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Probabilistic reasoning is central to many theories of human cognition, yet its
foundations are often presented through abstract mathematical formalisms
disconnected from the logic of belief and learning. In this article, we propose a
reinterpretation of de Finetti's representation theorem as a principle of rational
inference under uncertainty. Building on the framework developed by E. T.
Jaynes—where probability is viewed as an extension of logic—we show that the
structure of de Finetti's theorem mirrors the logic of belief updating constrained by
symmetry. Exchangeable sequences, which treat observations as order-invariant,
lead naturally to a representation in which probabilities are weighted averages over
latent causes. This structure is formally analogous to the role of partition functions
in statistical models, where uncertainty is distributed across hypotheses according
to constraints and prior expectations. We argue that this correspondence is not
merely mathematical but reveals a deeper cognitive interpretation: the mind,
when faced with symmetry and incomplete information, may infer in ways that
implicitly reflect maximum entropy principles. We illustrate this connection with a
simple example and discuss how the underlying structure of de Finetti's theorem
can inform our understanding of inductive learning, probabilistic belief, and the
rational architecture of cognition.

KEYWORDS

probabilistic reasoning, de Finetti's representation theorem, rational inference,
uncertainty, E. T. Jaynes, logic of belief updating, symmetry, exchangeable sequences

1 Introduction: from statistical symmetry to
cognitive rationality

Probabilistic reasoning is widely recognized as a hallmark of human cognition. Whether
we are making everyday judgments under uncertainty or evaluating scientific evidence, we
routinely update our beliefs in response to data. In recent decades, Bayesian models have
gained prominence as both normative and descriptive accounts of this inferential process
(Griffiths et al., 2008; Oaksford and Chater, 2007). However, many foundational aspects of
these models remain underexplored within psychological theory—particularly regarding the
rationale behind certain probabilistic structures and how they might reflect deeper
cognitive principles.

One key foundational concept is exchangeability: the idea that the order in which
observations are received should not influence our beliefs if we have no reason to believe that
the order carries meaningful information. This symmetry condition plays a central role in
Bruno de Finetti’s representation theorem—a result that shows how any sequence of
exchangeable observations can be treated as if it were generated by a latent, but unknown,
probability distribution (de Finetti, 1990). In other words, assuming exchangeability is
tantamount to assuming that the data are conditionally independent and identically
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distributed, given some hidden parameters. By symmetry, we mean
invariance under permutations of the data indices: the joint probability
remains unchanged if the order of observations is permuted.
Intuitively, no observation should be privileged if order carries no
meaning. We use the mind to denote the abstract reasoning system
and the brain to refer to the biological substrate.

The notion of exchangeability has already played a foundational
role in psychological models of learning and categorization. Early
formulations of the Rational Model of Categorization (Anderson,
1991) and subsequent nonparametric Bayesian models (Sanborn et al.,
2006; Griffiths et al., 2007, 2011; Gershman and Blei, 2012) all rely on
exchangeability assumptions to explain how learners generalize from
limited data. Our contribution does not aim to introduce this idea to
psychology but rather to reinterpret de Finetti’s theorem as a cognitive
principle of rational belief formation under symmetry—an
interpretation that unifies these prior developments within a logic-of-
belief framework inspired by Jaynes.

Although this theorem is often treated as a technical result in
mathematical statistics, it has profound implications for cognitive
science. It provides a formal justification for inductive reasoning
under minimal assumptions and suggests that belief formation, when
guided by symmetry, naturally leads to probabilistic models that
integrate over uncertainty about latent causes (Zabell, 1988).

In this article, we revisit de Finetti’s theorem not as a piece of
abstract mathematics but as a cognitive principle of rational belief
formation. Drawing inspiration from E. T. Jaynes’ view of probability
as an extension of logic (Jaynes, 2003), we argue that the structure of
de Finetti’s representation mirrors a more general pattern in human
inference: beliefs are shaped not only by data and prior expectations
but also by structural constraints such as symmetry and invariance.
We show that the integral form of de Finetti’s theorem is conceptually
analogous to the partition function in statistical models—a
mathematical device that aggregates plausibility across configurations
under constraint (Caticha, 2012).

