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Probabilistic reasoning is central to many theories of human cognition, yet its 
foundations are often presented through abstract mathematical formalisms 
disconnected from the logic of belief and learning. In this article, we propose a 
reinterpretation of de Finetti’s representation theorem as a principle of rational 
inference under uncertainty. Building on the framework developed by E. T. 
Jaynes—where probability is viewed as an extension of logic—we show that the 
structure of de Finetti’s theorem mirrors the logic of belief updating constrained by 
symmetry. Exchangeable sequences, which treat observations as order-invariant, 
lead naturally to a representation in which probabilities are weighted averages over 
latent causes. This structure is formally analogous to the role of partition functions 
in statistical models, where uncertainty is distributed across hypotheses according 
to constraints and prior expectations. We argue that this correspondence is not 
merely mathematical but reveals a deeper cognitive interpretation: the mind, 
when faced with symmetry and incomplete information, may infer in ways that 
implicitly reflect maximum entropy principles. We illustrate this connection with a 
simple example and discuss how the underlying structure of de Finetti’s theorem 
can inform our understanding of inductive learning, probabilistic belief, and the 
rational architecture of cognition.

KEYWORDS

probabilistic reasoning, de Finetti’s representation theorem, rational inference, 
uncertainty, E. T. Jaynes, logic of belief updating, symmetry, exchangeable sequences

1 Introduction: from statistical symmetry to 
cognitive rationality

Probabilistic reasoning is widely recognized as a hallmark of human cognition. Whether 
we are making everyday judgments under uncertainty or evaluating scientific evidence, we 
routinely update our beliefs in response to data. In recent decades, Bayesian models have 
gained prominence as both normative and descriptive accounts of this inferential process 
(Griffiths et al., 2008; Oaksford and Chater, 2007). However, many foundational aspects of 
these models remain underexplored within psychological theory—particularly regarding the 
rationale behind certain probabilistic structures and how they might reflect deeper 
cognitive principles.

One key foundational concept is exchangeability: the idea that the order in which 
observations are received should not influence our beliefs if we have no reason to believe that 
the order carries meaningful information. This symmetry condition plays a central role in 
Bruno de Finetti’s representation theorem—a result that shows how any sequence of 
exchangeable observations can be treated as if it were generated by a latent, but unknown, 
probability distribution (de Finetti, 1990). In other words, assuming exchangeability is 
tantamount to assuming that the data are conditionally independent and identically 
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distributed, given some hidden parameters. By symmetry, we mean 
invariance under permutations of the data indices: the joint probability 
remains unchanged if the order of observations is permuted. 
Intuitively, no observation should be privileged if order carries no 
meaning. We use the mind to denote the abstract reasoning system 
and the brain to refer to the biological substrate.

The notion of exchangeability has already played a foundational 
role in psychological models of learning and categorization. Early 
formulations of the Rational Model of Categorization (Anderson, 
1991) and subsequent nonparametric Bayesian models (Sanborn et al., 
2006; Griffiths et al., 2007, 2011; Gershman and Blei, 2012) all rely on 
exchangeability assumptions to explain how learners generalize from 
limited data. Our contribution does not aim to introduce this idea to 
psychology but rather to reinterpret de Finetti’s theorem as a cognitive 
principle of rational belief formation under symmetry—an 
interpretation that unifies these prior developments within a logic-of-
belief framework inspired by Jaynes.

Although this theorem is often treated as a technical result in 
mathematical statistics, it has profound implications for cognitive 
science. It provides a formal justification for inductive reasoning 
under minimal assumptions and suggests that belief formation, when 
guided by symmetry, naturally leads to probabilistic models that 
integrate over uncertainty about latent causes (Zabell, 1988).

In this article, we revisit de Finetti’s theorem not as a piece of 
abstract mathematics but as a cognitive principle of rational belief 
formation. Drawing inspiration from E. T. Jaynes’ view of probability 
as an extension of logic (Jaynes, 2003), we argue that the structure of 
de Finetti’s representation mirrors a more general pattern in human 
inference: beliefs are shaped not only by data and prior expectations 
but also by structural constraints such as symmetry and invariance. 
We show that the integral form of de Finetti’s theorem is conceptually 
analogous to the partition function in statistical models—a 
mathematical device that aggregates plausibility across configurations 
under constraint (Caticha, 2012).

