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In motor learning research, various whole-body movement tasks have been
examined using a dynamical systems approach. Prior studies have highlighted
that differences in learning strategies and variability in movement contribute to
individual differences in motor learning. Building on these findings, this study
investigated the learning process of seven beginners as they attempted to ride
a caster board for the first time and progressed until they were able to stand
and ride it. Specifically, we aimed to compare and contrast commonalities
and differences in the learning process to identify the factors contributing
to individual differences and to clarify the motor skills crucial for mastering
the caster board. To quantify movement changes associated with learning, we
analyzed the initial velocity of the board and the amplitude of trunk rotational
movement. Trial-by-trial changes were calculated to determine which variable
exhibited greater change for each participant. Across all the participants, both
initial velocity and trunk rotational movement increased with practice. These
findings suggest that accelerating the board’s initial velocity, which enhances
stability, and increasing the amplitude of trunk rotational movement, which
generates propulsive force, are both critical for mastering the caster board riding.
However, the number of trials required to achieve the learning task varied by
more than 100 trials across participants, and individual differences were also
evident in the movement patterns at task completion. Case-based analyses
revealed that these differences were influenced by the movement patterns
performed in the early trials and by the variability in movement patterns executed
across trials.

KEYWORDS

motor learning, longitudinal observation, individual differences, variability of
movement, dynamical systems theory

1 Introduction

Sports instructors frequently observe that, even when practicing in the same
environment, some learners achieve proficiency quickly while others do not. Specifically,
both the mastery of particular motor tasks and the rate of learning (how quickly a task is
accomplished) vary among learners.

Motor control theory, motor learning theory, and theories of teaching movement are
closely related but conceptually distinct: Motor control focuses on the mechanisms by
which the brain and nervous system coordinate muscles and joints to produce purposeful
movement; motor learning examines how movements change through practice and
experience, and teaching theory applies these insights in instructional contexts (Schmidt
et al., 2019). Moreover, motor learning theory has traditionally been developed through
laboratory-based tasks such as handwriting (Teulings et al., 1983) and ball throwing (Kerr
and Booth, 1978), building on closed-loop theory (Adams, 1971) and schema theory
(Schmidt, 1975). It has further evolved from computational neuroscience to address
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problems like arm trajectory generation in movements such as
reaching (Kawato, 1999). However, the control and learning
processes of whole-body movements in sports cannot be fully
elucidated using information processing or computational
approaches. This is because controlling the numerous muscles
and joints involved in whole-body movement requires solving the
“degree of freedom” problem (Bernstein, 1967). In this regard, the
dynamical systems approach offers an integrative framework that
addresses control, learning, and teaching together.

Within the framework of the dynamical systems approach,
behavioral changes during motor learning are conceptualized
as self-organization processes in which the body overcomes
redundant degrees of freedom and develops control. From
this perspective, diverse motor learning processes have been
investigated (Davids et al., 2003). Notably, this approach integrates
Bernstein’s concept of coordinative structures, the ecological
perception theory of Gibson (1979), and Turvey’ (1990) emphasis
on perception-action dynamics. Consequently, motor learning
is understood as a process through which the system acquires
new, stable coordinative structures (i.e., new attractors) within a
dynamical system (Haken et al., 1985; Beek et al., 1995; Warren,
2006). Studies adopting this perspective have examined movements
such as ski slalom (van Emmerik et al., 1989; Vereijken et al.,
1992), juggling (Beek and van Santvoord, 1992), and soccer
kicking (Hodges et al., 2005).

The acquisition of new coordinative structures in motor
learning exhibits individual differences owing to various factors
(Zanone and Kelso, 1992; Ackerman, 2014). One such factor
is intrinsic dynamics (Newell et al., 2001; Chow et al., 2016),
which reflect coordinative structures shaped by prior motor
experiences. Intrinsic dynamics strongly influence the acquisition
of new coordinative structures (Schöner, 1989). For example, a
learner with baseball experience may more readily acquire the
tennis service motion due to the similarity in throwing mechanics
(Reid et al., 2015). Thus, intrinsic dynamics are thought to
underlie individual differences in motor learning. Additionally, the
movement patterns exhibited during early learning trials influence
the coordinative structures observed upon task completion
(Kostrubiec et al., 2012; King et al., 2012). For example, in three-ball
cascade juggling, two stable coordinative structures are observed,
defined by three variables: ball flight time, the interval between
grasping and throwing, and the time during which the hand
is unloaded. Distinct learning pathways emerge depending on
how closely a learner’s initial movement patterns align with these
coordination structures (Beek and van Santvoord, 1992; Hashizume
and Matsuo, 2004; Yamamoto et al., 2015). Additionally, individual
differences in learning rate are influenced by movement variability
during the learning process. In particular, Wu et al. (2014) found
that greater baseline movement variability (i.e., before learning)
was linked to a faster subsequent learning rate during a motor task
that involved drawing a novel figure using a mirror. This finding
suggests that movement variability can promote motor learning.

Based on these findings, this study aims to clarify factors related
to individual differences in motor learning from the perspective of
the dynamical systems approach. To achieve this, it is necessary
to compare learners who require different amounts of practice to
achieve a clearly defined learning task. We, therefore, selected the
caster board, a task that highlights individual differences in learning
rate, for longitudinal observation.

A caster board, also known as an Essboard or waveboard,
resembles a skateboard. It consists of two rotating decks connected
by a torsion bar, with a caster attached to the bottom of each
deck. Forward motion is generated by twisting the torsion bar.
However, unlike a typical skateboard, it has two casters, so the
board will tip over unless the rider continuously twists the torsion
bars alternately. Specifically, this learning task requires the rider
to actively propel the board themselves; otherwise, they will
fall. Consequently, it is a full-body movement task that strongly
encourages trial-and-error learning. Furthermore, by comparing
the number of attempts required to master the task, it is relatively
easy to distinguish between the learners who quickly improve and
those who do not. This suggests the task aligns well with the
objectives of this study.

