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Understanding student engagement as a psychological construct remains a
persistent challenge in educational psychology, particularly in higher education
STEM contexts. Traditional models distinguish engagement into behavioral, cognitive,
and affective dimensions, yet often overlook how the structure of engagement
may be shaped by contextualized learning activities. This study introduces and
tests a novel, activity space-based model of engagement, hypothesizing that
behavioral and cognitive engagement are organized by the specific academic
environments in which they occur (e.g., lectures, exams, projects, recitations).
Applying new engagement survey instruments that were iteratively developed to
be contextually meaningful, we first present an exploratory factor analysis applied
to 1,176 students from two different courses and institutions. Then we present a
confirmatory factor analysis applied to 772 students in a third course. We find that
a model organized by activity contexts—rather than by behavioral and cognitive
distinctions—better fits the data and generalizes across STEM disciplines. The findings
challenge conventional engagement theory and support a reconceptualization
of engagement as a partially context-sensitive construct. This theoretical shift
has implications for psychological models of learning and for the design of more
precise, equitable interventions that address varied patterns of engagement within
and across STEM domains.

KEYWORDS

engagement, learning, STEM - science technology engineering mathematics, ABC
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Introduction

Student engagement is crucial for academic success (Fitzgerald et al., 2012; Laranjeira and
Teixeira, 2024; Mayhew et al., 2016), yet its underlying psychological structure remains
contested (Azevedo, 2015). This issue is particularly critical in science, technology, engineering,
and mathematics (STEM), where engagement strongly influences outcomes (Grabau and Ma,
20175 Schmidt et al., 2018; Sinatra et al., 2015; Wang et al., 2016). In higher education,
foundational STEM courses have high attrition rates, and evince persistent equity gaps
(Beasley and Fischer, 2012; Fouad et al., 2017; Riegle-Crumb et al., 2019; Seymour and Hunter,
2019). However, efforts to define and measure learning engagement in a precise, context-
sensitive manner have lagged behind its theorized importance.
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Psychological models typically define engagement as a
multidimensional construct comprising behavioral, cognitive, and
affective components (Fredricks et al., 2004). Behavioral engagement
captures goal-directed actions such as participation and effort;
cognitive engagement includes metacognitive strategies and deep
processing; and affective engagement reflects emotional responses
such as interest or anxiety. These factors are often treated as general,
trait-like constructs. However, growing evidence suggests engagement
is not only multidimensional but also dynamically shaped by context
(Ben-Eliyahu et al., 2018; Kahu, 2013).

In this study, we propose and evaluate a novel perspective: that
behavioral and cognitive engagement are organized not solely by
psychological domains, but also by activity spaces—distinct learning
environments that structure goals, tools, social roles, and norms
(Bakhurst, 2009; Engestrom, 2000). Activity spaces such as lectures,
exams, group work, and study sessions afford different forms of
engagement, which may produce meaningful psychological
distinctions within and across learners. If true, this would suggest
that the behavioral-cognitive distinction is insufficient on its own to
explain how engagement manifests in real academic contexts.

To test this hypothesis, we developed and validated an engagement
scale sensitive to both psychological dimensions and activity contexts.
We then examined whether student responses reflected the expected
behavioral-cognitive distinction—or whether engagement patterns
clustered by activity space. To do so, and to create a stronger
generalizability argument for our findings across different STEM
disciplines, we conducted two studies with samples drawn from
different STEM courses: engineering and biology. These courses were
selected due to their distinctly different structures, learning activities,
and student demographic characteristics. Through exploratory and
confirmatory factor analyses, we find consistent support for the activity
space hypothesis.

Our research question is: What is the precise psychological
structure of behavioral and cognitive engagement in undergraduate
STEM learning environments? First, using exploratory factor analysis
(EFA) we analyze data from an active-learning engineering course and
a large-lecture genetics course. We also report pilot and replication
studies (Appendix B) that support the generalizability of the findings,
cognitive interviews (Appendix C), and factor invariance tests
(Appendix D) that provide evidence for their validity across disciplines.
Finally, confirmatory factor analysis (CFA) on a novel sample compares
the model fit of a traditional behavioral-cognitive model to the fit of
our new space-based model. By situating engagement within activity
spaces, we aim to expand psychological models of engagement and
offer more contextually grounded tools for research and intervention.

Review of the literature
What is engagement?

We define engagement as “the intensity of productive
involvement with an activity” (Ben-Eliyahu et al., 2018, p. 87),
which includes facets such as involvement, focus, participation,
and persistence (Fredricks et al., 2004). We consider motivation as
the semi-stable student characteristics that interact with learning
contexts to produce engagement (Ben-Eliyahu et al., 2018). By
contrast, engagement varies by context and is shaped by pedagogy,
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demographics, course structure, and task attributes (Kahu, 2013;
Sinatra et al., 2015; Wang et al., 2016).