We contend that this analogy is not merely formal. It highlights a 
broader view of inference as the product of structured ignorance: 
when we lack specific information, the rational strategy is to distribute 
belief in a manner that respects the known constraints without 
introducing unjustified assumptions. We suggest that this logic, rooted 
in symmetry and entropy, may reflect core aspects of how the human 
mind handles uncertainty.

The article proceeds as follows: In Section 2, we explore the notion 
of exchangeability and its role in structuring probabilistic beliefs. 
Section 3 introduces de Finetti’s representation theorem and discusses 
its implications for latent-variable inference. In Section 4, we develop 
the conceptual analogy between this theorem and partition functions. 
Section 5 presents a simple worked example, and Section 6 discusses 
the broader implications for cognitive modeling, learning, and the 
architecture of rational inference.

2 Exchangeability and the logic of 
belief

In many real-world situations, we form beliefs about uncertain 
events without knowing their generative mechanisms. When direct 
causal information is unavailable, we often rely on structural 
assumptions—such as symmetry—to constrain our inferences. One 

of the most powerful and general such assumptions is exchangeability: 
the idea that the joint plausibility of a sequence of observations does 
not depend on the order in which they are received.

Originally introduced by de Finetti (1990), exchangeability 
provides a minimal yet meaningful constraint on belief formation. It 
states that for any finite sequence of random variables X₁, X₂, …, Xₙ, 
the joint probability assignment should remain invariant under any 
permutation of the indices:

	
( ) ( ){ } ( ){ }( )π π= … = = = … =1 1 1

1, , , ,n nnP X x Xn x P X x X x

For any permutation π . In cognitive terms, this means that no 
observation is treated as privileged simply due to its position in the 
sequence. If the data are indistinguishable in their evidential value, our 
beliefs should reflect that symmetry.

Exchangeability can be regarded as a rational default assumption 
in the absence of temporal or causal structure. This concept implies 
that our beliefs about future observations should be shaped by the 
frequency of past observations, rather than their order. In fact, as de 
Finetti’s representation theorem shows, assuming exchangeability 
leads to the conclusion that the data can be modeled as conditionally 
i.i.d. (independent and identically distributed) given some latent 
variable θ. In psychological terms, it is as if the mind implicitly posits 
an underlying generative mechanism, without committing to a specific 
causal model. Exchangeability is both liberating—because it removes 
arbitrary assumptions about order—and constraining, since it forces 
us to treat observations symmetrically, imposing coherence on 
belief states.

This perspective aligns with a broader understanding of human 
cognition as model-based and generative. The mind does not merely 
register frequencies—it constructs abstract representations that 
support prediction and generalization (Tenenbaum et al., 2006). 
Exchangeability provides the structural foundation for this generative 
stance, allowing the learner to group observations by statistical type 
rather than by sequence.

Moreover, the assumption of exchangeability aligns naturally with 
Bayesian approaches to cognition, where beliefs are updated in light 
of evidence via conditional probabilities. By enforcing symmetry over 
the data, exchangeability narrows the space of rational belief states. It 
ensures that posterior distributions are coherent with respect to 
plausible ignorance about ordering—an epistemic constraint that 
mirrors the way people often reason when they lack contextual or 
temporal cues (Zabell, 1988).

Taken together, these considerations support the idea that 
exchangeability is not merely a technical device but a psychologically 
plausible principle for organizing uncertain information. In the next 
section, we show how this symmetry gives rise to a specific 
representation of belief: the de Finetti integral, which describes the 
probability of the data as an average over latent causes weighted by 
prior plausibility.