Previous studies regarding caster boards used computer
simulations (Ito et al., 2012; Agrawal et al., 2016; Gadzhiev et al.,
2020) and robots (Kinugasa et al., 2013; Su et al., 2013; Wang et al.,
2013; Fukai et al., 2020) to elucidate the propulsion mechanism.
For example, Agúndez et al. (2021) mathematically modeled caster
board propulsion and verified motion stability by manipulating
variables such as propulsion speed, caster tilt angle, and torsion
bar stiffness. However, Hooper (2019) noted the lack of research on
human movement on caster boards. Hooper’s research examined
the frequency of knee flexion and extension in proficient riders
and its impact on propulsion speed. Nevertheless, their study solely
focused on enhancing pre-existing skills of experienced riders.
Studies of the motor skills necessary for novice caster boarders to
ride successfully have not been conducted. It is crucial to elucidate
the motor learning process underlying behavioral changes as the
learners acquire caster board skills.

Accordingly, this study investigates the learning process of
beginners as they attempt to ride a caster board until they can
do successfully. Specifically, the study aims to examine learners’
movement changes from a dynamical systems perspective, identify
factors contributing to individual differences in learning rate
and acquired coordinative structures, and highlight common
movement characteristics that clarify the motor skills essential for
mastering the caster board.

2 Materials and methods

2.1 Participants

Seven healthy men participated in the study. Their mean age
was 22.7 years (SD = 3.25), mean height was 1.68 m (SD =
0.49), and mean weight was 60.3 kg (SD = 6.9). All participants
had no prior experience with caster boarding or similar activities,
such as skateboarding or snowboarding. They were informed of
the experimental procedures and provided written consent before
the study began. The study protocol was approved by the Ryukoku
University Ethics Committee.

2.2 Task and experimental conditions

The learning task required participants to complete two circular
laps of a 5 m×5 m area without falling from the caster board
(Figure 1a). Participants practiced freely until they could complete
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FIGURE 1

Experimental setup and variable definitions. (a) Location of the “measurement space” and motion-capture cameras. (b) Straight line connecting the
shoulder segment and external capsule on the left and right sides. (c) Rotation angle of the shoulder segment.

both laps, maintaining a left-foot-forward stance throughout
the practice period. Four motion-capture cameras (OptiTrack
Flex 3; NaturalPoint, Inc., Corvallis, OR, USA) were used to
record participant movements during the learning process, with
a sampling frequency of 100 Hz. Reflective markers (φ: 20 mm)
were attached to the head, left and right acromial processes, both
greater trochanters, both knee joints, both ankle joints, and the tip
and tail of the caster board (Figure 1b). A right-handed orthogonal
reference frame was used, defined by X–, Y–, and Z-axes. The Z-
axis was vertical; the X-axis was horizontal and directed along the
diagonal. The Y-axis was perpendicular to the other two axes.

2.3 Procedure

Prior to the experiment, the experimenter demonstrated caster
board riding and presented the learning task, without providing
verbal instructions. However, participants were allowed to observe
the demonstration as often as they wished, including during
practice. In the initial stages of learning, participants struggled to
place both feet on the board without assistance; thus, a chair was
provided as an aid when needed.

2.4 Data analysis

A second-order Butterworth low-pass filter (cut-off frequency
range: 6–11 Hz) was used to remove high-frequency noise from the
time series data for each reflective marker. The cut-off frequency
range was determined using the residual analysis method (Winter
et al., 1974; Winter, 1990).

The start of each trial was defined as the point at which the
participant removed his hands from the chair or placed both feet
on the decks (if the chair was not used). The end of the trial

was defined as the point at which either foot touched the ground.
Trials were excluded from analysis if the board advanced less than
half its length (39 cm) from the starting position. This approach
eliminated the instances in which the participant fell from the board
immediately after the start of the trial.

Two variables were analyzed to assess movement changes
throughout the experiment. The first variable was the amplitude of
trunk rotation (ATR). Fukai et al. (2020) examined the mechanism
by which a caster board is propelled using a humanoid robot;
they found that the rotational motion of the torso is important
for torsion bar twisting. To propel the caster board forward,
participants must twist the torsion bar by alternately applying
force with the left and right legs against the respective decks.
During the measurement, participants mainly performed rotational
movements of the torso to achieve torsion; ATR was quantified
by calculating the angle between the segment connecting the left
and right acromion and the segment connecting the left and right
ankle joints (Figure 1c). Figures 2a–c illustrates the time series of
the shoulder segment rotation angle for participant D in each of
three experimental trials (trial 1, trial 22, and the final trial). The
rotational angle showed periodic, rhythmic motion with amplitude
increasing over the course of practice. In this time series, the
amplitude was calculated by subtracting the minimum value from
the maximum value for each trial (Figure 2g), with the average
amplitude defined as ATR. Specifically, ATR was calculated by the
following equation.

ATR =
∑N

i=1 maxAi − minAi

N
(1)

N is the number of cycles observed in each trial, i is the order of
the cycle, and maxAi and minAi are the maximum and minimum
angles in each cycle, respectively. Figure 2g illustrates the process of
calculating the amplitude of the seventh cycle in this trial.
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FIGURE 2

Example data obtained during the learning process for participant D. Example time series data of each variable of interest obtained over 5s in trial 1
(a, d), trial 22 (b, e), and the final trial (c, f): the rotation angle of the shoulder segment (upper panel) and velocity at the midpoint of the hip segment
(lower panel) are shown. (g) The process of calculating the amplitude of the shoulder segment rotation angle.

