
Frontiers in Psychology 01 frontiersin.org

Reconceptualizing learning 
engagement: evidence for a 
context-sensitive structure in 
STEM education
Eric Trevor McChesney 1*, Christian D. Schunn 2, 
Gerard Dorvè-Lewis 3, Allison Godwin 4 and Linda DeAngelo 3

1 Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States, 
2 Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States, 3 Department of 
Educational Foundations, Organizations, and Policy, University of Pittsburgh, Pittsburgh, PA, United 
States, 4 R.F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 
United States

Understanding student engagement as a psychological construct remains a 
persistent challenge in educational psychology, particularly in higher education 
STEM contexts. Traditional models distinguish engagement into behavioral, cognitive, 
and affective dimensions, yet often overlook how the structure of engagement 
may be shaped by contextualized learning activities. This study introduces and 
tests a novel, activity space-based model of engagement, hypothesizing that 
behavioral and cognitive engagement are organized by the specific academic 
environments in which they occur (e.g., lectures, exams, projects, recitations). 
Applying new engagement survey instruments that were iteratively developed to 
be contextually meaningful, we first present an exploratory factor analysis applied 
to 1,176 students from two different courses and institutions. Then we present a 
confirmatory factor analysis applied to 772 students in a third course. We find that 
a model organized by activity contexts—rather than by behavioral and cognitive 
distinctions—better fits the data and generalizes across STEM disciplines. The findings 
challenge conventional engagement theory and support a reconceptualization 
of engagement as a partially context-sensitive construct. This theoretical shift 
has implications for psychological models of learning and for the design of more 
precise, equitable interventions that address varied patterns of engagement within 
and across STEM domains.
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Introduction

Student engagement is crucial for academic success (Fitzgerald et al., 2012; Laranjeira and 
Teixeira, 2024; Mayhew et  al., 2016), yet its underlying psychological structure remains 
contested (Azevedo, 2015). This issue is particularly critical in science, technology, engineering, 
and mathematics (STEM), where engagement strongly influences outcomes (Grabau and Ma, 
2017; Schmidt et  al., 2018; Sinatra et  al., 2015; Wang et  al., 2016). In higher education, 
foundational STEM courses have high attrition rates, and evince persistent equity gaps 
(Beasley and Fischer, 2012; Fouad et al., 2017; Riegle-Crumb et al., 2019; Seymour and Hunter, 
2019). However, efforts to define and measure learning engagement in a precise, context-
sensitive manner have lagged behind its theorized importance.
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Psychological models typically define engagement as a 
multidimensional construct comprising behavioral, cognitive, and 
affective components (Fredricks et al., 2004). Behavioral engagement 
captures goal-directed actions such as participation and effort; 
cognitive engagement includes metacognitive strategies and deep 
processing; and affective engagement reflects emotional responses 
such as interest or anxiety. These factors are often treated as general, 
trait-like constructs. However, growing evidence suggests engagement 
is not only multidimensional but also dynamically shaped by context 
(Ben-Eliyahu et al., 2018; Kahu, 2013).

In this study, we propose and evaluate a novel perspective: that 
behavioral and cognitive engagement are organized not solely by 
psychological domains, but also by activity spaces—distinct learning 
environments that structure goals, tools, social roles, and norms 
(Bakhurst, 2009; Engeström, 2000). Activity spaces such as lectures, 
exams, group work, and study sessions afford different forms of 
engagement, which may produce meaningful psychological 
distinctions within and across learners. If true, this would suggest 
that the behavioral-cognitive distinction is insufficient on its own to 
explain how engagement manifests in real academic contexts.

To test this hypothesis, we developed and validated an engagement 
scale sensitive to both psychological dimensions and activity contexts. 
We then examined whether student responses reflected the expected 
behavioral-cognitive distinction—or whether engagement patterns 
clustered by activity space. To do so, and to create a stronger 
generalizability argument for our findings across different STEM 
disciplines, we  conducted two studies with samples drawn from 
different STEM courses: engineering and biology. These courses were 
selected due to their distinctly different structures, learning activities, 
and student demographic characteristics. Through exploratory and 
confirmatory factor analyses, we find consistent support for the activity 
space hypothesis.

Our research question is: What is the precise psychological 
structure of behavioral and cognitive engagement in undergraduate 
STEM learning environments? First, using exploratory factor analysis 
(EFA) we analyze data from an active-learning engineering course and 
a large-lecture genetics course. We also report pilot and replication 
studies (Appendix B) that support the generalizability of the findings, 
cognitive interviews (Appendix C), and factor invariance tests 
(Appendix D) that provide evidence for their validity across disciplines. 
Finally, confirmatory factor analysis (CFA) on a novel sample compares 
the model fit of a traditional behavioral-cognitive model to the fit of 
our new space-based model. By situating engagement within activity 
spaces, we aim to expand psychological models of engagement and 
offer more contextually grounded tools for research and intervention.

Review of the literature

What is engagement?

We define engagement as “the intensity of productive 
involvement with an activity” (Ben-Eliyahu et  al., 2018, p. 87), 
which includes facets such as involvement, focus, participation, 
and persistence (Fredricks et al., 2004). We consider motivation as 
the semi-stable student characteristics that interact with learning 
contexts to produce engagement (Ben-Eliyahu et  al., 2018). By 
contrast, engagement varies by context and is shaped by pedagogy, 

demographics, course structure, and task attributes (Kahu, 2013; 
Sinatra et al., 2015; Wang et al., 2016).

