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Introduction: Implicit measures are widely used to indirectly assess
psychological constructs and predict behavior. Nonetheless, comparisons
of their predictive validity often suffer from methodological limitations,
including administration inconsistencies, scoring differences, and unaccounted
sources of variability related to data structure and experimental design.
Methods: To address these issues, the present study re-analyzes an existing
dataset comparing the Implicit Association Test (IAT) and its single-category
variant (SC-IAT) using a modeling framework that integrates a Rasch-like
parameterization of accuracies and response times while accounting for the fully
crossed data structure and the within-subject design.
Results: Results partially align with the original findings and further corroborate
the higher predictive validity of the IAT, while revealing the specific contribution
of one SC-IAT that was likely obscured in traditional scoring approaches.
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1 Introduction

Implicit measures can be used for the indirect assessment of people’s attitudes,
opinions, and preferences from their responses to speeded categorization tasks (Greenwald
and Lai, 2020), in an ever wider range of application fields (see Epifania et al., 2022b,
for a review on the topic). A common application of implicit measures pertains the
prediction of people’s behavior, with several studies comparing their predictive power (e.g.,
Epifania et al., 2022a, 2023; Meissner et al., 2019; Perugini, 2005; Richetin et al., 2019).
The predictive power of implicit measures refers to the extent to which person-level scores
derived from implicit measures account for the variance in external variables, such as
behavioral outcomes or explicit evaluations, within the same sample. These comparisons
may be compromised by differences in the administration and scoring of the measures.
More importantly, they may be affected by sources of error variance related to the structure
of the data (i.e., fully-crossed design; Epifania et al., 2024; Westfall et al., 2014) and the
within-subjects designs often used in such studies (e.g., Judd et al., 2012, 2017). Therefore,
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conclusions about the predictive power of implicit measures should
be interpreted with caution.

In an attempt to gain a better understanding of the issue,
Epifania et al. (2020a) compared the predictive power of two
commonly used implicit measures, the implicit association test
(IAT; Greenwald et al., 1998) and its single category variant, the
single category IAT (SC-IAT; Karpinski and Steinman, 2006), by
reducing as much as possible the administration differences and
by introducing new scoring methods that allows for a greater
comparability between the performance of the two measures. Their
results suggested that the IAT has an overall better predictive
validity than the SC-IAT. However, the authors overlooked
the sources of variability in the data due to both the fully-
crossed structure of the implicit measures and the within-subjects
design, making the results difficult to interpret and dependent
on the performed statistical analysis. Indeed, different analytical
approaches applied to the same dataset to answer the same
research questions might lead to different and even contrasting
results (e.g., Silberzahn et al., 2018). This variability arises because
each analytical strategy brings its own set of assumptions, model
structures, and inferential frameworks, all of which can influence
the interpretation of the underlying data patterns. As such, the
choice of method can shape the conclusions drawn from the data,
which, in this case, might wrongfully favor an implicit measure over
the other.

In this contribution, we propose a re-analysis of the data
from Epifania et al. (2020a) with the modeling approach for
implicit measures introduced in Epifania et al. (2020d). This
modeling framework incorporates a Rasch-like parameterization
of accuracies and response times while controlling for the fully-
crossed structure of implicit measures. Previous applications
have shown promising results in predicting behavior (Epifania
et al., 2022a) and in identifying administration features that
influence respondents’ performance (Epifania et al., 2023). In this
contribution, the modeling approach is extended to account for
the variability ascribable to the within-subjects experimental design
used in Epifania et al. (2020a). By concurrently accounting for the
sources of variability due to both the fully-crossed structures of
implicit measures and to the within-subjects design, more robust
inferences on the predictive validity of the IAT and the SC-IAT
should be possible.

The manuscript is organized as follows. The next section
presents the IAT, the SC-IAT, and their fully-crossed structure.
Then, Rasch and log-normal models and their relationship
with (generalized) linear (mixed-effects) models are briefly
described. The specification of models with different random
structures follows. The application of the modeling approach is
illustrated, along with the comparisons between the predictive
power of the typical scoring methods and the estimates
obtained from their application. Some final remarks conclude
the argumentation.

2 Implicit association test and single
category-implicit association test

The IAT and the SC-IAT measure the strength of the
associations between targets (e.g., Coke and Pepsi in a Soda IAT,

Coke in a Coke SC-IAT) and evaluative dimensions (Good and Bad)
by considering the speed and accuracy with which prototypical
exemplars of targets or evaluative dimensions are sorted in their
own category in two contrasting associative conditions. These
exemplars (i.e., stimuli) appear one at a time on the computer
screen and are categorized using two response keys located on the
left and right sides of the keyboard. In one associative condition of
the IAT (i.e., Coke-Good/Pepsi-Bad condition, Figure 1a, CGPB),
Coke and Good exemplars share one response key, while Pepsi and
Bad exemplars share the opposite key. In the contrasting condition
(i.e., Pepsi-Good/Coke-Bad condition, Figure 1b, PGCB), Pepsi and
Bad are assigned with one key, and Coke and Bad exemplars with
the other. The SC-IAT employs a categorization task that closely
resembles that of the standard IAT, but only the exemplars from
one target category are presented. For instance, in one associative
condition of a Coke SC-IAT (i.e., Coke-Good condition, Figure 1c),
Coke and Good exemplars are assigned to the same response
key, while Bad exemplars are assigned to the opposite key. In
the contrasting associative condition (i.e., Coke-Bad condition,
Figure 1d), Coke and Bad share one response key, while Good
exemplars are assigned to the opposite key.

