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Humans commonly engage in upper limb haptic interactions during bipedal

locomotion, and the expansive use of our arms makes us unique compared

to the quadrupeds we evolved from. Examples of these haptic interactions

include walking while carrying an object, using environmental surfaces such

as a railing to provide stability assistance, and holding hands while walking

with another individual. These interactions may increase the complexity of

our locomotor behaviors, such as when feedforward control is employed to

dampen arm motion and dissipate reaction forces at heel contact to stabilize an

object we are carrying. However, these interactions also increase the available

sensory information in the upper limb and can be utilized to aid in locomotor

adaptation. For instance, the interaction forces experienced when holding

hands or during collaborative object transport can lead to an unconscious

synchronization of gait patterns between the two individuals. Recent work has

further suggested that upper limb haptic interactions may have clinical relevance

for improving locomotion in pathological populations. This review brings a

novel, integrative perspective by examining upper limb haptic interactions in

locomotion across everyday, collaborative, and clinical scenarios. In particular,

the review highlights the importance of studying upper limb haptic interactions

from different viewpoints to gain insight into the neuromechanical control of

adaptive locomotion, as well as to investigate how these interactions can be

exploited for clinical use.

KEYWORDS

sensorimotor control, haptic communication, interaction forces, quadrupedal
coordination, interactive locomotion

Introduction

Human bipedal evolution from quadrupedal primates has facilitated the development
of an extensive repertoire of upper limb movement tasks for our daily use (Marzke, 2009).
Through evolution, the motor pathways associated with our upper limbs have strengthened
(Lemon, 2008), and a simultaneous increase of the amount of space in the somatosensory
cortex devoted to upper limb haptic sensation occurred (Kaas, 2008), which allow us to
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perform fine motor skills using our upper limbs with ease. It 
is important to note that standard human locomotion - without 
the addition of specific tasks for the upper limbs - involves 
a stereotypical antiphase arm swing trajectory, that is likely 
controlled by neural networks largely inherited from evolution 
including quadrupeds (Dietz, 2002; Grillner, 2011; Zehr et al., 
2016). When performing upper limb tasks during locomotion, 
haptic information is available which can subsequently be useful 
in superimposing the execution of these skills within our basic 
locomotor pattern (Ivanenko et al., 2005). This includes signals 
from mechanoreceptors that provide information related to the 
interaction between our hand and the surface we are touching, 
muscle spindles indicating the positioning and movement of 
our upper limb, and Golgi tendon organs informing us of the 
muscle forces used during these interactions. This information 
can subsequently be used to inform feedforward control of 
upcoming movements, or for execution of movements in response 
to feedback, both of which are control mechanisms that are 
fundamental in adapting our locomotor patterns in response to 
upper limb haptic interactions. 

This review will focus on upper limb tasks that are performed 
during locomotion and the haptic interactions associated with these 
behaviors. The tasks we will focus on include carrying of an object 
during locomotion (object transport), pairs of individuals carrying 
an object (collective object transport), hand holding (human-
human interactive locomotion), and robots designed for guiding 
human locomotion (human-robot interactive locomotion), all of 
which are forms of adaptive locomotion (i.e., the modification 
of walking patterns in response to individual, environmental, or 
task constraints). This research will highlight how information 
from haptic interactions can be used to facilitate feedforward 
locomotor control, as well as provide non-verbal cues leading 
to adaptation of locomotor patterns. These haptic interactions 
have clinical implications and provide complementary methods 
for clinicians to reveal impairments (i.e., for diagnostic purposes) 
as well as to rehabilitate spatiotemporal gait characteristics and 
adaptive locomotion. 

