-fold cross-validation via GridSearchCV to ascertain the optimal 
hyperparameters. Through this process, the XGBoost model achieved a 
mean coefficient of determination (R2) of 0.613, which was significantly 
higher than that of other machine learning algorithms, reaffirming its 
status as the superior predictive model. With the optimal 
hyperparameter configuration, the R2 of the XGBoost model further 
increased to 0.647, indicating its high accuracy and generalizability in 
forecasting the PA I-B gap among college students. The optimal model 
hyperparameters are detailed in Table 4.

3.2 Analysis of important features

Accurately identifying and ranking key predictors is a central 
task in machine learning forecasting. Using the optimal XGBoost 

algorithm and the SHAP framework, this study independently 
assessed the relative importance of features contributing to the PA 
I-B gap. Figure  1 presents the ten most influential variables 
obtained from each method; eight of the ten highest-ranked 
features overlap between algorithms, attesting to model stability 
and the persistent salience of these predictors. Although their exact 
ranks differ slightly, perceived barriers (BAR), self-efficacy (SE), 
intention to use smart tools (UI) and social support (SS) 
consistently occupy the top four positions and jointly account for 
more than 50% of the total SHAP value. Additionally, aggregating 
the SHAP contributions of these four variables reveals that the 
psychological-cognition dimension (BAR+SE) accumulates to 
0.233, approximately 1.7 times the contribution of the smart-sport 
dimension (UI + SS = 0.140). Thus, compared with technological 
factors, psychological cognition exerts a substantially stronger 
influence on attenuating the gap, whereas smart-sport tools play a 
secondary, supportive role. Moreover, the frequency of staying up 
late, as an indicator of an unhealthy lifestyle, maintains a prominent 
rank with a stable SHAP value of approximately 0.05, further 
corroborating the significant predictive value of sleep behavior for 
the gap.

TABLE 2  Variables description and descriptive statistical analysis.

Variables Variable description M SD

PA_level PA Level: 1 = No experience; 2 = Beginner; 3 = Intermediate; 4 = Advanced 2.27 0.777

PA_organize PA Format: 1 = Alone; 2 = With a partner; 3 = Club or group 1.36 0.479

PA_purpose Number of PA Motivations (including strengthening, stress relief, interest, skill learning, socializing, willpower and fitness): 1 to 7 4.11 1.856

PA_comsume
PA Expenditure (including sportswear, equipment, venue rental and membership fees, yuan/month): 1 = 0；2 = 1, 100；3 = 101, 300

；4 = 301, 500；5 = Over 501
1.82 0.980

Sm_duration Smart tool usage duration: 0 = Non-user; 1 = 1–3 months; 2 = 3–6 months; 3 = 6–12 months; 4 = 1–2 years; 5 = Over 2 years 1.45 1.324

Sm_frequency Smart tool usage frequency: 0 = Non-user; 1 = ≤3 times/month; 2 = 1–2 times/week; 3 = 3–4 times/week; 4 = ≥5 times/week 1.57 1.109

Sm_number Number of Smart Tools Used (including Apps, video and wearables): 1–3 1.51 1.152

Sm_purpose Number of smart-tool use purposes (including planning, guidance, knowledge, data, gear, community and wellness):1–7 2.93 2.017

Sex Gender: 1 = Male; 2 = Female 1.51 0.500

Age Age: 1 = 18–25; 2 = 26–35; 3 = 36–45; 4 = Over 45 2.13 1.046

Career Occupation: 1 = Government/Public sector; 2 = Private Sector; 3 = Freelancer; 4 = Student 2.57 1.104

Education Education Level: 1 = Junior High or below; 2 = High School; 3 = Bachelor’s; 4 = Master’s or above 2.58 0.874

Consumption_

level
Disposable income per month (yuan): 1 = Up to 1,500; 2 = 1,500–3,000; 3 = 3,001–5,000; 4 = 5,001–8,000; 5 = Over 8,001 2.61 0.841

Health Health Status: 1 = Very unhealthy; 2 = Unhealthy; 3 = Average; 4 = Healthy; 5 = Very Healthy 3.48 0.910

Midnight
Frequency of staying up late (after midnight): 1 = Never; 2 = ≤3 times/month; 3 = 1–2 times/week; 4 = 3–5 times/week; 5 = Almost 

every day
3.44 1.205

BMI
KG

M2 21.31 2.948

TABLE 3  Comparison of the performance of machine learning 
algorithms.