While the IAT provides a “comparative” measure of how much
one of the targets is preferred over the other, the SC-IAT provides
an “absolute” measure of how much a single target is positively (or
negatively) evaluated. The IAT effect refers to the difference in the
performance of the respondents between the associative conditions.
Typically, the strength and direction of the IAT effect are quantified
using ad hoc effect size measures known as D scores, which are
computed as the standardized difference in average response times
across trials between the two conditions (Greenwald et al., 2003;
Karpinski and Steinman, 2006).

2.1 Fully-crossed design: challenges and
(possible) solutions

In experiments with fully-crossed data design (e.g., Epifania
et al., 2024; Westfall et al., 2014; Wolsiefer et al., 2017), such as
the IAT and the SC-IAT, the same set of stimuli representing the
superordinate categories is sorted by the respondents according
to different rules in two contrasting conditions. The underlying
assumption is that one of the conditions (i.e., the one that is
consistent with the automatic association of the respondent) is
“easier” than the other, in terms of faster and more accurate
responses. Besides being typical of implicit measures, this structure
can also be found in experiments pertaining psycholinguistics
(e.g., Barr et al., 2013) or cognitive psychology (e.g., Vicovaro and
Dalmaso, 2021).

Table 1 illustrates an example of a fully-crossed structure
resulting from a simplified version of a Soda IAT, where stimuli
representing the two target categories (Coke and Pepsi) and the
two evaluative dimensions (Good and Bad) are administered in
the two contrasting associative condition, denoted as CGPB and
PGCB. If one of the two target categories of the table is dropped,
the fully-crossed structure of the SC-IAT is obtained.

In a multilevel modeling perspective, the contrasting conditions
(CGPB and PBCG) are at the highest level, including both
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FIGURE 1

Associative conditions: (a) Coke-Good/Pepsi-Bad condition of a Soda IAT, (b) Coke-Bad/Pepsi-Good condition of a Soda IAT, (c) Coke-Good
condition of a Coke SC-IAT, and (d) Coke-Bad condition of a Coke SC-IAT.

TABLE 1 Example of a fully-crossed structure where stimuli representing either target categories (Coke and Pepsi) or evaluative dimensions (Good and
Bad) are administered in two contrasting associative conditions (CGPB and PGCB).

Participants Condition Target categories Evaluative dimensions

Coke1 Pepsi1 Evil Laughter

p1 CGPB T1,Coke1,CGPB T1,Pepsi1,CGPB T1,Evil,CGPB T1,Laughter,CGPB

PGCB T1,Coke1,PGCB T1,Pepsi1,PGCB T1,Evil,PGCB T1,Laughter,PGCB

p2 CGPB T2,Coke1,CGPB T2,Pepsi1,CGPB T2,Evil,CGPB T2,Laughter,CGPB

PGCB T2,Coke1,PGCB T2,Pepsi1,PGCB T2,Evil,PGCB T2,Laughter,PGCB

p3 CGPB T3,Coke1,CGPB T3,Pepsi1,CGPB T3,Evil,CGPB T3,Laughter,CGPB

PGCB T3,Coke1,PGCB T3,Pepsi1,PGCB T3,Evil,PGCB T3,Laughter,PGCB

CGPB and PBCG represent the two contrasting conditions. Coke1 and Pepsi1 are example stimuli belonging to the Coke and Pepsi target categories, respectively, while Evil and Laughter are
example stimuli from the Bad and Good evaluative dimensions. Stimuli can be administered in random order and may appear more than once within each condition. The order of conditions
can be counterbalanced across respondents. T represents the trial that is obtained from the unique combination Respondent × Stimulus × Condition.

respondents (p1, p2, p3) and stimuli (Coke1, Pepsi1, Evil, Laughter),
while respondents and stimuli are at a same, lower level (e.g., Judd
et al., 2012). The trials T are at the lowest level of observation
(the cells in the table), resulting from the crossing between the
respondents, the stimuli, and the conditions, hence representing
a unique combination Respondent × Stimulus × Condition
(Epifania et al., 2024). Being presented to the same respondents
within and between conditions, the stimuli are crossed with both
the conditions and the respondents. The same logic applies to

the respondents, who are crossed with both the stimuli and
the conditions.