The second variable analyzed was the initial velocity of the
board (VI). Agúndez et al. (2021) used computer simulations
to examine variables that contribute to caster board stability;
they reported that the stability increased with velocity. Thus, to
maintain balance on a board only with two front and rear wheels
on casters, the board must be propelled at a specific velocity.
However, in actual caster boarding, this torso twisting is often
performed while the board is propelled at a specific velocity after
the boarder has begun to ride (i.e., by pushing the riding aids
out with their hands or kicking the ground with their feet from a
stationary position). Twisting the torsion bar while stationary does
not produce sufficient velocity to stabilize the board, causing loss of
balance. Therefore, sufficient initial velocity to stabilize the board
is needed to gain thrust. Based on the previous findings, VI was
included as a variable in this study. However, markers placed at
the leading and trailing edges of the board move perpendicularly to
the board’s direction of motion due to deck twisting. Therefore, the
velocity of the midpoint of the hip segment was used to represent
VI in the direction of travel. The velocity of the midpoint of the
hip segment was obtained by calculating the distance traveled by
the midpoint over time. The lower panel of Figure 2 shows the
time series of the velocity of the midpoint of the hip segment for
participant D across three experimental trials (trial 1, trial 22, and
the final trial). The midpoint velocity increased throughout the
learning period. The dashed line in the figure indicates the point, N,
at which the distance traveled by the midpoint of the hip segment
from the start of the trial exceeded half the length of the board. The
average velocity up to this point is VI . Specifically, VI was calculated
by the following equation.

VI =
∑N

i=1 Vi

N
(2)

N represents the point mentioned above, and Vi represents the
velocity at each time point.

2.4.1 Correlation analysis between boarding
performance and variables of interest

For each participant, the correlation coefficient (r) and effect
size (R2) were calculated between the distance traveled by the
board and the ATR for each trial. Pearson’s product–rate correlation
coefficient was used to assess the correlation coefficients, and the
effect size was calculated by squaring the correlation coefficient.
The significance level (α) was set at 0.05, and confidence intervals
(CI) were calculated. The same analysis as above was conducted
for the distance traveled by the board per trial and for VI . This
analysis aimed to examine the relationships between these variables
and boarding performance.

2.4.2 Learning strategy analysis
The learning strategies of each participant were examined

through the following analysis. Figure 3 illustrates the analysis
process. Figures 3a, b show the changes in ATR and VI for
participant D. White and black squares indicate the first and final
trials, respectively. Other trials are represented by progressively
darker gray squares. Figure 3c demonstrates the quantification of
change in each variable between consecutive trials. The difference
in values was calculated and plotted as a vector in a polar coordinate
system. To account for unit differences, the highest value for each
variable was normalized to 1 and the lowest to 0 across all trials
and participants. In the first quadrant of the figure, values of both
variables increase for a given trial; in the second quadrant, only ATR
increases, whereas in the third quadrant, both variables decrease.
Finally, only VI increases in the fourth quadrant. Figure 3d shows
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FIGURE 3

Learning strategy analysis procedure. (a) Trial-to-trial variation in the initial board velocity (VI) for participant D. (b) Trial-to-trial variation in the
magnitude of trunk rotation (ATR) for participant D. (c) Polar coordinates of vectors based on the difference between two consecutive trials. (d) Polar
coordinates of vectors based on the absolute difference between two consecutive trials. (e) First trial (�), final trial (�), and learning strategy.

the absolute values of the changes expressed in Figure 3c. The
arrows indicate the average vector calculated from these values.
Notably, direction and magnitude of the vector (the arrow in
Figures 3d, e) was calculated by the following equation.

Direction of vector = (3)

tan−1(
∑N−1

i=1 |ATR(i+1) − ATR(i)|
N − 1

/

∑N−1
i=1 |VI(i+1) − VI(i)|

N − 1
)

×180/π

Magnitude of vector = (4)
∑N−1

i=1
√|ATR(i+1) − ATR(i)|2 + |VI(i+1) − VI(i)|2

N − 1

N represents the number of trials for each participant, i is the order
of the trial, and ATR(i) and VI(i) represent the ATR and VI for each
trial, respectively. A steeper direction above 45 degrees suggests
a greater change in ATR through learning, whereas a shallower
direction below 45 degrees indicates a greater change in VI . For
participant D, the direction of the vector (�) was 40.6 degrees,
indicating that VI tended to change more than ATR through
learning. The direction of this vector represents the learning path
indicating which of the two variables changed more. Conversely,
the larger the magnitude of this vector, the greater the change in
the value of both variables between the one previous trial and the
current trial. Specifically, the magnitude of this vector represents
the degree of the variation of the movement patterns in trial-to-trial
carried out in learning process. In this study, the learning strategy
was examined based on the slope and length of the vector. From the

viewpoint of dynamical systems, this learning strategy corresponds
to a vector field, because the direction of the vector orients the
change in trajectory and the length of the vector characterizes the
degree of the change in trajectory. Thus, the learner is regarded as
a dynamical system, the movement pattern at the start of learning
can be considered the initial state, and the coordinative structure
achieved upon task completion can be regarded as the attractor.
In this framework, the direction and magnitude of the vector
correspond, respectively, to the learning path and the variation
in movement patterns across trials during the transition from the
initial state to the attractor.

Figure 3e illustrates the learning strategy between the first and
final trials for participant D. The gray area indicates an instance
where VI is large relative to ATR. White and black squares represent
the first (initial state) and final (attractor) trials, respectively; the
learning strategy (vector field) originates from the first trial. The
initial state of participant D can be characterized as VI-dominant,
the vector field as VI-dominant, and the attractor as ATR-dominant.
This analysis method enabled examination of both overall trends
and individual differences in the learning process.

3 Results

3.1 Task performance

The number of trials required to complete the learning task
significantly varied among participants: A (11), B (18), C (21),
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FIGURE 4

Performance trends for each participant. Each point in a given panel represents the distance traveled by the midpoint of the hip segment in a single
trial.