Performance 
metrics

OLS SVM D-Tree R-Forest XG 
Boost

MSE 0.182 0.165 0.295 0.140 0.101

RMSE 0.427 0.407 0.543 0.374 0.318

MAE 0.336 0.295 0.371 0.281 0.233

R2 0.396 0.460 0.128 0.535 0.613
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3.3 Explanatory analysis of important 
features

Drawing on eight overlapping key features, this study employed 
the SHAP framework to decompose the average marginal contribution 
of each predictor to the XGBoost model’s output and to clarify its 
directional effect. Figure 2 presents a SHAP summary plot in which 
features are arranged in descending order of importance along the 
vertical axis; each dot represents an individual sample, its horizontal 
position indicating the marginal effect on the predicted outcome, 
while the blue-to-red color gradient denotes the corresponding feature 
value from low to high.

The results indicate that BAR constitute the foremost predictor, 
exerting a positive effect whereby higher values significantly widen the 
PA I-B gap. SE ranks second, with elevated values markedly narrowing 
the gap. Subsequently, UI and SS, key dimensions of smart sports 
technology, demonstrate negative effects, such that higher values are 
associated with a smaller gap. Late-night behavior exhibits a upward 
association, with increasing frequency corresponding to an enlarged 
gap. In contrast, BEN, SI and PN, although negatively related to the 
gap, display SHAP absolute values significantly lower than those of the 
top four predictors, indicating a relatively limited influence. Overall, 
psychological-cognitive variables exert a greater contribution to the 
I-B gap than smart-sports variables, and the directional effects are 
fully consistent with theoretical expectations.

3.4 Causal analysis of important features

After partialling out high-dimensional confounders, we estimated 
the Average Treatment Effects (ATEs) of eight focal variables on the 
PA I-B gap using Causal Forests. All estimates were obtained within a 
Double Machine Learning framework that combined residual 
orthogonalization with cross-fitting; standard errors and 95% 
confidence intervals (CI) were constructed via 5,000 bootstrap 
replications using normal approximation.

Table  5 shows that the ATEs for BAR and Midnight are 
significantly upward [BAR: 0.186, 95% CI = (0.160, 0.211), p < 0.001; 
Midnight: 0.108, 95% CI = (0.088, 0.129), p < 0.001]. A one-standard-
deviation increase in either variable widens the PA I-B gap by 0.186 
and 0.108 units, respectively. SE, UI, BEN, SS, SI and PN yield 
significantly downward ATEs. Among them, SE exhibits the largest 
effect size [−0.157, 95% CI = (−0.192, −0.122), p < 0.001], indicating 
the strongest causal impact on narrowing the gap. None of the 95% 
CIs include zero, reinforcing the robustness of these causal estimates.

3.5 Dependency explanation of 
single-variable

Under the established causal significance, we generated SHAP 
dependence plots with the feature value on the horizontal axis and the 

TABLE 4  Parameter settings of the XGBoost algorithm.

Model parameters Meaning of the parameter Parameter results

N_estimators Number of iterations 300

Max_depth Depth of trees 5

Learning_rate Learning rate 0.05

Subsample Proportion of samples randomly selected per iteration 0.8

Colsample_bytree Proportion of features randomly sampled for each tree 0.9

Reg_lambda L2 regularization term on weights. 3.0

Reg_alpha L1 regularization term on weights. 0.1

Min_child_weight Minimum sum of instance weight needed in a child node. 3

Gamma Minimum loss reduction required to make a further partition. 0.01

FIGURE 1

Ranking of feature importance.
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SHAP value on the vertical axis; values above zero indicate an 
amplification of the PA I-B gap, whereas values below zero indicate a 
reduction. A LOWESS curve was superimposed to delineate the linear 
and non-linear associations with the gap.