The fully-crossed structure of implicit measures introduces
dependencies among observations that must be accounted for in
order to obtain reliable estimates and avoid biased results (e.g., Barr
et al., 2013; Judd et al., 2012, 2017; McCullagh and Nelder, 1989;
Westfall et al., 2014; Wolsiefer et al., 2017). However, data from
tasks such as the IAT and the SC-IAT are usually analyzed with a
by-participant approach that overlooks the crossing of respondents,
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stimuli, and conditions, and the variability associated with these
levels and their crossing. In this approach, person-level scores are
obtained by averaging responses across trials within conditions
and then computing their difference (see, e.g., Raaijmakers, 2003).
These scores are subsequently related to external variables in
further analyses. Although straightforward, this scoring procedure
implicitly assumes that all stimuli have the same effect on all
participants, while also overlooking the variability related with the
crossing of stimuli and respondents within and between conditions.
As a consequence, error variance due to unmodeled stimulus- and
respondent-level variability is absorbed into the person-level scores,
which can obscure the effect of the associative conditions and
yield biased or inconclusive inferences (Barr et al., 2013; Baayen
et al., 2008; Judd et al., 2012, 2017; Raaijmakers, 2003; Wolsiefer
et al., 2017; Westfall et al., 2014). These dependency issues are
exacerbated in within-subject designs where multiple implicit
measures are administered. In such cases, additional sources of
variability – differences between measures at both respondent and
stimulus levels – remain uncontrolled if each measure is analyzed
in isolation. Linear mixed-effects models (LMMs) provide an ideal
framework for dealing with both issues, since they allow for
concurrently handling the dependencies related to both the fully-
crossed structure of the implicit measures and the within-subject
administration design (e.g., Epifania et al., 2024; Judd et al., 2012).

Besides accounting for the sources of variability due to
the fully-crossed design of implicit measures, the modeling
framework based on LMMs and Generalized LMMs (GLMMs)
in Epifania et al. (2020d) provides a Rasch-like parameterization
of both accuracy and response times. This approach allows for
a deeper understanding of implicit measures functioning (e.g.,
by isolating each stimulus contribution to the overall effect) and
for deriving more reliable person-level estimates. When compared
with typical scoring methods of implicit measures, the person-
level estimates obtained with the modeling approach yield more
accurate predictions of behavior (e.g., Epifania et al., 2022a, 2023).
This contribution applies and extend the modeling approach
to instances where different implicit measures are administered
concurrently to the same sample of respondents while employing
the same set of stimuli across measures (i.e., within-subjects
design). The person-level estimates are compared against the usual
scoring methods to investigate the predictive validity of an IAT
for the investigation of the preference for dark or milk chocolate
(denoted as Chocolate IAT) and its single categories variants
(denoted as Dark SC-IAT and Milk SC-IAT, respectively).

3 Rasch, log-normal, and
(generalized) linear models

According to the Rasch model (Rasch, 1960), the probability
of observing a correct repsonse to stimulus s by respondent p
depends on both the respondent’s ability (i.e., as described by the
ability parameter θp) and the stimulus difficulty (i.e., as described
by the difficulty parameter bs). The Rasch model corresponds
to a generalized linear model (GLM) with a logit link function
that relates the linear combination of predictors to the binomially
distributed responses. Accordingly, a Rasch-like parameterization
of accuracies can be obtained by applying a GLM with a logit link

function (e.g., De Boeck et al., 2011; Doran et al., 2007). However,
when a GLM is applied to obtain a Rasch-like parametrization of
the data, the interpretation of the stimulus parameter bs is reversed,
such that it is interpreted as an easiness parameter (i.e., the higher
the value of bs, the easier stimulus s is) (e.g., Doran et al., 2007).
In what follows, the stimulus parameter obtained by means of the
GLM will be referred to as easiness parameter.

The log-normal model (van der Linden, 2006) allows for
interpreting the observed log-time response as a function of the
speed with which the person responds (i.e., the speed parameter
τp, the higher the value, the faster p is) and the time each stimulus
requires to get a response (i.e., time intensity parameter δs, the
higher the value, the longer s requires to get a response). This
model provides a Rasch-like parametrization of log-transformed
response times. By applying a linear model (LM) with an identity
link function to the log-transformed response times, it is possible to
obtain log-normal-like estimates of the log-transformed response
times (e.g., Epifania et al., 2020d, 2024). When a LM is applied
to the log-transformed response times, the interpretation of the
speed parameter τp is reversed, such that the higher the value of
τp the slower respondent p. Nonetheless, in what follows we will be
referring to the τ parameter as speed parameter.

To account for the fully-crossed structures and the within-
subjects experimental design, the linear combination of predictors
in the (G)LM needs to be extended to include the random effects
related to the respondents, the stimuli, the implicit measures, and
the associative conditions within the implicit measures (Epifania
et al., 2024). The distribution of the random effects is estimated as
a multivariate normal distribution (i.e., MVN ) with mean 0 and
a variance-covariance matrix � that is determined by the vector
of parameters of the random effects � (Doran et al., 2007). The
dimension of � is usually rather small, and its size derives from
the number of random factors specified in the model, regardless
of the number of levels they include. The Rasch-like estimates
are derived by combining the estimates of the fixed effects with
the best linear unbiased predictors, (BLUPs Doran et al., 2007).
The BLUPs describe the deviation of each level of the random
effects from the fixed effects. As such, person-level estimates are
influenced by the specific random-effects structure used in the
model, which is designed to capture the variability present in
the data. Differently from the usual scoring methods of implicit
measures that concurrently account for the response times and the
accuracies (the error responses are given a penalty), this modeling
approach separately considers the information that can be gathered
from the accuracy performance and the time performance of the
respondents. The person-levels estimates of the best fitting models
are used for predicting the behavioral choice and their performance
is compared against that of the typical scoring methods.