D (49), E (58), F (98), and G (138). However, as mentioned
above, we excluded trials in which the participants fell from the
board immediately after the start of the trial. Thus, the, numbers
of trials analyzed as follows for each participant: A (8, 73%), B
(17, 94%), C (16, 76%), D (45, 92%), E (56, 97%), F (85, 87%),
and G (135, 98%). During these trials, participants A, C, D,
and E required no additional demonstrations, B and F required
one additional demonstration, and G required four additional
demonstrations. These results indicate that the number of trials
required to accomplish the task greatly varied among the learners.

Figure 4 shows the change in distance traveled by the midpoint
of the hip segment for all participants and trials. Despite trial-to-
trial variations, the distance traveled generally increased according
to the number of trials.

3.2 Changes in variables of interest with
learning

Figures 5, 6 show scatter plots of board travel distance vs.
ATR and VI , respectively, for each participant. In the figure, r
is the correlation coefficient between board travel distance and
each variable; a higher value of r indicates a stronger correlation.
Table 1 summarizes the results related to the correlation analysis.
Figure 7 shows the results of the learning strategy analysis for each
participant. In each figure, white and black squares represent the
first and final trials, respectively. Arrow direction indicates which
of the two variables showed greater change, and arrow length
represents the degree of change. Table 2 summarizes these results.

Among all participants, Participant A had the lowest number
of trials to complete the task (eight). This participant exhibited a

high ATR of 0.46 and a high VI of 0.33 in the first trial; his ATR
was highest among all participants (Figure 7 and Table 2). Learning
strategy analysis revealed that this participant also had the highest
vector direction (73.1) and magnitude (0.19) values. These results
suggested a strong tendency for the torso rotation movement
to change with learning; they also suggested large movement
variability within each trial. In the final trial, ATR improved to 0.77,
and the rotational movement of the torso was greatest. However,
the correlation between board travel distance and ATR was low
(0.24, Figure 5), possibly because the amount of torso rotation was
lower during the latter trials. In summary, this participant was
characterized as having achieved an ATR-dominant attractor from
an ATR-dominant initial state large where both variables were large,
through a strong ATR-oriented vector field.

Participant B required 17 trials to complete the task. In the
first trial, ATR was higher than VI (0.32 and 0.04, respectively);
this trend persisted in the final trial (0.46 and 0.21, respectively).
These results suggested that board propulsion relied more on trunk
twisting than on initial VI . Learning strategy analysis also revealed
a greater change in ATR during the learning process, indicated by a
vector direction and magnitude value of 59.4 and 0.12 (Figure 7 and
Table 2). The correlation coefficient between board travel distance
and ATR was 0.48, and the correlation coefficient for VI was
similar (0.52). Overall, this participant was characterized as having
achieved an ATR-dominant attractor from an ATR-dominant initial
state through an ATR-oriented vector field.

Participant C required 16 trials to complete the task, the second
lowest number among all participants. The initial ATR was 0.07
and initial VI was 0.06; these values were lower than those of
the previous two participants. However, values in the final trial
substantially increased (ATR: 0.74, VI : 0.47). Learning strategy
analysis showed that the vector direction value was 55.5, indicating
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FIGURE 5

Scatter plots of the distance traveled by the board vs. the magnitude of trunk rotation for each participant. The r value in each panel represents the
correlation coefficient.

FIGURE 6

Scatter plots of the distance traveled by the board vs. its initial velocity for each participant. The r value in each panel represents the correlation
coefficient.

a greater change in the rotational movement of the torso. The vector
magnitude (0.15) was the second longest among all participants,
suggesting high movement variability in each trial. The correlation

coefficient between board travel distance and ATR was 0.70, and
the correlation coefficient for VI was similar (0.62). In summary,
this participant transitioned from an ATR-dominant initial state,
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TABLE 1 Results of correlation analysis between boarding performance and variables of interest.

Participant Trials ATR VI

r R2 95% CI r R2 95% CI

A 8 0.24 0.06 [–0.56, 0.81] 0.65 0.42 [–0.10, 0.93]

B 17 0.48 0.23 [0.00, 0.78] 0.52 0.27 [0.05, 0.80]

C 16 0.70 0.49 [0.31, 0.89] 0.62 0.38 [0.18, 0.85]

D 45 0.66 0.44 [0.45, 0.80] 0.50 0.25 [0.24, 0.69]

E 56 0.54 0.29 [0.32, 0.70] 0.66 0.44 [0.48, 0.79]

F 85 0.43 0.18 [0.37, 0.63] 0.57 0.32 [0.41, 0.70]

G 135 0.51 0.26 [0.37, 0.63] 0.65 0.42 [0.54, 0.74]

FIGURE 7

Results of learning strategy analysis for each participant. The white square (�) in each panel represents the first trial, and the black square (�)
represents the final trial. Arrow direction indicates which of the two variables of interest exhibited greater change, and arrow length represents the
degree of change.

TABLE 2 Results of learning strategy analysis.

Participant Trials First trial Vector of leaning path Final trial

ATR VI Dominance Direction Dominance Magnitude ATR VI Dominance

A 8 0.46 0.33 ATR 73.1 ATR 0.19 0.77 0.35 ATR

B 17 0.32 0.04 ATR 59.4 ATR 0.12 0.46 0.21 ATR

C 16 0.07 0.06 ATR 55.5 ATR 0.15 0.74 0.47 ATR

D 45 0.06 0.26 VI 40.6 VI 0.09 0.34 0.31 ATR

E 56 0.09 0.37 VI 21.2 VI 0.12 0.24 0.87 VI

F 85 0.11 0.04 ATR 43.1 VI 0.07 0.18 0.32 VI

G 135 0.03 0.02 ATR 55.5 ATR 00.11 0.28 0.39 VI
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in which both variables were small, through a strong vector field
oriented toward ATR, to an ATR-dominant attractor with markedly
improved ATR and VI .