Engagement in higher education

Due to the frequent employment of large “grain sizes” of 
measurement (coarse, high-level assessments of general engagement 
as opposed to precise, contextually appropriate assessments, see 
Sinatra et  al., 2015), research on learning engagement in higher 
education often lacks the precision evident in the primary and 
secondary learning engagement literature. Research on engagement 
in K-12 contexts tends to emphasize the multidimensional nature of 
engagement within a psychological framework (Kahu, 2013; Zhoc 
et al., 2019) and focuses on teaching practices associated with positive 
learning outcomes (Kahu, 2013; Krause and Coates, 2008), providing 
pedagogically useful frameworks and tools to educators and 
policymakers. By contrast, much research on engagement in higher 
education emphasizes student behaviors at a more general level (i.e., 
not within a specific learning context) and highlights the student-
institution relationship, where students bear primary responsibility for 
learning and institutions provide support and resources (Coates, 2005; 
Krause and Coates, 2008; Zhoc et al., 2019). Furthermore, greater 
tertiary student autonomy permits more varied engagement strategies 
than in pre-college contexts, especially in STEM (Kahn, 2014). For 
example, an undergraduate could learn and develop quite well via 
independent study and taking exams while eschewing lectures. 
Resultantly, professors and teaching centers desiring to increase 
undergraduate engagement are often left with inadequate guidance. 
This challenge has become especially acute in the context of growing 
undergraduate disengagement from learning (Al-Furaih and 
Al-Awidi, 2021; Allison et al., 2024; Brint and Cantwell, 2012; Cech, 
2014; Chipchase et al., 2017; Greener, 2018; Hockings et al., 2008; Jang 
et al., 2016; McCoy, 2016; Saito and Smith, 2017) and the acceleration 
of this disengagement by the COVID-19 pandemic (Branchu and 
Flaureau, 2022; Newton and Essex, 2024; Walker and Koralesky, 2021). 
To provide educators with more actionable tools for assessing and 
bolstering learning engagement, more research is needed on its 
specific nature within university courses.

Theoretical background

B-C or B/C engagement: Trait, or context?

Within-course engagement is typically conceptualized as a 
multidimensional construct (Appleton et al., 2006; Ben-Eliyahu et al., 
2018; Kahu, 2013; Wang et al., 2016; Zhoc et al., 2019). The affective-
behavioral-cognitive (A-B-C) model is the most empirically supported 
engagement structure (Fredricks et al., 2004). It comprises an affective/
emotional factor, a behavioral factor composed of goal-directed 
actions, and a cognitive factor responsible for processing, thoughts, 
beliefs, and interpretations of the current task. While these factors 
may interact, their structure remains distinct.

Affective engagement reflects students’ emotional responses to 
peers, instructors, the course, the discipline, and the institution. 
Manifestations include interest versus boredom, happiness versus 
sadness, anxiety versus confidence, and pleasure versus discomfort. 
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While affective engagement plays a critical role in student well-being 
(Bowden et al., 2021) and the development of attitudes toward learning 
(Bathgate and Schunn, 2017), it is conceptually and empirically distinct 
from behavioral and cognitive engagement (Flowerday and Schraw, 
2003). Emerging evidence (McChesney et al., 2025) demonstrates 
affective engagement consistently separates from behavioral and 
cognitive dimensions and follows a different structural logic—
organized around emotional valence (positive or negative) rather than 
the activity space-based patterns examined in this study. In line with 
prior work that focuses specifically on behavioral and cognitive 
dimensions to enable more targeted modeling (Poellhuber et al., 2016), 
this study deliberately limits its scope to those two forms. This 
narrowed focus allows for a deeper investigation into how behavioral 
and cognitive engagement are structured by educational activity spaces.

The behavioral domain denotes goal-directed actions that 
support learning and includes on-task behavior, effort, persistence, 
and concentration (Fredricks et al., 2004). Manifestations include 
studying, class attendance, completing activities, and writing papers. 
These behaviors, which vary by course deliverables and structure, 
correlate with academic performance (Wang et al., 2016) and changes 
in self-efficacy and self-esteem (Bathgate and Schunn, 2017; Bowden 
et al., 2021).

The cognitive domain denotes mental effort in pursuit of learning 
outcomes, and includes thoughtfulness, depth of processing, 
development of goals, self-regulation, and metacognitive strategies 
(Fredricks et al., 2004). Manifestations include active reflection upon 
one’s thinking processes and learning strategies, synthesizing 
information from multiple sources, concept mapping, and applying 
conceptual structures to complex information. Cognitive engagement 
has been consistently observed to support academic performance 
(Greene, 2015; Rotgans et al., 2018).

