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Innovations in dementia
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Background: The rising prevalence of dementia, driven by aging populations,
presents a global public health challenge. Pharmacological treatments offer
limited benefits unless initiated during pre-symptomatic stages, emphasizing
the need for early, accurate, and cost-effective screening methods. This review
investigates the diagnostic accuracy and feasibility of virtual reality-based
assessments for identifying mild cognitive impairment, a prodromal stage
of dementia.
Methods: A systematic literature search of PubMed, PsycINFO, and IEEE Xplore
was conducted to identify studies evaluating the diagnostic performance of
virtual reality tools for mild cognitive impairment detection. Pooled sensitivity
and specificity were calculated through meta-analysis, and methodological
quality was assessed using the QUADAS-2 tool. The review adhered to
PRISMA guidelines.
Results: Twenty-nine studies met the inclusion criteria. Virtual reality-based
assessments demonstrated pooled sensitivity and specificity of 0.883 and 0.887,
respectively. Among 13 studies using machine learning, pooled sensitivity was
0.888 and specificity 0.885. Further sub-group analysis was done according
to immersion degree, MCI-subtype and reference standard. Tools integrating
machine learning with EEG or movement data showed particular promise.
Conclusion: The findings of this meta-analysis indicate that virtual reality
(VR) assessments have a promising level of accuracy for the detection of
mild cognitive impairment (MCI). Nevertheless, the results are preliminary, and
their interpretation warrants caution due to the substantial methodological
heterogeneity observed among the included studies. Despite the potential of
VR as a cost-effective solution for dementia screening, its implementation faces
notable barriers, including the requirement for specialized personnel and the
absence of clear data regarding software and support costs.

KEYWORDS

mild cognitive impairment, virtual reality, dementia, screening, artificial intelligence (AI),
machine learning

1 Introduction

The escalating global burden of dementia represents one of the most pressing health
and societal challenges of the 21st century, with projections indicating a tripling of
affected individuals by 2050 (Alzheimer Europe, 2019). Dementia is a general term for a
decline in cognitive function severe enough to interfere with daily life and independence
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(Arvanitakis et al., 2019). It is not a specific disease but a
syndrome caused by various underlying conditions that affect
the brain (Arvanitakis et al., 2019). Aging is the primary risk
factor for dementia, as its prevalence increases significantly with
advancing age (Mecocci and Boccardi, 2021; Van Der Flier, 2005).
While dementia is not a normal part of aging, the age-related
changes that occur in the brain over time can make individuals
more susceptible to the conditions that cause it (Mecocci and
Boccardi, 2021). As populations continue to age, the prevalence
of dementia is projected to rise, magnifying its impact on society,
economies, families, and individuals. The main underlying causes
of dementia include Alzheimer’s disease (AD), vascular dementia,
Lewy body dementia and frontotemporal dementia. AD, the most
common underlying cause of dementia, accounts for 60-70% of
dementia cases (World Health Organization, 2023). Dementia
has historically been diagnosed according to the manifestation
of clinical symptoms as measured through neuropsychological
assessment, however, when it comes to AD, the field has
increasingly adopted a biomarker-based classification, relying on
evidence of specific pathological hallmarks such as amyloid plaques
and tau neurofibrillary tangles (Jack et al., 2024).

Mild cognitive impairment (MCI), a clinical stage between
normal aging and dementia, is often characterized by subtle
cognitive changes that are noticeable yet not severe enough to
significantly impede daily life (Petersen, 2004). Consequently,
accurate MCI diagnosis has become a key focus for researchers, as
it offers a critical window for early intervention before dementia
fully manifests. This diagnostic precision is now even more vital
with the advent of disease-modifying treatments that show efficacy
in the early stages of Alzheimer’s disease (Reardon, 2023). For
instance, the drug Donanemab was found to reduce AD disease
progression by 60% and cleared nearly 90% of brain amyloid,
but only in patients at the early stages of AD (Reardon, 2023).
Numerous studies have established a strong link between MCI and
dementia, indicating that 10–15% of individuals with MCI develop
Alzheimer-type dementia within 1 year, up to 50% progress within
3 years, and ∼80% convert within 5 years (Amieva et al., 2004;
Gauthier et al., 2006; Petersen et al., 1999). Additionally, other
dementia pathologies, including vascular dementia, frontotemporal
dementia, and Lewy body dementia, exhibit a 50% conversion
rate from MCI to dementia within an average three-year
period (Michaud et al., 2017). This provides an opportunity
for timely interventions that may stop/slow progression
through lifestyle interventions or drug therapies if MCI can be
detected accurately.

The diagnosis of mild cognitive impairment (MCI) includes
various subtypes that have been found to have varying correlations
with different dementia pathologies (Petersen, 2016). MCI is
commonly categorized into amnestic MCI (aMCI) and non-
amnestic MCI (naMCI), based on whether memory impairment
is present (Petersen, 2016). Both aMCI and naMCI can further be
classified into single-domain or multi-domain MCI, depending on
the number of cognitive domains affected (Michaud et al., 2017;
Petersen, 2016). All MCI subtypes are more strongly linked to
the progression of Alzheimer’s disease (AD) compared to other
forms of dementia, such as frontotemporal, vascular, or Lewy
body dementia (Elkasaby et al., 2023). However, the strength of

this relationship varies across subtypes. For example, aMCI and
amnestic multi-domain MCI are more closely associated with the
development of AD than other MCI subtypes (Elkasaby et al.,
2023). This has led to a focus in research on amnestic subtypes for
the early diagnosis of AD.

The general consensus on the clinical criteria for MCI
involves a self- or informant-reported cognitive complaint
alongside objective cognitive impairment measured through tests.
Crucially, individuals with MCI maintain preserved independence
in functional abilities, and their general cognitive functioning
is essentially preserved, ensuring the criteria for no dementia
is met (Petersen et al., 2014). Within the framework of MCI
as a general clinical entity, the gold standard for diagnosis
has therefore typically been comprehensive neuropsychological
assessment. However, when focusing on the relationship between
MCI and AD, recent revisions by the National Institute of Aging-
Alzheimer’s Association (NIA-AA) have fundamentally reoriented
the diagnostic understanding of MCI due to AD, moving from a
purely symptom-based approach to a biologically driven definition
(Jack et al., 2024). This shift means that the NIA-AA’s gold standard
for research into MCI relies on a reference standard confirming the
presence of amyloid-beta deposition and/or tau pathology in the
brain, typically ascertained through methods such as amyloid PET
imaging or cerebrospinal fluid (CSF) analysis (Jack et al., 2024).

However, these methods are often invasive, expensive, or
time-intensive, making them impractical for routine or large-
scale screening for AD (Wimo et al., 2024). For example, CSF
testing requires lumbar punctures, which can be uncomfortable
for patients, while MRI and PET scans involve lengthy procedures
and significant costs, limiting their accessibility (Wimo et al.,
2024). Eligibility for disease modifying therapies requires positive
biomarkers as obtained through these methods (Belder et al.,
2023). Nevertheless, as acknowledged by the NIA-AA, an
initial screening process using more cost-effective methods
is essential to determine patient eligibility for subsequent
Alzheimer’s disease biomarker assessment (Jack et al., 2024).
Initial screening for cognitive impairment typically involves
neuropsychological testing. Although comprehensive assessments
are accurate, they are time-consuming. Conversely, rapid tools
like the Mini-Mental State Examination (MMSE) and Montreal
Cognitive Assessment (MoCA) are quick and non-invasive
but often lack the sensitivity and specificity to detect early
or subtle cognitive decline (Carson et al., 2018; Tsoi et al.,
2015). Addressing the need for accessible and efficient pre-
biomarker screening, current advancements in virtual reality
(VR) technologies for neuropsychological assessment present a
promising avenue for exploration.

In the research literature, the definition of VR varies
significantly, with no clear consensus on what constitutes VR
technology (Abbas et al., 2023). Traditionally, VR is associated
with wearable headsets or goggles that immerse users in a fully
3D computer-generated environment. However, the term is also
used more broadly to describe computer-generated simulations
that replicate real places or situations, enabling users to interact
in ways that feel realistic (Abbas et al., 2023). Under this broader
definition, environments displayed on computer screens or tablet
devices also qualify as VR, provided they allow users to engage with

Frontiers in Psychology 02 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1606562
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
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TABLE 1 Different types of virtual reality definitions according to immersion degree (based on Liu et al., 2023).

Feature Immersive VR Semi-immersive VR Non-immersive VR

Equipment Head-mounted displays (VR-headsets), Large screens, projection systems Monitors or tablets.

User Experience High immersion, fully isolates users in a
virtual environment

Moderate immersion, partial presence Fully aware of real-world environment
while also aware of virtual environment

Interaction Through head and body movements, often
handheld controllers tracking movement

Physical controls or limited movement tracking Indirect (via input devices, mouse and
keyboard or touch)

a simulated environment that appears authentic. Consequently, the
research literature encompasses a wide range of paradigms under
the umbrella of “VR research”. To address this variability, it has
become essential to categorize VR paradigms based on their level
of immersion (see Table 1).

VR technology is emerging as a highly promising tool
for dementia screening, especially with advancements in
machine-learning methods. VR assessments could generate
large volumes of data by capturing detailed information on
users’ behaviors, movements, and responses in real-world-like
scenarios. Traditionally, processing and interpreting such complex
datasets posed significant challenges. However, modern machine-
learning techniques now make it possible to analyze these data
efficiently, possibly uncovering subtle and multidimensional
patterns indicative of MCI that would otherwise go unnoticed.
As an example, emerging evidence suggests that early dementia
symptoms often manifest subtly in daily activities (Jekel et al.,
2015), movement (Chen et al., 2020), eye movement (Opwonya
et al., 2022), altered EEG patterns (Yang et al., 2019), and
speech changes (Sanborn et al., 2022). Technology now exists to
automatically collect modalities such as eye movement, bodily
movements, speech, and EEG within a VR setup. Speech analysis
requires only a microphone and appropriate machine-learning
software. Low-cost, validated EEG devices in the form of wearable
headbands are now widely available to the public and have been
used in machine-learning studies to accurately detect MCI (Wu
et al., 2023; Xue et al., 2023). Eye-tracking is often an integrated
function of VR headsets, making implementation straightforward,
while movement data can be captured using kinematic sensors
or handheld controllers. Since these technologies rely on specific
stimuli or tasks to elicit measurable responses, VR assessments
may be uniquely positioned to integrate these technologies in
dementia screening.

Unlike traditional tests, VR environments can simulate real-
world situations, allowing researchers to measure how a patient’s
cognitive decline impacts their ability to navigate and interact with
their surroundings. This approach may provide a direct way to
study structure-function relationships, connecting specific changes
in brain structure to observable declines in function. By doing
so, VR may help us move beyond simple observation and could
provide a more objective, measurable way to track the progression
of dementia, potentially leading to earlier and more accurate
diagnoses. As an example, studies suggest that the entorhinal
cortex (EC) is fundamentally involved in navigation, thanks to its
spatially-modulated neurons (Igarashi, 2023). As this is one of the
first brain regions to show damage in Alzheimer’s disease, a decline
in its function could serve as an important biomarker for detecting
the disease at its earliest onset. For instance, VR can be utilized to

design tasks that assess EC-related cognitive functions. Studies by
Howett et al. (2019) and Castegnaro et al. (2022) have implemented
this by measuring participants’ ability to retrace a path and
recall object locations within a VR environment. Furthermore,
the possibility of self-administered virtual assessments might also
reduce the need for specialized personnel, increasing accessibility
for at-risk populations. However, questions remain regarding the
overall accuracy of virtual assessments, the potential enhancements
offered by machine learning, optimal design strategies, and the
most promising assistive technologies. Additionally, concerns
remain about the feasibility of VR-assessments, including cost-
effectiveness, time efficiency, acceptance among older populations,
and whether VR assessments are better suited as screening tools for
dementia compared to traditional methods.