3.1 Fixed and random structures of
(G)LMMs

Potentially, the specification of the random structure in
(G)LMMs can account for all possible sources of variability
associated with both the fully-crossed structure of the data and
the within-subjects design (i.e., maximal models; Barr et al.,
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2013). Nonetheless, Bates et al. (2015a) cautioned that overly
complex random structures are at risk of convergence failure,
because the data often do not provide sufficient information to
estimate all parameters reliably. In practice, this means that while
maximal models are theoretically appealing, they may not yield
actual gains in model fit or inference if the complexity exceeds
what the observed variability can support. As such, only the
random structures that are meaningful for obtaining Rasch-like
parametrizations of response accuracies and log-times are here
presented. Additionally, since our primary focus is on person-level
estimates, none of the random structures models within-stimulus
variability, either between conditions or across implicit measures.
In other words, stimuli are always modeled as random intercepts.

In all models, the fixed intercept is set to 0, such that none of
the levels of the fixed slope is taken as the reference category and
the estimates of each level of the fixed effects can be interpreted as
the marginal mean in each of the levels. An overview of the linear
combination of predictors ηps, including both fixed and random
effects, is reported in Table 2, as well as the basic notation to fit
the models in the lme4 package (Bates et al., 2015b) in R (R Core
Team, 2018).

The differences between the GLMMs applied to accuracies and
the LMMs applied to log-time responses concern: (i) the dependent
variable y, either the accuracy response (0—incorrect response vs.
1—correct response) or the log-transformed response time to each
trial resulting from the unique crossing respondent × stimulus ×
associative condition nested within each implicit measure; and (ii)
the function used to link the linear combination of predictors to the
observed response, either a logit link function in the GLMMs or an
identity function in the LMMs. Moreover, the response accuracy in
the GLMMs is modeled with the logistic link as conditioned to the
random structure, such that no residual error term ε is included. On
the other hand, in the LMMs the residual error is assumed to follow
a normal distribution, ε ∼ N (0, σ 2). In the empirical application
that follows, the models applied to the accuracies will be denoted
with letter A, while those applied to the log-time responses will be
denoted with letter T.

In all models, the stimuli are modeled as random intercepts
(α[s]) to account for between–stimulus variability across implicit
measures (Models 1 and 2) or across associative conditions
within implicit measures (Model 3). The estimates of the stimulus

parameters, either bs (GLMMs) or δs (LMMs), derive from
their random effects α[s] ∼ N (0, σ 2

S ). Given this specification,
overall stimuli estimates are obtained from all models. The
estimates of person parameters, either θp (GLMMs) or τp (LMMs),
derive from the random effects of the respondents (column
“Respondent random factors” in Table 2), and vary according to
their specification in the models. Considering the intercepts of
the respondents α[p] (α[p] ∼ N (0, σ 2

P )), Model 1 addresses the
between–respondent variability across implicit measures. Model
1 provides overall respondent estimates across implicit measures,
either θp or τp. This model is expected to be the best fitting
one when low variability at both respondent and stimulus levels
is observed, suggesting that neither the performance of the
respondents nor the functioning of the stimuli change between
implicit measures and associative conditions. Considering the
random slopes of respondents in implicit measures βm[p] (βm[p] ∼
MVN (0, �M)), Model 2 addresses the within–respondents within
– measures variability and results in measure–specific respondent
estimates, either θm[p] or τm[p]. This model is expected to be the
best fitting one when high within–respondents between–measures
variability is observed, suggesting that the performance of the
respondents changes between implicit measures. In Model 3,
the random slopes of respondents in the associative conditions
within each implicit measure βc[p] (βc[p] ∼ MVN (0, �C))
are specified to account for the within–respondents between–
conditions variability. This model provides condition–specific
respondent estimates within each implicit measure, either θc[p]
or τc[p]. Model 3 is expected to be the best fitting model
when high within–respondents variability between associative
conditions of each implicit measure is observed, suggesting that
their performance is affected by the associative condition of
each implicit measure. The difference between condition–specific
estimates expresses the bias on the performance of the respondents
due to the associative conditions in each implicit measure.

The best fitting model for accuracies and log-time responses
was determined by independently comparing candidate models
according to the Akaike Information Criterion (AIC, AIC =
−2 log(L) + 2k; Akaike, 1974) and the Bayesian Information
Criterion (BIC, BIC = −2 log(L) + k log(n); Schwarz, 1978).
Both AIC and BIC are entropy indexes based on the log-likelihood
L of the models, which is penalized according to the number of

TABLE 2 Overview of the model structures and lme4 notation.