Use of haptics for control of object 
transport 

Object transport in humans can take many forms, from the 
relatively simple task of carrying a backpack (Huang and Kuo, 
2014) to more complex head-supported load carrying tasks as 
seen in Nepalese transporters (Bastien et al., 2005). A unique 
characteristic of human locomotion is our ability to move around 
bipedally, allowing us to manipulate and control objects with 
our upper limbs as we walk. Humans frequently walk while 
simultaneously carrying an object (such as a cup of coee), and 
more recently, walk while manipulating a cellular phone. Right after 
toddlers begin walking independently, they prefer to do so while 
carrying objects than with hands free, despite this added task would 
seemingly increase the complexity of motor coordination (Heiman 
et al., 2019). Chimpanzees have been observed carrying objects 
during locomotion, however, these actions are predominantly 
performed in a quadrupedal-tripedal manner (Carvalho et al., 
2012). 

A fundamental requirement for carrying an object during 
locomotion is the generation of appropriate arm and finger forces 
to maintain the position and orientation of the object we are 
holding: think of walking with a cup of coee (Mayer and 
Krechetnikov, 2012). Each contact our foot makes with the ground 
generates a significant force that is transferred upwards through 
our body segments and ultimately acts at the junction between 
our hand and the object (Gysin et al., 2003, 2008). This upward 
force occurs simultaneously with a downward inertial force of the 
object occurring from the sinusoidal vertical motion of our body 
with each stride we take (Gysin et al., 2003, 2008). Object transport 
then requires the appropriate generation of normal forces that are 
applied by the fingers to stabilize the object and prevent it from 
slipping or changing orientation. Using an instrumented object 
for transport, Gysin et al. (2003) determined that the peak grip 
force lagged the downward peak inertial force of the object by 
less than 30 ms, which is shorter than the time required for a 
feedback-controlled motor response (Figure 1). These observations 
led to the conclusion that feedforward control mechanisms are 
utilized to generate the appropriate grip force to counteract the 
inertial forces of the object (Gysin et al., 2003). This is a form of 
anticipatory control, whereby the central nervous system regulates 
movement by anticipating future events as opposed to reacting 
after they occur. Muratori et al. (2006) determined that anticipatory 
grip forces are appropriately scaled when transporting objects of 
dierent mass 0.25 m from a seated position. It is possible that a 
similar feedforward control mechanism is used when transporting 
objects of dierent mass when walking in order to prevent slippage 
of the object in response to inertial forces. Moreover, the trunk 
and object vertically oscillate in a coupled sinusoidal pattern when 
carrying an object, with the lowest point of the trunk trajectory 
coinciding with heel contact. When carrying loads of greater mass, 
the vertical oscillations of the trunk tend to be maintained (Crowe 
et al., 1993), however, this coincides with a reduction in trunk 
flexion/extension range of motion (Gsell et al., 2018), which may 

FIGURE 1 

Vertical trunk-object trajectories and forces during object transport. 
(a) Transported object consisting of a plastic container with a lid (a), 
force transducers at each side (b), and a reflective marker (c) 
attached to the front. The arrows indicate the directions of the grip 
forces (GF), load forces (LF), and horizontal forces (HF). Inertial 
forces were calculated from the load and horizontal forces at each 
side. (b) Data from a representative participant illustrating the 
vertical trajectories of the trunk (C7 vertebrae), a container held 
in-hand, as well as the vertical inertial force and grip force on the 
container during a stride cycle. Heel contacts occur at points a, c, 
and e, while midstance occurs at b and d. Highlighted in red is the 
window around heel contact, where it can be seen that peak grip 
forces occur in a feedforward manner prior to contact. Figure 
adapted from Gysin et al. (2003) with permission. 
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be facilitated with feedforward control. A damping ratio that relates 
the vertical range of motion of the trunk and object oscillations has 
been used to quantify the relationship between these trajectories. 
This ratio is aected by the modification of mechanical stiness in 

the arm, acting to increase flexion at the minimum of the vertical 
trunk trajectory and decreasing flexion at the highest point (Albert 
et al., 2010; Song et al., 2020). For instance, when carrying an 

unstable object such as a container of water, the vertical movement 
of the object decreased relative to the movement of the trunk, 
suggesting an adjustment of arm stiness to maintain the position 

of the container to avoid spillage (Gysin et al., 2003). The muscle 

activities responsible for these arm actions appear in a proximal to 

distal pattern and initiate prior to heel contact (Song et al., 2020), 
strengthening the argument supporting feedforward mechanisms 
controlling arm motion during object transport. 