The aim of our study is to explore the accuracy of current
VR-based cognitive tests in differentiating patients with MCI
from healthy controls through a meta-analysis and systematic
review of relevant studies. Furthermore, we aim to provide an
informative discussion on the feasibility of VR-based dementia
screening and how advanced technologies and machine-learning
may enhance dementia screening based on the findings of the
included studies.

2 Method

A systematic review and meta-analysis were selected as the
methodological approach to ensure a comprehensive, accurate, and
transparent synthesis of the available evidence. This study was
conducted in accordance with PRISMA 2020 guidelines (Page et al.,
2021) to maintain methodological rigor. As outlined in section
2.4, the quality assessment of the included studies follows the
QUADAS-2 framework (Whiting, 2011). The subsequent sections
will describe the search strategy, inclusion and exclusion criteria,
data extraction process, risk of bias assessment, and statistical
methods employed.

2.1 Search strategy

The literature search was conducted from June 25 to September
17, 2024, using the PubMed, IEEE Xplore, and PsycINFO databases.
The following search string was put together: (“virtual reality”
OR “serious game” OR “virtual game” OR “video game” OR
“augmented reality”) AND (“cognitive impairment” OR “mild
cognitive impairment” OR “pre-dementia” OR “pre-alzheimer”
OR “MCI”) AND (“screen∗” OR “detect∗” OR “predict∗” OR
“evaluate∗” OR “diagnosis∗” OR “assess∗” OR “discriminate∗” OR
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“machine learning” OR “deep learning” OR “artificial intelligence”).
Citation searches were also performed in relevant review articles
and eligible studies.

2.2 Inclusion and exclusion criteria

Eligibility for inclusion in the systematic review and meta-
analysis was evaluated using the PICO model, as recommended
by the Cochrane collaboration (Thomas et al., 2023). Table 2
summarizes the main PICO inclusion criteria used. In addition
to meeting the PICO criteria, studies were required to be peer-
reviewed and published in English. Articles that were preprints,
guidelines, or review articles were excluded.

Studies were included if they met the following criteria:

1. Studies must involve patients diagnosed with Mild Cognitive
Impairment (MCI), including its subgroups (e.g., amnestic
MCI), based on recognized diagnostic criteria e.g., the Petersen
criteria or recommendations of the National Institute on Aging
(Albert et al., 2011; Petersen, 2004).

2. Studies must use assessment tools that align with the broader
definition of Virtual Reality (VR), meaning computerized
simulations that replicate real places or situations and enable
users to interact in ways that feel realistic.

3. Studies must report accuracy measures for differentiating MCI
from healthy controls. For studies including multiple groups
(MCI, healthy controls, and dementia), specific accuracy data for
MCI vs. healthy controls must be provided.

4. Studies must provide data that allow for the calculation of
diagnostic accuracy metrics (i.e., true positives, false positives,
true negatives, false negatives, sensitivity, and specificity) or
report these measures directly.

Studies were excluded if they met the following criteria:

1. Studies that include patient groups with already developed
dementia without a specific focus on detecting MCI.

2. Studies that use computerized tests that do not replicate real-life
situations or environments.

3. Studies that only report accuracy data for distinguishing
MCI from dementia, without providing specific measures for
differentiating MCI from healthy controls.

4. Studies that do not provide the necessary data (e.g., sensitivity,
specificity, and participant numbers in the diagnostic groups) to
compute or derive key diagnostic accuracy metrics.

TABLE 2 PICO inclusion criteria.

Population Participants diagnosed with MCI or MCI-subtypes
according to established criteria

Intervention Assessments using tools that are consistent with the broader
definition of VR

Comparison Healthy controls

Outcomes Sensitivity and specificity or data that these measures can be
derived from

2.3 Data extraction

Data from the relevant studies were organized into a
data extraction table. The extracted information included the
year of publication, author names, study location, type of
assistive technologies used, neuropsychological tests administered,
comparative tests, reference standards, and time to test completion.
Additionally, studies were categorized by immersion degree (non-
immersive, semi-immersive, or fully immersive) based on the
definitions provided in the introduction (section 1.0). For the meta-
analysis, diagnostic accuracy data such as specificity, sensitivity,
true positives, false positives, true negatives, and false negatives
were compiled into tables for statistical analysis. Diagnostic
accuracy studies often report performance across various cut-off
values. When multiple cut-off values were provided, the cut-off
recommended by the authors of the included study was used for
the meta-analysis. If no recommendation was available, the cut-
off highlighted in the abstract of the included study was selected.
In cases where multiple machine-learning models were compared
and no recommendation was provided, data from the model with
the highest average of specificity and sensitivity were included in
the meta-analysis.

2.4 Risk of bias and study quality
assessment

To ensure quality and evaluate risk of bias in the different
studies the Quality Assessment of Diagnostic Accuracy Studies
2 instrument (QUADAS-2) was used (Whiting, 2011). The
QUADAS- 2 focuses on four key domains to assess the reliability of
the study’s results. First, it examines patient selection, determining
whether the inclusion of participants was free from bias,
particularly avoiding inappropriate exclusions that could skew the
results and whether a case-control design was avoided. Second,
it assesses the index test, looking at how the test being evaluated
(e.g., new screening test or diagnostic tool) was conducted and
whether its results were interpreted consistently and in a pre-
specified manner. Third, an evaluation of the risk of bias in the
reference standard, which is the diagnostic method used as a
benchmark to assess the accuracy of the index test (test being
developed). This domain checks whether the reference standard
is appropriate and applied consistently throughout the study and
in line with the current gold standard for diagnosis. As the gold
standard for diagnosing mild cognitive impairment, a multimodal
approach combining neuropsychological testing, clinical judgment,
and functional assessments is typically recommended. Following
widely accepted criteria like the NIA-AA or Petersen criteria
ensures that the diagnosis is robust and can be compared across
studies (Albert et al., 2013; Petersen, 2004). Lastly, QUADAS-2
examines flow and timing, ensuring that there is a reasonable
time interval between the application of the index test and the
reference standard, and that no participants were excluded after
the study started without proper explanation. The risk of bias will
be categorized as low, unclear, moderate, or high based on the
QUADAS-2 domains.
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However, as machine-learning models are being used in a good
portion of the included studies, this brings a new dimension to
the quality assessment process. The QUADAS-2 index domain will
therefore be switched out with an assessment of the machine-
learning validation method being employed. Currently a new
edition of the QUADAS-2 for studies using AI is being developed
(QUADAS-AI), but has not yet been published and is expected
to be finished by late 2024 to early 2025 (Guni et al., 2024). The
main differences will probably be in the index test assessment
section, as machine-learning is being used in the index test. Based
on the current literature, machine-learning validation methods
using cross-validation will be assigned “low-risk”, methods using
the holdout-method will be assigned “moderate-risk” and finally
methods that do not split the data-set into training and test
(resubstitution method) will be assigned “high-risk” (see Table 3).
It is important to note that the risk of bias in the holdout method
is also influenced by sample size. When sample sizes are large,
the risk of bias is minimal. This will be accounted for when
evaluating risk of bias. In summary, the QUADAS-2 domains
are used for assessing risk of bias in the included machine-
learning studies, with the index domain adjusted to evaluate risk
of bias according to the validation method being used. There
are several types of validation methods, but a more in-depth
explanation is outside the scope of this article. For a deeper
explanation of machine-learning validation methods see Diniz
(2022).

TABLE 3 Machine-learning validation methods and associated risk of bias.

Validation
method

Risk level Explanation

Cross-validation Low risk Uses multiple data splits to evaluate
the model, reducing overfitting and
variance across different folds.

Holdout method Medium risk Involves a single data split, which
can lead to biased results due to
dependence on one specific data
division. (Does not introduce great
bias if samples are large).

Resubstitution
method

High risk Evaluates the model on the same
data used for training, leading to
overfitting and unrealistic
performance metrics.

2.5 Statistical analysis

All statistical analyses and associated figures were generated
using MetaBayesDTA, a Bayesian hierarchical model specifically
designed for meta-analyses of diagnostic test accuracy (Cerullo
et al., 2023; Freeman et al., 2019; Patel et al., 2021). This approach
provides robust estimates by incorporating prior information and
accounting for uncertainty. Given the limited prior knowledge
about the sensitivity, specificity, and heterogeneity of VR-based
assessments, weakly informative priors were employed to allow the
results to be driven primarily by the data.

The priors used in the model were as follows:

• Logit sensitivities and specificities: normal distribution with a
mean of 0 and SD of 1 (95% prior interval: 0.05–0.95 on the
probability scale).

• Between-study standard deviations: truncated normal
distribution with a mean of 0 and SD of 1, truncated at 0 (95%
prior interval: 0.03–2.25).

• Between-study correlation between sensitivities and
specificities: LKJ(2) prior (95% prior interval:−0.8 to 0.8).

A pooled estimate of sensitivity, specificity, and overall
diagnostic accuracy was calculated using a bivariate random-
effects model in MetaBayesDTA. This model, widely regarded as
the standard for diagnostic test accuracy meta-analysis (Reitsma
et al., 2005), accounts for variability both within studies (due to
sampling error) and between studies (due to differences in design,
populations, or thresholds). This ensures that both within- and
between-study variability are appropriately managed.

The pooled estimates are reported with 95% credible intervals,
which represent the Bayesian equivalent of confidence intervals,
indicating the range where the true diagnostic performance is likely
to lie with 95% certainty. Forest plots were generated to display
sensitivity and specificity estimates from each study alongside their
respective credible intervals, providing a clear visual summary of
the variation across studies. Additionally, a Hierarchical Summary
Receiver Operating Characteristic (HSROC) curve was produced
to illustrate the balance between sensitivity and specificity across
the included studies, offering an overarching view of the overall
diagnostic performance. Furthermore, subgroup and sensitivity
analyses were conducted. Publication bias was examined using
Deeks’ funnel plot, with the statistical significance assessed via
Deeks’ asymmetry test in R.

3 Results

The following section presents the results of the literature
search, followed by characteristics of the included studies, including
immersion degree, technologies used, MCI subtypes, test types,
and countries of origin. Additionally, the results from the
statistical analysis and quality assessment of the included studies
are provided. Since approximately half of the studies employed
machine-learning methods for diagnosis, the risk of bias analysis
is divided into two categories: studies using machine learning
and those that do not. This division is appropriate due to the
significant differences between machine-learning-based methods
and conventional approaches. Furthermore, a comparison of the
screening performance of machine-learning-enhanced methods vs.
non-machine-learning methods is provided.

3.1 Literature search

Figure 1 presents a PRISMA flowchart illustrating the study
selection process. A total of 1,368 articles were identified through
database searches in PubMed (n = 525), IEEE Xplore (n = 120),
and PsycINFO (n = 723), with an additional 8 articles identified
through citation searching. After removing 573 duplicate articles,
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Gausemel and Filkuková 10.3389/fpsyg.2025.1606562

FIGURE 1

PRISMA flow-chart.