Nevertheless, exchangeability is a conditionally rational 
assumption—it applies only in environments that truly exhibit 
symmetry with respect to the observed data. In natural settings, 
temporal order, causal dependencies, or contextual information often 
break exchangeability. Human reasoning appears to adaptively toggle 
between symmetric and asymmetric models, depending on whether 
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such structures are perceived as informative (Griffiths and 
Tenenbaum, 2006). Therefore, while exchangeability provides a 
coherent normative baseline for reasoning under ignorance, real-
world inference frequently departs from it when temporal or causal 
cues justifiably constrain belief. Making these boundary conditions 
explicit helps reconcile the cognitive interpretation of exchangeability 
with evidence for context-sensitive and causally informed reasoning.

3 The de Finetti’s representation 
theorem and structured uncertainty

The representation theorem that bears de Finetti’s name is often 
introduced as a foundational result in Bayesian statistics, but its 
cognitive implications are equally significant. The theorem states that 
any infinite exchangeable sequence of binary random variables can be 
represented as a mixture of i.i.d. processes. In formal terms, if a 
sequence …1 2, ,X X  is exchangeable, then there exists a probability 
measure μ(θ) such that:

	
( ) ( ){ } ( )θ θ µ θ−= … = = −∫

11 1
0

, , 1 nn
n ss

nP X x Xn x d

Where sₙ is the number of “successes.” Under exchangeability, we 
can treat the data as if they were generated by a fixed but unknown 
parameter θ, drawn from a prior distribution μ. Cognitively, this 
suggests that a rational agent implicitly reasons over uncertain latent 
causes (Zabell, 1989).

The psychological interpretation is profound: exchangeability 
leads to structured uncertainty, where beliefs are shaped by both data 
and latent generative assumptions. The prior ( )µ θ  expresses subjective 
uncertainty about the underlying process, while the likelihood reflects 
how well each θ  explains the data. The integral yields a belief-weighted 
average over these hypotheses.

This aligns with the view that the mind constructs abstract models 
even when information is incomplete (Griffiths and Tenenbaum, 
2006). The brain may not compute integrals explicitly, but it 
approximates such reasoning through sampling, neural coding, or 
analogical inference.

Crucially, the prior μ(θ) is not arbitrary. Under pure 
exchangeability, one rational choice is the uniform prior, which 
maximizes entropy under the assumption of no further constraints 
(Jaynes, 2003). However, the maximum entropy principle is always 
problem-specific: its solution depends on the stated constraints and 
the measure defined over the parameter space. A reparameterization—
for instance, from probability to odds or log-odds—can change the 
base measure and yield different maximum-entropy priors. Alternative 
principled defaults, such as Jeffreys’ prior or reference priors 
(Bernardo, 1979; Jeffreys, 1946), offer invariant formulations of 
ignorance that remain consistent across parameterizations. 
Mentioning these points clarifies that “ignorance” does not uniquely 
select a uniform prior, but instead motivates a class of priors satisfying 
structural neutrality. This reinforces the idea that symmetry implies 
indifference: without distinguishing evidence, all possibilities are 
treated equally. Maximum entropy applies to the prior: with only 
exchangeability, the uniform prior maximizes entropy. In contrast, 
posteriors reduce entropy as data accumulate.

Psychologically, when people face symmetric conditions (e.g., 
judging outcomes with no contextual cues), they may default to belief 
structures resembling maximum entropy reasoning. Empirical 
evidence indicates that people often behave as if they are averaging 
over hidden causes under uncertainty (Zhu et al., 2020). De Finetti’s 
theorem provides a normative justification for this behavior.

In the next section, we draw an analogy between de Finetti’s 
representation theorem and the partition function—a statistical model 
concept that distributes plausibility over constrained hypotheses.

4 From physical to epistemic partition 
functions

The core property of exchangeable sequences is their latent-
variable representation: by de Finetti’s theorem, any order-invariant 
probability distribution can be expressed as a mixture over hidden 
causes. The analogy with the partition function is not intended as a 
new property or corollary but as a complementary formal perspective 
on the same structure—highlighting that integrating over latent causes 
plays a role mathematically similar to normalization in physical 
systems. However, both involve integrating over a space of latent 
possibilities, weighting each by plausibility, and producing a 
normalized distribution constrained by the system’s structure.