Engagement in higher education

Due to the frequent employment of large “grain sizes” of
measurement (coarse, high-level assessments of general engagement
as opposed to precise, contextually appropriate assessments, see
Sinatra et al, 2015), research on learning engagement in higher
education often lacks the precision evident in the primary and
secondary learning engagement literature. Research on engagement
in K-12 contexts tends to emphasize the multidimensional nature of
engagement within a psychological framework (Kahu, 2013; Zhoc
etal, 2019) and focuses on teaching practices associated with positive
learning outcomes (Kahu, 2013; Krause and Coates, 2008), providing
pedagogically useful frameworks and tools to educators and
policymakers. By contrast, much research on engagement in higher
education emphasizes student behaviors at a more general level (i.e.,
not within a specific learning context) and highlights the student-
institution relationship, where students bear primary responsibility for
learning and institutions provide support and resources (Coates, 2005;
Krause and Coates, 2008; Zhoc et al., 2019). Furthermore, greater
tertiary student autonomy permits more varied engagement strategies
than in pre-college contexts, especially in STEM (Kahn, 2014). For
example, an undergraduate could learn and develop quite well via
independent study and taking exams while eschewing lectures.
Resultantly, professors and teaching centers desiring to increase
undergraduate engagement are often left with inadequate guidance.
This challenge has become especially acute in the context of growing
undergraduate disengagement from learning (Al-Furaih and
Al-Awidi, 2021; Allison et al., 2024; Brint and Cantwell, 2012; Cech,
2014; Chipchase et al., 2017; Greener, 2018; Hockings et al., 2008; Jang
etal, 2016; McCoy, 2016; Saito and Smith, 2017) and the acceleration
of this disengagement by the COVID-19 pandemic (Branchu and
Flaureau, 2022; Newton and Essex, 2024; Walker and Koralesky, 2021).
To provide educators with more actionable tools for assessing and
bolstering learning engagement, more research is needed on its
specific nature within university courses.

Theoretical background
B-C or B/C engagement: Trait, or context?

Within-course engagement is typically conceptualized as a
multidimensional construct (Appleton et al., 2006; Ben-Eliyahu et al,,
2018; Kahu, 2013; Wang et al., 2016; Zhoc et al., 2019). The affective-
behavioral-cognitive (A-B-C) model is the most empirically supported
engagement structure (Fredricks et al,, 2004). It comprises an affective/
emotional factor, a behavioral factor composed of goal-directed
actions, and a cognitive factor responsible for processing, thoughts,
beliefs, and interpretations of the current task. While these factors
may interact, their structure remains distinct.

Affective engagement reflects students’ emotional responses to
peers, instructors, the course, the discipline, and the institution.
Manifestations include interest versus boredom, happiness versus
sadness, anxiety versus confidence, and pleasure versus discomfort.
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While affective engagement plays a critical role in student well-being
(Bowden etal.,, 2021) and the development of attitudes toward learning
(Bathgate and Schunn, 2017), it is conceptually and empirically distinct
from behavioral and cognitive engagement (Flowerday and Schraw,
2003). Emerging evidence (McChesney et al., 2025) demonstrates
affective engagement consistently separates from behavioral and
cognitive dimensions and follows a different structural logic—
organized around emotional valence (positive or negative) rather than
the activity space-based patterns examined in this study. In line with
prior work that focuses specifically on behavioral and cognitive
dimensions to enable more targeted modeling (Poellhuber et al., 2016),
this study deliberately limits its scope to those two forms. This
narrowed focus allows for a deeper investigation into how behavioral
and cognitive engagement are structured by educational activity spaces.

The behavioral domain denotes goal-directed actions that
support learning and includes on-task behavior, effort, persistence,
and concentration (Fredricks et al., 2004). Manifestations include
studying, class attendance, completing activities, and writing papers.
These behaviors, which vary by course deliverables and structure,
correlate with academic performance (Wang et al., 2016) and changes
in self-efficacy and self-esteem (Bathgate and Schunn, 2017; Bowden
et al., 2021).

The cognitive domain denotes mental effort in pursuit of learning
outcomes, and includes thoughtfulness, depth of processing,
development of goals, self-regulation, and metacognitive strategies
(Fredricks et al., 2004). Manifestations include active reflection upon
one’s thinking processes and learning strategies, synthesizing
information from multiple sources, concept mapping, and applying
conceptual structures to complex information. Cognitive engagement
has been consistently observed to support academic performance
(Greene, 2015; Rotgans et al., 2018).

Conceptually, there should be a strong separation between
cognitive and behavioral engagement, but empirical evidence on their
separation has been mixed. Generally, these factors correlate more
strongly with each other than with affective engagement (Ben-Eliyahu
etal, 2018; Wang et al., 2016), particularly in secondary education.
This trend may reflect reciprocal causation (thinking influences action
and vice-versa). But it may also reflect measurement limitations. For
example, younger students may struggle to self-assess their cognition
and, therefore, base responses on behavioral elements (Fredricks et al.,
2004). In addition, in efforts to create instruments with validity
evidence that have universal educational applicability, survey
instruments are often focused on instantiations of behavioral and
cognitive engagement that might poorly match the varied ways
students can engage in particular contexts. In other words, better
separation of cognitive and behavioral engagement might occur with
instruments better tuned to each context. Such limitations highlight
the need to reassess engagement not as static traits, but as dynamic,
contextually structured phenomena.