Participant D required 45 trials to complete the task.
In the first trial, VI was higher than ATR (0.26 and 0.06,
respectively), and the initial velocity of the board was the dominant
variable. In the final trial, the trend was reversed (VI , 0.31;
ATR, 0.34), but the value of ATR was smaller than for the
previous participants. The vector direction value was 40.6 and
its magnitude was 0.09, indicating that VI had substantially
changed. The correlation coefficients of board travel distance with
ATR and VI were 0.66 and 0.50, respectively. In summary, this
participant was characterized as having achieved an ATR-dominant
attractor from a VI-dominant initial state through a VI-oriented
vector field.

Participant E required 56 trials to complete the task. In the first
trial, VI was much higher than ATR (0.37 and 0.09, respectively);
this trend persisted in the final trial (VI , 0.87; ATR, 0.24). These
findings suggest that this participant tended to propel the board
by increasing VI rather than performing rotational movement of
the torso. Learning strategy analysis suggested that VI considerably
varied, with a vector direction and magnitude value of 21.2 and
0.12. The correlation coefficients of the board travel distance with
ATR and VI were 0.54 and 0.66, respectively. From the above, this
participant was characterized as having achieved a VI-dominant
attractor from a VI-dominant initial state through a VI-oriented
vector field.

Participant F required 85 trials to complete the task, the second
highest number among all participants. In the first trial, VI was
higher than ATR (0.04 and 0.11, respectively), although ATR was
smaller than the values of participants A and B, who had similar
trends. In the final trial, the difference in values disappeared (ATR,
0.18; VI , 0.32), and ATR was lowest among all participants for this
trial. The vector had a direction value of 43.1 and a magnitude
of 0.07, indicating that although VI significantly changed, the
length value was lowest among all participants for this trial. The
correlation coefficients of the board travel distance with ATR and
VI were 0.43 and 0.57, respectively. Overall, this participant was
characterized as having achieved a VI-dominant attractor from an
ATR-dominant initial state through a VI-oriented vector field.

Participant G required the most trials to complete the task
(135 trials) among all participants. Initial ATR and VI values were
lowest among all participants (0.03 and 0.02, respectively). In the
final trial, VI was the dominant variable (ATR, 0.28; VI , 0.39).
Learning strategy analysis yielded a vector direction value of 55.5
and a magnitude of 0.11, indicating a strong tendency to change
the rotational motion of the torso. The correlation coefficients of
the board travel distance with ATR and VI were 0.51 and 0.65,
respectively. In summary, this participant was characterized as
having achieved a VI-dominant attractor from an initial state of
ATR dominance, where both variables were small, through an
ATR-oriented vector field.

These results indicate that caster board performance improved
with each successive trial for all participants. Furthermore, the
values of ATR and VI on the final trial increased compared to
the first trial (Table 2). However, the number of trials required
to accomplish the task varied across participants, and individual

differences were observed in the values of both variables in the
first and final trials, as well as in the learning strategies. Factors
contributing to these results are discussed in the following section.

4 Discussion

This study observed the learning process of seven participants
attempting to ride a caster board for the first time, tracking their
progress until they could successfully ride. Changes in the learning
process were compared across two variables: initial board velocity
and the amplitude of trunk rotation. The study specifically aimed
to clarify the factors underlying individual differences in learning
by examining changes in movement patterns from the first trial to
the coordinative structure achieved in the final trial, as well as the
learning strategies employed. Additionally, we examined key motor
skills for mastering the caster board by focusing on commonalities
observed among individual participants.

First, we discuss the key motor skills required to master
the caster board. Results from Figures 5, 6 and Table 1 reveal
that, across all participants, both variables VI and ATR generally
increased as the distance traveled increased. This indicates that to
ride the caster board skillfully, it is necessary to increase the board’s
initial velocity and to further apply propulsive force to the board
by performing rotational movement of the torso. These results are
consistent with previous studies (Fukai et al., 2020; Agúndez et al.,
2021) that identifies key factors for caster board riding via computer
simulations and robotics.

However, the learning processes of individual participants
suggest caution in concluding that merely improving ATR and
VI is sufficient for a learner to ride a caster board. For example,
in the learning process for bicycles—which, such as the caster
board, is a two-wheeled vehicle—the first critical step is to maintain
balance while moving at a certain speed. Only afterward does one
typically learn the pedaling motion to generate forward momentum
(Mercê et al., 2024). The results of this study also indicate that
participants D through G reached the task goal despite having
low ATR values (Table 2). This suggests that maintaining sufficient
board propulsion velocity is a necessary condition for mastering
the caster board. Furthermore, it is inferred that mastering trunk
rotational movement is required as the action to generate the
board’s propulsive force. During participant A’s learning process,
ATR peaked four trials before the final trial, then declined and
never reached that peak again, including in the final trial (Figure 5).
This suggests that excessive trunk rotation on a two-wheeled caster
board can also be a factor in losing balance.

As mentioned above, it has been established that the board’s
initial velocity and torso rotation are crucial for stable riding
on a caster board. However, as noted by Hooper (2019), the
frequency of knee flexion and extension also influences propulsion
speed. Possibly, as riders become more skilled, their coordinative
structures shift—reducing reliance on torso rotation and generating
propulsion primarily through lower-body movement. Thus, the
motor skills required for stable riding may differ from those
needed for more advanced performance. Given that this study did
not investigate the learning process beyond the point at which
participants were able to ride the caster board, it does not reveal
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the complete range of motor skills involved. To achieve this,
it is thought that observing movements during more advanced
motor tasks and comparing them with expert movements will
be necessary. Specifically, by observing movements in situations
where greater board propulsion is required for stable riding—such
as zigzagging, riding at higher speeds, or ascending slopes—the
specific motor skills necessary to generate this propulsion can be
more precisely identified.