Figure 3 shows that BAR, SE, BEN, Midnight, and PN follow 
smooth monotonic trajectories without inflection points, consistent 
with linear relationships. As BAR and Midnight increase, their positive 
contributions to SHAP values rise linearly, thereby widening the I-B 
gap; conversely, higher levels of SE, BEN, and PN linearly attenuate 
the gap. UI, SS, and SI exhibit non-linear patterns. UI displays an 
inverted U-shaped relationship: when the UI index falls below −2.5 
or exceeds 0, SHAP values drop to low levels, suggesting that both 
minimal and intensive use of smart-sport tools can markedly reduce 
the gap. SS exhibits a clear threshold effect: SHAP values decline 
sharply once the SS index surpasses 0.5, indicating that high social 
support significantly shortens the gap. SI presents a mild U-shaped 
curve: SHAP values are lowest when the SI index lies between 0.4 and 
1.2, implying that either insufficient or excessive social influence may 
enlarge the gap. Collectively, the coexistence of linear and non-linear 

patterns reveals a multidimensional and complex mechanism 
underlying the formation of the PA I-B gap.

3.6 Heterogeneity analysis

Basing on the combined SHAP evidence, the psychological-
cognition dimension exerts a significantly larger aggregate effect 
than the smart-sports-tools dimension, confirming its dominant 
role in narrowing the PA I-B gap, whereas the latter serves 
primarily an auxiliary function. To examine whether this dominan-
auxiliary relationship varies across psychological-cognition levels, 
we dichotomised the sample at the median values of BAR and SE 
and estimated heterogeneous treatment effects using DML 
framework. The smallest subgroup (n = 611) exceeds the 250–500 
cases threshold recommended for Causal-Forest subgroup analyses 
(Bonander and Svensson, 2021), ensuring adequate 
statistical power.

Table 6 reveals a consistent pattern of high-cognition activation 
yet low-cognition inhibition among the smart-sports-tool dimensions. 
Specifically, three findings emerge: (1) UI, SS, and PN constitute the 
core tool effects. All three variables significantly promote the 
translation of intention to behavior (p < 0.001; 95% CIs exclude zero). 
The effects are strongest when self-efficacy is low: PN = –0.100, 
SS = –0.100 and UI = –0.094. (2)Multi-dimensional activation among 
cognitively advantaged groups. In the low-BAR and high-SE 
subgroups, PE and EE exhibit significant positive effects (p < 0.05; 
95%CIs exclude zero). Additionally, PR is significant only in the 
low-BAR group (ATE = 0.054, p < 0.05) and SI is significant only in 
the high-SE group (ATE = -0.039, p < 0.001). Overall, individuals with 
higher psychological-cognition levels are more able to leverage the 
diverse facilitative attributes of smart-sports tools. (3)Restricted tool 
functionality among cognitively disadvantaged groups. Beyond UI, SS, 
and PN, only FC is significant in the low-SE subgroup (ATE = −0.027, 
p < 0.05); all other dimensions carry confidence intervals that span 

FIGURE 2

SHAP beeswarm plot of important features.

TABLE 5  ATE and 95% CI of important variables.

Variables ATE Standard 
error

95% CI

BAR 0.186*** 0.013 [0.160, 0.211]

SE −0.157*** 0.018 [−0.192, −0.122]

UI −0.118*** 0.015 [−0.148, −0.088]

SS −0.076*** 0.011 [−0.098, −0.054]

BEN −0.116*** 0.010 [−0.136, −0.096]

Midnight 0.108*** 0.011 [0.088, 0.129]

PN −0.095*** 0.016 [−0.126, −0.0646]

SI −0.026*** 0.009 [−0.044, −0.008]

Number = 1,334; R2 = 0.647; *p < 0.01; **p < 0.05; ***p < 0.001.
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FIGURE 3

SHAP dependence plot of important features.

zero. Thus, when psychological-cognition levels are low, the facilitative 
potential of smart-sports tools is markedly constrained.

4 Discussion

The study analyzed 1,344 valid Chinese questionnaires, employing 
five machine learning algorithms (‌OLS, SVM, DT, RF and XGBoost‌) 
with hyperparameter optimization to construct the best-fitting 
prediction model for the ‌PA I-B gap‌. Building upon the optimal 
model, we  estimated the ‌average treatment effect‌ of important 
predictors on the PA I-B gap by employing ‌residual orthogonalization 
and cross-validation‌ to account for high-dimensional observable 
confounders. ‌SHAP-based visualization‌ further elucidated the 
mechanisms underlying these effects. Compared to conventional 
regression methods, the ‌interpretable DML framework‌ significantly 
enhanced both predictive accuracy and causal interpretability, thereby 
establishing a novel methodological paradigm for PA 
behavior research.