Activity spaces: Structuring learning
engagement

Learning does not occur in a psychological vacuum. Rather,
contemporary research acknowledges the importance of task
characteristics, activity contexts, and environmental affordances in
shaping learning engagement (Bedenlier et al., 2020; Branchu and
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Flaureau, 2022; Choi et al., 2025; Li and Xue, 2023; Limniou et al.,
2022; Schmidt et al., 2018; Walker and Koralesky, 2021). We synthesize
these findings through the concept of activity spaces. An activity space
is a physical, social, cultural, and historical environment that forms
the domain of specific behaviors (for example, studying for a quiz,
listening to a lecture, or completing a team project; Bakhurst, 2009).
The concept is derived from activity theory—a sociological perspective
developed by Engestrom and others into cultural-historical activity
theory (see Engestrom, 2000). Often used in psychological and
educational research, activity spaces are composed of subjects (a
student), their objective (studying communally for an exam), available
tools (textbooks, whiteboards, other mediating artifacts), the
community (several classmates and their social characteristics), norms
(active information sharing), and division of labor (one student
searches the textbook, another reviews notes) (Gyasi et al., 2021).
Systematic reviews report STEM learning encompasses diverse
activity spaces—labs, study sessions, coding tasks—each fostering
distinct engagement behaviors and cognitive strategies (Gyasi et al.,
2021). Research suggests engagement is shaped by activity processes
(Ben-Eliyahu et al., 2018). Therefore, we argue that activity spaces do
not merely modulate behavioral and cognitive engagement levels
-they may shape how engagement is structured psychologically.

Limitations of current engagement
research

This study addresses key limitations in prior research on
behavioral-cognitive learning engagement in higher education STEM
contexts. First, there is a lack of studies that use engagement measures
capable of directly studying the robustness of engagement’s structure
across contexts. Some studies use a small pool of items assessing
generic, decontextualized forms of engagement that could exist in any
course context and thus, they struggle to capture the ways in which
engagement might vary across activity spaces within a course. Other
studies examine engagement within only one specific context rather
than across contexts. Resultantly, different contexts are assessed with
distinct item pools, which makes it difficult to determine whether
differences in engagement are due to genuine contextual variation or
simply differences in instrumentation. This heterogeneity prevents
cross-context comparisons, limiting the generalizability of findings
(Buntins et al., 2021). Large-grained instruments also frequently
obscure engagement’s within-course variation, ignoring how students
may engage differently across activity settings even within a single
class. Addressing these shortcomings, this study employs a coherent
item pool tested across multiple STEM contexts selected for their
disciplinary variability (Granovskiy, 2018; see also Appendices B, D).

Second, many studies use a “large grain size” approach, measuring
engagement broadly (e.g., institutional-level engagement) rather than
at a fine-grained level (e.g., a student’s engagement in specific learning
tasks) (Schmidt et al., 2018; Sinatra et al., 2015). However, fine-grained
measures are crucial for assessing the psychological underpinnings of
the learning process—a matter of particular significance for
researchers, practitioners, and theorists (Azevedo, 2015).

Third, while extensive research acknowledges and examines the
impact of contextual factors on engagement (Astin, 1993; Lewin, 1936;
Li and Xue, 2023; Mayhew et al., 2016; Schmidt et al., 2018) this study
moves beyond the common assumption that the dimensionalityof
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learning engagement is fixed across contexts. Previous work has
productively explored context-engagement interactions along axes
such as in-person versus electronic modalities (Altomonte et al.,
2016), and how instructional choices shape overall engagement
intensity (Zhao et al., 2021). However, few studies have tested how
contextual effects differentially shape specific domains of learning
engagement. Those that have (Lam et al., 2012; Seker, 2023) typically
treat contextual factors as antecedents that moderate engagement in
particular domains (e.g., behavioral) without considering the internal
structure within domains or the heterogeneity of context-engagement
interactions that may occur there. While such approaches explain why
learning engagement varies by context, this investigation goes further
by examining how engagement itself is constructed -treating context
as inseparable from engagement activities.

Finally, much research confounds engagement with its antecedents
(e.g., motivation; see Ben-Eliyahu et al., 2018) or its consequents (e.g.,
academic achievement; see Kahu, 2013). This conceptual blurring
obscures engagement’s structure and hinders tests of engagement’s
internal structure and assessments of its predictive validity (DeVellis,
2016). This study disentangles these phenomena, clarifying
engagement’s structure to help researchers generate specific insights and
enable practitioners to develop more effective engagement strategies.