Model Linear predictor η Respondents
random factors

lme4 notation

1 ηps = α + βmXm + α[s] + α[p] α[p] ∼ N (0, σ 2
P ) ∼ 0 + measure + (1|stimuli) + (1|respondents)

2 ηps = α + βmXm + α[s] + βm[p]Xm βm[p] ∼
MVN (0, �M)

∼ 0 + measure + (1|stimuli) + (0 + measure|respondents)

3 ηps = α + βcXc + α[s] + βc[p]Xc βc[p] ∼ MVN (0, �C) ∼ 0 + condition + (1|stimuli) + (0 +
condition|respondents)

p = 1, . . . , P: Respondent, s = 1, . . . , S Stimulus, m = 1, . . . , M: Implicit measure, namely IAT, Dark SC-IAT, Milk SC-IAT, c = 1, . . . , C Associative condition within each implicit measure,
namely: IAT - MGDB, IAT - DGMB, Dark SC-IAT DG, Dark SC-IAT DB, Milk SC-IAT MG, Milk SC-IAT MB. Variables Xm and Xc are dummy variables. The dependent variable y can be either
the response accuracies (GLMMs) or the log-time responses (LMMs). The fixed intercept α is set to 0. By doing so, the estimates of the fixed effects in Models 1 and 2 can be interpreted as either
the log-odds of the probability of responding correctly (accuracy models) or the expected average log-time responses (log-time models) in each of the implicit measures, while those in Model
3 are the expected same values but considering each condition of each implicit measure. N identifies a normal distribution, MVN identifies a multivariate normal distribution, defined by
the variance-covariance matrix �. In all models, the random effects of the stimuli are αs ∼ N (0, σS). The notations (1|stimuli) and (1|respondents) are used to specify the random
intercepts of the stimuli and of respondents, respectively. The notations (0 + measure|respondents) and (0 + condition|respondents) are used to specify the random
slopes of the respondents in M (Model 2) and in C (Model 3).
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k parameters included in the model. Moreover, the BIC adds a
penalty related to the sample size n, such that complex models
receive a stronger penalty as the sample size increases. When the
two criteria favor different models, the AIC typically points toward
the one with higher predictive accuracy, while the BIC tends to
select a more parsimonious solution, aiming to approximate the
“true” underlying model. In this sense, AIC is more suitable when
the priority is prediction, while BIC is more appropriate when
the goal is theoretical parsimony (e.g., Zhang et al., 2023). In this
application, we considered both indexes, but AIC was favored in
the event of disagreement. The reader interested in the counting of
the free parameters k that are used for the AIC and BIC penalization
can refer to Epifania et al. (2024).

4 Method

A Chocolate IAT, a Milk chocolate SC-IAT, and a Dark
chocolate SC-IAT were used in the original study in Epifania et al.
(2020a). The models used in this manuscript to re-analyze the data
were fitted in R R Core Team (2018) with the lme4 package Bates
et al. (2015b) (bobyqa optimizer). The implicitMeasures
package Epifania et al. (2020c, 2025) was used for computing IAT
and SC-IAT D scores. The IAT D score can also be computed with
the DScoreApp Epifania et al. (2020b). Graphical representations
were obtained with ggplot2 Wickham (2016).

4.1 Participants

The sample of the original study in Epifania et al. (2020a) was
composed of 152 people (F = 63.55%, Age = 23.95 ± 2.83 years),
recruited at the University of Padova. Majority of the participants
were students (94.08%).

4.2 Materials and procedure

Twenty-six attributes were used to represent the two evaluative
dimensions Good and Bad (13 exemplars for each of them) and
fourteen chocolate images were used to represent the two targets
Dark and Milk (seven for each of them).

Dark and milk chocolate images were presented in the
Chocolate IAT. The critical blocks were composed of 60 trials
each (Greenwald et al., 2003), defining the Dark-Good/Milk-
Bad condition (DGMB), and the Milk-Good/Dark-Bad condition
(MGDB). The SC-IATs employed only either dark (Dark SC-
IAT) or milk (Milk SC-IAT) chocolate images. The critical blocks
of the SC-IATs were composed of 72 trials each (Karpinski
and Steinman, 2006). The critical blocks of the dark SC-IAT
were the Dark-Good/Bad (DG) condition and the Good/Dark-
Bad (DB) condition. The critical blocks of the milk SC-IAT
were the Milk-Good/Bad (MG) condition and the Good/Milk-Bad
(MB) condition.

After completing the tasks, the experimenter offered a free
chocolate bar—either dark or milk chocolate—to each respondent
as a token for their participation. The choice was recorded after the
participants had left the laboratory.