Object transportation can also be viewed in the context of 
internal models or internal representations of whole-body motion 

and environment. Locomotor body schema in primates may 

incorporate handheld objects, tools, footwear, and support surface 

positioning (Iriki et al., 1996; Ivanenko et al., 2011; Pearson and 

Gramlich, 2010), and the presence of a hand-held object may also be 

integrated within this schema. Since internal models are likely used 

in the execution of feedforward control, the haptic information 

gained from the interaction with the held object is likely of the 

utmost importance to inform this model (Gysin et al., 2003), and it 
can be used in one’s locomotor body scheme (Ivanenko et al., 2005) 
to superimpose upper limb force production onto our locomotor 

pattern. Albert et al. (2010) postulated that the coupling of grip and 

inertial force generated by self-motion in a predictive manner very 

likely involve processing from the cerebellum. They also suggested 

the involvement of the anterior cingulated cortex, lingual gyrus, 
and caudate nucleus (Albert et al., 2010; Boecker et al., 2005). This 
anticipatory control is rather robust and observed when walking at 
diering velocities (Gysin et al., 2003), locomotor tasks (Diermayr 

et al., 2008; Gysin et al., 2008), in older adults (Diermayr et al., 2011; 
Gysin et al., 2008), and select neuromotor pathologies (Albert et al., 
2010; Prabhu et al., 2011). Moreover, object transportation has been 

shown to consume attentional resources which likely are needed to 

appropriately integrate this sensory information within our walking 

pattern (Gysin et al., 2008; Oh-Park et al., 2013). 
Finally, object transport requires coordination between the 

upper and lower limbs in order to provide appropriate upper limb 

stability to prepare for lower limb contact. For instance, grasping 

an object during walking requires a superposition of the voluntary 

movement upon the locomotor pattern, and a corresponding 

alignment of the two motor programs (Ivanenko et al., 2005). 
A tight coupling of the vertical trajectories of the trunk and object 
are present during object transport, which are controlled using 

feedforward control mechanisms, likely formed using the haptic 

information gained from the interaction with the held object. These 

actions work to dampen the object in preparation for inertial forces 
occurring at heel contact, and transport requiring an accuracy 

constraint require the arm to reduce motion of the object in relation 

to the trunk. 

Transmission of haptic information 
through collective object transport 

Not only do humans carry objects, but an important functional 
example of transport is when it is performed in a collective pair, 
adding a social component to the mechanical task. This results in an 
interactive locomotor pattern that must incorporate the collective 
relationship between neural circuity and biomechanical action 
within the pair. Collective object transport is generally performed 
in one of two methods: either in a “side-by-side” configuration or a 
“one person behind the other.” 

Mechanically, side-by-side collective transport of a relatively 
light object (∼10% of collective participant mass) has little eect 
on the oscillation of the vertical center of mass trajectory when 
compared to walking alone (Fumery et al., 2019), however, 
collectively carrying objects > 20% participant mass results in 
decreases of vertical center of mass displacement and step length 
(Fumery et al., 2021). Interestingly, total mechanical work and 
rate of energy recovery does not dier between the two conditions 
(Fumery et al., 2019, 2021), and the vertical trajectory of the center 
of mass presents a more pendular-like behavior (Fumery et al., 
2019) during collective transport when compared to independent 
walking. Moreover, rate of energy recovery increases ∼15% in 
a short amount of time (within three trials) of object transport 
(Fumery et al., 2018). Similar to individual object transport, the 
addition of an accuracy constraint to collective transport resulted 
in a 0.17 m/s decrease of collective walking velocity in the pair, as 
well as a decrease of the pendular-like behavior of the center of mass 
(Sghaier et al., 2022). 