Conceptually, there should be  a strong separation between 
cognitive and behavioral engagement, but empirical evidence on their 
separation has been mixed. Generally, these factors correlate more 
strongly with each other than with affective engagement (Ben-Eliyahu 
et al., 2018; Wang et al., 2016), particularly in secondary education. 
This trend may reflect reciprocal causation (thinking influences action 
and vice-versa). But it may also reflect measurement limitations. For 
example, younger students may struggle to self-assess their cognition 
and, therefore, base responses on behavioral elements (Fredricks et al., 
2004). In addition, in efforts to create instruments with validity 
evidence that have universal educational applicability, survey 
instruments are often focused on instantiations of behavioral and 
cognitive engagement that might poorly match the varied ways 
students can engage in particular contexts. In other words, better 
separation of cognitive and behavioral engagement might occur with 
instruments better tuned to each context. Such limitations highlight 
the need to reassess engagement not as static traits, but as dynamic, 
contextually structured phenomena.

Activity spaces: Structuring learning 
engagement

Learning does not occur in a psychological vacuum. Rather, 
contemporary research acknowledges the importance of task 
characteristics, activity contexts, and environmental affordances in 
shaping learning engagement (Bedenlier et al., 2020; Branchu and 

Flaureau, 2022; Choi et al., 2025; Li and Xue, 2023; Limniou et al., 
2022; Schmidt et al., 2018; Walker and Koralesky, 2021). We synthesize 
these findings through the concept of activity spaces. An activity space 
is a physical, social, cultural, and historical environment that forms 
the domain of specific behaviors (for example, studying for a quiz, 
listening to a lecture, or completing a team project; Bakhurst, 2009). 
The concept is derived from activity theory—a sociological perspective 
developed by Engeström and others into cultural-historical activity 
theory (see Engeström, 2000). Often used in psychological and 
educational research, activity spaces are composed of subjects (a 
student), their objective (studying communally for an exam), available 
tools (textbooks, whiteboards, other mediating artifacts), the 
community (several classmates and their social characteristics), norms 
(active information sharing), and division of labor (one student 
searches the textbook, another reviews notes) (Gyasi et al., 2021). 
Systematic reviews report STEM learning encompasses diverse 
activity spaces—labs, study sessions, coding tasks—each fostering 
distinct engagement behaviors and cognitive strategies (Gyasi et al., 
2021). Research suggests engagement is shaped by activity processes 
(Ben-Eliyahu et al., 2018). Therefore, we argue that activity spaces do 
not merely modulate behavioral and cognitive engagement levels 
-they may shape how engagement is structured psychologically.

Limitations of current engagement 
research

This study addresses key limitations in prior research on 
behavioral-cognitive learning engagement in higher education STEM 
contexts. First, there is a lack of studies that use engagement measures 
capable of directly studying the robustness of engagement’s structure 
across contexts. Some studies use a small pool of items assessing 
generic, decontextualized forms of engagement that could exist in any 
course context and thus, they struggle to capture the ways in which 
engagement might vary across activity spaces within a course. Other 
studies examine engagement within only one specific context rather 
than across contexts. Resultantly, different contexts are assessed with 
distinct item pools, which makes it difficult to determine whether 
differences in engagement are due to genuine contextual variation or 
simply differences in instrumentation. This heterogeneity prevents 
cross-context comparisons, limiting the generalizability of findings 
(Buntins et  al., 2021). Large-grained instruments also frequently 
obscure engagement’s within-course variation, ignoring how students 
may engage differently across activity settings even within a single 
class. Addressing these shortcomings, this study employs a coherent 
item pool tested across multiple STEM contexts selected for their 
disciplinary variability (Granovskiy, 2018; see also Appendices B, D).

Second, many studies use a “large grain size” approach, measuring 
engagement broadly (e.g., institutional-level engagement) rather than 
at a fine-grained level (e.g., a student’s engagement in specific learning 
tasks) (Schmidt et al., 2018; Sinatra et al., 2015). However, fine-grained 
measures are crucial for assessing the psychological underpinnings of 
the learning process—a matter of particular significance for 
researchers, practitioners, and theorists (Azevedo, 2015).

Third, while extensive research acknowledges and examines the 
impact of contextual factors on engagement (Astin, 1993; Lewin, 1936; 
Li and Xue, 2023; Mayhew et al., 2016; Schmidt et al., 2018) this study 
moves beyond the common assumption that the dimensionalityof 
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learning engagement is fixed across contexts. Previous work has 
productively explored context-engagement interactions along axes 
such as in-person versus electronic modalities (Altomonte et  al., 
2016), and how instructional choices shape overall engagement 
intensity (Zhao et al., 2021). However, few studies have tested how 
contextual effects differentially shape specific domains of learning 
engagement. Those that have (Lam et al., 2012; Şeker, 2023) typically 
treat contextual factors as antecedents that moderate engagement in 
particular domains (e.g., behavioral) without considering the internal 
structure within domains or the heterogeneity of context-engagement 
interactions that may occur there. While such approaches explain why 
learning engagement varies by context, this investigation goes further 
by examining how engagement itself is constructed -treating context 
as inseparable from engagement activities.

Finally, much research confounds engagement with its antecedents 
(e.g., motivation; see Ben-Eliyahu et al., 2018) or its consequents (e.g., 
academic achievement; see Kahu, 2013). This conceptual blurring 
obscures engagement’s structure and hinders tests of engagement’s 
internal structure and assessments of its predictive validity (DeVellis, 
2016). This study disentangles these phenomena, clarifying 
engagement’s structure to help researchers generate specific insights and 
enable practitioners to develop more effective engagement strategies.