Exploratory study
Overview

A novel learning engagement instrument was developed to apply
the BC engagement model in university STEM course contexts (see
Appendix B for full instrument development details). It was piloted in
Spring 2022 on 149 engineering students. Confirmatory factor analysis
revealed the anticipated behavioral-cognitive factor structure did not
fit the data, while an alternative model including in-exam cognitive
engagement alongside the two expected factors did. Pursuing this
unexpected finding, the scale was then iteratively revised and tested
to better capture variation by activity spaces across economics
(n = 324), organic chemistry (n = 198), general chemistry 2 (n = 346),
and engineering (n =810) contexts (Appendix B). To improve
instrument quality, identify response errors, and enhance clarity,
cognitive interviews were conducted with participants from diverse
STEM fields and sociocultural backgrounds and the findings used to
strengthen the scale further and contribute to its validity argument
(Appendix C). We here test the finalized scale in new populations and
analyze its structure via exploratory factor analyses.

Materials and methods

Participants

The study took place in the Fall of 2023 at two research-intensive
U. S. institutions: a rural Midwestern university in a first-year
engineering programming course, and an urban Mid-Atlantic
university in a second-year genetics course. The engineering course
emphasized introductory data analysis and programming concepts
in MATLAB and data-driven decision-making for engineering
problem-solving. Instruction included a flipped learning classroom
environment with team-based and paired programming problems
solved in class, weekly homework assignments, quizzes, and a final
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team coding project. The genetics course covered gene function,
mutation, evolution, and population genetics, using large lectures,
smaller recitation sections, and high-stakes exams.

Survey response rates were 80% in engineering (n = 847) and 97%
in genetics (n = 445). Inattentive responses were identified using an
attention check item (Barge and Gehlbach, 2012) and removed,
reducing the analytical sample to n = 774 for engineering and n = 402
for genetics. The demographic instrument collected detailed race/
ethnicity and gender data. While acknowledging the social
construction and heterogeneity of racial identities, this study
aggregates some categories (e.g., Southeast Asian and South Asian as
“Asian”) to highlight shared STEM marginalization experiences and
to address power issues in modeling (Ladson-Billings, 2020; Nufez
et al., 2023; Wells and Stage, 2015).

In the engineering sample, 51% identified as men, 27% as women,
and 22% as non-binary or preferring not to respond. Racially, the
sample was 55% White, 22% Asian, and 9% Latinx. In contrast, the
genetics sample was 56% women, with 56% White and 33% Asian
students. These demographics align with U.S. enrollment patterns in
engineering and genetics (National Center for Education Statistics,
2023). Full demographics are in Appendix Table Al.

Measures

Engagement

STEM learning engagement was assessed using sub-scales
measuring cognitive/behavioral dimensions of engagement across
activity spaces. The scales underwent extensive testing, refinement,
and validation, including a pilot test, cognitive interviews, and two
replication studies across multiple disciplines and institutions (see
Appendices B, C). In total the validation effort included 1,827 students
from across five courses (including organic and general chemistry,
macro- and micro-economics, and engineering coding) embedded in
three institutions that differed in geographic region, research intensity,
selectivity, and size. Faculty instructors in these diverse contexts
described their course structures (e.g., lecture, recitation, lab) and
assessed item suitability for their context.

The scale included two items to assess cognitive focus during exams,
three for behavioral pre-exam studying, five for cognitive engagement in
lectures/classes, two for cognitive engagement in group projects, two for
behavioral engagement in the same, and two for behavioral engagement
in recitations. Items used a 4-point Likert-type response scale except for
two behavioral items requiring numerical input. Due to the lack of
meaningful differences between 4-to-11 point Likert scales (Leung,
2011), and to reduce survey fatigue, we chose a 4-point scale for most
items. An example behavioral item is “I spent ___hours with others on
my team to complete the group project,” while an example cognitive item
is “During the latest group assignment, I made sure to understand the
plan for the project and my role in that plan” Response options varied
(e.g., agreement and frequency scales) to improve attentiveness. The full
instrument and response metrics are in Appendix Tables A2, A3.

Finally, the scale has demonstrated strong measurement invariance
across contexts (detailed in Appendix D). In brief, the scale was
administered to a sample of 2,637 students from different STEM majors
and courses (engineering coding, engineering design, general chemistry,
genetics), different years in college (first year and post-first year) and from
two different research-intensive institutions. Multigroup structural
equation modeling provided measurement coefficients and standard
errors for each item on its parent factor in each context. We used Wald’s
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test compare item functioning across groups and found that most items
in the engagement scale were invariant in these diverse contexts and
populations. This suggests considerable generalizability of both the
measurement approach and the underlying phenomena in undergraduate
STEM contexts.

Demographics

A single “select all that apply” item with 17 response options
assessed racial/ethnic identities. One item measured gender identities
via four response options: man, woman, non-binary/gender-queer,
not listed above (please specify), and prefer not to respond.