The original study included the explicit assessment of the
preference for dark or milk chocolate through Likert-type scales.
The explicit assessments were used for supplementary analysis,
where the incremental validity of the IAT and the two SC-IATs with
respect to the prediction of the chocolate choice was investigated
through hierarchical multiple logistic regressions. Results indicated
that the measure provided by any of the implicit measures
employed was useful for predicting the choice when the explicit
evaluations were taken into account. This analysis is not relevant
in the current study, and it was hence not included.

4.3 Data cleaning and D score computation

The IAT was scored with the D4 algorithm in Greenwald et al.
(2003) (i.e., trials > 10,000 ms were discarded, incorrect responses
were replaced by the average response time inflated by a 600 ms
penalty). Positive scores indicate a preference for dark chocolate
over milk chocolate. The SC-IAT was scored according to Karpinski
and Steinman (2006) (i.e., trials < 350 ms were discarded, incorrect
responses were replaced by the average response time inflated by a
450 ms penalty). In both SC-IATs, positive scores indicate a positive
evaluation of the target chocolate. The raw response times of each
trial were used for estimating the log-normal model (i.e., the error
latencies were not assigned any penalty).

In the original paper by Epifania et al. (2020a), the main
objective was to examine how different strategies for handling
outliers and applying error penalties influenced the robustness of
the results. To ensure that these comparisons were meaningful, the
authors also minimized procedural differences in how the implicit
measures were administered. Their findings showed that the choice
of scoring method did not substantially affect the outcomes.
Building on this evidence, in the present study we adopted the
standard scoring procedures for both the IAT and the SC-IAT.
At the same time, our focus is on comparing these measures with
results obtained through an alternative analytic approach, which is
theoretically better equipped to account for both the fully crossed
structure of the implicit measures data and the variability inherent
in the within-subject experimental design.

4.4 Ability-based and speed-based
measures of the IAT effect

This section provides an overview of the information offered
by each model and of the person-level scores that can be computed
from them.

While addressing the implicit measures and associative
conditions variability, Model A3 and Model T3 (see Table 2) allow
for obtaining condition–specific ability and speed estimates for
each respondent, respectively. As such, the IAT effect can be
investigated considering both the accuracy and time performance
of the respondents in each implicit measure by computing
ability-based and speed-based differential measures. However, this
investigation is possible if Model 3 is the best fitting model on both
accuracies and time responses.
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If Model A3 results as the best fitting model on accuracy
responses, ability-based differential measures are computed such
that a positive score indicates: (i) in the IAT, higher ability in the
DGMB condition than in the MGDB one, (ii) in the Dark SC-IAT,
higher ability in the DG rather than DB condition, and (iii) in the
Milk SC-IAT, higher ability in the MG rather than MB condition.
If Model T3 results as the best fitting model on accuracy responses,
speed-based differential measures are computed such that a positive
score indicates: (i) in the IAT, higher speed in DGMB rather than
in MGDB condition, (ii) in the Dark SC-IAT, higher speed in DB
rather than in DG condition, and (iii) in the Milk SC-IAT, higher
speed in MB rather than in MG condition.

If Model 2 or Model 1 result as the best fitting model,
either the measure-specific or overall estimates of the respondents
are obtained.

4.5 Logistic Models for the prediction of
the behavioral outcome

If Models A3 and T3 are the best fitting ones, the ability-based
and speed-based differential measures of the IAT effect can be used
to predict the behavioral outcome. Additionally, their predictive
power can be compared against that of the typical scoring methods.
Besides considering the ability-based and speed-based differential
measures and the typical scoring methods, the linear combination
of their respective single components are used to predict the
behavioral choice. The single components of the ability-based and
speed-based differential measures are the condition–specific ability
and condition–specific speed estimates, respectively, while those of
the typical scoring methods are the average response times in each
associative condition of the implicit measures. Such an analysis
would allow for disentangling the preference mostly involved in
the behavioral choice. Moreover, it has been pointed out that using
differential measures to express the bias due to the associative
conditions of the IAT can lead to unreliable results due the strong
assumptions on which such measures rely (see, e.g., Fiedler et al.,
2006).

In such a scenario, four models can be specified considering
different predictors: (i) linear combination of the typical scoring
methods of each implicit measure, (ii) linear combination of
the condition–specific average response times of each implicit
measure (i.e., single components of the typical scoring methods),
(iii) linear combination of the ability-based and speed-based
differential measures obtained from the model estimates for each
implicit measure, and (iv) linear combination of the condition–
specific ability and speed estimates of each implicit measure
(i.e., single components of the model estimates). The selection
of relevant predictors can be achieved using stepwise regression
techniques. In this case, a forward selection approach is employed,
starting with a null model that includes only the intercept
as the baseline. This null model serves as a reference point
against which all potential predictors are evaluated. Predictors are
then sequentially added to the model based on their statistical
significance and contribution to improving the model’s explanatory
power. Nagelkerke’s R2 Nagelkerke (1991) was computed as
Pseudo R2.