Exploratory study

Overview

A novel learning engagement instrument was developed to apply 
the BC engagement model in university STEM course contexts (see 
Appendix B for full instrument development details). It was piloted in 
Spring 2022 on 149 engineering students. Confirmatory factor analysis 
revealed the anticipated behavioral-cognitive factor structure did not 
fit the data, while an alternative model including in-exam cognitive 
engagement alongside the two expected factors did. Pursuing this 
unexpected finding, the scale was then iteratively revised and tested 
to better capture variation by activity spaces across economics 
(n = 324), organic chemistry (n = 198), general chemistry 2 (n = 346), 
and engineering (n = 810) contexts (Appendix B). To improve 
instrument quality, identify response errors, and enhance clarity, 
cognitive interviews were conducted with participants from diverse 
STEM fields and sociocultural backgrounds and the findings used to 
strengthen the scale further and contribute to its validity argument 
(Appendix C). We here test the finalized scale in new populations and 
analyze its structure via exploratory factor analyses.

Materials and methods

Participants
The study took place in the Fall of 2023 at two research-intensive 

U. S. institutions: a rural Midwestern university in a first-year 
engineering programming course, and an urban Mid-Atlantic 
university in a second-year genetics course. The engineering course 
emphasized introductory data analysis and programming concepts 
in MATLAB and data-driven decision-making for engineering 
problem-solving. Instruction included a flipped learning classroom 
environment with team-based and paired programming problems 
solved in class, weekly homework assignments, quizzes, and a final 

team coding project. The genetics course covered gene function, 
mutation, evolution, and population genetics, using large lectures, 
smaller recitation sections, and high-stakes exams.

Survey response rates were 80% in engineering (n = 847) and 97% 
in genetics (n = 445). Inattentive responses were identified using an 
attention check item (Barge and Gehlbach, 2012) and removed, 
reducing the analytical sample to n = 774 for engineering and n = 402 
for genetics. The demographic instrument collected detailed race/
ethnicity and gender data. While acknowledging the social 
construction and heterogeneity of racial identities, this study 
aggregates some categories (e.g., Southeast Asian and South Asian as 
“Asian”) to highlight shared STEM marginalization experiences and 
to address power issues in modeling (Ladson-Billings, 2020; Nuñez 
et al., 2023; Wells and Stage, 2015).

In the engineering sample, 51% identified as men, 27% as women, 
and 22% as non-binary or preferring not to respond. Racially, the 
sample was 55% White, 22% Asian, and 9% Latinx. In contrast, the 
genetics sample was 56% women, with 56% White and 33% Asian 
students. These demographics align with U.S. enrollment patterns in 
engineering and genetics (National Center for Education Statistics, 
2023). Full demographics are in Appendix Table A1.

Measures

Engagement
STEM learning engagement was assessed using sub-scales 

measuring cognitive/behavioral dimensions of engagement across 
activity spaces. The scales underwent extensive testing, refinement, 
and validation, including a pilot test, cognitive interviews, and two 
replication studies across multiple disciplines and institutions (see 
Appendices B, C). In total the validation effort included 1,827 students 
from across five courses (including organic and general chemistry, 
macro- and micro-economics, and engineering coding) embedded in 
three institutions that differed in geographic region, research intensity, 
selectivity, and size. Faculty instructors in these diverse contexts 
described their course structures (e.g., lecture, recitation, lab) and 
assessed item suitability for their context.

The scale included two items to assess cognitive focus during exams, 
three for behavioral pre-exam studying, five for cognitive engagement in 
lectures/classes, two for cognitive engagement in group projects, two for 
behavioral engagement in the same, and two for behavioral engagement 
in recitations. Items used a 4-point Likert-type response scale except for 
two behavioral items requiring numerical input. Due to the lack of 
meaningful differences between 4-to-11 point Likert scales (Leung, 
2011), and to reduce survey fatigue, we chose a 4-point scale for most 
items. An example behavioral item is “I spent ___ hours with others on 
my team to complete the group project,” while an example cognitive item 
is “During the latest group assignment, I made sure to understand the 
plan for the project and my role in that plan.” Response options varied 
(e.g., agreement and frequency scales) to improve attentiveness. The full 
instrument and response metrics are in Appendix Tables A2, A3.

Finally, the scale has demonstrated strong measurement invariance 
across contexts (detailed in Appendix D). In brief, the scale was 
administered to a sample of 2,637 students from different STEM majors 
and courses (engineering coding, engineering design, general chemistry, 
genetics), different years in college (first year and post-first year) and from 
two different research-intensive institutions. Multigroup structural 
equation modeling provided measurement coefficients and standard 
errors for each item on its parent factor in each context. We used Wald’s 
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test compare item functioning across groups and found that most items 
in the engagement scale were invariant in these diverse contexts and 
populations. This suggests considerable generalizability of both the 
measurement approach and the underlying phenomena in undergraduate 
STEM contexts.

Demographics
A single “select all that apply” item with 17 response options 

assessed racial/ethnic identities. One item measured gender identities 
via four response options: man, woman, non-binary/gender-queer, 
not listed above (please specify), and prefer not to respond.

Procedure
Data were collected online via Qualtrics, with demographics 

surveyed at the start of the Fall 2023 term and engagement at term end 
prior to final exams. Students received 2 participation points for 
starting the survey. To encourage honest responding, they were 
assured that instructors could not access their data, responses would 
be deidentified, and only aggregate findings would be reported.