Next, we address the factors contributing to individual
differences in the learning process. As shown in Table 2, even
when the learning task was identical, individual differences were
observed in the final learning outcomes—that is, the coordinative
structure achieved upon task completion and the learning rate. The
factors underlying these differences, such as the movement patterns
during the first trial and the learning strategies employed, varied
considerably among participants.

One possible factor is the learning pathway shaped by the
movement pattern in the first trial. As noted above, individual
differences were observed in each participant’s learning process.
However, these differences were not entirely random. Correlations
were also identified among several elements. Specifically, among
the seven participants, five showed a match between dominance in
the coordinative structure during task completion and dominance
in the learning path. Furthermore, among the seven participants,
six showed a match between dominance in the learning path
and dominance in the movement pattern during the first trial.
Moreover, four participants exhibited a match between dominance
in the coordinative structure and dominance in the movement
pattern during the first trial. These findings suggest that the
learning path (i.e., vector direction within the vector field)
influences the coordinative structure (i.e., the attractor) achieved
upon task completion. They also indicate that the movement
pattern during the first trial (i.e., the initial state) can shape the
learning path. The above findings are also thought to be related
to learning rate. Among the top four participants who required
fewer trials to reach the task, the final trial showed a dominant
ATR coordinative structure. Furthermore, among the top three
participants (participants A, B, and C) ATR was dominant both
in the first trial and the learning path. By contrast, among the
bottom three participants, the final trial showed a dominant VI
coordinative structure, and for two of them, the learning path also
favored VI . This suggests that participants A, B, and C, who showed
dominant ATR in the first trial and learning path, had already
discovered this during the early stage of learning. Conversely,
since VI was the dominant learning path for participants D, E,
and F, these participants may have focused on the board’s velocity
required for stable boarding and neglected learning the movements
necessary to generate propulsive force. Thus, it became clear that
the first trial’s movement pattern caused learning paths to diverge,
potentially influencing the coordinative structure and learning
rate. This finding indirectly supports the view of Kostrubiec et al.
(2012) that movement patterns performed by learners early in the
learning process, which they refer to as predispositions, influence
the coordinative structure achieved upon task completion, even in
the learning of caster board movements.

However, some participants could not be explained solely by
the aforementioned factors as causes of individual differences in

the learning process. Participant G required the most trials to
achieve the task despite having a dominant ATR in both the first
trial and the learning path. Furthermore, considering the degree
of both variables in the first trial, Participant C completed the
task in only 16 trials—the second fewest number of trials—despite
having values for both variables comparable to those of Participant
G. Additionally, there was a significant difference between the
two participants in their final coordinative structures. One factor
contributing to these differences may be the variation in the
movement patterns performed during the learning process. The
magnitude of the vector in Participant C’s learning strategy was
the second largest (0.15), after that of Participant A. This indicates
that changes in movement patterns between consecutive trials were
substantial throughout the learning process. In particular, since
the board’s movement distance increased significantly after the
10th trial in the performance (Figure 4), calculating the vector
magnitude up to the 10th trial and the vector magnitude after
the 10th trial yielded values of 0.11 and 0.25, respectively. This
indicates that this participant significantly changed their movement
pattern across trials after the 10th trial. Conversely, for Participant
G, a significant increase in the board’s distance was observed after
Trial 110 (Figure 4), while no major fluctuations were seen in
the trials prior to that. Particularly, the board’s distance appeared
stagnant in trials before trial 40. Calculating the magnitude of the
vector for each of the above intervals yielded values of 0.08 for
trials before trial 40, 0.13 for trials 41 to 110, and 0.11 for trials
111 to the final trial. This suggests that throughout the learning
process, this participant exhibited minimal variations in movement
patterns across trials, showing a particularly strong tendency to
perform similar movement patterns before trial 40. Furthermore,
Participant A, who required the fewest trials to complete the task,
had a high vector magnitude of 0.19. By contrast, Participant F,
who required the second-highest number of trials, had a low vector
magnitude of 0.07 (Table 2). This pattern suggests a correlation
between the final learning outcome and vector magnitude. The
above findings suggest that, during the learning process, the
extent to which individuals attempt movement patterns different
from those in previous trials can influence both the coordinative
structure and the learning rate. Thus, the ability to explore
novel movement patterns may determine how learning unfolds.
Variability in movement has been identified as an essential element
of self-organization (Davids et al., 2008). Accordingly, exploratory
behavior—actively attempting different movements rather than
adhering to the current one—is considered crucial for promoting
motor learning.

In conclusion, this study examined the learning process
of caster board riding from the perspective of the dynamical
systems approach. The findings revealed two key factors that can
generate individual differences in motor learning: The learning
path influenced by the movement pattern of the first trial and the
variation in movement patterns across trials. However, numerous
other factors have been identified as contributing to individual
differences in motor learning, including cognitive and physical
abilities, as well as neuroscientific and genetic factors (Ackerman,
2014; Seidler and Carson, 2017). Additionally, factors such as
decreased motivation and fatigue resulting from prolonged practice
sessions, as seen in participants F and G in this study, may
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contribute to individual differences. Given that this study only
examined the learning processes of seven participants on a case-by-
case basis, it is difficult to conclude that all factors contributing to
individual differences in motor learning have been fully identified.
Future research should classify learners prior to instruction based
on relevant abilities and factors, then compare learning trajectories
across groups. Such work may provide deeper insights into
individual differences in motor learning.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary material, further inquiries can be
directed to the corresponding author.

Ethics statement

The studies involving humans were approved by Ryukoku
University Ethics Committee. The studies were conducted
in accordance with the local legislation and institutional
requirements. The participants provided their written informed
consent to participate in this study.