Our findings indicate that perceived barriers, self-efficacy, 
intention to use smart tools and social support are the primary 
determinants of the PA I-B gap. These results provide empirical 
evidence for the synergistic role of psychological health cognition 
and smart sports support in moderating the gap. Unlike previous 
studies that have focused on either psychological cognition (Burnett 
et al., 2018; Miao et al., 2024) or smart sports (Wang and Dai, 2022) 
in isolation, our study emphasizes the combined effect of both factors. 
Among the top four predictors, the aggregated SHAP value of the 
psychological-cognition dimension (0.233) was approximately 1.7 
times that of the smart-sports-tools dimension (0.140), indicating 
that the former exerts dominant predictive power over the PA 
I-B gap.

The Health Belief Model proposes that perceived barriers such as 
lack of energy or interest reduce exercise motivation (Wu et al., 2020). 
Smart sports tools can mitigate these barriers and reinforce exercise 
adherence through gamification and social interaction (Laranjo et al., 

2021), yet their effectiveness hinges on users’ ability to overcome 
intrinsic laziness and self-imposed limitations (Gil-Píriz et al., 2021). 
Social cognitive theory further asserts that self-efficacy is the pivotal 
driver of behavioral change (Bandura, 2004). Although smart devices 
like activity trackers and fitness apps can sustain engagement over 
short periods (eg, up to 3 months) (Romeo et al., 2019), they cannot 
substitute for individuals’ inherent exercise volition and intrinsic 
motivation. Consequently, while smart-sports technologies may 
modestly reduce the gap, their influence is confined to reinforcing 
maintenance among those who already exercise, rather than initiating 
PA behavior (Gabarron et  al., 2024). In contrast, psychological 
cognition constitute the decisive determinants that translate intention 
into behavior.

Drawing on the important variables identified through causal 
forest estimation, we  find that all important predictors exhibit 
statistically significant causal associations with the PA I-B gap and that 
their directional effects align with theoretical expectations (Table 5). 
Perceived barriers, which yielded the largest average treatment effect 
(ATE = 0.186), indicate that constraints such as inadequate facility 
accessibility, lack of exercise methods, weak interpersonal support, 
diminished interest, and limited time and energy management 
considerably reduce individuals’ willingness to engage in PA (Lin 
et al., 2022), thereby widening the gap. The absolute ATEs for self-
efficacy and perceived benefits both exceeded 0.10 with negative signs, 
implying that higher psychological cognition increases the likelihood 
of translating intention into action. This finding aligns with previous 
evidence that individuals who recognize the health value of PA and 
possess high self-efficacy are more likely to adopt effective strategies, 
invest greater effort, and maintain regular physical activity (Di Maio 
et al., 2021; Landais et al., 2023). Although the effect size of usage 
intention toward smart sports tools (ATE = −0.118) was smaller than 
that of the psychological variables, it was still significantly larger than 
the ancillary dimensions of social support, personal innovativeness 
and social influence (all |ATEs| < 0.10). This suggests that, in a mature 
digital environment, enhancing overall usage intention—by 
strengthening users’ sense of involvement and motivation—may be a 
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more critical route to narrowing the I-B gap than simply optimizing 
functional modules. In addition, each one-standard-deviation increase 
in late-night frequency significantly enlarged the PA I-B gap 
(ATE = 0.108). Research has proposed that sleep deprivation can lead 
to depressed mood, fatigue, and impaired decision-making, thereby 
diminishing individuals’ willingness and capability to participate in 
exercise (Williams et al., 2024).

Additionally, we generated SHAP dependence plots to examine 
whether the effects of key features on the PA I-B gap are linear, 
threshold-based, or non-linear. The results show that perceived 
barriers, self-efficacy, perceived benefits, stay up late and smart sports 
tools of personal innovation display monotonic linear relationships 
with the gap, whereas smart sports tools of usage intention, social 
support and social influence present more complex,non-linear 
trajectories. The inverted-U link between usage intention and the PA 
I-B gap is best interpreted through self determination theory and habit 
strength. On the left branch, a subset of non-users of smart sports 
tools is characterized by high autonomy and strong habitual strength 
(Herrmann and Blackstone, 2020), so technological aids are 
unnecessary, thus the gap remains small. At the apex of the curve, 
moderate-intention users often rely on the competence and relatedness 
supports afforded by the technology for external regulation; when 
feedback or social incentives are inadequate, intrinsic motivation 
rapidly erodes (Ryan and Deci, 2000), so the gap widens. On the right 
branch, most habitual users are exercise enthusiasts with established 
routines who integrate frequent smart-tool cues into automated 
behavioral scripts; this transforms external prompts into internalized 
habits and converges intention with behavior, thereby narrowing the 
gap. Social support exhibits a clear threshold effect, when emotional 
support and social interaction from family and friends reach a 
sufficiently high level, the resulting emotional comfort and peer 