Analysis
The data met EFA assumptions, with minimal missing data 

(engineering = 0.1%, genetics = 0.01%). Write-in responses were 
tetrachotimized based on equal observation counts. Distributional 
assumptions were assessed via scatter plot matrices and descriptive 
statistics. While some items showed non-normal skewness/kurtosis, 
assumptions of linearity and unimodality held. Maximum likelihood 
with missing values estimation was used alongside oblique promax 
factor rotation in Stata v.17.

Results

The Kaiser-Meyer-Olkin (K-M-O) test indicated adequate 
sampling for factor analysis (0.73 engineering, 0.82 genetics) (Flora 
and Flake, 2017). Eigenvalue screeplots are in Appendix Figures A1, A2. 
The optimal factor solution was determined using (1) eigenvalues 
larger than 1, (2) scree plot interpretation, (3) rotated factor coherence 
(4) sufficient items per factor, (5) minimal cross-loadings (6) 
minimizing weakly loading (<0.4) items, and (7) theoretical 
interpretability (Flora and Flake, 2017).

In contrast to the expectations of prevailing theory, the data did 
not break down into a two-factor solution composed of (1) behavioral 
and (2) cognitive engagement. Instead, a five-factor solution emerged 
for engineering, consisting of (1) in-exam cognitive focus, (2) in-class 
cognitive strategies, (3) cognitive engagement with group assignments, 
(4) pre-exam studying behaviors, and (5) time spent on group 
assignments. An identical four-factor solution emerged for genetics 
except for the absence of the two group assignment factors (group 
assignments were not part of the course) and the addition of a 
behavioral factor for attending and completing activities in recitations 
(the engineering course did not have recitations). The maximum 
inter-factor correlation was 0.44 for engineering and 0.30 for genetics, 
indicating acceptable factor separation. Rotated factor loadings are in 
Table  1 with replication studies confirming the factor structure 
(Appendix B).

Internal reliability (Cronbach’s α) ranged from 0.69–0.86 
(engineering) and 0.56–0.79 (genetics) (Appendix Table A4). While 

α > 0.60 is generally acceptable for new scales (DeVellis, 2016), 
Cronbach’s α is downwardly biased by brief scale lengths, ordinal 
items, and the assumption of essential tau-equivalence (Raykov, 1997; 
Zumbo et al., 2007). Thus, scholars have identified lower thresholds 
(α > 0.50) as indicating adequate reliability for shorter scales (2–3 
items) (Briggs and Cheek, 1986). Dropped versus loaded items are in 
Appendix Tables A5, A6.

Discussion

Contradicting prevalent theory (Fredricks et  al., 2004), the 
exploratory study provided evidence that behavioral-cognitive 
learning engagement is shaped not only by behavioral-cognitive 
distinctions but also by activity spaces. While findings were 
consistent across two STEM disciplines, small but meaningful 
differences emerged that were aligned with engagement affordances 
(e.g., group assignments) and learning contexts. Replication studies 
(Appendix B) and factorial invariance analysis (Appendix D) further 
support the potential generalizability of the hypothesized structure 
across STEM disciplines and courses. Replications consistently 
showed a clear separation of activity spaces dominated by either 
cognitive or behavioral engagement, with replication studies yielding 
the same factor structures as the main study. These results 
underscore the robustness of the engagement structure across 
STEM contexts.

Confirmatory study

Overview

While EFA revealed a consistent factor structure, such analysis is 
interpretative, and only confirmatory techniques can formally test 
hypothesized models. We administered the scale to a new sample and 
compared the fit of two alternative models: (1) the traditional 
cognitive-behavioral structure and (2) the activity space-based 
structure based on the exploratory study.

Materials and methods

Participants
At a large, public, Mid-Atlantic, research university, all instructors 

and students in an introductory biology course were invited to 
participate, with students earning two extra credit points for opening 
each of the two surveys. The initial response rate was 69% (n = 883) 
with a final analytical sample of 772 after removing inattentive or 
incomplete responses. Participant demographics matched national 
trends (National Center for Education Statistics, 2023) 
(Appendix Table A1).

Measures
Measures were identical to those of the exploratory study with 

one modification. The recitation attendance and activity completion 
items showed limited variance and high skewness (most students 
attended all sessions and completed all activities). These items 
were dichotomized.
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TABLE 1  Rotated factor loadings, organized by location and behavioral (black) vs. cognitive (blue) focus.

Item Engineering design (n = 774) Genetics (n = 402)

Factor 1
In-

Exam 
Focus

Factor 2
Pre-

Exam 
Studying

Factor 3
In-Class

Factor 4
Cog. 

Group 
Assign.

Factor 5
Group 
Assign. 
Time

Factor 1
In-Exam 

Focus

Factor 2
Pre-

Exam 
Studying

Factor 3
In-Class 

Cognition

Factor 4
Recitation 
Behaviors

C14: For the most 

recent test, it was 

easy to pay attention

0.88 0.89

C15: For the most 

recent test, it was 

easy to think clearly

0.90 0.76

B2: While studying 

for the most recent 

exam or midterm 

I spent __ 

reorganizing my 

notes so the big ideas 

were clear

0.72 0.42

B9: I started studying 

for the most recent 

exam [time 

categories]

0.72 0.90

B10: I spent __ hours 

studying alone for 

the most recent 

exam.