Author contributions

HS: Writing – review & editing, Writing – original draft. TH:
Writing – review & editing. YY: Writing – review & editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by JSPS KAKENHI Grant Number JP21K17558.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.
Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the
support of artificial intelligence and reasonable efforts have
been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyg.2025.
1643100/full#supplementary-material

References

Ackerman, P. L. (2014). Nonsense, common sense, and science of
expert performance: talent and individual differences. Intelligence 45, 6–17.
doi: 10.1016/j.intell.2013.04.009

Adams, J. A. (1971). A closed-loop theory of motor learning. J. Mot. Behav. 3,
111–150. doi: 10.1080/00222895.1971.10734898

Agrawal, A., Zaini, H. M., Dear, T., and Choset, H. (2016). “Experimental gait
analysis of waveboard locomotion,” in Proceeding of the ASME 2016 Dynamics Systems
and Control Conference, 1–10. doi: 10.1115/DSCC2016-9923

Agúndez, A. G., García-Vallejo, D., and Freire, E. (2021). Stability analysis of a
waveboard multibody model with toroidal wheels. Multibody Syst. Dyn. 53, 173–203.
doi: 10.1007/s11044-021-09780-2

Beek, P. J., Peper, C. E., and Stegeman, D. F. (1995). Dynamical models of movement
coordination. Hum. Mov. Sci. 14, 573–608. doi: 10.1016/0167-9457(95)00028-5

Beek, P. J., and van Santvoord, A. A. M. (1992). Learning the
cascade juggle: a dynamical systems analysis. J. Mot. Behav. 24, 85–94.
doi: 10.1080/00222895.1992.9941604

Bernstein, N. A. (1967). The Co-Ordination and Regulation of Movements. London:
Pergamon Press.

Chow, J. Y., Davids, K., Button, C., and Renshaw, I. (2016). Nonlinear Pedagogy in
Skill Acquisition. Abingdon, VA: Routledge. doi: 10.4324/9781315813042

Davids, K., Araújo, D., Shuttleworth, R., and Button, C. (2003). Acquiring skill in
sport: a constraints-led perspective. Int. J. Comput. Sci. Sport 2, 31–39.

Davids, K., Button, C., and Bennett, S. (2008). Dynamics of Skill Acquisition.
Champaign: Human Kinetics.

Fukai, R., Yagi, K., and Mori, Y. (2020). Dynamic model for using casterboard by a
humanoid robot. Adv. Robot. 34, 648–660. doi: 10.1080/01691864.2020.1749725

Gadzhiev, M. M., Kuleshov, A. S., and Bukanov, A. I. (2020). Geometric
constraints in the problem of motion of a caster board. J. Math. Sci. 248, 392–396.
doi: 10.1007/s10958-020-04879-x

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston, MA:
Houghton Mifflin.

Haken, H., Kelso, J. A. S., and Bunz, H. (1985). A theoretical model
of phase transitions in human hand movement. Biol. Cybern. 51, 347–356.
doi: 10.1007/BF00336922

Hashizume, K., and Matsuo, T. (2004). Temporal and spatial factors reflecting
performance improvement during learning three-ball cascade juggling. Hum. Mov. Sci.
23, 207–233. doi: 10.1016/j.humov.2004.08.003

Hodges, N. J., Hayes, S., Horn, R. R., and Williamsl, A. M. (2005). Changes in
coordination, control and outcome as a result of extended practice on a novel motor
skill. Ergonomics 48, 1672–1685. doi: 10.1080/00140130500101312

Frontiers in Psychology 11 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1643100
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1643100/full#supplementary-material
https://doi.org/10.1016/j.intell.2013.04.009
https://doi.org/10.1080/00222895.1971.10734898
https://doi.org/10.1115/DSCC2016-9923
https://doi.org/10.1007/s11044-021-09780-2
https://doi.org/10.1016/0167-9457(95)00028-5
https://doi.org/10.1080/00222895.1992.9941604
https://doi.org/10.4324/9781315813042
https://doi.org/10.1080/01691864.2020.1749725
https://doi.org/10.1007/s10958-020-04879-x
https://doi.org/10.1007/BF00336922
https://doi.org/10.1016/j.humov.2004.08.003
https://doi.org/10.1080/00140130500101312
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Suzuki et al. 10.3389/fpsyg.2025.1643100

Hooper, M. (2019). “The effect of stroke frequency on translational speed
and acceleration in manually actuated caster boards,” in 2.671 Measurement and
Instrumentation, 1–6.

Ito, S., Takeuchi, S., and Sasaki, M. (2012). Motion measurement of two-
wheeled skateboard and its dynamical simulation. Appl. Math. Model. 36, 2178–2191.
doi: 10.1016/j.apm.2011.08.005

Kawato, M. (1999). Internal models for motor control and trajectory planning. Curr.
Opin. Neurobiol. 9, 718–727. doi: 10.1016/S0959-4388(99)00028-8

Kerr, R., and Booth, B. (1978). Specific and varied practice of motor skill. Percept.
Mot. Skills 46, 395–401. doi: 10.1177/003151257804600201

King, A. C., Ranganathan, R., and Newell, K. M. (2012). Individual differences in
the exploration of a redundant space-time motor task. Neurosci. Lett. 529, 144–149.
doi: 10.1016/j.neulet.2012.08.014

Kinugasa, K., Ishikawa, M., Sugimoto, Y., and Osuka, K. (2013).
“Modeling and control of casterboard robot,” in Proceeding of the IFAC
Symposium on Nonlinear Control, Toulouse, France, September 4–6, 785–790.
doi: 10.3182/20130904-3-FR-2041.00063

Kostrubiec, V., Zanone, P., Fuchs, A., and Kelso, J. A. S. (2012). Beyond the blank
slate: routes to learning new coordination patterns depend on the intrinsic dynamics
of the learner - experimental evidence and theoretical model. Front. Hum. Neurosci. 6,
1–14. doi: 10.3389/fnhum.2012.00222