795 articles remained for title screening. During title screening, 692
articles were excluded, primarily due to their focus on diagnoses
unrelated to MCI, such as schizophrenia, phobias, PTSD, ADHD,
neglect, or executive dysfunction. Additionally, several excluded
articles were reviews, explored VR technology in rehabilitation
rather than screening or diagnosis, or did not involve any form
of virtual reality technology. Following title screening, 103 articles
were selected for full-text review. From the full-text review, 75
articles were excluded for the following reasons: being review
articles (n = 8), not meeting the definition of VR (n = 27),
lacking sufficient outcome information (n = 28), or including
participants outside the inclusion criteria (n = 11). Additionally, 4
articles identified through citation searching were excluded as they
were conference papers duplicating existing studies. This process
resulted in 29 articles being included in the final review.

3.2 Characteristics of the included studies

The final literature review and meta-analysis included 29
studies (see Table 4), 13 of which employed machine learning as
an assistive technology. The studies were published between 2012
and 2024, with 19 appearing after 2020, reflecting the rapid growth
of VR-related research in recent years. This trend is particularly
pronounced for VR-assisted screening using machine learning:
all but one of the 13 machine learning studies were published
after 2020, with 9 published since 2023 alone. Collectively, the
machine-learning-based studies included 1,366 participants, while

the non-machine-learning studies involved 1,389 participants. The
research spanned a diverse range of countries, with the highest
representation from South Korea (n = 10), followed by Greece
(n = 5), China (n = 4), Italy (n = 3), and one study each from
Turkey, Singapore, Brazil, Saudi Arabia, Taiwan, Spain, and the
United States. The mean age of participants ranged from 62.3 to
77.7 years, with most studies reporting a mean age above 70.

Of the 29 studies, 6 specifically assessed the accuracy of
VR-based assessments for patients with amnestic mild cognitive
impairment (aMCI), while 23 focused on all MCI subtypes. In
terms of immersion levels, 15 studies were fully immersive, utilizing
VR headsets to create complete virtual environments. Three were
semi-immersive, employing large screens or projections to provide
partial immersion, while 8 were non-immersive, relying on devices
like tablets or desktop computers. Most studies utilized cross-
sectional designs, except for four (Buegler et al., 2020; Tarnanas
et al., 2013; Zygouris et al., 2017; Tarnanas et al., 2015b), which
employed longitudinal designs.

As shown in Table 4, machine-learning studies are most
prevalent in Asian countries, with 11 out of 14 studies originating
from this region, including seven from South Korea. The trend of
increased machine-learning studies in countries like South Korea
may be linked to the significant challenges posed by rapidly aging
populations. South Korea is projected to become a “super-aged
society” by 2025, with over 20% of its population aged 65 or older
(Statistics Korea, 2022). Another key observation is the notable
difference in the level of immersion in machine-learning studies
compared to non-machine-learning studies. This difference likely
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TABLE 4 Characteristics of the included VR-assessments.

Author Immersion
degree

Technologies Screening
test

Participants Participants’
age

Country Cognitive
domains
assessed

Diagnostic MCI
criteria used

Time to
administer

Accuracy
metrics

Kim D. et al. (2024) Full EEG-SSVEP,
Eye-tracking,
movement tracking
Machine-learning

Virtual kiosk test 24 aMCI
24 HC

Mean age: 70 South-Korea Executive functioning,
Visuospatial processing,
Processing speed

NIA-AA 2013. (Albert
et al., 2013)

5–15 min Sensitivity: 0.958
Specificity: 1.0

Park et al. (2024) Full Eye- tracking,
movement-tracking
MRI-data
Machine-learning

Virtual kiosk test 32 MCI
22 HC

Mean age: 71.7 South-Korea Executive functioning,
Visuospatial processing,
Processing speed

NIA-AA 2011 criteria
(Albert et al., 2011)

5–15 min Sensitivity: 0.875
Specificity: 0.909

Kallel et al. (2024) Full Eye-tracking,
Movement
tracking, EEG-data
MRI-data
Machine-learning

Virtual kiosk test 32MCI
22 HC

N/A South-Korea Executive functioning,
Visuospatial processing,
Processing speed

Unspecified 5–15 min Sensitivity: 0.727
Specificity: 0.867

Kim S. Y. et al.
(2024)

Full Eye- tracking,
Movement
tracking, EEG,
MRI-data,
Machine-learning

Virtual kiosk test 25 MCI
21 HC

N/A South-Korea Executive functioning,
Visuospatial processing,
Processing speed

NIA-AA 2011 criteria
(Albert et al., 2011)

5–15 min Sensitivity: 1.0
Specificity: 0.762

Xu et al. (2024) Full Eye-tracking,
Machine-learning

VECA MCI 60
HC 141

55–65: 113 65–75:
79 75+: 9

China Executive functioning,
Visuospatial processing,
Processing speed

Unspecified
Only used MoCA

5 min Sensitivity: 0.885
Specificity: 0.830

Kim et al. (2023) Full Eye-tracking,
Movement-tracking
Machine-learning

Virtual kiosk test 31 MCI
20 HC

Mean age: 71.82 South-Korea Executive functioning,
Visuospatial processing,
Processing speed

NIA-AA 2011 criteria
(Albert et al., 2011)

5–15 min Sensitivity: 1.000
Specificity: 0.850

Wu et al. (2023) Full EEG, Speech
analysis
Machine-learning

N/A 44 MCI
42 HC

Mean age: 68.2 China Language Executive
functioning,
Visuospatial processing

Unspecified
MMSE+MoCA

Unspecified Sensitivity: 0.886
Specificity: 0.905

Xue et al. (2023) Full EEG
Machine-learning

VRNPT 40 MCI
40 HC

Mean age: 62.3 China Attention, Visuospatial
processing,
Working memory

NIA-AA 2011 criteria
(Albert et al., 2011)

17 min Sensitivity: 0.900
Specificity: 0.875

Bayahya et al.
(2022)

Full Machine-learning MVD 30 MCI
60 HC

N/A Saudi Arabia Spatial navigation,
Visuospatial processing,
Long-term memory
(delayed recall)

Unspecified Unspecified Sensitivity: 0.850
Specificity: 1.00

Lee et al. (2022) Full EEG
Machine-learning

N/A 21 MCI
22 HC

Mean age: 70.4 South Korea Attention, Working
memory, Visuospatial
processing

Petersen criteria
(Petersen and Morris,
2005)

Less than 30 min Sensitivity: 0.731
Specificity: 0.821

(Continued)
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TABLE 4 (Continued)

Author Immersion
degree

Technologies Screening
test

Participants Participants’
age

Country Cognitive
domains
assessed

Diagnostic MCI
criteria used

Time to
administer

Accuracy
metrics

Tsai et al. (2021) Full Machine-learning Virtual supermarket 6 MCI
6 HC

Mean age: 72.4 Taiwan Long term memory
(delayed recall) Spatial
navigation,
Executive functioning

Unspecified Unspecified Sensitivity: 1.0
Specificity:
1.0

Buegler et al. (2020) Semi Movement analysis,
Augmented reality,
Machine-learning

Altoida digital
neuro signature
(DNS)

213 MCI
283 HC

Mean age: 67 Mulitcenter;
USA + 7
European
countries

Executive functioning,
Spatial
memory/navigation,
Processing speed

NIA-AA 2011 criteria
(Jack et al., 2011)
Used AD Biomarkers

10 min Sensitivity: 0.840
Specificity: 0.880

Valladares-
Rodriguez et al.
(2018)

Low Machine-learning Episodix 28 HC
16 MCI

Mean age: 77.03 Spain Working memory,
Short-term memory,
Long-term memory
(delayed recall)

NIA-AA 2011, Petersen
criteria
(Petersen, 2004; Albert
et al., 2011)

Unspecified Sensitivity: 0.938
Specificity: 0.857

Zygouris et al.
(2015)

Low None Virtual supermarket
test (VST)

34 MCI
21 HC

Mean: 68.9 Greece Executive functioning,
Short-term memory,
Spatial navigation

Petersen criteria
(Petersen, 2004)

Unspecified Sensitivity: 0.824
Specificity: 0.952

Zygouris et al.
(2017)

Low None VST 6 MCI
6 HC

Mean age: 63.7 Greece Executive functioning,
Short-term memory,
Spatial navigation

Petersen 2004 criteria
(Petersen, 2004)

Unspecified Sensitivity: 1.0
Specificity: 0.833

Eraslan Boz et al.
(2019)

Low None VST 37 aMCI
52 HC

Mean age: 69 Turkey Executive functioning,
Short-term memory,
Spatial navigation

Petersen criteria,
(Petersen et al., 2009)

25 min Sensitivity: 0.784
Specificity: 0.865

Zygouris et al.
(2020)

Low None VST 47 MCI
48 HC

Mean age: 66.9 Greece Executive functioning,
Short-term memory,
Spatial navigation

Petersen criteria,
(Petersen et al., 2009)

30 min Sensitivity: 0.766
Specificity: 0.917

Yan et al. (2021) Low None Virtual supermarket
program

62 MCI
64 HC

Mean age: 77.7 China Executive functions,
Short term memory,
Spatial navigation

Petersen criteria,
(Petersen, 2004)

Unspecified Sensitivity: 0.857
Specificity 0.797

Cabinio et al. (2020) Low None Smart aging serious
game (SASG)

32 aMCI
107 HC

Mean age: 76.5 Italy Executive functioning,
Working memory,
Attention,
Visuospatial processing,
Long-term memory
(delayed recall)

DSM-V criteria,
NIA-AA criteia 2011
[American Psychiatric
Association (APA),
2013; Albert et al., 2011]
Used AD Biomarkers

Unspecified Sensitivity: 0.833
Specificity: 0.757

(Continued)
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TABLE 4 (Continued)

Author Immersion
degree

Technologies Screening
test

Participants Participants’
age

Country Cognitive
domains
assessed

Diagnostic MCI
criteria used

Time to
administer

Accuracy
metrics

Isernia et al. (2021) Low None SASG 87 MCI
74 HC

Mean age: 74.6 Italy Executive functioning,
Working memory,
Attention,
Visuospatial processing,
Long-term memory
(delayed recall)

NIA-AA 2011 criteria
(Albert et al., 2011)
Used AD Biomarkers

Unspecified Sensitivity: 0.767
Specificity: 0.730

Caffò et al. (2012) Low None Virtual
Reorientation Test

51 aMCI
53 HC

Mean age: 70.5 Italy Reorientation, Spatial
navigation

Petersen criteria
(Petersen, 2004)

Unspecified Sensitivity: 0.804
Specificity 0.943

Chua et al. (2019) Semi None REACH assessment
module

23 MCI
37 HC

Mean age: 71.9 Singapore Executive functioning,
Visuospatial processing,
Working memory

Unspecified
Only used the MoCA

19–20 min Sensitivity: 0.783
Specificity: 0.757

Jang et al. (2023) Full None VARABOM Test 12 MCI
108 HC

Mean age: 74 South Korea Executive functioning,
Working memory,
Visuospatial processing,
Attention

Unspecified
Only used the general
dementia scale (GDS)

19 min Sensitivity: 0.833
Specificity:
0.722

Da Costa et al.
(2021)