0.84 0.40

C5: During class, 

I combined different 

pieces of information 

from the course in 

new ways (topics 

from different weeks, 

etc.)

0.58

C6: During class, 

I made pictures, 

diagrams, charts, or 

other figures to help 

understand the 

course content

0.59 0.54

C8: I always 

summarized new 

[class/lecture] 

material in my own 

words when taking 

notes

0.60 0.68

C9: When I had 

difficulty 

understanding 

[class/lecture] 

material, I marked it 

to come back to later

0.50 0.70

(Continued)
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wherein complete attendance or participation (4) was recoded to 
1, and all other non-missing responses (1–3) recoded to 0. Full items 
and descriptive statistics are in Appendix Table A7.

Procedures
Demographic and engagement data were gathered via Qualtrics 

at the beginning and end of the Spring 2023 term. Survey distribution, 
communications, and incentives were identical to those in the 
exploratory study.

Analysis

Data screening and estimation
Data were assessed for CFA suitability. While no variable 

exceeded |2| skewness or 7 kurtosis, formal skewness and kurtosis 

tests, Shapiro–Wilk tests (Appendix Tables A8, A9), and the 
Doornik-Hansen test of multivariate normality ( ( )χ2

22  = 3058.2, 
p < 0.001) indicated several non-normal distributions necessitating 
nonparametric estimation (e.g., bootstrapping) (Brown, 2015; 
Flora and Flake, 2017). CFA was conducted using maximum 
likelihood estimation with 5,000 bootstrapped standard error 
iterations with resampling at the course section level to control for 
data clustering. Analysis took place in Stata v.18 using the 
sem package.

Model fit evaluation
Degree of misfit was determined by global and absolute fit 

indices, specifically the Comparative Fit Index (CFI), Tucker-
Lewis Index (TLI), root mean squared error of approximation 
(RMSEA), and standardized root mean squared residual (SRMR). 

TABLE 1  (Continued)

Item Engineering design (n = 774) Genetics (n = 402)

Factor 1
In-

Exam 
Focus

Factor 2
Pre-

Exam 
Studying

Factor 3
In-Class

Factor 4
Cog. 

Group 
Assign.

Factor 5
Group 
Assign. 
Time

Factor 1
In-Exam 

Focus

Factor 2
Pre-

Exam 
Studying

Factor 3
In-Class 

Cognition

Factor 4
Recitation 
Behaviors

C10: I focused on 

understanding the 

diagrams, charts, and 

figures presented in 

the [class/lecture]

0.48 0.59

C11: During the 

latest group 

assignment, I made 

sure to understand 

the plan for the 

project and my role 

in that plan

0.73

C12: I was able to 

stay mentally 

focused while 

completing my part 

of the project

0.92

B12: I spent ___ 

hours with others on 

my team to complete 

the group project

0.67

B13: I spent ___ 

hours on my own 

working on the team 

project

0.44

B3: I have attended 

___ of the recitations 

so far

0.48

B5: I completed ___ 

of the activities 

we were given in 

recitation

0.96

Average variance 

extracted

0.79 0.58 0.30 0.69 0.32 0.68 0.38 0.40 0.58

Item loadings <0.40 are not shown. Gray cells indicated expected loadings based upon factor and item content. The strongest loadings (>0.6) are bold.
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Following West et al. (2012), for this sample size and application, 
an acceptable fit was defined as CFI and TLI above 0.90, RMSEA 
below 0.08 and SRMR below 0.10; and good fit was defined as CFI 
and TLI above 0.95, RMSEA below 0.05, and SRMR below 0.08. 
The coefficient of determination (CD) ranges from 0 to 1 and 
measures variance explained with higher values indicating better 
explanatory models.

Tested models
Two hypothesized structures were tested. The first was the 

traditional behavioral-cognitive structure with all five behavioral 
items loading on the single latent behavioral factor and all six cognitive 
items loading on the cognitive factor. The second model tested the 
EFA-derived emergent structure based on spaces of engagement. Four 
spaces were hypothesized: pre-exam studying behavior (three items), 
recitation behavior (two items), in-exam focus cognition (two items), 
and lecture cognition (four items).

Model refinement
Initial models constrained latent factors orthogonally with 

unique item error terms and uncorrelated residuals. We evaluated 
model fit, then examined standardized residual matrices to detect 
unmodeled item-factor or factor-factor relationships and 
modification indices to evaluate fit improvements from added 
correlations. Based on these considerations, prior research, and 
theoretical guidance, single inter-factor correlations were added 
until each model was optimized.

Results

The traditional behavioral-cognitive model failed to provide an 
acceptable fit to the data (CFI = 0.68; TLI = 0.60; RMSEA = 0.118, 
[90% CI = 0.109, 0.127, p-RMSEA < 0.05 = 0.000]; SRMR = 0.105; 
CD = 0.94). Adding covariance paths did not improve model fit, and 
factor loadings were weak, with one behavioral item not significantly 
loading onto its latent factor (Appendix Figure A3; 
Appendix Table A10; Brown, 2015; Flora and Flake, 2017; Kline and 
Little, 2023). This notable lack of fit to the data implies the traditional 
behavioral-cognitive model does not accurately describe the fine-
grained structure of engagement.