In collective object transport, haptic information is transmitted 
between pairs of individuals through interaction forces in the 
object. For instance, Lanini et al. (2018) determined that haptic 
interactions during a collective pole carrying task were important 
in distinguishing a command for acceleration or deceleration from 
a leader to a follower, when the latter had visual and auditory 
information temporarily removed. Fumery et al. (2021) concluded 
that haptic interactions may be used to communicate the changes in 
vertical center of mass and gait cycle timing between participants, 
in order to perform collective transport in an energetically eÿcient 
manner, as well as distinguish a leader and follower within 
the transporting pair. Haptic interactions are also vital form of 
communication during a collective carrying task in which one 
participant is unaware of the goal location for the carried object 
(Maroger et al., 2022). 

In terms of lower limb locomotor adaptations, Lanini et al. 
(2017) observed that, when performing a one person behind the 
other collective transport task, over 70% of paired participants 
coordinated their step patterns in a manner reminiscent of 
locomotion coordination in quadrupeds. In this study, the 
participants decreased their gait cycle time, center of mass velocity, 
and step length when compared to independent walking, but 
they matched these characteristics to the individual they were 
collaborating with. This resulted in the spontaneous appearance 
of pace (41%), trot (36%), and diagonal (23%) quadrupedal step 
patterns in the pairs of participants. Lanini et al. (2017) concluded 
that haptic interactions between participants may be partially 
responsible for the spontaneous appearance of these coordination 
patterns. 
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It should be noted that the rigidity or compliance (i.e., the 
deformation or change of shape) of the transported object is likely 
instrumental in the quality of the haptic interaction, as a greater 
amount of object deformation would alter the forces transmitted 
between participants. This issue has been highlighted in human-
robot collective transport tasks, and methods have been developed 
to enhance the support from the robot while also avoiding excessive 
deformation of the transported object (Bonci et al., 2024). The issue 
of object compliance could have direct influences on the dynamic 
patterns, as well as the spontaneous appearance of lower limb 
coordination patterns presented by the dyads. Future research on 
the eects of transported object compliance would be beneficial in 
determining the eects of the diminished haptic communication 
when transporting a deformable object. 

Human-human interaction as a form 
of haptic communication 

Another physiologically relevant interactive locomotor task 
that humans commonly perform is walking hand in hand. This 
human-human interaction usually starts in infancy prior to the 
acquisition of independent locomotion (Adolph et al., 2011), and 
is fundamental in the development of coordinated movements 
we perform throughout our lives (Arabin et al., 1996). While 
walking with hand contact is a common situation that we naturally 
experience, little is known about the forces arising from these 
physical interactions. 

One common result of haptic communication during hand in 
hand locomotion is that sensory information transferred between 
pairs may influence the walking patterns. Specifically, this task has 
been shown to result in an unconscious synchronization of lower 
limb movements between pairs (Zivotofsky and Hausdor, 2007) 
and may represent a potential optimization that is communicated 
through upper limb interactive forces (Sylos-Labini et al., 2018). 
Indeed, there are occasional episodes when non-touching pairs may 
spontaneously synchronize their walking behavior (Felsberg and 
Rhea, 2021; Hajnal and Durgin, 2023; Nessler and Gilliland, 2009, 
2010; Nessler et al., 2015), however, this unconscious action is much 
more likely to occur during hand-in-hand interactive locomotion 
(Roerdink et al., 2017). The occurrence of walking synchronization 
was originally documented by Zivotofsky and Hausdor (2007) 
who performed a video analysis of people walking while holding 
hands and noted ∼50% of the participant pairs spontaneously 
coordinated their walking patterns. Using more sophisticated 
analysis techniques, this probability was found to be sightly lower 
than originally observed and that the phase relationships between 
pairs waxed and waned throughout walking trials (van Ulzen 
et al., 2008). Subsequent research has indicated the likelihood of 
spontaneous synchronization during walking while holding hands 
closer to 40% (Sylos-Labini et al., 2018; Zivotofsky et al., 2012). 
When hand holding leads to synchronization, pairs are more likely 
to present an in-phase pattern of the lower limbs as opposed to 
an anti-phase pattern (Sylos-Labini et al., 2018; van Ulzen et al., 
2008; Zivotofsky et al., 2012). This spontaneous synchronization 
is thought to occur due to a “communication link” provided by 
the haptic interaction of the participant’s hands that transfers 