To further understand the combination of predictors that best
accounts for the choice, the following statistics are computed: (i)
proportion of choices correctly identified by the model (model
general accuracy of prediction), (ii) proportion of dark chocolate
choices (DCCs) correctly identified by the model (DCCs accuracy),
and (iii) proportion of milk chocolate choices (MCCs) correctly
identified by the model (MCCs accuracy). The MCC was coded as
1 and the DCC was coded as 0 in the data.

5 Results

5.1 Model comparison

The results of the models fitted on the accuracies and log-time
responses are reported in Table 3.

Model A3 and Model T3 (i.e., the ones addressing the within–
respondent between–condition and implicit measure variability)
showed the least AIC and BIC on both accuracies and log-time
responses, hence resulting as the best fitting ones. These models
allow for the estimation of condition–specific ability (θDGMB[p],
θMGDB[p], θDG[p], θDB[p], θMG[p], θMB[p]) and speed (τDGMB[p],
τMGDB[p], τDG[p], τDB[p], τMG[p],τMB[p]) parameters. As such, ability-
based and speed-based differential measures can be obtained for
each implicit measure.

The results on the fixed effects of Model A3 indicate that
the associative conditions where milk chocolate was associated
with positive attributes and dark chocolate was associated
with negative attributes (i.e., IAT—MGDB, Milk SC-IAT—MG,
Dark SC-IAT—DB) tended to be easier than their respective
counterparts (i.e., IAT—DGMB, Milk SC-IAT—MB, Dark SC-
IAT—DG). Nonetheless, the results on the fixed effects of GLMMs
should be taken with caution unless robust statistics are used to
obtain the p-values (see e.g., Andreella et al., 2025). Similar results
were observed on the log-time responses, such that responses
tended to be faster when milk chocolate was associated with
positive attributes and dark chocolate was associated with negative
attributes than in the respective contrasting conditions. For both
accuracies and log-transformed response times, greater variability
between conditions was observed in the IAT compared to the SC-
IAT, where the coefficients for the associative conditions were more
similar. This suggests that the performance of the respondents is
more strongly influenced by the associative conditions in the IAT
than in the SC-IAT.

5.2 Prediction of the behavioral choice

At the end of the experiment, the 48% of the respondents chose
the milk chocolate bar. In the original study, participants were
unaware of the availability of a chocolate bar during the experiment,
as it was presented only at the very end, after all experimental
procedures had been completed, as a token of participation.
The chocolate bar was offered to all participants. Results of the
models obtained with stepwise logistic regressions are illustrated in
Figure 2.

All models explained about the same proportion of variance,
ranging from 0.12 [Model (ii)] to 0.19 [Model (iv)]. Concerning
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TABLE 3 Results of the model comparison between the models fitted on the accuracies (A) and the log-time responses (T).

Predictors A1 A2 A3 T1 T2 T3

IAT 3.27 (0.08) 3.26 (0.09) −0.24 (0.02) −0.24 (0.02)

Dark SC-IAT 3.21 (0.08) 3.27 (0.09) −0.46 (0.02) −0.46 (0.02)

Milk SC-IAT 3.20 (0.08) 3.25 (0.09) −0.47 (0.02) −0.47 (0.01)

IAT—DGMB 2.92 (0.09) −0.12 (0.02)

IAT—MGDB 4.05 (0.13) −0.36 (0.02)

Dark SC-IAT—DB 3.45 (0.11) −0.47 (0.02)

Dark SC-IAT—DG 3.23 (0.10) −0.45 (0.02)

Milk SC-IAT—MB 3.22 (0.10) −0.45 (0.02)

Milk SC-IAT—MG 3.42 (0.10) −0.50 (0.01)

Observations 62,013 62,013 62,013 62,013 62,013 62,013

Log likelihood −11,490.420 −11,442.900 −11,154.430 −22,305.840 −21,713.150 −19,437.270

AIC 22,990.850 22,905.800 22,364.850 44,623.690 43,448.310 38,932.540

BIC 23,036.020 22,996.150 22,617.830 44,677.900 43,547.700 39,194.560

The columns in gray indicate the best fitting accuracy and response time models according to model comparison. The standard errors are reported between parentheses. DGMB: Dark/Good-
Milk/Bad condition of the IAT, MGDB: Milk/Good-Dark/Bad condition of the IAT, DG: Dark/Good condition of the Dark SC-IAT, DB: Dark/Bad condition of th Dark SC-IAT, MG: Milk/Good
condition of th Milk SC-IAT, MB: Milk/Bad condition of the Milk SC-IAT. All p-values associated to the coefficients of the fixed effects of the GLMMs were < 0.001. The p-values associated
to the coefficients of the fixed effects in LMMs are not reported because of the difficulty in accurately determining the degrees of freedom required for computing the critical t-values (see, e.g.,
Epifania et al., 2024).