In physics, the partition function Z  aggregates the contributions 
of all microstates, often expressed as ( ){ } ( )β θ ρ θ θ−= ∫ EZ e d , where 
( )θE  is energy and ( )ρ θ  is the density of states. This function 

normalizes the Boltzmann distribution and reflects how probability is 
allocated under energetic constraints.

In Bayesian inference, de Finetti’s representation theorem 
similarly integrates over a latent parameter space: 
( ) ( ) ( )θ µ θ= ∫ |P D p D d . Here, the likelihood is analogous to energy, 

and the prior resembles the density of states. The integral serves as a 
Bayesian partition function (MacKay, 2003).

This analogy suggests that human inference under uncertainty can 
be understood in terms of epistemic constraints. Therefore, the latent-
variable interpretation remains primary; the concept of an “epistemic 
partition function” merely rephrases the same marginalization 
principle in energetic or normalization terms. Just as physical systems 
settle into distributions based on energy and temperature, rational 
agents form belief states that balance evidence (likelihood) and prior 
constraints. By ‘epistemic partition function,’ we refer to the Bayesian 
marginal likelihood, that is, which is the integral of the likelihood 
weighted by the prior.

Seen in this light, de Finetti’s integral is not merely technical—it 
expresses how structured ignorance is resolved. When generative 
mechanisms are unknown but the data are exchangeable, beliefs are 
distributed across hypotheses in a principled, constrained fashion.

Therefore, the epistemic partition function reflects total 
plausibility assigned to the observed data across latent models. It plays 
a central role in Bayesian model selection and cognitive evaluation 
(Spiegelhalter et al., 2002). It highlights that beliefs are shaped not only 
by evidence but also by the structure of the reasoning space itself.

More fundamentally, the existence of a partition function 
indicates that any exchangeable sequence implicitly assumes a latent 
generative structure. De Finetti’s theorem guarantees that order-
invariant observations can always be represented as independent 
samples from a latent distribution, making the inference over this 
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latent space the true cognitive task. This perspective emphasizes that 
rational inference is not only about belief updating but also about 
discovering the hidden structure that explains why exchangeability 
holds in the first place. Therefore, the “partition function” is not 
merely a normalization term but a formal bridge between symmetry 
at the observational level and causality at the representational level.

Conceptually, describing the marginal likelihood as an epistemic 
partition function offers more than a mere change in terminology. It 
makes explicit that rational belief updating can be understood as an 
energy-balancing process: the mind distributes plausibility across 
hypotheses to minimize epistemic “free energy,” trading off evidence 
fit against prior constraints. This perspective links Bayesian inference 
to potential neurocomputational mechanisms, such as those proposed 
in predictive coding and free-energy models of brain function 
(Friston, 2010). It also suggests testable predictions: when the 
symmetry of the hypothesis space or the entropy of prior constraints 
is experimentally manipulated, belief updating should show 
measurable shifts in confidence and variability. Therefore, the partition 
function framing not only restates Bayesian integration but also 
extends it into a framework that connects epistemic structure, 
computational efficiency, and cognitive phenomenology.

In the next section, we illustrate this process through a simple 
example of exchangeable inference.

5 A simple example of exchangeable 
inference

To illustrate the structure of exchangeable inference, a simple 
binary scenario was considered. Suppose an agent observes 10 events, 
7 of which are classified as “successes.” Assuming exchangeability and 
no additional knowledge, the rational prior over θ ∈  0,1  is uniform.

The likelihood of the data is proportional to ( )θ θ− 37 1 . The 
posterior, by Bayes’ rule, is a Beta (8, 4) distribution, combining the 

prior and data. Figure 1 shows the scaled likelihood and the 
resulting posterior.

This posterior reflects updated beliefs, shaped by both the 
observed frequency and the structural constraint of symmetry. No 
causal model is assumed; inference emerges from 
minimal assumptions.