Procedure

Data were collected online via Qualtrics, with demographics
surveyed at the start of the Fall 2023 term and engagement at term end
prior to final exams. Students received 2 participation points for
starting the survey. To encourage honest responding, they were
assured that instructors could not access their data, responses would
be deidentified, and only aggregate findings would be reported.

Analysis

The data met EFA assumptions, with minimal missing data
(engineering = 0.1%, genetics =0.01%). Write-in responses were
tetrachotimized based on equal observation counts. Distributional
assumptions were assessed via scatter plot matrices and descriptive
statistics. While some items showed non-normal skewness/kurtosis,
assumptions of linearity and unimodality held. Maximum likelihood
with missing values estimation was used alongside oblique promax
factor rotation in Stata v.17.

Results

The Kaiser-Meyer-Olkin (K-M-O) test indicated adequate
sampling for factor analysis (0.73 engineering, 0.82 genetics) (Flora
and Flake, 2017). Eigenvalue screeplots are in Appendix Figures A1, A2.
The optimal factor solution was determined using (1) eigenvalues
larger than 1, (2) scree plot interpretation, (3) rotated factor coherence
(4) sufficient items per factor, (5) minimal cross-loadings (6)
minimizing weakly loading (<0.4) items, and (7) theoretical
interpretability (Flora and Flake, 2017).

In contrast to the expectations of prevailing theory, the data did
not break down into a two-factor solution composed of (1) behavioral
and (2) cognitive engagement. Instead, a five-factor solution emerged
for engineering, consisting of (1) in-exam cognitive focus, (2) in-class
cognitive strategies, (3) cognitive engagement with group assignments,
(4) pre-exam studying behaviors, and (5) time spent on group
assignments. An identical four-factor solution emerged for genetics
except for the absence of the two group assignment factors (group
assignments were not part of the course) and the addition of a
behavioral factor for attending and completing activities in recitations
(the engineering course did not have recitations). The maximum
inter-factor correlation was 0.44 for engineering and 0.30 for genetics,
indicating acceptable factor separation. Rotated factor loadings are in
Table 1 with replication studies confirming the factor structure
(Appendix B).

Internal reliability (Cronbach’s @) ranged from 0.69-0.86
(engineering) and 0.56-0.79 (genetics) (Appendix Table A4). While
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a>0.60 is generally acceptable for new scales (DeVellis, 2016),
Cronbach’s o is downwardly biased by brief scale lengths, ordinal
items, and the assumption of essential tau-equivalence (Raykov, 1997;
Zumbo et al., 2007). Thus, scholars have identified lower thresholds
(x> 0.50) as indicating adequate reliability for shorter scales (2-3
items) (Briggs and Cheek, 1986). Dropped versus loaded items are in
Appendix Tables A5, A6.

Discussion

Contradicting prevalent theory (Fredricks et al., 2004), the
exploratory study provided evidence that behavioral-cognitive
learning engagement is shaped not only by behavioral-cognitive
distinctions but also by activity spaces. While findings were
consistent across two STEM disciplines, small but meaningful
differences emerged that were aligned with engagement affordances
(e.g., group assignments) and learning contexts. Replication studies
(Appendix B) and factorial invariance analysis (Appendix D) further
support the potential generalizability of the hypothesized structure
across STEM disciplines and courses. Replications consistently
showed a clear separation of activity spaces dominated by either
cognitive or behavioral engagement, with replication studies yielding
the same factor structures as the main study. These results
underscore the robustness of the engagement structure across
STEM contexts.

Confirmatory study
Overview

While EFA revealed a consistent factor structure, such analysis is
interpretative, and only confirmatory techniques can formally test
hypothesized models. We administered the scale to a new sample and
compared the fit of two alternative models: (1) the traditional
cognitive-behavioral structure and (2) the activity space-based
structure based on the exploratory study.

Materials and methods

Participants

At alarge, public, Mid-Atlantic, research university, all instructors
and students in an introductory biology course were invited to
participate, with students earning two extra credit points for opening
each of the two surveys. The initial response rate was 69% (1 = 883)
with a final analytical sample of 772 after removing inattentive or
incomplete responses. Participant demographics matched national
(National 2023)
(Appendix Table A1).

trends Center for Education Statistics,

Measures

Measures were identical to those of the exploratory study with
one modification. The recitation attendance and activity completion
items showed limited variance and high skewness (most students
attended all sessions and completed all activities). These items
were dichotomized.
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TABLE 1 Rotated factor loadings, organized by location and behavioral (black) vs. cognitive (blue) focus.

Engineering design (n = 774) Genetics (n = 402)

Factor 2 Factor 5 Factor 2 Factor 4
Pre- Group Pre- Recitation
Exam Assign. Exam Behaviors
Studying Time Studying

C14: For the most 0.88 0.89
recent test, it was

easy to pay attention

C15: For the most 0.90 0.76
recent test, it was

easy to think clearly

B2: While studying 0.72 0.42
for the most recent
exam or midterm
I'spent
reorganizing my

notes so the big ideas

were clear

B9: I started studying 0.72 0.90
for the most recent

exam [time

categories]

B10: I spent __ hours 0.84 0.40

studying alone for
the most recent

exam.