Contrarily, the activity space model showed adequate-to-good 
fit (CFI = 0.94; TLI = 0.92; RMSEA = 0.054, [90% CI = 0.043, 0.064, 
p-RMSEA < 0.05 = 0.275]; SRMR = 0.048; CD = 1.00, Figure 1). The 
best-fitting model included significant covariance between all latent 
factors except exam studying and exam focus. This model also had 
the strongest TLI and RMSEA values (metrics that penalize 
overfitting). Unlike the behavioral-cognitive model, all standardized 
factor loadings were statistically significant (Table  2). The much 
superior fit and strong parsimony-focused metrics indicate this 
model better explains the observed structure of behavioral-cognitive 
engagement, and that its increased complexity is justified (Flora and 
Flake, 2017).

These results indicate a purely behavioral-cognitive model fails to 
capture the complexity of learning engagement, whereas activity 
spaces provide a more empirically robust explanation. Findings 
support a fundamental shift in engagement conceptualization and 
suggest potential cross-disciplinary generalizability.

General discussion

Interpretation

These two studies challenge existing paradigms by demonstrating 
that, contrary to prevailing theory (Fredricks et al., 2004), behavioral 
and cognitive engagement may not operate as distinct psychological 
traits, but rather as emergent properties structured by students’ activity 
contexts. Addressing our research question, in the examined courses 
behavioral and cognitive learning engagement’s structure consisted of a 
consistent core of factors (in-lecture cognition, in-exam cognitive focus, 
and exam studying behaviors) accompanied by context-dependent 
factors that emerge when their concomitant activity spaces are available 
(discussion/recitation behaviors, group assignment behaviors, and 
group assignment cognition). The spontaneous emergence of this factor 
structure in EFAs and its fit to the data in the CFA model, as well as the 
non-emergence of unified behavioral and cognitive factors in the EFA 
and the severe lack of fit of the same in the CFA suggest the traditional 
behavioral-cognitive model of learning engagement is insufficient to 
describe contextualized engagement and should be reconsidered.

The findings call for an ecological perspective on learning 
engagement, extending beyond classroom dynamics to capture the full 
academic experience. Our findings indicate engagement is not merely 
multidimensional as suggested by prior studies (Appleton et al., 2006; 
Ben-Eliyahu et al., 2018; Zhoc et al., 2019). Rather, it is a partially-
context-based dynamic structure with certain features that are stable 
across different populations, settings, and pedagogical approaches. 
This finding substantially extends previous work on the situatedness 
of learning engagement (Altomonte et al., 2016; Lam et al., 2012; Şeker, 
2023; Zhao et al., 2021), suggesting potential inseparability between 
learning engagement and the contexts in which it occurs. Partially 
addressing calls for the same (see Azevedo, 2015), a more sophisticated 
and contextually-appropriate understanding of this psychological 
structure could support more effective interventions and pedagogy, 
helping address opportunity gaps for minoritized and underprepared 
students and advancing STEM equity efforts (Beasley and Fischer, 
2012; Estrada et al., 2016; Museus et al., 2011; Witherspoon et al., 2019).

Limitations and future work

Our findings regarding cognitive versus behavioral dominance 
within engagement spaces may be  influenced by survey item 
selection. The interdisciplinary research team designed items for 
theoretical and contextual relevance and validated them through 
extensive cognitive interviews with diverse participants (see 
Appendix C). However, further research is needed to determine 
whether alternative item pools would yield different factor structures.

The low inter-factor correlations among engagement spaces 
(0.06–0.54) raise important questions: Do these factors represent 
distinct skills, preferences, or both?; How can engagement theory 
evolve to better explain these observed structures?; and Do differences 
in factor loadings across courses reflect differences in course structure 
or student populations?

The engagement scale developed here provides a tool for testing 
whether specific forms of cognitive and behavioral engagement matter 
more than overall engagement levels for outcomes like performance, 
retention, and cognitive development (Schmidt et al., 2018). Analyzing 
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how students engage in different contexts (including those not assessed 
here, e.g., labs) could help explain learning outcome variability among 
otherwise similar students and inform targeted interventions to 
enhance student success (Estrada et al., 2016; Riegle-Crumb et al., 2019).

Future research should explore how engagement patterns evolve 
across developmental stages, aiding efforts to support learners through 
key transition points associated with attrition (Akiha et al., 2018). 
Furthermore, testing how stable factors like in-class cognitive 
engagement are across different pedagogies, disciplinary groupings 
(e.g., humanities), and institutions will produce a clearer view of how 
generalizable the observed factor structure is. As our sample was 
drawn from selective, research-intensive institutions, it is an open 
question whether this structure will generalize to courses with high 
disengagement (e.g., STEM courses for non-majors), less selective 
institutions, and teaching-focused institutions. Another open question 
is whether psychological traits (e.g., metacognitive skill, motivation, 
or anxiety) moderate engagement within different spaces. Finally, 
linking these engagement structures to downstream outcomes—such 
as academic persistence, conceptual learning, or identity 
development—would further clarify their psychological function.