non-verbal cues as to each person’s movements (Zivotofsky and 
Hausdor, 2007). 

Interestingly, evidence suggests that the level of walking 
synchronization between individuals holding hands uses 
attentional resources. Zivotofsky et al. (2018) studied the degree of 
walking synchronization during the performance of a secondary 
task. This secondary task involved listening to a story during 
walking and answering questions following the walking trial, 
however, complexity of the secondary task was modified by having 
participants identify two (simple task) or four (complex task) 
phonemes used in the story. Zivotofsky et al. (2018) observed a 
32% increase in gait symmetry from baseline walking hand-in-
hand when performing the simple secondary task, but a decrease of 
10% when performing the complex task. They concluded that the 
simple secondary task led to increased automaticity of walking, and 
the more complex task was attentionally demanding and resulted in 
dual-task interference. This finding may have clinical implications 
as it suggests a relationship between gait synchronization and 
attentional resources. For example, walking while performing 
verbal tasks has been shown to be related to motor abilities in 
older adults, and physical rehabilitation targeting balance and 
gait deficits may lead to improvements in this population (Hall 
et al., 2011). The addition of haptic communication may lead to 
accelerated improvements in this population due to an increase in 
available sensory information, but this will need to be addressed in 
future research. 

The magnitudes and directions of the interaction forces 
between hands are likely important for the haptic communication 
between paired individuals. These forces are generally less than 
5 N (Sawers et al., 2017; Sylos-Labini et al., 2018; Wu et al., 
2021, 2024), and are too small to generate significant mechanical 
changes to one’s walking pattern. Sylos-Labini et al. (2018) used 
an instrumented handle to quantify the interaction forces between 
pairs of participants (Figure 2). They were able to determine 
that the lateral component of the interaction force (related to 
arm abduction or the participants) was ∼2–3 N larger than the 
other components, while the oscillations of forces along all three 
axes were relatively similar in magnitude during walking and 
were less variable during synchronized stepping between pairs. 
Moreover, shoulder muscle activity did not dier during hand 
holding when compared to walking alone (Sylos-Labini et al., 
2018), consistent with the speculative suggestion that the neural 
coupling between cervical and lumbosacral pattern generation 
circuitries governing quadrupedal coordination is conserved (Zehr 
et al., 2016). Thus, step synchronization appeared to emerge from 
reduced variability in the force vectors. Indeed, unintentional 
frequency locking of steps was frequently observed in pairs walking 
with hand contact when only haptic information was available, 
while visual and auditory cues were obstructed. Taken together, 
this evidence highlights that these haptic forces provide cues to 
paired participants who are unconsciously used to coordinate step 
patterns during walking, as opposed to mechanical forces dictating 
movement changes between pairs. These results (Figure 2) also 
raise an intriguing question about the involvement of sophisticated 
neural mechanisms capable of detecting and adapting to subtle 
variations in force vector patterns to support interactive locomotor 
coordination. 