We contend that this analogy is not merely formal. It highlights a
broader view of inference as the product of structured ignorance:
when we lack specific information, the rational strategy is to distribute
belief in a manner that respects the known constraints without
introducing unjustified assumptions. We suggest that this logic, rooted
in symmetry and entropy, may reflect core aspects of how the human
mind handles uncertainty.

The article proceeds as follows: In Section 2, we explore the notion
of exchangeability and its role in structuring probabilistic beliefs.
Section 3 introduces de Finetti’s representation theorem and discusses
its implications for latent-variable inference. In Section 4, we develop
the conceptual analogy between this theorem and partition functions.
Section 5 presents a simple worked example, and Section 6 discusses
the broader implications for cognitive modeling, learning, and the
architecture of rational inference.

2 Exchangeability and the logic of
belief

In many real-world situations, we form beliefs about uncertain
events without knowing their generative mechanisms. When direct
causal information is unavailable, we often rely on structural
assumptions—such as symmetry—to constrain our inferences. One
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of the most powerful and general such assumptions is exchangeability:
the idea that the joint plausibility of a sequence of observations does
not depend on the order in which they are received.

Originally introduced by de Finetti (1990), exchangeability
provides a minimal yet meaningful constraint on belief formation. It
- Xns
the joint probability assignment should remain invariant under any

states that for any finite sequence of random variables Xi, X, ..

permutation of the indices:

P(Xl :xl,.“)Xn:xn):P(X{ﬂ(l)} :xl,‘.‘,X{ﬁ(n)} :xn)

For any permutation 7. In cognitive terms, this means that no
observation is treated as privileged simply due to its position in the
sequence. If the data are indistinguishable in their evidential value, our
beliefs should reflect that symmetry.

Exchangeability can be regarded as a rational default assumption
in the absence of temporal or causal structure. This concept implies
that our beliefs about future observations should be shaped by the
frequency of past observations, rather than their order. In fact, as de
Finetti’s representation theorem shows, assuming exchangeability
leads to the conclusion that the data can be modeled as conditionally
i.id. (independent and identically distributed) given some latent
variable 6. In psychological terms, it is as if the mind implicitly posits
an underlying generative mechanism, without committing to a specific
causal model. Exchangeability is both liberating—because it removes
arbitrary assumptions about order—and constraining, since it forces
us to treat observations symmetrically, imposing coherence on
belief states.

This perspective aligns with a broader understanding of human
cognition as model-based and generative. The mind does not merely
register frequencies—it constructs abstract representations that
support prediction and generalization (Tenenbaum et al., 2006).
Exchangeability provides the structural foundation for this generative
stance, allowing the learner to group observations by statistical type
rather than by sequence.

Moreover, the assumption of exchangeability aligns naturally with
Bayesian approaches to cognition, where beliefs are updated in light
of evidence via conditional probabilities. By enforcing symmetry over
the data, exchangeability narrows the space of rational belief states. It
ensures that posterior distributions are coherent with respect to
plausible ignorance about ordering—an epistemic constraint that
mirrors the way people often reason when they lack contextual or
temporal cues (Zabell, 1988).

Taken together, these considerations support the idea that
exchangeability is not merely a technical device but a psychologically
plausible principle for organizing uncertain information. In the next
section, we show how this symmetry gives rise to a specific
representation of belief: the de Finetti integral, which describes the
probability of the data as an average over latent causes weighted by
prior plausibility.