Cognitively, this illustrates that coherent belief updating can 
arise from symmetry and data alone. The agent does not need to 
know the true process—by treating the data as structurally identical, 
a rational posterior is formed through integration over 
latent possibilities.

This supports the study’s research hypothesis: exchangeability 
allows rational inference under ignorance. The posterior is not 
arbitrary—it reflects a principled aggregation of evidence and 
uncertainty. Rational inference arises from the Bayesian framework, 
with de Finetti’s theorem serving as one case. Partition exchangeability 
(Amiryousefi et al., 2022) is another route to rational inference.

6 Implications for cognitive science 
and psychology

This reinterpretation of de Finetti’s theorem carries several 
implications for cognitive science. First, it formalizes how beliefs can 
be updated without detailed causal knowledge. Symmetry-based 
assumptions constrain inference and support generalization under 
uncertainty (Tenenbaum et al., 2011).

Second, linking the de Finetti integral to the partition function 
offers a unified account of belief integration and latent-structure 
discovery. It formalizes how the mind aggregates evidence across 
hypotheses while implicitly learning the hidden parameters that 
generate exchangeable data. This view directly connects with 
nonparametric Bayesian models of categorization and latent-cause 
inference (Anderson, 1991; Gershman and Niv, 2010), in which 

FIGURE 1

Posterior distribution over the latent success probability θ  after observing seven successes and three failures out of 10 binary events. The agent 
assumes exchangeability and starts with a uniform prior. The dashed line shows the unnormalized likelihood function ( )θ θ−1 37 , reflecting the fit of 
each hypothesis to the data. The solid line shows the resulting posterior distribution, which corresponds to a Beta (8, 4) distribution. This illustrates how 
rational inference, under symmetry and minimal assumptions, leads to a coherent belief distribution over latent causes.
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learners infer not only the probabilities of outcomes but also the 
structure that generates them.

Third, this explains default reasoning. People often treat outcomes 
as equiprobable without evidence to the contrary (Xu and Garcia, 
2008). This reflects maximum entropy reasoning under symmetry, as 
prescribed by de Finetti.

Fourth, this framework contributes to ongoing discussions of 
bounded rationality. While human heuristics may deviate from exact 
Bayesian inference, they can be interpreted as approximate 
implementations of symmetry-based inference under resource 
constraints. This interpretation resonates with rational process models 
(Sanborn et al., 2010) and supports the view that coherence, rather 
than computational precision, defines rational cognition. This 
perspective also aligns with extensive research showing that human 
judgment often relies on heuristics when information is limited or 
costly to process (Tversky and Kahneman, 1974; Gigerenzer and 
Gaissmaier, 2011).

Interestingly, Sanborn et al. (2010) showed that when Bayesian 
inference is implemented through sequential or sampling-based 
algorithms, apparent order effects can emerge even under an 
exchangeable generative model. These effects arise from algorithmic 
approximations rather than from violations of the underlying symmetry, 
reinforcing the idea that bounded rationality may reflect computational 
constraints on otherwise coherent probabilistic reasoning.

Finally, the framework invites empirical testing: do people behave 
as if they assume exchangeability? How do priors and symmetry affect 
inference? Investigating these questions can help connect probabilistic 
theory with real cognitive processes. At the physiological level, the 
brain approximates probabilistic averaging through parallel neural 
networks, integrating signals across billions of neurons and trillions 
of synapses.

Beyond infant statistical learning, several studies have examined 
exchangeability-like reasoning in adults. Research on adult statistical 
learning and generalization (Fiser and Aslin, 2002; Griffiths et al., 
2010) indicates that people often assume order-invariant structures 
when evidence does not suggest causal or temporal asymmetry. At the 
same time, violations of exchangeability emerge when participants 
infer latent causes or temporal dependencies (Kemp et al., 2007; 
Gershman et al., 2010). These findings align with hierarchical Bayesian 
models of perception and belief updating, such as predictive coding 
(Friston, 2010) and active inference (Parr and Friston, 2017), in which 
the brain dynamically balances exchangeable and non-exchangeable 
structures depending on contextual cues. Incorporating these 
frameworks helps situate the proposed interpretation of de Finetti’s 
theorem within current computational accounts of cognition and 
neural inference.