FIGURE 2

Predictors left in the models obtained with stepwise logistic regressions: (a) Model resulting from the linear combination of typical scoring methods,
(b) Model resulting from the linear combination of the single components of typical scoring methods, (c) Model resulting from the linear
combination of differential measures obtained from model estimates, and (d) Model resulting from the linear combination of the model estimates.
DGMB: Dark/Good-Milk/Bad condition of the IAT, MGDB: Milk/Good-Dark/Bad condition of the IAT, DG: Dark/Good condition of the Dark SC-IAT,
DB: Dark/Bad condition of the Dark SC-IAT, MG: Milk/Good condition of the Milk SC-IAT, MB: Milk/Bad condition of the Milk SC-IAT.
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the typical scoring methods, both differential measures (i.e., D
score, model (i) in the figure) and single components [model (ii)
in the figure] suggested that only the measures provided by the
IAT are relevant for predicting the behavioral choice, ruling out
the contribution of any of the two SC-IATs. Concerning the model
accuracy of prediction, the models resulted in general accuracies of
.64 (DCC = .62 and MCC = .67) and .62 (DCC = .67 and MCC
= .56), respectively. Differential measures [model (iii) in the figure]
suggested that only the speed-based measure of the IAT is relevant
for predicting the choice. When the single components were taken
into account [model (iv) in the figure], besides the condition–
specific speed parameters of the IAT, also the speed parameter of
the DG condition of the Dark SC-IAT was deemed relevant for
the choice prediction. Importantly, all accuracy-based differential
measures as well as the condition–specific ability estimates for each
implicit measures were excluded from the linear combination of
predictors, suggesting that they do not contribute to the choice
prediction. Both model (iii) and model (iv) appeared to perform
slightly better than model (i), suggesting that the model estimates
can provide a better prediction of the behavioral choice than the
D score. All models except model (ii) resulted in the same general
accuracy (0.64), but achieved it through different combinations of
MCC and DCC accuracy. Model (i) resulted in a DCC accuracy
of 0.62 and in the highest MCC accuracy (0.67), while model (iii)
resulted in the opposite instance (DCC = 0.67, MCC = 0.62).
Finally, the DCC and MCC accuracies provided by model (iv) were
0.65 and 0.63, respectively.

6 Final remarks

Given the rising interest in the investigation of the robustness
and stability of the results in experimental psychology (see, e.g.,
Silberzahn et al., 2018), this study presented the re-analysis of
the data from Epifania et al. (2020a) with a modeling approach
that, differently from the original study, allows for controlling the
sources of variability related to the fully-crossed structure of the
data and to the within-subjects experimental design. Investigating
the predictive power of implicit measures with different statistical
approaches can help in understanding which of the implicit
measures is best able to predict behavioral outcomes, given a
specific context. Although part of the results aligned with the
ones in the original study, the presented approach highlighted
the contribution of one the SC-IATs in the prediction of the
behavioral choice, hence allowing for a deeper understanding of
the choice behavior and of the processes underneath. This result
allowed for speculating that the choice was mostly driven by the
positive evaluation (i.e., preference) for dark chocolate than any
association with milk chocolate. The contribution of the Dark SC-
IAT was lost when typical scoring methods, differential measures,
and single components of typical scoring methods were used for
the prediction.

Considering the pattern of results observed in this study,
different considerations arise. Firstly, given that the measure
provided by the IAT is consistently relevant for predicting choice,
regardless of whether single components, typical scoring methods,
or differential measures are considered, it appears to be the
implicit measure most strongly associated with choice behavior.

At the same time, when the measures provided by the SC-
IATs are analyzed with the appropriate modeling approach, they
reveal additional processes involved in the choice, potentially
leading to a better understanding on the processes involved
in people’s behaviors. Indeed, by aggregating across trials and
ignoring the variability related to the fully-crossed structure,
traditional scoring methods of implicit measures might include
error variance components that can confound the effects of interest.
By explicitly modeling this variability, the modeling framework
proposed in this study allows for more precise estimation of
person-level scores, potentially revealing patterns that standard
scoring methods may miss. These findings might be of particular
relevance for contexts in which implicit measures are used to
shed light on behavior. For example, in intergroup research,
implicit attitudes are often examined in relation to social decision-
making (see Kurdi et al., 2019, for a meta-analysis). While our
study focuses on consumer choice, the proposed approach to the
analysis of implicit measures administered in a within-subjects
design may potentially be adapted to examine whether decisions
in intergroup contexts (e.g., affiliation with stigmatized groups)
are more strongly driven by in-group favoritism or out-group
derogation. Nonetheless, such applications remain speculative until
validated in the specific domains pertaining intergroup relations.
Moreover, implicit attitudes are often used in marketing research to
predict consumer preferences and brand choices (e.g., Brunel et al.,
2004). In these applications as well, the proposed modeling strategy
may contribute to more precise insights, for instance in designing
campaigns for specific targets.

Finally, the presented approach proved its usefulness for the
investigation and comparison of the predictive ability of implicit
measures administered in within-subjects designs. Moreover, the
same approach is feasible for the analysis of other experiments
with fully-crossed structure, such as those for the investigation of
the SNARC effect (see, e.g., Epifania et al., 2024). In this light,
future studies might employ the presented approach for analyzing
and comparing other experiments with fully-crossed structures
administered in within-subject designs.
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