Nevertheless, exchangeability is a conditionally rational
assumption—it applies only in environments that truly exhibit
symmetry with respect to the observed data. In natural settings,
temporal order, causal dependencies, or contextual information often
break exchangeability. Human reasoning appears to adaptively toggle
between symmetric and asymmetric models, depending on whether
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such structures are perceived as informative (Griffiths and
Tenenbaum, 2006). Therefore, while exchangeability provides a
coherent normative baseline for reasoning under ignorance, real-
world inference frequently departs from it when temporal or causal
cues justifiably constrain belief. Making these boundary conditions
explicit helps reconcile the cognitive interpretation of exchangeability
with evidence for context-sensitive and causally informed reasoning.

3 The de Finetti's representation
theorem and structured uncertainty

The representation theorem that bears de Finetti’s name is often
introduced as a foundational result in Bayesian statistics, but its
cognitive implications are equally significant. The theorem states that
any infinite exchangeable sequence of binary random variables can be
represented as a mixture of i.i.d. processes. In formal terms, if a
sequence X', X?,... is exchangeable, then there exists a probability
measure x(6) such that:

P(X1 =x1,...,Xn=xn)=J:) 0% (1—0){%5"} d,u(@)

Where s, is the number of “successes” Under exchangeability, we
can treat the data as if they were generated by a fixed but unknown
parameter 0, drawn from a prior distribution p. Cognitively, this
suggests that a rational agent implicitly reasons over uncertain latent
causes (Zabell, 1989).

The psychological interpretation is profound: exchangeability
leads to structured uncertainty, where beliefs are shaped by both data
and latent generative assumptions. The prior ,u(H) expresses subjective
uncertainty about the underlying process, while the likelihood reflects
how well each 6 explains the data. The integral yields a belief-weighted
average over these hypotheses.

This aligns with the view that the mind constructs abstract models
even when information is incomplete (Griffiths and Tenenbaum,
2006). The brain may not compute integrals explicitly, but it
approximates such reasoning through sampling, neural coding, or
analogical inference.

Crucially, the prior u(@) is not arbitrary. Under pure
exchangeability, one rational choice is the uniform prior, which
maximizes entropy under the assumption of no further constraints
(Jaynes, 2003). However, the maximum entropy principle is always
problem-specific: its solution depends on the stated constraints and
the measure defined over the parameter space. A reparameterization—
for instance, from probability to odds or log-odds—can change the
base measure and yield different maximum-entropy priors. Alternative
principled defaults, such as Jeffreys’ prior or reference priors
(Bernardo, 1979; Jeffreys, 1946), offer invariant formulations of
ignorance that remain consistent across parameterizations.
Mentioning these points clarifies that “ignorance” does not uniquely
select a uniform prior, but instead motivates a class of priors satisfying
structural neutrality. This reinforces the idea that symmetry implies
indifference: without distinguishing evidence, all possibilities are
treated equally. Maximum entropy applies to the prior: with only
exchangeability, the uniform prior maximizes entropy. In contrast,
posteriors reduce entropy as data accumulate.
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Psychologically, when people face symmetric conditions (e.g.,
judging outcomes with no contextual cues), they may default to belief
structures resembling maximum entropy reasoning. Empirical
evidence indicates that people often behave as if they are averaging
over hidden causes under uncertainty (Zhu et al., 2020). De Finetti’s
theorem provides a normative justification for this behavior.

In the next section, we draw an analogy between de Finetti’s
representation theorem and the partition function—a statistical model
concept that distributes plausibility over constrained hypotheses.

4 From physical to epistemic partition
functions

The core property of exchangeable sequences is their latent-
variable representation: by de Finetti’s theorem, any order-invariant
probability distribution can be expressed as a mixture over hidden
causes. The analogy with the partition function is not intended as a
new property or corollary but as a complementary formal perspective
on the same structure—highlighting that integrating over latent causes
plays a role mathematically similar to normalization in physical
systems. However, both involve integrating over a space of latent
possibilities, weighting each by plausibility, and producing a
normalized distribution constrained by the system’s structure.