Low None SOIVET Maze Task MCI 19
HC 29

Mean age: 71.3 Brazil Spatial navigation,
Working memory

Petersen criteria
(Petersen, 2004)

Unspecified Sensitivity: 0.737
Specificity 0.621

Seo et al. (2017) Full Motion tracking Virtual daily living
test (VDLT)

20 MCI
22 HC

Mean age: 72.4 South Korea Executive functioning,
Short-term memory

NIA-AA 2011 criteria
(Albert et al., 2011)

Unspecified Sensitivity 0.900
Specificity: 0.909

Tarnanas et al.
(2013)

Full Motion tracking,
dual-belt treadmill

Viritual day out
(VR-DOT)

65 aMCI
72 HC

Mean age: 72.7 Greece Executive functioning,
Working memory
(spatial memory)

Petersen criteria
(Petersen, 2004)

Unspecified Sensitivity: 0.969
Specificity 1.000

Tarnanas et al.
(2015a)

Semi None VAP-M 25 aMCI
25 HC

Mean age: 64.3 Greece Working memory
(spatial memory),
Executive functioning,
Visuospatial processing

Petersen criteria,
(Petersen, 2004)

30 min Sensitivity: 1.000
Specificity: 0.960

Tarnanas et al.
(2015b)

Full Unclear VR-DOT 61 MCI
71 HC

Mean age: 72.1 Greece Executive functioning,
Visuospatial processing,
Prospective memory,
Spatial navigation

International Working
Group 2004 criteria
(Winblad et al., 2004)

Unspecified Sensitivity:
1.000
Specificity:
0.944

Park (2022) Low None SCT-VR 36 MCI
56 HC

Mean age: 74 South Korea Spatial navigation Petersen 2004 criteria
(Petersen, 2004)

Unspecified Sensitivity: 0.944
Specificity:
0.929

MCI, mild cognitive impairment; HC, healthy control; aMCI, amnestic mild cognitive impairment; NIA-AA, National Institute on Aging-Alzheimer’s Association; MMSE, mini-mental state exam; MoCA, Montreal cognitive assessment; DSM-V, diagnostic
statistical manual-V.
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reflects the more recent publication dates of machine-learning
studies, coinciding with the growing accessibility and adoption of
modern VR headsets.

3.2.1 Common trends and patterns among VR
assessments

To emphasize the common patterns and trends among the
studies included in this review, the following section provides a
summary of the tasks and procedures frequently used in these
assessments. This overview is necessary to clarify what VR-based
assessments typically involve, as this may not be immediately
intuitive to the reader, while also highlighting key characteristics
of the included studies.

Nine of the included studies (Kallel et al., 2024; Kim et al.,
2023; Kim D. et al., 2024; Kim S. Y. et al., 2024; Park et al.,
2024; Seo et al., 2017; Tarnanas et al., 2013; Buegler et al., 2020)
utilized movement data as predictive variables for detecting MCI.

Of the nine movement data studies, five studies (Kallel et al., 2024;
Kim et al., 2023; Kim D. et al., 2024; Kim S. Y. et al., 2024; Park
et al., 2024) used an immersive virtual test, called the virtual kiosk
test, a test specifically designed to be used in conjunction with
machine-learning, eye-movement data and hand movement data.
Using a head-mounted display and hand controllers, participants
complete a six-step task: choosing a dining location, selecting the
instructed main course, side dish, and drink, choosing a payment
method, and remembering a four-digit payment code (Kim et al.,
2023). Throughout the task, behavioral data from hand and eye-
movements are recorded. The collected data from these metrics
are then used by a machine learning model to differentiate MCI
from normal aging (Figure 2). Furthermore, of the virtual kiosk
studies, three studies used the test in conjunction with an EEG
recording device (Kallel et al., 2024; Kim D. et al., 2024; Kim S.
Y. et al., 2024), and three studies, also fed the machine-learning
model MRI-data (Park et al., 2024; Kim S. Y. et al., 2024; Kallel et al.,
2024).

FIGURE 2

Comparison of a healthy control and an MCI patient’s hand-movement and eye movement fixation patterns in the virtual kiosk test as illustrated in
the original study by Kim et al. (2023).
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A total of six studies (Kallel et al., 2024; Kim D. et al., 2024;
Kim S. Y. et al., 2024; Lee et al., 2022; Wu et al., 2023; Xue et al.,
2023) used EEG-assisted tests, of which three (Lee et al., 2022; Wu
et al., 2023; Xue et al., 2023) developed tests, specifically made
for use in conjunction with EEG-recording. As an example, one
of the included studies (Lee et al., 2022) used a test paradigm
that integrates a wearable EEG device with a virtual reality head-
mounted display and hand controllers. In the VR test, participants
perform four tasks that measure different cognitive functions (Lee
et al., 2022). During the VR tasks, EEG data is synchronized with
task performance metrics, enabling a detailed analysis of how
neural dynamics correspond to behavioral responses (Lee et al.,
2022).

In one of the included studies, Wu et al. (2023) developed a test
that integrates EEG data and speech analysis software. During the
test, participants are presented with two virtual scenes and asked to
provide detailed verbal descriptions. The system collects 49 speech
features, which, along with EEG data, are subsequently processed
using machine-learning algorithms for classification (Wu et al.,
2023).

A key pattern observed across the studies is the use of various
activities of daily living (ADL) in the VR-assessment. Only eight
studies did not integrate ADL as a core component of their
assessments (Bayahya et al., 2022; Caffò et al., 2012; Da Costa
et al., 2021; Lee et al., 2022; Park, 2022; Valladares-Rodriguez
et al., 2018; Wu et al., 2023; Xue et al., 2023). The ADL-based
studies incorporated a range of practical tasks, such as completing
a fire evacuation scenario (Tarnanas et al., 2013, 2015b), taking the
bus and using an ATM (Seo et al., 2017), performing household
chores (Cabinio et al., 2020; Chua et al., 2019; Isernia et al., 2021),
searching for hidden items in a home environment (Buegler et al.,
2020), visiting a museum (Tarnanas et al., 2015a), or caring for a
grandchild (Jang et al., 2023).

Five of these ADL-studies (Eraslan Boz et al., 2019; Tsai et al.,
2021; Zygouris et al., 2015, 2017, 2020) used tests in a virtual
supermarket setting. As an example, in the Virtual Supermarket
Test (VST), first developed by Zygouris et al. (2015), a shopping list
appears on the screen, and the participant must find items, place
them in a cart, go to the cashier, and pay correctly. The VST is
scored on how many correct items are collected, if the right amount
is collected, if wrong items are collected, time to completion, and if
the correct amount of money is used to pay for the items at the
cashier. The VST was translated for use in Turkey in 2019 (Eraslan
Boz et al., 2019) and in their 2021 study, Yan et al. developed
a similar, but different supermarket test: the virtual supermarket
program (VSP), adjusted for Chinese cultural habits. Furthermore,
a machine-learning assisted version was developed by Tsai et al.
(2021).

3.3 Statistical results

The bivariate random effects model gave a pooled sensitivity of
0.883 (95% CI: 0.846-0.918) and 0.887 specificity (95% CI: 0.846-
0.920) when analyzing all the included studies. This amounts to a
pooled detection accuracy of 88.5% for the included VR-assessment

studies. This analysis weighted studies according to study variance,
sample balance, and the number of participants (see Table 5).
Sensitivities ranged from 0.727 to 1.0, while specificities varied from
0.722 to 1.0. Among the 2,923 participants, 1,396 had an MCI
diagnosis, and the VR assessments successfully identified 1,232
of them.

As illustrated in the forest plots (see Figure 3), many of
the included studies exhibit uncertainty in their sensitivity and
specificity estimates, reflected in the wide confidence intervals. This
variability is largely due to the small sample sizes in several studies.

The hierarchical summary receiver operating characteristic
(HSROC) curve (Figure 4) illustrates the diagnostic performance
of the included studies. The diamond-shaped marker on the
curve represents the pooled summary point, indicating the overall
sensitivity and specificity estimated from the meta-analysis. The
position of this summary point near the top-left corner of the plot
suggests high diagnostic accuracy.

Additionally, the gray ellipse surrounding the summary point
represents the 95% confidence region, highlighting the uncertainty
around the pooled estimates. Unlike the credible intervals for
individual studies in the forest plot, the confidence region
around the pooled estimates is relatively small. This suggests that
combining the studies in the analysis provides greater precision
and higher certainty in the overall estimates. The stippled ellipse
represents the 95% credible region, indicating where the model
predicts future studies are likely to fall.

3.4 Sub-group analysis

When only analyzing studies that utilized machine learning,
the 13 machine-learning-studies yielded a pooled sensitivity of
0.888 (95% CI: 0.845–0.930) and a specificity of 0.885 (95%
CI: 0.842–0.929). This amounts to a pooled accuracy of 88.7%
for machine-learning studies. Similarly, the 16 studies that did
not incorporate machine learning showed a pooled sensitivity
of 0.871 (95% CI: 0.796–0.924) and a specificity of 0.878
(95% CI: 0.804–0.931). This amounts to a pooled accuracy
of 87.5%.

A subgroup analysis based on the immersion level of
the assessment tools used in the included studies was also
performed. Studies were classified as “immersive” if they used
fully immersive technology, or “non-immersive” if they used
semi- or non-immersive tools (see Figure 5). The 15 immersive
studies showed a pooled sensitivity of 0.893 (95% CI: 0.855,
0.922) and a specificity of 0.856 (95% CI: 0.824, 0.884). The
14 non-immersive studies showed a pooled sensitivity of 0.840
(95% CI: 0.814, 0.867) and a specificity of 0.846 (95% CI:
0.820, 0.870).

Only three of the included studies used AD biomarkers (e.g.,
amyloid PET scans, CSF samples) as a reference standard. These
studies showed a pooled sensitivity of 0.825 (95% CI: 0.779, 0.864)
and a specificity of 0.828 (95% CI: 0.791, 0.859). When analyzing
studies only including aMCI patients, the 6 aMCI studies yield a
pooled sensitivity of 0.885 (95% CI: 0.753, 0.947) and specificity of
0.924 (95% CI: 0.776, 0.977).
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TABLE 5 Diagnostic accuracy, classification and weighting toward pooled sensitivity and specificity.