The haptic communication occurring between pairs of 
individuals holding hands can also be used to provide non-verbal 
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FIGURE 2 

Variability of spatial orientation of interaction forces during walking hand in hand. Representative interaction forces and arm/leg kinematics during 
non-synchronized and in-phase walking over five consecutive strides. From top to bottom: interaction forces (x, y, z, and 3d), contact side leg angle 
and lower limbs’ stance durations for each partner. At the bottom: spherical spatial density of the force vector directions during the corresponding 
five consecutive strides. The color scale indicates density diagrams calculated using the Kamb method for directional data. Note the increased 
variability of the force direction sphere during non-synchronized walking when compared to in-phase. Figure adapted from Sylos-Labini et al. (2018). 

assistance for locomotor tasks. For instance, research has shown 
that haptic interaction forces of slightly larger magnitude than hand 
holding (10–30 N) are suÿcient to provide guidance to coordinate 
locomotor patterns between leaders and followers (Sawers et al., 
2017), and between an expert dancer and an untrained individual 
during a paired stepping task (Wu et al., 2024). When walking 
on a beam, participants were able to walk further without falling, 
reduced lateral sway, and decreased angular momentum in the 
frontal plane when low levels of haptic assistance (< 5 N) were 
provided (Wu et al., 2021). These studies lead to the conclusion 
that the direction of the haptic interaction forces may encode gait 
changes between pairs (Wu et al., 2024) and provide temporal cues 
(Sawers et al., 2017) to facilitate locomotor changes. 

There is currently a gap in the literature regarding the 
advantages and disadvantages of diering hand holding 
configurations, such as palm-to-palm or interlacing finger 
haptic interactions. Hand positioning has been suggested to be of 
importance during guidance of people with visual impairments. For 
instance, hand-over-hand manipulation tends to be more passive 
for the individual, while hand-under-hand is less controlling and 
facilitates increased haptic exploration during hand guidance 
tasks (Miles, 1997). Investigations into the performance of haptic 
tasks have also indicated increased performance when multiple 
fingers are used (Morash et al., 2013, 2014). Current experimental 
paradigms that examine force transmission during human-human 
haptic communication involve participants holding handles that 
are more similar to palm-to-palm interactions as opposed to 
interlacing fingers. It would be interesting to examine dierent 

hand-holding configurations to explore if one is beneficial over 
the other and enhances the quality of the haptic information 
transferred between partners, and whether there are clinical 
implications for these findings. 

Developmental aspects 

Haptic interaction with objects and people has a critical role 
also in the development of locomotion at an early age. Strikingly, 
toddlers who just started walking independently prefer to do so 
while carrying objects than with hands free (Karasik et al., 2011). 
This behavior also has a social significance, as shown by the fact that 
when toddlers walk toward their caregivers, they often bring objects 
to share. Even crawlers, who did not start walking independently, 
often carry objects (Karasik et al., 2011). The added task of object 
transport increases the complexity and cost of motor coordination, 
but infants selectively choose lighter objects to carry and explore 
(Heiman et al., 2019). 

Haptic exploration of the environment by toddlers during 
locomotion does not only involve the hands but can even be 
performed by the foot. Thus, it has been shown that, in contrast 
with adults, toddlers often place their feet onto an obstacle or 
across the edges of the stairs when stepping with the clear intent 
of obtaining knowledge of the object properties (Dominici et al., 
2010). 

With regards to hand-to-hand interactions during walking, it 
has recently been shown that children (6–8 years old) exchange 
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haptic communicative forces with the partner (whether an adult 
or another child) significantly dierent from those produced by 
dyads of adults only: children tend to be more compliant in 
the interaction than adults (Avaltroni et al., 2025). Spontaneous 
synchronization of locomotion in child-child and adult-child dyads 
as received less attention in the current literature, but this may 
be diÿcult to quantify given the variable spatiotemporal walking 
patterns observed in children (Rygelová et al., 2023). Since haptic 
interactions are integral for movement and social development, 
it would be interesting to explore longitudinal responses of 
child-child and adult-child walking and their influence on child 
development. 