In physics, the partition function Z aggregates the contributions
of all microstates, often expressed as z=] e{*ﬂE(e )} 0(0)do> where
E(H) is energy and p(9) is the density of states.
normalizes the Boltzmann distribution and reflects how probability is

is function

allocated under energetic constraints.

In Bayesian inference, de Finetti’s representation theorem
similarly ~ integrates over a latent parameter space:
P(D) =] p(D| 6‘) d ,u(H). Here, the likelihood is analogous to energy,
and the prior resembles the density of states. The integral serves as a
Bayesian partition function (MacKay, 2003).

This analogy suggests that human inference under uncertainty can
be understood in terms of epistemic constraints. Therefore, the latent-
variable interpretation remains primary; the concept of an “epistemic
partition function” merely rephrases the same marginalization
principle in energetic or normalization terms. Just as physical systems
settle into distributions based on energy and temperature, rational
agents form belief states that balance evidence (likelihood) and prior
constraints. By ‘epistemic partition function, we refer to the Bayesian
marginal likelihood, that is, which is the integral of the likelihood
weighted by the prior.

Seen in this light, de Finetti’s integral is not merely technical—it
expresses how structured ignorance is resolved. When generative
mechanisms are unknown but the data are exchangeable, beliefs are
distributed across hypotheses in a principled, constrained fashion.

Therefore, the epistemic partition function reflects total
plausibility assigned to the observed data across latent models. It plays
a central role in Bayesian model selection and cognitive evaluation
(Spiegelhalter et al., 2002). It highlights that beliefs are shaped not only
by evidence but also by the structure of the reasoning space itself.

More fundamentally, the existence of a partition function
indicates that any exchangeable sequence implicitly assumes a latent
generative structure. De Finetti’s theorem guarantees that order-
invariant observations can always be represented as independent
samples from a latent distribution, making the inference over this
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latent space the true cognitive task. This perspective emphasizes that
rational inference is not only about belief updating but also about
discovering the hidden structure that explains why exchangeability
holds in the first place. Therefore, the “partition function” is not
merely a normalization term but a formal bridge between symmetry
at the observational level and causality at the representational level.

Conceptually, describing the marginal likelihood as an epistemic
partition function offers more than a mere change in terminology. It
makes explicit that rational belief updating can be understood as an
energy-balancing process: the mind distributes plausibility across
hypotheses to minimize epistemic “free energy; trading off evidence
fit against prior constraints. This perspective links Bayesian inference
to potential neurocomputational mechanisms, such as those proposed
in predictive coding and free-energy models of brain function
(Friston, 2010). It also suggests testable predictions: when the
symmetry of the hypothesis space or the entropy of prior constraints
is experimentally manipulated, belief updating should show
measurable shifts in confidence and variability. Therefore, the partition
function framing not only restates Bayesian integration but also
extends it into a framework that connects epistemic structure,
computational efficiency, and cognitive phenomenology.

In the next section, we illustrate this process through a simple
example of exchangeable inference.

5 A simple example of exchangeable
inference

To illustrate the structure of exchangeable inference, a simple
binary scenario was considered. Suppose an agent observes 10 events,
7 of which are classified as “successes” Assuming exchangeability and
no additional knowledge, the rational prior over ¢ 6[0’1_ is uniform.

The likelihood of the data is proportional to g7 (1 - 9)3. The
posterior, by Bayes’ rule, is a Beta (8, 4) distribution, combining the

10.3389/fpsyg.2025.1621552

prior and data. Figure 1 shows the scaled likelihood and the
resulting posterior.

This posterior reflects updated beliefs, shaped by both the
observed frequency and the structural constraint of symmetry. No
causal model is assumed; inference emerges from
minimal assumptions.

Cognitively, this illustrates that coherent belief updating can
arise from symmetry and data alone. The agent does not need to
know the true process—by treating the data as structurally identical,
a rational posterior is formed through integration over
latent possibilities.