encouragement markedly reduce psychological barriers and promote 
sports (Zhao et  al., 2024). The gentle U-shaped curve for social 
influence shows that sedentary adults with a large the gap are more 
likely to be encouraged by their social circles to adopt smart sports 
tools for supervised exercise (Sullivan and Lachman, 2016), 
demonstrating that social influence can provide supplementary 
facilitation even when cognitive resources are limited. Together, these 
patterns portray a multidimensional and complex regulatory 
mechanism in which psychological cognition dominates, while smart 
tools and social support act in synergy.

To delineate the boundary conditions of the technology 
acceptance-behavior transformation pathway, we  dichotomised 
perceived barriers and self-efficacy at their respective medians and 
examined the multidimensional facilitative properties of smart-sports 
tools across distinct psychological-cognition strata. Across all 
subgroups, personalized innovation, social support and intention to 
use exerted significant positive effects. These findings corroborate 
previous research indicating that tailoring exercise prescriptions to 
users’ physical condition, training history, goals and preferences (Wu 
et  al., 2020), and reinforcing enjoyment and a sense of belonging 
through peer interaction and support (Li et  al., 2024), is a critical 
pathway for enhancing exercise maintenance. Ultimately, optimizing 
these attributes aims to consolidate continued usage intention, thereby 
enabling smart-sports tools to deliver larger-scale and longer-lasting 
effects in health management and PA promotion (Migliaccio et al., 
2024). Among individuals with low perceived barriers and high self-
efficacy, performance expectancy and effort expectancy also exert 
significant effects, indicating that those with favorable psychological-
cognitive profiles are able to fully leverage the diverse functions of 
smart sports tools. Conversely, only personal innovation, social support 
and intention to use remained significant among participants with high 

TABLE 6  Heterogeneity analysis by subgroups.

Variables Lower BAR Higher BAR Lower SE Higher SE

ATE 95% CI ATE 95% CI ATE 95% CI ATE 95% CI

PE
−0.030**

(0.016)

[−0.062, 

−0.001]

0.022

(0.021)

[−0.019, 

0.062]

0.003

(0.014)

[−0.025, 

0.031]

−0.046***

(0.013)

[−0.071, 

−0.021]

EE
−0.039***

(0.015)

[−0.069, 

−0.010]

0.010

(0.015)

[−0.019, 

0.039]

0.031

(0.023)

[−0.014, 

0.076]

−0.029**

(0.013)

[−0.055, 

−0.008]

SI
−0.017

(0.020)

[−0.056, 

0.023]

−0.019

(0.011)

[−0.042, 

0.003]

−0.006

(0.021)

[−0.048, 

0.035]

−0.039***

(0.016)

[−0.070, 

−0.010]

FC
−0.005

(0.019)

[−0.033, 

0.043]

−0.023

(0.014)

[−0.050, 

0.004]

−0.027**

(0.014)

[−0.054, 

0.000]

−0.021

(0.020)

[−0.060, 

0.018]

PN
−0.081***

(0.022)

[−0.124, 

−0.039]

−0.055***

(0.020)

[−0.095, 

−0.014]

−0.100***

(0.020)

[−0.139, 

−0.060]

−0.069***

(0.017)

[−0.102, 

−0.035]

PR
0.054**

(0.025)
[0.005, 0.102]

−0.018

(0.013)

[−0.043, 

0.008]

0.011

(0.024)

[−0.036, 

0.059]

0.003

(0.023)

[−0.042, 

0.048]

SS
−0.077***

(0.013)

[−0.102, 

−0.052]

−0.062***

(0.014)

[−0.089, 

−0.035]

−0.100***

(0.016)

[−0.131, 

−0.069]

−0.056***

(0.020)

[−0.096, 

−0.016]