Author TP FN FP TN N Sens Spec Weight_Sens Weight_Spec

Bayahya et al. (2022) 17 3 0 65 85 0.85 1.0 2.808% 2.904%

Eraslan Boz et al. (2019) 29 8 7 45 89 0.784 0.865 4.105% 4.159%

Buegler et al. (2020) 179 34 34 249 496 0.84 0.88 5.073% 5.305%

Cabinio et al. (2020) 30 6 26 81 143 0.833 0.757 4.044% 5.06%

Caffò et al. (2012) 41 10 3 50 104 0.804 0.943 4.299% 3.644%

Chua et al. (2019) 18 5 9 28 60 0.783 0.757 3.678% 4.177%

Da Costa et al. (2021) 14 5 11 18 48 0.737 0.621 3.625% 4.17%

Isernia et al. (2021) 46 14 20 54 134 0.767 0.73 4.607% 4.887%

Jang et al. (2023) 10 2 30 78 120 0.833 0.722 2.843% 5.079%

Kallel et al. (2024) 16 6 2 13 37 0.727 0.867 3.677% 2.672%

Kim et al. (2023) 31 0 3 17 51 1.0 0.85 2.916% 2.678%

Kim D. et al. (2024) 23 1 0 24 48 0.958 1.0 2.598% 1.978%

Kim S. Y. et al. (2024) 25 0 5 16 46 1.0 0.762 2.885% 3.201%

Lee et al. (2022) 19 7 5 23 54 0.731 0.821 3.888% 3.65%

Park (2022) 34 2 4 52 92 0.944 0.929 3.33% 3.614%

Park et al. (2024) 28 4 2 20 54 0.875 0.909 3.613% 2.746%

Seo et al. (2017) 18 2 2 20 42 0.9 0.909 2.936% 2.729%

Tarnanas et al. (2013) 63 2 0 72 137 0.969 1.0 3.404% 2.645%

Tarnanas et al. (2015a) 25 0 1 24 50 1.0 0.96 2.509% 2.227%

Tarnanas et al. (2015b) 61 0 4 67 132 1.0 0.944 3.21% 3.554%

Tsai et al. (2021) 6 0 0 6 12 1.0 1.0 1.286% 1.023%

Valladares-Rodriguez et al.
(2018)

15 1 4 24 44 0.938 0.857 2.627% 3.286%

Wu et al. (2023) 39 5 4 38 86 0.886 0.905 3.894% 3.578%

Xu et al. (2024) 54 7 24 117 202 0.885 0.83 4.29% 5.076%

Xue et al. (2023) 36 4 5 35 80 0.9 0.875 3.782% 3.68%

Yan et al. (2021) 54 9 13 51 127 0.857 0.797 4.428% 4.594%

Zygouris et al. (2015) 28 6 1 20 55 0.824 0.952 3.846% 2.562%

Zygouris et al. (2017) 6 0 1 5 12 1.0 0.833 1.449% 1.327%

Zygouris et al. (2020) 36 11 4 44 95 0.766 0.917 4.351% 3.792%

TP, true positives; FN, false negatives; FP, false positives, TN, true negatives and percentage contribution to the pooled sensitivity and specificity [(Weight %)].

3.5 Sensitivity analysis

For the sensitivity analysis, a one-by-one exclusion approach
was applied, where each study was sequentially removed, and a
meta-analysis was conducted on the remaining studies. The results
indicated that excluding individual studies did not significantly
alter the overall findings, suggesting that the meta-analysis results
were relatively stable.

3.6 Analysis of publication bias

The Deeks’ funnel plot asymmetry test revealed no significant
evidence of publication bias among the included studies (P =

0.674), indicating that the meta-analysis results are unlikely to be
affected by selective publication (see Figure 6).

3.7 Risk of bias and quality assessment

The quality assessment was carried out following the methods
described in the methods section. In the subsequent sections, the
risk of bias for the included studies will be evaluated separately
for those utilizing machine-learning and those that did not. This
distinction is necessary because, as previously noted, the index
test domain of the QUADAS-2 assessment tool is modified for
machine-learning studies, which are subject to different types of
biases compared to non-machine-learning studies.
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FIGURE 3

Forest plots of sensitivity and specificity estimates in included studies.

FIGURE 4

HSROC curve.

3.7.1 Machine-learning studies
The quality assessment, as summarized in Figure 7, was

conducted using the QUADAS-2 domains. Most of the included

studies utilized appropriate reference standards consistent with
established guidelines for MCI diagnosis. However, five studies did
not appropriately report specific criteria or tests used, resulting
in an unclear classification for the reference standard domain
(Bayahya et al., 2022; Kallel et al., 2024; Lee et al., 2022; Tsai et al.,
2021; Kim S. Y. et al., 2024). Furthermore, Xu et al. (2024) was rated
as high risk of bias due to only using the MoCA as the reference
standard, while Kim S. Y. et al. (2024) was rated as high risk due to
only using the Korean MMSE.

The patient selection domain was insufficiently described in
most studies, particularly regarding the sampling methods. It was
often unclear whether convenience sampling was avoided. Only
two studies explicitly reported consecutive sampling and were thus
classified as low risk in the patient selection domain (Buegler et al.,
2020; Kim et al., 2023). Conversely, Tsai et al. (2021) was rated as
high risk due to a lack of detail regarding the recruitment process.

In the flow and timing domain, none of the studies provided
sufficient details on the time intervals between administering the
reference standard and the index test. This lack of information
resulted in all studies being classified as unclear for this domain.

For studies incorporating machine-learning methods, the
validation process replaced the traditional index test domain in the
QUADAS-2 assessment, as machine-learning-based tests require
different considerations. Most studies employed cross-validation
methods, which were rated as low risk. However, four studies used
the holdout method, resulting in a moderate risk classification
(Bayahya et al., 2022; Kallel et al., 2024; Kim S. Y. et al., 2024; Park
et al., 2024).
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FIGURE 5

Deeks funnel plot.

3.7.2 Studies not using machine-learning
For studies utilizing VR assessments without machine-learning,

the conventional QUADAS-2 assessment criteria were applied.

Most studies adhered to established guidelines and diagnostic
standards for MCI, resulting in a low risk of bias in the reference
standard domain (See Figure 7). Exceptions included Jang et al.
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FIGURE 6

Sub group analysis. AD biomarker = studies that used AD
biomarkers as a reference standard.

(2023) and Chua et al. (2019), where the MoCA was the sole
test used to classify participants. Additionally, all studies provided
standardized and well-documented procedures for administering
the index test, leading to a low risk of bias classification in the index
test domain.

In the patient selection domain, only two studies (Cabinio et al.,
2020; Isernia et al., 2021) were rated as low risk, as they explicitly
described consecutive sampling methods. Conversely, three studies
were assessed as high risk due to the use of a case-control design
(Da Costa et al., 2021; Seo et al., 2017) or reliance on convenience
sampling (Tarnanas et al., 2015a). The remaining studies were
rated as having unclear risk due to insufficient detail regarding the
recruitment process.

In the flow and timing domain, Da Costa et al. (2021) was rated
high risk due to significant participant dropout, which may bias
results, as those who drop out often differ significantly from those
who remain. This loss of “real-world” variability compromises the
representativeness of the sample. Furthermore, two studies were
rated low risk, as they clearly outlined the timing between the
reference standard and the index test (Chua et al., 2019; Park, 2022).

3.7.3 Quality assessment summary
Overall, the quality assessment highlights poor reporting

practices in many of the included studies, particularly in the flow
and timing domain, where the majority were rated as unclear.
This indicates that additional uncertainty should be considered,
as the potential for bias in several studies remains indeterminate.
Consequently, the results of the current meta-analysis should be
interpreted with caution. While the statistical analysis suggests
high certainty in the pooled estimates, the presence of unclear or

unaddressed biases in the included studies introduces an additional
layer of uncertainty to the findings.

4 Discussion

The findings of this study highlight the potential of VR-based
assessments in detecting MCI and distinguishing it from healthy
aging. By synthesizing data from multiple studies, this analysis
provides insights into the diagnostic accuracy of VR tools and their
integration with assistive technologies such as machine learning,
EEG, and eye-tracking.

The current meta-analysis suggests that VR-assessments
on average have a higher accuracy than the most common
traditional pen-and-paper tests such as the Montreal Cognitive
Assessment (MoCA) and the Mini Mental State Examination
(MMSE). As an example, in a meta- analysis by Tsoi et al.
(2015) it was found that the MMSE had a 62% sensitivity and
87% specificity in differentiating MCI from healthy controls.
Furthermore, the MoCA was found to have an 89% sensitivity
and 75% specificity. Slightly higher accuracy has been found
for the MoCA in a meta-analysis by Carson et al. (2018),
which found a sensitivity of 83% and specificity of 88%. When
comparing the pooled sensitivity and specificity of VR assessments
included in this meta-analysis, it appears that VR-assessments show
great potential.

While the subgroup analysis indicated a slight accuracy
advantage for machine-learning studies, it did not reveal a
significant superiority over non-machine-learning methods. This
is likely attributable to the exploratory and preliminary stage
of current machine-learning research. Furthermore, most of the
machine-learning studies were found to be more time-efficient,
a topic that will be explored in greater detail. The subgroup
analysis revealed a modest increase in accuracy for studies utilizing
more immersive technology compared to non-immersive methods.
Attributing this difference solely to the degree of immersion is
challenging, as these studies also had more recent publication
dates, incorporated more assistive technologies (e.g., EEG), and
more frequently used machine learning. This suggests the observed
increase in accuracy is likely multifactorial rather than a direct
result of immersion alone.

In the 29 included studies there is great heterogeneity in the VR-
tests used to distinguish MCI patients from healthy controls. The
pooled accuracy estimates are therefore mostly informative on the
level of assessing whether VR-assessments in general show potential
to be accurate. However, it does not inform us directly which
design-options for VR-assessments are the best. Moreover, the
included studies were published between 2012 and 2024, meaning
some may not fully reflect the current capabilities of VR-based
assessments. One of VR’s greatest strengths is its ability to integrate
advanced technologies for large-scale, efficient data collection. The
accessibility of these technologies has expanded only recently,
driven by rapid advancements in AI and machine learning. The
integration of machine learning into MCI diagnosis is a particularly
recent development, as evidenced by the fact that all but one of
the 13 machine learning studies included in this meta-analysis
were published after 2020, with nine appearing since 2023. The
findings of this meta-analysis should be interpreted within the
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Gausemel and Filkuková 10.3389/fpsyg.2025.1606562

FIGURE 7

Quality assessment/risk of bias according to QUADS-2 guidelines. The figure is split into studies “Not using machine-learning (ML)” and “Using
machine-learning (ML).”

context of VR-based assessments still being in their very early stages
of development. Furthermore, time and cost-efficiency are also
important factors to consider when comparing VR-assessments to
traditional methods.

4.1 Time and cost-efficiency

Economically, dementia stands out as a primary reason
for long-term institutional care in older adults, resulting in

considerable healthcare costs (Wimo et al., 2011). Timely diagnosis
of MCI is essential to provide appropriate drug and non-
drug treatments, which can help slow disease progression and
reduce rising healthcare expenses. An essential challenge lies in
the methods used to diagnose MCI. Existing approaches are
often either highly accurate but time-consuming, or relatively
quick but less accurate, like the MMSE and MoCA. Virtual
assessments, however, may have the potential to combine accuracy
with time efficiency, making them a candidate for large-scale
MCI screening.
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4.1.1 Time-efficiency
Time efficiency in testing is strongly linked to cost efficiency

because shorter tests reduce the time required from healthcare
professionals, leading to lower labor costs. Additionally, efficient
tests enable higher patient throughput, maximizing the use of
resources and minimizing delays. This is particularly important
in large-scale screenings, where time savings probably translate
directly into reduced operational expenses. Given that widely
used screening tools like the MoCA and MMSE typically require
10–15 min to administer (Nasreddine et al., 2005; Tombaugh
et al., 1996), virtual assessments should probably demonstrate
comparable time requirements to be viable for widespread
implementation. The studies included in this review highlight
advancements in virtual assessments over the past decade, with
feasibility primarily linked to more recently developed VR
tools. These newer assessments incorporate the most advanced
technologies and methodologies, making them better equipped
to address the practical challenges of large-scale implementation,
such as time efficiency and user accessibility. Among the included
studies, ten report time to completion, all of which fall under
30 min (see Table 6). Notably, assessments such as the Virtual
Kiosk Test, VECA, Altoida DNS, and VRNPT demonstrate time-
efficiency comparable to or exceeding that of traditional tools like

TABLE 6 Included studies that reported time to completion.