This supports the study’s research hypothesis: exchangeability
allows rational inference under ignorance. The posterior is not
arbitrary—it reflects a principled aggregation of evidence and
uncertainty. Rational inference arises from the Bayesian framework,
with de Finetti’s theorem serving as one case. Partition exchangeability

(Amiryousefl et al., 2022) is another route to rational inference.

6 Implications for cognitive science
and psychology

This reinterpretation of de Finetti’s theorem carries several
implications for cognitive science. First, it formalizes how beliefs can
be updated without detailed causal knowledge. Symmetry-based
assumptions constrain inference and support generalization under
uncertainty (Tenenbaum et al., 2011).

Second, linking the de Finetti integral to the partition function
offers a unified account of belief integration and latent-structure
discovery. It formalizes how the mind aggregates evidence across
hypotheses while implicitly learning the hidden parameters that
generate exchangeable data. This view directly connects with
nonparametric Bayesian models of categorization and latent-cause
inference (Anderson, 1991; Gershman and Niv, 2010), in which

3.01

2.0f

1.0t

Density (normalized)

051

Exchangeable Inference with Uniform Prior

Likelihood (scaled)
- Posterior (Beta(8,4))

0.0 0.2 0.4

FIGURE 1

Posterior distribution over the latent success probability 8 after observing seven successes and three failures out of 10 binary events. The agent
assumes exchangeability and starts with a uniform prior. The dashed line shows the unnormalized likelihood function 97 1-0 3, reflecting the fit of
each hypothesis to the data. The solid line shows the resulting posterior distribution, which corresponds to a Beta (8, 4) distribution. This illustrates how
rational inference, under symmetry and minimal assumptions, leads to a coherent belief distribution over latent causes.

0.6 0.8 1.0
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learners infer not only the probabilities of outcomes but also the
structure that generates them.

Third, this explains default reasoning. People often treat outcomes
as equiprobable without evidence to the contrary (Xu and Garcia,
2008). This reflects maximum entropy reasoning under symmetry, as
prescribed by de Finetti.

Fourth, this framework contributes to ongoing discussions of
bounded rationality. While human heuristics may deviate from exact
Bayesian inference, they can be interpreted as approximate
implementations of symmetry-based inference under resource
constraints. This interpretation resonates with rational process models
(Sanborn et al., 2010) and supports the view that coherence, rather
than computational precision, defines rational cognition. This
perspective also aligns with extensive research showing that human
judgment often relies on heuristics when information is limited or
costly to process (Tversky and Kahneman, 1974; Gigerenzer and
Gaissmaier, 2011).

Interestingly, Sanborn et al. (2010) showed that when Bayesian
inference is implemented through sequential or sampling-based
algorithms, apparent order effects can emerge even under an
exchangeable generative model. These effects arise from algorithmic
approximations rather than from violations of the underlying symmetry,
reinforcing the idea that bounded rationality may reflect computational
constraints on otherwise coherent probabilistic reasoning.

Finally, the framework invites empirical testing: do people behave
as if they assume exchangeability? How do priors and symmetry affect
inference? Investigating these questions can help connect probabilistic
theory with real cognitive processes. At the physiological level, the
brain approximates probabilistic averaging through parallel neural
networks, integrating signals across billions of neurons and trillions
of synapses.

Beyond infant statistical learning, several studies have examined
exchangeability-like reasoning in adults. Research on adult statistical
learning and generalization (Fiser and Aslin, 2002; Griffiths et al,
2010) indicates that people often assume order-invariant structures
when evidence does not suggest causal or temporal asymmetry. At the
same time, violations of exchangeability emerge when participants
infer latent causes or temporal dependencies (Kemp et al., 2007;
Gershman et al., 2010). These findings align with hierarchical Bayesian
models of perception and belief updating, such as predictive coding
(Friston, 2010) and active inference (Parr and Friston, 2017), in which
the brain dynamically balances exchangeable and non-exchangeable
structures depending on contextual cues. Incorporating these
frameworks helps situate the proposed interpretation of de Finetti’s
theorem within current computational accounts of cognition and
neural inference.