C5: During class, 0.58
I combined different
pieces of information
from the course in
new ways (topics
from different weeks,

etc.)

Cé6: During class, 0.59 0.54
I made pictures,
diagrams, charts, or
other figures to help
understand the

course content

C8: I always 0.60 0.68
summarized new
[class/lecture]
material in my own
words when taking

notes

C9: When I had 0.50 0.70
difficulty
understanding
[class/lecture]
material, I marked it

to come back to later

(Continued)
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TABLE 1 (Continued)

Engineering design (n = 774)

Factor 2
Pre-
Exam

Studying

C10: I focused on 0.48
understanding the
diagrams, charts, and
figures presented in

the [class/lecture]

10.3389/fpsyg.2025.1649744

Genetics (n = 402)

Factor 4
Recitation
Behaviors

Factor 2
Pre-
Exam

Studying

Factor 5
Group

Assign.
Time

0.59

C11: During the 0.73
latest group
assignment, I made
sure to understand
the plan for the
project and my role

in that plan

C12: I was able to 0.92
stay mentally
focused while
completing my part

of the project

Bl12:Ispent
hours with others on
my team to complete

the group project

0.67

B13:Ispent
hours on my own
working on the team

project

0.44

B3: I have attended
__ of the recitations

so far

B5: I completed
of the activities
we were given in

recitation

Average variance 0.79 0.58 0.30 0.69

extracted

0.32 0.68 0.38 0.40 0.58

Item loadings <0.40 are not shown. Gray cells indicated expected loadings based upon factor and item content. The strongest loadings (>0.6) are bold.

wherein complete attendance or participation (4) was recoded to
1, and all other non-missing responses (1-3) recoded to 0. Full items
and descriptive statistics are in Appendix Table A7.

Procedures

Demographic and engagement data were gathered via Qualtrics
at the beginning and end of the Spring 2023 term. Survey distribution,
communications, and incentives were identical to those in the
exploratory study.

Analysis
Data screening and estimation
Data were assessed for CFA suitability. While no variable

exceeded |2| skewness or 7 kurtosis, formal skewness and kurtosis

Frontiers in Psychology

tests, Shapiro-Wilk tests (Appendix Tables A8, A9), and the
Doornik-Hansen test of multivariate normality (){222 = 3058.2,
p <0.001) indicated several non-normal distributions necessitating
nonparametric estimation (e.g., bootstrapping) (Brown, 2015;
Flora and Flake, 2017). CFA was conducted using maximum
likelihood estimation with 5,000 bootstrapped standard error
iterations with resampling at the course section level to control for
data clustering. Analysis took place in Stata v.18 using the
sem package.

Model fit evaluation

Degree of misfit was determined by global and absolute fit
indices, specifically the Comparative Fit Index (CFI), Tucker-
Lewis Index (TLI), root mean squared error of approximation
(RMSEA), and standardized root mean squared residual (SRMR).
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Following West et al. (2012), for this sample size and application,
an acceptable fit was defined as CFI and TLI above 0.90, RMSEA
below 0.08 and SRMR below 0.10; and good fit was defined as CFI
and TLI above 0.95, RMSEA below 0.05, and SRMR below 0.08.
The coefficient of determination (CD) ranges from 0 to 1 and
measures variance explained with higher values indicating better
explanatory models.

Tested models

Two hypothesized structures were tested. The first was the
traditional behavioral-cognitive structure with all five behavioral
items loading on the single latent behavioral factor and all six cognitive
items loading on the cognitive factor. The second model tested the
EFA-derived emergent structure based on spaces of engagement. Four
spaces were hypothesized: pre-exam studying behavior (three items),
recitation behavior (two items), in-exam focus cognition (two items),
and lecture cognition (four items).

Model refinement

Initial models constrained latent factors orthogonally with
unique item error terms and uncorrelated residuals. We evaluated
model fit, then examined standardized residual matrices to detect
unmodeled item-factor or factor-factor relationships and
modification indices to evaluate fit improvements from added
correlations. Based on these considerations, prior research, and
theoretical guidance, single inter-factor correlations were added
until each model was optimized.

Results

The traditional behavioral-cognitive model failed to provide an
acceptable fit to the data (CFI = 0.68; TLI = 0.60; RMSEA = 0.118,
[90% CI = 0.109, 0.127, p-RMSEA < 0.05 = 0.000]; SRMR = 0.105;
CD = 0.94). Adding covariance paths did not improve model fit, and
factor loadings were weak, with one behavioral item not significantly
loading onto its latent factor (Appendix Figure A3;
Appendix Table A10; Brown, 2015; Flora and Flake, 2017; Kline and
Little, 2023). This notable lack of fit to the data implies the traditional
behavioral-cognitive model does not accurately describe the fine-
grained structure of engagement.