Author Assessment
tool

Time to
completion

Self-
administered

Xue et al.
(2023)

VRNPT 17 min No

Kim et al.
(2023)
Kim D. et al.
(2024)
Kim S. Y.
et al. (2024)
Park et al.
(2024)
Kallel et al.
(2024)

Virtual kiosk
test

5–15 min No

Buegler et al.
(2020)

Altoida DNS 10 min Yes

Xu et al.
(2024)

VECA 5 min Yes

Lee et al.
(2022)

N/A Less than 30 min No

Jang et al.
(2023)

VARABOM 19 min No

Eraslan Boz
et al. (2019)

Virtual
supermarket
program

25 min No

Chua et al.
(2019)

REACH 19–20 min No

Zygouris
et al. (2020)

Virtual
supermarket
program

30 min Yes

Zygouris
et al. (2015)

VAP-M 30 min No

the MoCA and MMSE (all of which are assisted by machine-
learning).

Another strategy for enhancing the feasibility of MCI screening
is to enable self-administration. If assessments can be conducted
remotely or independently by users, time efficiency becomes less
critical, as this approach minimizes the need for direct clinician
involvement. Three of the included studies (Buegler et al., 2020;
Xu et al., 2024; Zygouris et al., 2020) specifically designed their VR
assessments for self-administration. These tools have the potential
to significantly reduce the time clinicians spend on screening and
lower the reliance on specialized personnel for MCI diagnosis.
The Altoida DNS, in Buegler et al. (2020), is notable for its focus
on longitudinal screening of MCI and Alzheimer’s disease. It has
been specifically tested for repeated self-administrations in a home
setting, making it an effective tool for ongoing monitoring and
early detection.

4.1.2 Cost efficiency
Self-administration and time efficiency are key factors in

reducing MCI screening costs, as much of the expense arises
from the time required by trained professionals (Michalowsky
et al., 2017; Wimo et al., 2024). Several VR assessments, as
noted previously, are seemingly more time-efficient than traditional
tools like the MoCA and MMSE and support self-administration.
However, concerns remain about the expenses associated with
VR technology. Interviews with health practitioners reveal that
implementation costs and associated technologies are seen as
significant barriers (Yondjo and Siette, 2024). Uncertain and
potentially high costs for software, machine-learning capabilities,
and assistive devices such as EEG systems, eye-tracking tools, and
VR headsets add to these challenges.

However, these technologies are becoming increasingly
affordable. For instance, the Muse-2 EEG headband, utilized in
VR assessments by Xu et al. (2024) and Wu et al. (2023), offers a
low-cost solution priced between 187 and 232 USD (InteraXon
Inc., n.d.) and integrates seamlessly with VR platforms. Similarly,
many commercially available VR headsets now include built-in
eye-tracking and motion sensors. Devices like the SAMSUNG
HMD Odyssey+ are becoming more accessible, with a consumer
price of approximately 299 USD (Amazon, n.d.). Accurate and
time-efficient virtual assessments could provide significant value
by reducing costs in the diagnostic process. As disease-modifying
therapies will likely target patients with molecular evidence of
dementia (e.g., Alzheimer’s), virtual tools can streamline referrals to
expensive methods like MRI or CSF sampling. Current diagnostic
techniques, such as MRI, CSF analysis, and PET, incur substantial
costs per session. Avoiding a single false-positive during screening
could save 500–1,000 euros or more per patient (Wimo et al.,
2024). Thus, investing in VR-based assessments may offer an
economically viable solution to minimize the financial burden of
misdiagnoses. Cost-efficiency analyses indicate that even modestly
effective disease-modifying therapies for dementia could be a
financially sound investment, helping to alleviate the long-term
economic burden of dementia (Green et al., 2019). Wittenberg
et al. (2019) estimate that 100,000 additional amyloid PET scans
in the UK would cost £113 million, while CSF testing would add
£48 million. Despite these costs, they argue that molecular testing
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expenses are outweighed by the potential benefits of effective
Alzheimer’s treatments.

Accurate MCI-screening can therefore optimize molecular
testing by minimizing incorrect referrals and ensuring appropriate
use, reducing diagnostic costs. Nevertheless, concerns remain
regarding the technical expertise required to operate and maintain
systems combining machine learning and assessment software.
Virtual assessments, while promising, present a complex and
potentially costly alternative to traditional methods, especially
when they incorporate advanced technologies. For instance, VR-
based assessments that utilize machine learning and multiple
data types (such as EEG or speech metrics) will likely require a
high level of specialized knowledge. In their current state, these
systems demand that clinicians be adept at handling the collection,
preprocessing, synchronization, and interpretation of diverse data
from machine learning models. Although some software, like the
Altoida DNS, streamlines this process with user-friendly interfaces,
more complex systems that integrate multiple data modalities like
EEG, motor kinematics, and speech metrics will likely require
extensive personnel training. Furthermore, an increase in data
modalities also increases the likelihood of technical malfunctions,
necessitating specialized staff to manage these issues. The total costs
are therefore uncertain and potentially high, stemming not only
from the need for specialized personnel but also from expenses
related to data security, software licensing, and technical support.

4.2 Acceptance among older populations

While VR-based assessments offer several potential advantages,
their implementation also presents certain challenges. In particular,
the adoption of VR assessments among older populations raises
several concerns. One is that of cybersickness (motion sickness)
often experienced especially by older populations when using
certain immersive types of VR (Margrett et al., 2022), another is
familiarity and attitudes toward interacting with new technologies
and whether this form of assessment is less/more enjoyable than
conventional pen and paper tests.

Seven studies in this review also examined participants’
experiences, attitudes, and acceptance of VR technology, though
their primary focus was on accuracy. In this case, Xue et al.
(2023) reported a 94.7% satisfaction rate for the VRNPT, citing
ease of use and intuitive design. Similarly, Zygouris et al. (2015,
2017) demonstrated that participants, including those with limited
education, could independently complete the Virtual Supermarket
(VSM) test without major technical issues. Jang et al. (2023)
found no dropouts due to cybersickness or usability challenges,
with intuitive interfaces improving user comfort. Cabinio et al.
(2020) reported successful completion across varying levels of prior
computer experience, while Chua et al. (2019) observed a 100%
completion rate and high user satisfaction. Eraslan Boz et al. (2019)
noted greater engagement with VR tasks compared to traditional
tests. Overall, these findings suggest that older adults generally find
VR assessments engaging, feasible, and user-friendly. While some
participants reported minor usability issues, the studies highlight
VR’s potential as an accessible cognitive assessment tool. However,
as these studies primarily assessed accuracy, more rigorous research
on acceptance in older populations is needed.

When looking at relevant studies that only look at acceptance
among older populations, these results seem to be corroborated,
however; acceptance is found to differ with education and culture.
For instance, A study by Siette et al. (2024) reported that 78%
of participants were willing to use VR applications for cognitive
screening, though only 24.7% expressed willingness to engage
with them weekly. Higher acceptance rates were observed among
participants with greater educational attainment, suggesting that
familiarity with technology and education significantly influence
acceptance. Cultural factors also play a role; Mondellini et al. (2022)
compared Italian and Estonian older adults with MCI and found
higher acceptance and a stronger sense of presence among Italians.
Differences in attitudes toward technology, rather than physical
reactions like cybersickness, were identified as the primary reason
for these discrepancies. In summary, while older adults generally
seem to have a positive perception of VR screening tools, personal,
cultural, and educational factors can hinder widespread adoption
and frequent use. Encouragingly, users report few side effects, such
as cybersickness, especially when physical movement within VR
environments is restricted. Moreover, future generations of older
adults are likely to exhibit greater familiarity with and acceptance
of VR technology.

4.3 Future directions for the application of
technologies in VR assessment

Many of the included studies in the current study, employ
assistive technologies, that are integrated with the different VR-
assessment routines. Each technology may offer unique insights
into cognitive function, yet their combined application within
VR may yield a more comprehensive and accurate assessment.
This section explores the synergistic potential of these assistive
tools within a unified VR framework, while identifying the most
promising avenues for future development. By understanding the
strengths of each technology, we can better inform the design of
next-generation VR tests for effective MCI detection.

A minority of the included studies assess the individual
contributions of these assistive technologies. Among the included
studies, the use of EEG has the most data on its standalone
effects, while the independent impact of eye-movement data was
examined in only one study. Of all assistive technologies, motion
tracking was the most frequently used assistive technology and
showed promising results, though only one study (Kim et al., 2023)
reported the impact of movement data as an independent variable.
Nevertheless, some of the studies rely heavily on movement data
and report high accuracies. For instance, the DNS in Buegler et al.
(2020) employs 109 motor behaviors for assessment, with only
four variables (time to hide object, time to find object, location
errors, and order errors) unrelated to movement, suggesting that
movement data significantly contributes to accuracy.

Additionally, the Virtual Kiosk Test, used in five of the included
studies (see Table 7), integrates movement as a core assessment
component alongside eye-movement, time to completion, and
number of errors. Eye-tracking appears to contribute modestly to
the Virtual Kiosk Test’s accuracy (60% accuracy, 100% sensitivity,
0% specificity), while movement data as an independent variable
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TABLE 7 Combinations of assistive technologies used in the virtual kiosk test and accuracy. MYMT = movement data and EYE = eye-movement data.

Virtual kiosk test

Assistive technology Kim et al., 2023 Kim D. et al., 2024 Kim D. et al., 2024 Park et al., 2024 Kallel et al., 2024

VR 93,3% N/A 88,24% 88,9% 82,53%

EEG N/A 93,33% 88,24% N/A 74%

MRI N/A N/A 64,71% 83,3% 82,35%

VR+MRI N/A N/A N/A 94,4% N/A

VR+EEG N/A 98,38% N/A N/A N/A

VR+EEG+MRI N/A N/A 94,12% N/A 86,66%

Other studies using assistive technologies

Assistive technology Tarnanas et al., 2013 Seo et al., 2017 Buegler et al., 2020 Lee et al., 2022 Wu et al., 2023 Xue et al., 2023 Xu et al., 2024

VR N/A N/A N/A 75,8% 79% N/A N/A

Speech N/A N/A N/A N/A 81% N/A N/A

EEG N/A N/A N/A 65,6% 83% N/A N/A

VR+EEG N/A N/A N/A 80% 83% 88,7% N/A

VR+EYE N/A N/A N/A N/A N/A N/A 85,75%

VR+MVMT 98,5% 92,9% 86% N/A N/A N/A N/A

VR+SPEECH+EEG N/A N/A N/A N/A 89,8% N/A N/A

MVMT = movement data and EYE = eye-movement data.

achieved 88.9% sensitivity and 66.7% specificity (80% accuracy).
It is likely that movement data similarly contributes to accuracy
across the other five studies using the Virtual Kiosk Test, as high
accuracies were consistently observed.

Three of the included studies also used MRI as an assistive
technology, however MRI is not feasible to measure concurrently
with VR-assessment. A justification for using 60–90 min on MRI
acquisition (Kallel et al., 2024; Park et al., 2024) must be a
large increase in accuracy and near perfect detection capabilities,
however this was not illustrated in the included studies (see
Table 7). A separate table was created specifically for the Virtual
Kiosk Test, as numerous studies focus exclusively on how assistive
technologies enhance and complement this assessment method.
Combinations of assistive technologies in tests other than the
virtual kiosk test are illustrated in the bottom part of Table 7, under
“other studies using assisitive technologies”.