Implications

Psychometrically, our findings suggest that engagement should 
not be measured with generic scales divorced from activity context. 
Instruments must be designed or interpreted with awareness of the 
environments in which engagement occurs. Practically, this has 
important implications: given the minimal covariation between 
engagement spaces, instructors should build multiple pathways to 

engagement to accommodate diverse learning approaches. Students 
engaged in one domain may not engage in others, so teaching 
strategies should broaden engagement opportunities to foster 
inclusion and persistence in STEM and remove barriers to high-
impact spaces of engagement. For example, recent studies report 
behavioral engagement in discussion/recitation spaces are critical to 
academic success (McChesney et al., 2025), but these sessions remain 
poorly attended. Diversifying engagement strategies may particularly 
benefit marginalized students, who face multiple challenges that could 
lead to disengagement from STEM (Barbatis, 2010; McGee et al., 2021; 
Museus et  al., 2011). Finally, practitioners might use the factor 
structure and instrument presented here to precisely evaluate and 
address spaces of low engagement in their courses, enacting targeted 
interventions to counteract growing student disengagement (Allison 
et al., 2024; Newton and Essex, 2024).

Conclusion

This study challenges prevailing models of learning engagement 
by demonstrating that behavioral and cognitive engagement are 
structured not only by psychological domain, but also by the specific 
learning contexts—or activity spaces—in which they occur, revealing 
that context not only shapes engagement intensity, but dimensionality 
as well. Across multiple university STEM courses, factor analyses 
consistently revealed that engagement patterns aligned with discrete 
educational settings (e.g., lectures, exams, group work), rather than 
mapping cleanly onto traditional behavioral-cognitive dimensions. 
These findings support a reconceptualization of engagement as a 
context-sensitive psychological construct: shaped by how learners 

FIGURE 1

Standardized CFA results of the spaces of engagement hypothesized structure.
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interact with the structural, social, and cognitive demands of academic 
environments. Rather than treating behavioral and cognitive 
engagement as stable traits or general tendencies, our results suggest 
they are emergent, partially modular responses to learning settings.

This refined model of engagement has implications for 
psychological theory, measurement design, and educational practice. 
Theoretically, it bridges ecological and cognitive perspectives on 
learning by highlighting how engagement processes are distributed 
across contexts. Methodologically, it calls for more precise, context-
aware instruments to capture the complexity of engagement. 
Practically, it encourages instructors and institutions to broaden the 

range of engagement opportunities in their courses, especially those 
known to influence retention and success among marginalized learners.

By grounding engagement in the affordances of activity spaces, 
this study advances a more ecologically valid and psychologically 
meaningful understanding of how students engage with learning—
and how that engagement can be measured, supported, and sustained.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Institutional 
Review Board of the University of Pittsburgh. The studies were 
conducted in accordance with the local legislation and institutional 
requirements. The participants provided their written informed 
consent to participate in this study.

Author contributions

EM: Data curation, Visualization, Formal analysis, Validation, 
Investigation, Writing – review & editing, Conceptualization, Writing – 
original draft, Methodology. CS: Project administration, Validation, 
Conceptualization, Supervision, Resources, Funding acquisition, 
Methodology, Writing – original draft, Writing – review & editing, 
Investigation. GD-L: Investigation, Writing – review & editing, Writing – 
original draft, Formal analysis. AG: Funding acquisition, Resources, 
Writing – review & editing. LD: Funding acquisition, Writing – review 
& editing, Supervision, Writing – original draft, Resources.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This material is based upon 
work supported by the National Science Foundation under Grant 
Number 2111114/2111513 and IES award #R305A210167. Any 
opinions, findings, and conclusions or recommendations expressed in 
this material are those of the author(s) and do not necessarily reflect 
the views of the National Science Foundation or Institute of 
Education Sciences.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

TABLE 2  Standardized path coefficients of the spaces of engagement 
model (n = 772).

Variable path Coefficient Bootstrapped 
standard error

p

Exam studying→

 � B-exam studying 1 0.53 0.023 0.000

 � B-exam studying 2 0.54 0.029 0.000

 � B-exam studying 3 0.65 0.048 0.000

Recitation→

 � B-recitation 1 0.33 0.167 0.049

 � B-recitation 2 1.00 0.074 0.000

Exam focus→

 � C-exam focus 1 0.85 0.067 0.000

 � C-exam focus 2 0.86 0.057 0.000

Lecture→

 � C-lecture 1 0.57 0.024 0.000

 � C-lecture 2 0.59 0.059 0.000

 � C-lecture 3 0.54 0.027 0.000

 � C-lecture 4 0.58 0.044 0.000

Covariances

 � Lecture ↔ Recitation 0.16 0.041 0.000

 � Lecture ↔ Exam focus 0.42 0.035 0.000

 � Lecture ↔ Exam 

studying

0.25 0.032 0.000

 � Recitation ↔ Exam 

focus

0.11 0.048 0.019

 � Recitation ↔ Exam 

studying

0.19 0.054 0.001

Error variances

 � B-exam studying 1 0.72 0.025 –

 � B-exam studying 2 0.70 0.031 –

 � B-exam studying 3 0.58 0.062 –

 � B-recitation 1 0.89 0.110 –

 � B-recitation 2 0.01 0.148 –

 � C-exam focus 1 0.28 0.114 –

 � C-exam focus 2 0.26 0.099 –

 � C-lecture 1 0.68 0.027 –

 � C-lecture 2 0.65 0.069 –

 � C-lecture 3 0.70 0.030 –

 � C-lecture 4 0.67 0.050 –
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