Contrarily, the activity space model showed adequate-to-good
fit (CFI = 0.94; TLI = 0.92; RMSEA = 0.054, [90% CI = 0.043, 0.064,
p-RMSEA < 0.05 = 0.275]; SRMR = 0.048; CD = 1.00, Figure 1). The
best-fitting model included significant covariance between all latent
factors except exam studying and exam focus. This model also had
the strongest TLI and RMSEA values (metrics that penalize
overfitting). Unlike the behavioral-cognitive model, all standardized
factor loadings were statistically significant (Table 2). The much
superior fit and strong parsimony-focused metrics indicate this
model better explains the observed structure of behavioral-cognitive
engagement, and that its increased complexity is justified (Flora and
Flake, 2017).

These results indicate a purely behavioral-cognitive model fails to
capture the complexity of learning engagement, whereas activity
spaces provide a more empirically robust explanation. Findings
support a fundamental shift in engagement conceptualization and

suggest potential cross-disciplinary generalizability.
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General discussion
Interpretation

These two studies challenge existing paradigms by demonstrating
that, contrary to prevailing theory (Fredricks et al., 2004), behavioral
and cognitive engagement may not operate as distinct psychological
traits, but rather as emergent properties structured by students’ activity
contexts. Addressing our research question, in the examined courses
behavioral and cognitive learning engagement’s structure consisted of a
consistent core of factors (in-lecture cognition, in-exam cognitive focus,
and exam studying behaviors) accompanied by context-dependent
factors that emerge when their concomitant activity spaces are available
(discussion/recitation behaviors, group assignment behaviors, and
group assignment cognition). The spontaneous emergence of this factor
structure in EFAs and its fit to the data in the CFA model, as well as the
non-emergence of unified behavioral and cognitive factors in the EFA
and the severe lack of fit of the same in the CFA suggest the traditional
behavioral-cognitive model of learning engagement is insufficient to
describe contextualized engagement and should be reconsidered.

The findings call for an ecological perspective on learning
engagement, extending beyond classroom dynamics to capture the full
academic experience. Our findings indicate engagement is not merely
multidimensional as suggested by prior studies (Appleton et al., 20065
Ben-Eliyahu et al., 2018; Zhoc et al., 2019). Rather, it is a partially-
context-based dynamic structure with certain features that are stable
across different populations, settings, and pedagogical approaches.
This finding substantially extends previous work on the situatedness
of learning engagement (Altomonte et al,, 2016; Lam et al., 2012; Seker,
2023; Zhao et al., 2021), suggesting potential inseparability between
learning engagement and the contexts in which it occurs. Partially
addressing calls for the same (see Azevedo, 2015), a more sophisticated
and contextually-appropriate understanding of this psychological
structure could support more effective interventions and pedagogy,
helping address opportunity gaps for minoritized and underprepared
students and advancing STEM equity efforts (Beasley and Fischer,
2012; Estrada et al.,, 2016; Museus et al., 2011; Witherspoon et al., 2019).

Limitations and future work

Our findings regarding cognitive versus behavioral dominance
within engagement spaces may be influenced by survey item
selection. The interdisciplinary research team designed items for
theoretical and contextual relevance and validated them through
extensive cognitive interviews with diverse participants (see
Appendix C). However, further research is needed to determine
whether alternative item pools would yield different factor structures.

The low inter-factor correlations among engagement spaces
(0.06-0.54) raise important questions: Do these factors represent
distinct skills, preferences, or both?; How can engagement theory
evolve to better explain these observed structures?; and Do differences
in factor loadings across courses reflect differences in course structure
or student populations?

The engagement scale developed here provides a tool for testing
whether specific forms of cognitive and behavioral engagement matter
more than overall engagement levels for outcomes like performance,
retention, and cognitive development (Schmidt et al., 2018). Analyzing
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how students engage in different contexts (including those not assessed
here, e.g., labs) could help explain learning outcome variability among
otherwise similar students and inform targeted interventions to
enhance student success (Estrada et al,, 2016; Riegle-Crumb et al., 2019).

Future research should explore how engagement patterns evolve
across developmental stages, aiding efforts to support learners through
key transition points associated with attrition (Akiha et al., 2018).
Furthermore, testing how stable factors like in-class cognitive
engagement are across different pedagogies, disciplinary groupings
(e.g., humanities), and institutions will produce a clearer view of how
generalizable the observed factor structure is. As our sample was
drawn from selective, research-intensive institutions, it is an open
question whether this structure will generalize to courses with high
disengagement (e.g., STEM courses for non-majors), less selective
institutions, and teaching-focused institutions. Another open question
is whether psychological traits (e.g., metacognitive skill, motivation,
or anxiety) moderate engagement within different spaces. Finally,
linking these engagement structures to downstream outcomes—such
as academic persistence, conceptual or

learning, identity

development—would further clarify their psychological function.