Mercê, C., Davids, K., Cordovil, R., Catela, D., and Branco, M. (2024). Learning to
cycle: Why is the balance bike more efficient than the bicycle with training wheels? The
Lyapunov’s answer. J. Funct. Morphol. Kinesiol. 9, 1–18. doi: 10.3390/jfmk9040266

Newell, K. M., Liu, Y., and Mayer-Kress, G. (2001). Time scales in motor learning
and development. Psychol. Rev. 108, 57–82. doi: 10.1037/0033-295X.108.1.57

Reid, M., Giblin, G., and Whiteside, D. (2015). A kinematic comparison of the
overhand throw and tennis serve in tennis players: how similar are they really? J. Sports
Sci. 33, 713–723. doi: 10.1080/02640414.2014.962572

Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychol.
Rev. 82, 225–260. doi: 10.1037/h0076770

Schmidt, R. A., Lee, T. D., Winstein, C. J., Wulf, G., and Zelaznik, H. N. (2019).
Motor Control and Learning: A Behavioral Emphasis, 6th Edn. Champaign, IL: Human
Kinetics.

Schöner, G. (1989). Learning and recall in a dynamic theory of coordination
patterns. Biol. Cybern. 62, 39–54. doi: 10.1007/BF00217659

Seidler, R. D., and Carson, R. G. (2017). Sensorimotor learning: neurocognitive
mechanisms and individual differences. J. Neuroeng. Rehabil. 14, 1–7.
doi: 10.1186/s12984-017-0279-1

Su, B., Wang, T., Wang, J., and Kuang, S. (2013). Kinematic mechanism
and path planning of the essboard. Sci. China Technol. Sci. 56, 1499–1516.
doi: 10.1007/s11431-013-5212-7

Teulings, H-. L., Thomassen, A. J., and van Galen, G. P. (1983). Preparation
of partly precued handwriting movements: the size of movement units
in handwriting. Acta Psychol. 54, 165–177. doi: 10.1016/0001-6918(83)
90031-8

Turvey, M. T. (1990). Coordination. Am. Psychol. 45, 938–953.
doi: 10.1037/0003-066X.45.8.938

van Emmerik, R. E., den Brinker, B. P., Vereijken, B., and Whiting, T. A. (1989).
Preferred tempo in the learning of a gross cyclical action. Q. J. Exp. Psychol. A 41,
251–262. doi: 10.1080/14640748908402364

Vereijken, B., van Emmerik, R. E. A., Whiting, H. T. A., and Newell, K. M.
(1992). Free(z)ing degrees of freedom in skill acquisition. J. Mot. Behav. 24, 133–142.
doi: 10.1080/00222895.1992.9941608

Wang, T., Su, B., and Wang, J. (2013). On kinematic mechanism of a two-wheel
skateboard: the essboard. J. Mech. Robot. 5:034503. doi: 10.1115/1.4024240

Warren, W. H. (2006). The dynamics of perception and action. Psychol. Rev. 113,
358–389. doi: 10.1037/0033-295X.113.2.358

Winter, D. A. (1990). Biomechanics and Motor Control of Human Movement. New
York, NY: John Wiley and Sons.

Winter, D. A., Sidwall, H. G., and Hobson, D. A. (1974). Measurement
and reduction of noise in kinematics of locomotion. J. Biomech. 7, 157–159.
doi: 10.1016/0021-9290(74)90056-6

Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., and Smith, M. A.
(2014). Temporal structure of motor variability is dynamically regulated and predicts
motor learning ability. Nat. Neurosci. 17:312. doi: 10.1038/nn.3616

Yamamoto, K., Tsutsui, S., and Yamamoto, Y. (2015). Constrained paths based
on the Farey sequence in learning to juggle. Hum. Mov. Sci. 44, 102–110.
doi: 10.1016/j.humov.2015.08.008

Zanone, P. G., and Kelso, J. A. S. (1992). Evolution of behavioral attractors with
learning: nonequilibrium phase transitions. J. Exp. Psychol. Hum. Percept. Perform. 18,
403–421. doi: 10.1037/0096-1523.18.2.403

Frontiers in Psychology 12 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1643100
https://doi.org/10.1016/j.apm.2011.08.005
https://doi.org/10.1016/S0959-4388(99)00028-8
https://doi.org/10.1177/003151257804600201
https://doi.org/10.1016/j.neulet.2012.08.014
https://doi.org/10.3182/20130904-3-FR-2041.00063
https://doi.org/10.3389/fnhum.2012.00222
https://doi.org/10.3390/jfmk9040266
https://doi.org/10.1037/0033-295X.108.1.57
https://doi.org/10.1080/02640414.2014.962572
https://doi.org/10.1037/h0076770
https://doi.org/10.1007/BF00217659
https://doi.org/10.1186/s12984-017-0279-1
https://doi.org/10.1007/s11431-013-5212-7
https://doi.org/10.1016/0001-6918(83)90031-8
https://doi.org/10.1037/0003-066X.45.8.938
https://doi.org/10.1080/14640748908402364
https://doi.org/10.1080/00222895.1992.9941608
https://doi.org/10.1115/1.4024240
https://doi.org/10.1037/0033-295X.113.2.358
https://doi.org/10.1016/0021-9290(74)90056-6
https://doi.org/10.1038/nn.3616
https://doi.org/10.1016/j.humov.2015.08.008
https://doi.org/10.1037/0096-1523.18.2.403
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

	Factors influencing caster board skill acquisition
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Task and experimental conditions
	2.3 Procedure
	2.4 Data analysis
	2.4.1 Correlation analysis between boarding performance and variables of interest
	2.4.2 Learning strategy analysis


	3 Results
	3.1 Task performance
	3.2 Changes in variables of interest with learning

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


	Button1: 
	Button2: 
	Button3: 
	Button4: 
	Button5: 
	Button6: 
	Button7: 