UI
−0.108***

(0.023)

[−0.153, 

−0.064]

−0.051**

(0.023)

[−0.096, 

−0.006]

−0.094***

(0.023)

[−0.139, 

−0.050]

−0.068***

(0.017)

[−0.101, 

−0.035]

Number 611 733 715 629

R2 0.532 0.526 0.565 0.578

*p < 0.01; **p < 0.05; ***p < 0.001, standard error in ().
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BAR and low SE, and these effects were amplified in the low-SE group. 
This suggests that, under conditions of limited psychological-cognition 
resources, personal innovation, social support and use intention 
constitute the pivotal dimension for translating intention into behavior, 
whereas the overall facilitative potential of smart-sports tools is 
markedly constrained.

Based on the findings of this study, the following recommendations 
are proposed: Firstly, psychological interventions should 
be strengthened to reduce perceived barriers and enhance self-efficacy. 
By improving the allocation of sports resources, promoting scientific 
exercise methods and fostering a positive sports culture, individuals 
can be supported in integrating PA into daily life, thereby lowering the 
barriers to participation. In addition, guiding individuals to set 
attainable goals and to record their exercise achievements can further 
elevate self-efficacy and sustain motivation. Secondly, continuously 
monitor users’ psychological-cognitive states to enable precise 
alignment of smart-sports tools multifunction. For individuals with 
elevated perceived barriers or low self-efficacy, priority should be given 
to activating personal innovation and social-support modules that 
deliver adaptive exercise prescriptions and create supportive online and 
offline environments. Such targeted deployment can reduce 
participation thresholds, boost exercise-specific self-efficacy and 
facilitate the durable translation of intention into behavior. Third, 
technology-enablement strategies should be  refined to expand the 
reach of smart-sports tools among psychologically advantaged users. 
Streamlined interfaces and reduced operational complexity lower 
technological barriers, while optimized hardware compatibility and 
environmental adaptation, such as integrated venue booking and 
weather alerts, enhance the overall exercise experience. Collectively, 
these measures will encourage sustained engagement, advance 
population-wide physical activity and contribute to comprehensive 
health promotion.

5 Conclusion

This study innovatively integrates an explainable double-
machine-learning framework to examine important predictors of 
the physical activity intention-behavior gap, grounding the 
analysis in the Health Belief Model and the Unified Theory of 
Acceptance and Use of Technology. It introduces a novel relative 
I-B gap metric to enable cross-population comparisons. Results 
reveal that psychological cognition, including perceived barriers 
and self-efficacy, exerts a stronger predictive influence on the gap 
than smart sports tools, represented by usage intention and social 
support. Furthermore, the multidimensional attributes of smart 
sports tools exhibit heterogeneous effects across distinct 
psychological-cognition subgroups. These findings enrich the 
theoretical understanding of the I-B gap and provide empirical 
guidance for designing targeted interventions to bridge the gap 
and promote physical activity.

6 Limitations

While this study provides valuable insights into the PA I-B 
gap, several limitations should be acknowledged. First, although 

informed consent was obtained and questionnaires were collected 
anonymously, and measures such as reverse-worded items and 
attention checks were employed to partially mitigate response 
fatigue and consistency motivation, self-reported data remain 
susceptible to recall and social-desirability biases. Future studies 
should adopt a multi-method assessment strategy that integrates 
subjective reports with objective measures (e.g., wearable devices 
and app log files) to enhance data validity and reliability. Second, 
the relative I-B gap metric introduced herein is novel and may 
be  subject to unexamined measurement error or limitations; 
subsequent investigations should employ alternative 
measurement strategies to corroborate its validity. Third, the 
cross-sectional design constrains causal inference regarding 
temporal ordering; longitudinal follow-ups are needed to capture 
the dynamic evolution of the PA I-B relationship. Moreover, the 
theoretical framework omits psychological traits beyond self-
efficacy and objective environmental factors (e.g., walkability, 
socio-cultural context). While XGBoost outperformed alternative 
models, the R2 of 0.647 indicates that a substantial proportion of 
variance in the I-B gap remains unexplained; future studies 
should incorporate additional variables to improve predictive 
power. Finally, the sample is exclusively Chinese,  
which may limit external validity; cross-group validation in 
culturally diverse and international samples is warranted to 
enhance generalisability.
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