Beyond cognitive and perceptual domains, recent research shows 
that human reasoning departs from exchangeability in contexts rich 
in moral or emotional content. When moral values, affective salience, 
or social identity are at stake, symmetry assumptions break down: 
people systematically privilege certain outcomes or agents, violating 
order invariance and probabilistic neutrality (Lloyd et al., 2023). These 
findings highlight that exchangeability is not only constrained by 
temporal or causal cues but also by motivational and moral factors 
that shape the perceived relevance of observations. Recognizing these 
departures helps delimit the ecological validity of exchangeability and 
clarifies that rational inference is context-dependent and sensitive to 
the cognitive and affective structure of the environment.

In addition to its foundational role, exchangeability underlies a broad 
class of cognitive models that implement rational inference through 
Bayesian nonparametric methods. The rational model of categorization 
(Anderson, 1991) can be derived from exchangeability assumptions, 
leading to a Dirichlet process prior over category partitions (Sanborn et 
al., 2006). Subsequent research unified this approach with hierarchical 
extensions (Griffiths et al., 2007, 2011) and explored how rational learners 
approximate such inferences using psychologically plausible algorithms 
(Sanborn et al., 2010). Parallel developments in latent-cause models 
(Gershman et al., 2010; Gershman and Niv, 2010; Gershman et al., 2015) 
and latent-feature representations (Austerweil and Griffiths, 2013) further 
demonstrate how exchangeability provides the mathematical backbone 
for flexible inductive generalization. Reviews by Gershman and Blei 
(2012) and Austerweil et al. (2015) summarize this research program, 
showing that exchangeability—when combined with hierarchical and 
nonparametric priors—supports adaptive inference across categorization, 
causal reasoning, and memory.

Finally, the assumption of full exchangeability has been 
generalized in richer frameworks of partial exchangeability, which 
relax symmetry constraints while preserving coherent probabilistic 
inference. This extension underlies models such as latent Dirichlet 
allocation (Blei et al., 2003), their psychological counterparts in topic 
learning (Griffiths et al., 2007), and recent connections between de 
Finetti’s theorem and large language models (Zhang et al., 2023; Ye 
and Namkoong 2024). These developments illustrate that 
exchangeability remains a central organizing principle even in the age 
of hierarchical, neural, and in-context Bayesian inference.

7 Conclusion: rational inference as 
structured ignorance

At its core, this article argues that rational belief does not 
require detailed generative models; however, it does require 
coherence under uncertainty. Exchangeability offers a principled 
basis for inductive inference when information is minimal. De 
Finetti’s theorem shows how beliefs can reflect structured 
ignorance—a plausible distribution across hypotheses guided by 
prior plausibility and observed data.

This is conceptually analogous to the partition function: a 
normalizing factor aggregating plausibility across constraints. More 
broadly, it offers a window into the logic of belief itself.

From this perspective, inference is not simply numerical—it is 
epistemic. It reconciles what is known with what is unknown, guided by 
symmetry and constraint. This aligns with traditions that view probability 
as an extension of logic (Jaynes, 2003; Carnap, 1950) and with a 
conception of the rational mind as sensitive to structural coherence.

Understanding inference as structured ignorance bridges 
cognitive science and probability theory. It unifies symmetry, 
plausibility, and uncertainty into a cohesive framework for rational 
belief. While full exchangeability provides the idealized foundation for 
rational inference under symmetry, many natural environments 
exhibit only partial exchangeability—that is, invariance within, but not 
across, contextual or hierarchical groupings. Extending the present 
framework to such cases connects de Finetti’s logic of symmetry with 
hierarchical Bayesian cognition, where rational belief remains 
coherent but is structured by context-dependent constraints. De 
Finetti’s theorem is pivotal but not unique. Partition exchangeability 
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and other Bayesian formalisms also support inductive inference, with 
Bayesian logic as the overarching principle.
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