EEG and movement-data emerge as the assistive technologies
with the thus far, strongest results. While EEG may have
the highest individual contribution to test accuracy, it seems
harder to implement with VR-testing than movement data, as
interference could be an issue. Moreover, only three of the
six EEG-studies used EEG simultaneously with VR assessment,
while all (9) movement-data studies recorded movement data
simultaneously with VR-assessment. This might suggest movement
data is easier to implement in VR-assessment compared to
EEG. The collection of speech data showed strong results
in Wu et al. (2023); however, there is limited data, as
Wu et al. (2023) was the only study incorporating this
approach. Additionally, the study lacked information on the
time efficiency of collecting speech data. Nonetheless, given
that speech data collection is automated through wearable

devices, this approach holds promise for integration into future
VR assessments.

Given the accuracy and time-efficiency considerations of these
technologies, eye-movement data collection could plausibly be
excluded from the virtual kiosk test, replaced by lightweight,
wearable EEG technologies like the Muse 2 used in Wu et al.
(2023) and Xue et al. (2023). Kim et al. (2023) reported that
the virtual kiosk test takes approximately 5 min, while practice
and eye calibration sessions extend the time by about 10 min,
with calibration alone taking around 7 min. Since eye-tracking
contributes a specificity of 0%, omitting it could increase time-
efficiency without major impacts on accuracy. Incorporating a brief
scene description after the test could add valuable speech data.
Although no studies to date have combined EEG with movement
data in VR, a study by Chai et al. (2023) achieved 96.3% accuracy
in detecting MCI by analyzing handwriting dynamics alongside
EEG in a machine-learning study. Future research could explore a
multi-modal approach integrating motor, EEG, and speech data in
a virtual assessment, ideally within a 10–20-min timeframe.

When tests are self-administered, time-efficiency might be
less of a concern as the cost of trained professionals seemingly
creates the largest barriers for large-scale screening. Therefore,
beyond accuracy and time efficiency, there is an increasing focus
on enabling self-administered screenings that do not require a
visit to a hospital or clinic. The future of virtual assessments may
therefore be the use of assessments that can be self-administered
from home, while overseen by professionals. As an example,
the DNS by Buegler et al. (2020) illustrated that motor data
can be collected in self-administered tests with high accuracy in
differentiating healthy controls, MCI and AD. The DNS’s time
efficiency, self-administration, and strong predictive capabilities
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have led to its FDA “Breakthrough Device” status (Park, 2021).
This designation accelerates development and regulatory review
processes for technologies with the potential to significantly impact
patient outcomes, underlining the potential of implementing
self-administered tests. Furthermore, although not meeting the
inclusion criteria of this review, Yamada et al. (2023) has illustrated
the feasibility of a mobile app with automatic speech analysis for
self-administered early AD and MCI screening, achieving 87.6%
accuracy in differentiating healthy controls from MCI. Analyzing
both motor and speech data could increase the accuracy of future
self-administered tests.

The diagnostic value of VR assessments is likely due to the
individual data modalities, such as EEG and motor kinematics,
rather than the level of immersion. This is supported by the
similar diagnostic accuracies found in both fully immersive and
non-immersive VR assessments. It is likely that fully immersive
VR headsets may not be essential for effective screening. Instead,
digital or non-immersive VR technology could still be beneficial
for the efficient and simultaneous collection of multiple data
modalities. Moreover, the future of dementia screening may not
need to rely on VR technology at all. Data such as speech metrics,
movement patterns, EEG, and eye-tracking could be collected
independently or in combination without a VR interface. For
example, Yamada et al. (2023) demonstrated the successful use
of speech metrics without VR to differentiate healthy individuals
from those with MCI. Similarly, analyses of handwriting kinematics
using digital pens have shown comparable accuracy to some
VR-based assessments (Garre-Olmo et al., 2017; Nardone et al.,
2025). However, it is likely that some sort of non-immersive
VR-technology will ease the simultaneous collection of multiple
modalities. This highlights that while VR-based assessments are
a key focus, other promising, technologically enhanced methods
for dementia screening exist. A common thread among these
innovative approaches is their reliance on machine learning to
analyze the collected data. Future research should investigate how
the simultaneous collection of EEG, speech, and motor data could
improve diagnostic accuracy.

4.4 Limitations

4.4.1 Inaccurate reference standards
An important limitation in evaluating the accuracy of

diagnostic tools in this meta-analysis is the reliance on reference
standards that may themselves be flawed or less accurate than the
index tests being assessed. The performance of an index test is
typically evaluated by comparing its results to a reference standard,
often considered the gold standard for diagnosis. However, in the
context of MCI, many of these reference standards are not without
their limitations, raising critical concerns about the validity of
comparing innovative diagnostic tools to benchmarks that may
not be sufficiently reliable. Current reference standards, such as
neuropsychological test batteries and AD biomarkers may be
prone to several shortcomings. When an index test is evaluated
against a flawed reference standard, its true accuracy can be
misrepresented, particularly when the test is more sensitive or
specific than the reference standard. For example, an index test
may correctly detect early-stage MCI cases that the reference

standard misses, leading to true positives being mislabeled as
false positives. This challenge is particularly relevant for advanced
diagnostic tools, such as machine learning-assisted assessments,
which can identify subtle cognitive changes—like variations in
EEG signals, eye movements, motor functions, or speech—that
may go undetected by current gold-standard testing procedures.
This dynamic creates a broader challenge in the development
and evaluation of highly accurate diagnostic tests. As these tools
advance in their ability to detect subtle cognitive changes, they may
surpass the diagnostic capabilities of the current gold standard,
making direct comparisons problematic. The paradox lies in
the fact that the potential of these innovative tools may be
constrained by the limitations of the very benchmarks used to
validate them. The use of imperfect reference standards in some
of the included studies may have introduced bias into the meta-
analysis, potentially affecting its ability to accurately reflect the
true diagnostic performance of VR-based assessments. Validation
studies should therefore move beyond current gold standards
and assess diagnostic tools against long-term clinical outcomes,
which can offer a more reliable measure of their accuracy and
predictive value.

This relates to the lack of longitudinal studies among the
included research. Cross-sectional studies are typically favored
in the initial phases of test development because they are
faster and less resource-intensive than longitudinal studies. These
designs focus on evaluating the agreement between the index
test and an accepted reference standard rather than its ability to
predict long-term outcomes. The predominance of cross-sectional
studies underscores how preliminary this area of research still is,
particularly when examining the integration of VR technologies
with advanced methods such as machine learning. When validating
assessment tools that have the potential to surpass the accuracy
of current gold standards, independent validation studies focusing
on long-term clinical outcomes are particularly crucial. Such
studies can mitigate the biases introduced by flawed reference
standards by directly linking the test’s predictions to meaningful,
real-world outcomes.

Only three studies employed a longitudinal design to evaluate
the accuracy of VR-assessments in predicting dementia progression
over time (Buegler et al., 2020; Tarnanas et al., 2013; Zygouris
et al., 2017). Among these, Zygouris et al. (2017) included
only 12 participants, which significantly limits the reliability and
generalizability of its findings. Tarnanas et al. (2013) conducted
a moderately sized study with 205 participants, while Buegler
et al. (2020) undertook a large international, multi-center study
involving 496 participants across multiple countries. The most
compelling evidence to date regarding the longitudinal validity
of VR-based assessments comes from the study by Buegler et al.
(2020). This study demonstrated that a VR-based tool could
predict conversion to Alzheimer’s disease (AD) with 94% accuracy,
achieving 88% specificity and 84% sensitivity for identifying MCI
over a 60-month period. These results are promising and suggest
that VR assessments have significant potential for predicting
long-term cognitive outcomes. However, conclusions about the
overall accuracy and longitudinal validity of VR-based assessments
remain constrained by the predominance of cross-sectional studies
included in this meta-analysis. To advance the field, future research
must move beyond the limitations of cross-sectional designs and
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prioritize longitudinal studies that evaluate the predictive validity
of these tools over time.

4.4.2 Heterogeneity and limitations to
generalizability

Another limitation is the heterogeneity in the included studies.
These differences can impact the comparability of the studies
and influence the overall conclusions that can be drawn from
the meta-analysis. The current meta-analysis examines VR-based
assessments as a broad, umbrella term. However, these assessments
differ significantly in their specific characteristics, as well as in
how they are designed and conducted. Each VR assessment varies
in critical aspects, such as the cognitive domains they target,
the tasks participants perform within the virtual environment,
and the technologies they incorporate. The included studies also
varied in their focus, with some targeting amnestic MCI and
others examining just MCI. Since aMCI primarily involves memory
deficits, it may be easier to design accurate tests for this subtype
compared to general MCI, which spans multiple cognitive domains.
This variation likely contributes to heterogeneity in the meta-
analysis. Additional heterogeneity arises from differences in study
design, including varying levels of VR immersion, from highly
immersive setups to simpler ones like touch screens. Many of the
included studies, particularly those involving machine learning,
originated from Asian countries, with South Korea contributing
the largest number. While a considerable number of studies
were conducted in European countries, the findings of this
meta-analysis are likely more applicable to Asian populations
than to those in Europe or North America. Finally, the studies
included in this meta-analysis used different reference standards to
validate the VR assessments. While some relied on comprehensive
neuropsychological evaluations or biomarkers, others used less
rigorous approaches such as using the MoCA as the only reference
standard. When generalizing these results to Alzheimer’s disease
(AD), caution is necessary. Only three of the included studies
(Buegler et al., 2020; Cabinio et al., 2020; Isernia et al., 2021) used
reference standards that directly targeted AD biomarkers, which
are considered the current gold standard for diagnosing MCI due
to AD (Jack et al., 2024). This inconsistency in reference standards
introduces potential bias, complicating comparisons of diagnostic
accuracy across studies. As a result, the pooled accuracy metrics
should be interpreted with caution, as they represent an exploratory
overview rather than a true average of the diagnostic accuracy of
VR-based assessments for MCI.