Implications

Psychometrically, our findings suggest that engagement should
not be measured with generic scales divorced from activity context.
Instruments must be designed or interpreted with awareness of the
environments in which engagement occurs. Practically, this has
important implications: given the minimal covariation between
engagement spaces, instructors should build multiple pathways to

10.3389/fpsyg.2025.1649744

engagement to accommodate diverse learning approaches. Students
engaged in one domain may not engage in others, so teaching
strategies should broaden engagement opportunities to foster
inclusion and persistence in STEM and remove barriers to high-
impact spaces of engagement. For example, recent studies report
behavioral engagement in discussion/recitation spaces are critical to
academic success (McChesney et al., 2025), but these sessions remain
poorly attended. Diversifying engagement strategies may particularly
benefit marginalized students, who face multiple challenges that could
lead to disengagement from STEM (Barbatis, 2010; McGee et al., 2021;
Museus et al., 2011). Finally, practitioners might use the factor
structure and instrument presented here to precisely evaluate and
address spaces of low engagement in their courses, enacting targeted
interventions to counteract growing student disengagement (Allison
et al., 2024; Newton and Essex, 2024).

Conclusion

This study challenges prevailing models of learning engagement
by demonstrating that behavioral and cognitive engagement are
structured not only by psychological domain, but also by the specific
learning contexts—or activity spaces—in which they occur, revealing
that context not only shapes engagement intensity, but dimensionality
as well. Across multiple university STEM courses, factor analyses
consistently revealed that engagement patterns aligned with discrete
educational settings (e.g., lectures, exams, group work), rather than
mapping cleanly onto traditional behavioral-cognitive dimensions.
These findings support a reconceptualization of engagement as a
context-sensitive psychological construct: shaped by how learners

19
1 2
Exam I
. Recitation
Studying
.53 .54 .55 .33 1.0 .85 .86 .57, .59 .54 .58

| B-ExStd 1 | | B-ExStd2| | B-ExStd3| | B-Rec 1 | | B-Rec 2 | | C-ExFc1 ] | C-ExFc 2 | I C-Lec1 | | C-Lec2 | | C-Lec3 | | C-Lec4 |
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FIGURE 1
Standardized CFA results of the spaces of engagement hypothesized structure.

Frontiers in Psychology

09

frontiersin.org


https://doi.org/10.3389/fpsyg.2025.1649744
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

McChesney et al.

TABLE 2 Standardized path coefficients of the spaces of engagement
model (n = 772).

Variable path Coefficient = Bootstrapped fo)
standard error
Exam studying—
B-exam studying 1 0.53 0.023 0.000
B-exam studying 2 0.54 0.029 0.000
B-exam studying 3 0.65 0.048 0.000
Recitation—
B-recitation 1 0.33 0.167 0.049
B-recitation 2 1.00 0.074 0.000
Exam focus—
C-exam focus 1 0.85 0.067 0.000
C-exam focus 2 0.86 0.057 0.000
Lecture—
C-lecture 1 0.57 0.024 0.000
C-lecture 2 0.59 0.059 0.000
C-lecture 3 0.54 0.027 0.000
C-lecture 4 0.58 0.044 0.000
Covariances
Lecture <> Recitation 0.16 0.041 0.000
Lecture <> Exam focus 0.42 0.035 0.000
Lecture <> Exam 0.25 0.032 0.000
studying
Recitation <> Exam 0.11 0.048 0.019
focus
Recitation <> Exam 0.19 0.054 0.001
studying
Error variances
B-exam studying 1 0.72 0.025 -
B-exam studying 2 0.70 0.031 -
B-exam studying 3 0.58 0.062 -
B-recitation 1 0.89 0.110 -
B-recitation 2 0.01 0.148 -
C-exam focus 1 0.28 0.114 -
C-exam focus 2 0.26 0.099 -
C-lecture 1 0.68 0.027 -
C-lecture 2 0.65 0.069 -
C-lecture 3 0.70 0.030 -
C-lecture 4 0.67 0.050 -

interact with the structural, social, and cognitive demands of academic
environments. Rather than treating behavioral and cognitive
engagement as stable traits or general tendencies, our results suggest
they are emergent, partially modular responses to learning settings.
This refined model of engagement has implications for
psychological theory, measurement design, and educational practice.
Theoretically, it bridges ecological and cognitive perspectives on
learning by highlighting how engagement processes are distributed
across contexts. Methodologically, it calls for more precise, context-
aware instruments to capture the complexity of engagement.
Practically, it encourages instructors and institutions to broaden the
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range of engagement opportunities in their courses, especially those
known to influence retention and success among marginalized learners.

By grounding engagement in the affordances of activity spaces,
this study advances a more ecologically valid and psychologically
meaningful understanding of how students engage with learning—
and how that engagement can be measured, supported, and sustained.
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