Beyond cognitive and perceptual domains, recent research shows
that human reasoning departs from exchangeability in contexts rich
in moral or emotional content. When moral values, affective salience,
or social identity are at stake, symmetry assumptions break down:
people systematically privilege certain outcomes or agents, violating
order invariance and probabilistic neutrality (Lloyd et al., 2023). These
findings highlight that exchangeability is not only constrained by
temporal or causal cues but also by motivational and moral factors
that shape the perceived relevance of observations. Recognizing these
departures helps delimit the ecological validity of exchangeability and
clarifies that rational inference is context-dependent and sensitive to
the cognitive and affective structure of the environment.
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In addition to its foundational role, exchangeability underlies a broad
class of cognitive models that implement rational inference through
Bayesian nonparametric methods. The rational model of categorization
(Anderson, 1991) can be derived from exchangeability assumptions,
leading to a Dirichlet process prior over category partitions (Sanborn et
al., 2006). Subsequent research unified this approach with hierarchical
extensions (Griffiths etal., 2007, 2011) and explored how rational learners
approximate such inferences using psychologically plausible algorithms
(Sanborn et al, 2010). Parallel developments in latent-cause models
(Gershman et al., 2010; Gershman and Niv, 2010; Gershman et al., 2015)
and latent-feature representations (Austerweil and Griffiths, 2013) further
demonstrate how exchangeability provides the mathematical backbone
for flexible inductive generalization. Reviews by Gershman and Blei
(2012) and Austerweil et al. (2015) summarize this research program,
showing that exchangeability—when combined with hierarchical and
nonparametric priors—supports adaptive inference across categorization,
causal reasoning, and memory.

Finally, the assumption of full exchangeability has been
generalized in richer frameworks of partial exchangeability, which
relax symmetry constraints while preserving coherent probabilistic
inference. This extension underlies models such as latent Dirichlet
allocation (Blei et al., 2003), their psychological counterparts in topic
learning (Griffiths et al., 2007), and recent connections between de
Finetti’s theorem and large language models (Zhang et al., 2023; Ye
2024).
exchangeability remains a central organizing principle even in the age

and Namkoong These developments illustrate that

of hierarchical, neural, and in-context Bayesian inference.

7 Conclusion: rational inference as
structured ignorance

At its core, this article argues that rational belief does not
require detailed generative models; however, it does require
coherence under uncertainty. Exchangeability offers a principled
basis for inductive inference when information is minimal. De
Finettis theorem shows how beliefs can reflect structured
ignorance—a plausible distribution across hypotheses guided by
prior plausibility and observed data.

This is conceptually analogous to the partition function: a
normalizing factor aggregating plausibility across constraints. More
broadly, it offers a window into the logic of belief itself.

From this perspective, inference is not simply numerical—it is
epistemic. It reconciles what is known with what is unknown, guided by
symmetry and constraint. This aligns with traditions that view probability
as an extension of logic (Jaynes, 2003; Carnap, 1950) and with a
conception of the rational mind as sensitive to structural coherence.

Understanding inference as structured ignorance bridges
cognitive science and probability theory. It unifies symmetry,
plausibility, and uncertainty into a cohesive framework for rational
belief. While full exchangeability provides the idealized foundation for
rational inference under symmetry, many natural environments
exhibit only partial exchangeability—that is, invariance within, but not
across, contextual or hierarchical groupings. Extending the present
framework to such cases connects de Finetti’s logic of symmetry with
hierarchical Bayesian cognition, where rational belief remains
coherent but is structured by context-dependent constraints. De
Finetti’s theorem is pivotal but not unique. Partition exchangeability
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and other Bayesian formalisms also support inductive inference, with
Bayesian logic as the overarching principle.
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