Technological advances: 
human-robot haptic interactions 

Recent technological advances have resulted in the 
development of robots that provide a haptic link to participants 
through their hands, leading to adaptive locomotor responses. 
For example, robots such as Mako-no-te (Hasegawa and Okada, 
2019), Ophrie (Regmi et al., 2022a,b), and Slidey (Wu and Ting, 
2025) guide human overground locomotion through a haptic 
interaction at the participant’s hands. Evidence has shown that 
the interaction forces between humans and these robots is ∼5 N 
(Regmi et al., 2022a,b), similar to the forces observed during 
human-human hand holding haptic interactions. Ophrie is a 
wheeled robot designed to lead participants side-by-side and 
provides walking assistance through a mechanical arm that 
participants hold (Regmi et al., 2022a,b). Studies conducted with 
Orphie indicated that participant arm stiness was important 
during human-robot interaction, whereby arm stiness was ∼22% 
lower when participants were not aware of direction changes in the 
robot, and these arm stiness changes likely facilitate better haptic 
communication during the walking task (Regmi et al., 2022a,b). 
Wu and Ting (2025) designed a robot “Slidey” with two handles 
that provide velocity pulses that influence participant gait velocity 
and step frequency changes through haptic interaction (Figure 3). 
However, the influence on participant gait patterns only occurred 
when participants were instructed to match their step timing to the 
pulses provided by the robot. The haptic interaction forces between 
the participant and robot were close to zero, providing evidence 
that the gait characteristic changes were due to haptic sensorimotor 
engagement as opposed to propulsion by the robot. These robots 
provide evidence of gait changes in health adults, highlight the 
importance of arm compliance to optimize haptic interactions, and 
provide support for clinical use for locomotor rehabilitation. 

Clinical implications for haptic 
interactions 

The use of upper limb haptic interactions has the potential 
to reveal impairments and provide additional information about 
corrupted sensorimotor neural processes, as well as complement 
the rehabilitation of locomotion and adaptive locomotion. For 
instance, upper limb compliance related to dynamic muscle tone 

FIGURE 3 

Locomotor adaptations during human-robot haptic interactions. (a) 
Participants walked forwards while holding the robot (“Slidey”) 
handles. A sensor embedded in the robot measured human-robot 
interaction forces. Motion capture data were used to calculate 
mean human velocity (v), step length (L), and step frequency (f) 
during steady-state walking. (b) The human-robot interaction 
controller consisted of transient velocity pulses at frequency fR and 
amplitude a superimposed on a trapezoidal velocity profile with bias 
b. We predicted that the robot’s mean velocity vR would affect 
human velocity while robot pulse frequency fR would affect human 
step frequency. (c) Mean gait parameters were calculated during 
four steps when mean human torso velocity v was constant. Note 
the synchronization between the robot oscillations and vertical foot 
position. Figure from Wu and Ting (2025) (reproduced with 
permission). 

is functionally significant in locomotor control (Bernstein, 1940), 
and is of utmost importance during the performance of interactive 
locomotion (Dolinskaya et al., 2023). Altered upper limb muscle 
tone may aect the quadrupedal coordination of locomotor tasks, 
and haptic interactions may be useful in the clinical assessment 
of the extent upper limb muscle tone impairments on locomotor 
control (Cacciatore et al., 2024). 

Pathologies aecting the sensorimotor control of the upper 
limbs such as diabetic neuropathy, stroke, cerebellar ataxia, and 
cerebral palsy could potentially benefit from haptic training during 
rehabilitation. For example, past work has shown that an anchored 
railing placed next to a treadmill providing an opportunity for 
the hand to provide small levels of force can enhance stability 
in healthy (Dickstein and Laufer, 2004) and pathological (Oates 
et al., 2017) groups. Similarly, collective transport of a light object, 
patient-clinician hand holding, and patient-robot interactions 
likely provide similar support to a fixed support structure but 
facilitate overground locomotion in the patient as opposed to 
treadmill walking. This haptic information could improve safety 
during rehabilitation and ultimately increase the distance traveled 
by the patient, therefore aiding in locomotor endurance, as well as 
maximize outcome potentials during rehabilitation. 

It is worth stressing that there is a growing interest in 
investigating the rehabilitation of adaptive locomotion, since 
walking impairments may only present themselves during the 
performance of locomotor tasks and be absent from basic 
walking (Cappellini et al., 2018). Haptic communication and 
interactive locomotion are examples of adaptive locomotion 
with physiological relevance. The addition of object transport 
to rehabilitation programming may provide opportunities to 
challenge the management of attentional resources devoted to 
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locomotion, arm-leg coordination during adaptive locomotion, as 
well as the control of arm compliance to enhance the perception 
of haptic information. Recent work has illustrated the benefits of 
anticipatory control training in older adults. For instance, research 
has examined training older adults and people with stroke using 
tasks that involve necessary anticipatory postural adjustments, such 
as pushing a medicine ball hanging from a ceiling (Curuk et al., 
2020) or catching a medicine ball (Jagdhane et al., 2016). These 
programs resulted in earlier generation of anticipatory postural 
adjustments in the training groups, potentially leading to enhanced 
balance control in the training groups (Aruin, 2016). These clinical 
studies indicate that training anticipatory control in older adults 
and in pathological populations can be beneficial to motor control. 
Taking this into consideration, similar haptic training using object 
transport may help improve the coordination of grip control and 
absorption of impact forces during this task. A training protocol 
that facilitates real-time feedback of a carried object along with a 
target range to maintain object movement (for instance, having 
a laser pointer attached to the object and projected at a wall in 
front of the participant, with a target box on the wall in which the 
participant must maintain the laser pointer) could lead to enhanced 
coordination of this task. Training while transporting objects of 
dierent sizes and weights may also help rehabilitate the adaptation 
of one’s locomotor body scheme used in the anticipatory control of 
upper limb mechanics in preparation for heel contact. 

Given human-human interactive locomotion is related to 
the appearance of spontaneous synchronization of step patterns, 
patient-clinician handholding may provide an opportunity to 
unconsciously train targeted spatiotemporal gait characteristics. 
Also, since forced gait synchronization has been shown to be 
less beneficial to adapting asymmetric gait patterns between 
participants (Nessler et al., 2015), these non-verbal mechanisms 
may be more beneficial for rehabilitation. However, the clinical 
benefits of human-human haptic communication remain to be 
explored. Recent research has documented the benefits of rhythmic 
auditory stimulation on the reacquisition of asymmetric temporal 
patterns in people with stroke (Lee et al., 2018) and Parkinsons 
disease (Ghai et al., 2018). Moreover, vibratory rhythmic haptic 
cueing of the upper arms has been shown to improve walking 
speed and arm-leg coordination in older adults (Khiyara et al., 
2025). Handholding between a clinician and patient could provide 
similar rhythmic information to patients or could even be used 
to augment rhythmic auditory stimulation therapy to enhance 
improvements in gait symmetric in patients, however, future 
research will need to address these possibilities. Finally, Wu 
and Ting (2025) suggested patient-robot haptic interactions may 
be useful in training human-robot collaborative tasks, collective 
object transportation, and ultimately influence training of step 
length and timing in pathological populations. While there appears 
to be promising research that suggests haptic communication 
is beneficial for clinical integration, some limitations should be 
addressed. First and foremost, it should be noted that the research 
supporting links between haptic communication and locomotor 
rehabilitation is relatively new, and further work is needed to 
understand the potential benefits its use, as well as to understand 
the mechanisms relating to locomotor function. Current research 
has focused primarily on human-human and human-robot haptic 
interactions in healthy younger adults, and future work on the 
clinical translation of these activities in a variety of pathological 

populations must be examined. Moreover, it is likely that a minimal 
level of locomotor function is required to exploit these benefits 
in a clinical setting. For example, a patient with a very low and 
irregular gait speed may not benefit as much from additional 
haptic information. However, current research supports further 
exploration of this area to understand the full potential of haptic 
communication for clinical use. 
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