5 Conclusion

The pooled accuracy estimates from this meta-analysis indicate
that VR-based assessments collectively demonstrate high diagnostic
accuracy. When compared to widely used screening tools like
the MMSE and the MoCA, the findings suggest that VR-
based assessments exhibit higher accuracy than the MMSE and
comparable or slightly higher accuracy than the MoCA on average.
However, the conclusions are limited by methodological issues
in the included studies, suggesting a high potential for bias in
the analysis. Furthermore, some VR assessments were found to

be more time-efficient than traditional methods. In terms of
integration with other technologies, EEG and movement analysis
stand out as key contributors to diagnostic accuracy and may be
well-suited for integration with VR environments. With machine-
learning algorithms, VR assessments can efficiently process large
datasets. As the field evolves, integrating these technologies holds
promise for improving the accuracy and efficiency of VR-based
assessments. Beyond accuracy, VR assessments also show promise
in terms of feasibility. However, clinical implementation may
face notable barriers, including the requirement for specialized
personnel and the absence of clear data regarding software and
support costs.
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Gausemel and Filkuková 10.3389/fpsyg.2025.1606562

analysis in virtual reality using machine learning: first validation study. J. Med. Internet
Res. 25:e48093. doi: 10.2196/48093

Lee, B., Lee, T., Jeon, H., Lee, S., Kim, K., Cho, W., et al. (2022). Synergy
through integration of wearable EEG and virtual reality for mild cognitive
impairment and mild dementia screening. IEEE J. Biomed. Health Inf. 26, 2909–2919.
doi: 10.1109/JBHI.2022.3147847

Liu, Q., Song, H., Yan, M., Ding, Y., Wang, Y., Chen, L., et al. (2023). Virtual reality
technology in the detection of mild cognitive impairment: a systematic review and
meta-analysis. Ageing Res. Rev. 87:101889. doi: 10.1016/j.arr.2023.101889

Margrett, J. A., Ouverson, K. M., Gilbert, S. B., Phillips, L. A., and Charness, N.
(2022). Older adults’ use of extended reality: a systematic review. Front. Virtual Reality
2:760064. doi: 10.3389/frvir.2021.760064

Mecocci, P., and Boccardi, V. (2021). The impact of aging in dementia: it is time
to refocus attention on the main risk factor of dementia. Ageing Res. Rev. 65:101210.
doi: 10.1016/j.arr.2020.101210

Michalowsky, B., Flessa, S., Hertel, J., Goetz, O., Hoffmann, W., Teipel, S., et al.
(2017). Cost of diagnosing dementia in a German memory clinic. Alzheimer’s Res. Ther.
9:65. doi: 10.1186/s13195-017-0290-6

Michaud, T. L., Su, D., Siahpush, M., and Murman, D. L. (2017). The risk of
incident mild cognitive impairment and progression to dementia considering mild
cognitive impairment subtypes. Dementia Geriatric Cognit. Disord. Extra 7, 15–29.
doi: 10.1159/000452486

Mondellini, M., Arlati, S., Gapeyeva, H., Lees, K., Märitz, I., Pizzagalli, S. L., et al.
(2022). User experience during an immersive virtual reality-based cognitive task: a
comparison between estonian and italian older adults with MCI. Sensors 22:8249.
doi: 10.3390/s22218249

Nardone, E., De Stefano, C., Cilia, N. D., and Fontanella, F. (2025). Handwriting
strokes as biomarkers for Alzheimer’s disease prediction: a novel machine learning
approach. Comp. Biol. Med. 190:110039. doi: 10.1016/j.compbiomed.2025.110039

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead,
V., Collin, I., et al. (2005). The montreal cognitive assessment, MoCA: a brief
screening tool for mild cognitive impairment. J. Am. Geriatrics Soc. 53, 695–699.
doi: 10.1111/j.1532-5415.2005.53221.x

Opwonya, J., Doan, D. N. T., Kim, S. G., Kim, J. I., Ku, B., Kim, S., et al.
(2022). Saccadic eye movement in mild cognitive impairment and alzheimer’s
disease: a systematic review and meta-analysis. Neuropsychol. Rev. 32, 193–227.
doi: 10.1007/s11065-021-09495-3

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow,
C. D., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting
systematic reviews. PLOS Med. 18:e1003583. doi: 10.1371/journal.pmed.1003583

Park, A. (2021). Altoida’s Alzheimer’s-Predicting Smartphone App Snags FDA
Breakthrough Status. Fierce Biotech. Available online at: https://www.fiercebiotech.
com/medtech/altoida-s-alzheimer-s-predicting-smartphone-app-snags-fda-
breakthrough-status

Park, B., Kim, Y., Park, J., Choi, H., Kim, S-. E., Ryu, H., et al. (2024). Integrating
biomarkers from virtual reality and magnetic resonance imaging for the early detection
of mild cognitive impairment using a multimodal learning approach: validation study.
J. Med. Internet Res. 26:e54538. doi: 10.2196/54538

Park, J-. H. (2022). Can the virtual reality-based spatial memory test better
discriminate mild cognitive impairment than neuropsychological assessment? Int. J.
Environ. Res. Public Health 19:9950. doi: 10.3390/ijerph19169950

Patel, A., Cooper, N., Freeman, S., and Sutton, A. (2021). Graphical enhancements to
summary receiver operating characteristic plots to facilitate the analysis and reporting
of meta-analysis of diagnostic test accuracy data. Res. Synth. Methods 12, 34–44.
doi: 10.1002/jrsm.1439

Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern.
Med. 256, 183–194. doi: 10.1111/j.1365-2796.2004.01388.x

Petersen, R. C. (2016). Mild cognitive impairment. Continuum 22, 404–418.
doi: 10.1212/CON.0000000000000313

Petersen, R. C., Caracciolo, B., Brayne, C., Gauthier, S., Jelic, V., and Fratiglioni,
L. (2014). Mild cognitive impairment: a concept in evolution. J. Intern. Med. 275,
214–228. doi: 10.1111/joim.12190

Petersen, R. C., and Morris, J. C. (2005). Mild cognitive impairment
as a clinical entity and treatment target. Arch. Neurol. 62, 1160–1163.
doi: 10.1001/archneur.62.7.1160

Petersen, R. C., Roberts, R. O., Knopman, D. S., Boeve, B. F., Geda, Y. E., Ivnik, R. J.,
et al. (2009). Mild cognitive impairment: ten years later. Arch. Neurol. 66, 1447–1455.
doi: 10.1001/archneurol.2009.266

Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., Kokmen, E.,
et al. (1999). Mild cognitive impairment: clinical characterization and outcome. Arch.
Neurol. 56, 303–308. doi: 10.1001/archneur.56.3.303

Reardon, S. (2023). Alzheimer’s drug donanemab helps most when taken at earliest
disease stage, study finds. Nature 619, 682–683. doi: 10.1038/d41586-023-02321-1

Reitsma, J. B., Glas, A. S., Rutjes, A. W. S., Scholten, R. J. P. M., Bossuyt, P.
M., Zwinderman, A. H., et al. (2005). Bivariate analysis of sensitivity and specificity
produces informative summary measures in diagnostic reviews. J. Clin. Epidemiol. 58,
982–990. doi: 10.1016/j.jclinepi.2005.02.022

Sanborn, V., Ostrand, R., Ciesla, J., and Gunstad, J. (2022). Automated assessment
of speech production and prediction of MCI in older adults. Appl. Neuropsychol. Adult
29, 1250–1257. doi: 10.1080/23279095.2020.1864733

Seo, K., Kim, J., Oh, D. H., Ryu, H., and Choi, H. (2017). Virtual daily living test to
screen for mild cognitive impairment using kinematic movement analysis. PLoS ONE
12:e0181883. doi: 10.1371/journal.pone.0181883

Siette, J., Guion, J., Ijaz, K., Strutt, P., Porte, M., Savage, G., et al. (2024).
Development of a new computer simulated environment to screen cognition: assessing
the feasibility and acceptability of leaf café in younger and older adults. BMC Med. Inf.
Decis. Making 24:79. doi: 10.1186/s12911-024-02478-3

Statistics Korea (2022). Population Prospects of the World and South Korea (based
on the 2021 Population Projections). Daejeon: Statistics Korea.

Tarnanas, I., Laskaris, N., Tsolaki, M., Muri, R., Nef, T., Mosimann, U. P., et al.
(2015a). “On the comparison of a novel serious game and electroencephalography
biomarkers for early dementia screening,” in: GeNeDis 2014, eds. I. P.
Vlamos and A. Alexiou, Bd. 821 (Springer International Publishing), 63–77.
doi: 10.1007/978-3-319-08939-3_11

Tarnanas, I., Papagiannopoulos, S., Kazis, D., Wiederhold, M., Widerhold,
B., Tsolaki, M., et al. (2015b). Reliability of a novel serious game using
dual-task gait profiles to early characterize aMCI. Front. Aging Neurosci. 7:50.
doi: 10.3389/fnagi.2015.00050

Tarnanas, I., Schlee, W., Tsolaki, M., Müri, R., Mosimann, U., Nef, T., et al. (2013).
Ecological validity of virtual reality daily living activities screening for early dementia:
longitudinal study. JMIR Serious Games 1:e1. doi: 10.2196/games.2778

Thomas, J., Kneale, D., McKenzie, J. E., Brennan, S. E., and Bhaumik, S. (2023).
“Chapter 2: determining the scope of the review and the questions it will address,” in
Cochrane Handbook for Systematic Reviews of Interventions (version 6.5), eds J. P. T.
Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, and V. A. Welch
(Cochrane). Available online at: https://www.cochrane.org/authors/handbooks-and-
manuals/handbook/current/chapter-02

Tombaugh, T. N., McDowell, I., Kristjansson, B., and Hubley, A. M. (1996).
Mini-mental state examination (MMSE) and the modified MMSE (3MS):
a psychometric comparison and normative data. Psychol. Assess. 8, 48–59.
doi: 10.1037/1040-3590.8.1.48

Tsai, C-. F., Chen, C-. C., Wu, E. H-. K., Chung, C-. R., Huang, C-
. Y., Tsai, P-. Y., et al. (2021). A machine-learning-based assessment method
for early-stage neurocognitive impairment by an immersive virtual supermarket.
IEEE Trans. Neural Syst. Rehabil. Eng. 29, 2124–2132. doi: 10.1109/TNSRE.2021.31
18918

Tsoi, K. K. F., Chan, J. Y. C., Hirai, H. W., Wong, S. Y. S., and Kwok, T. C. Y. (2015).
Cognitive tests to detect dementia: a systematic review and meta-analysis. JAMA Intern.
Med. 175:1450. doi: 10.1001/jamainternmed.2015.2152

Valladares-Rodriguez, S., Fernández-Iglesias, M. J., Anido-Rifón, L., Facal, D., and
Pérez-Rodríguez, R. (2018). Episodix: a serious game to detect cognitive impairment in
senior adults. A psychometric study. PeerJ 6:e5478. doi: 10.7717/peerj.5478

Van Der Flier, W. M. (2005). Epidemiology and risk factors of dementia. J. Neurol.
Neurosurg. Psychiatry 76, v2–v7. doi: 10.1136/jnnp.2005.082867

Whiting, P. F. (2011). QUADAS-2: a revised tool for the quality
assessment of diagnostic accuracy studies. Ann. Intern. Med. 155:529.
doi: 10.7326/0003-4819-155-8-201110180-00009

Wimo, A., Jönsson, L., Gustavsson, A., McDaid, D., Ersek, K., Georges, J., et al.
(2011). The economic impact of dementia in Europe in 2008-cost estimates from the
Eurocode project. Int. J. Geriatric Psychiatry 26, 825–832. doi: 10.1002/gps.2610

Wimo, A., Kirsebom, B., Timón-Reina, S., Vromen, E., Selnes, P., Bon, J., et al.
(2024). Costs of diagnosing early Alzheimer’s disease in three European memory clinic
settings: results from the precision medicine in Alzheimer’s disease project. Int. J.
Geriatric Psychiatry 39:e6126. doi: 10.1002/gps.6126

Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., et al.
(2004). Mild cognitive impairment?beyond controversies, towards a consensus: report
of the International Working Group on Mild Cognitive Impairment. J. Intern. Med.
256, 240–246.

Wittenberg, R., Knapp, M., Karagiannidou, M., Dickson, J., and Schott, J. M.
(2019). Economic impacts of introducing diagnostics for mild cognitive impairment
Alzheimer’s disease patients. Alzheimer’s Dementia Transl. Res. Clin. Interventions 5,
382–387. doi: 10.1016/j.trci.2019.06.001

World Health Organization (2023). Dementia. Geneva: World Health Organization.
Available online at: https://www.who.int/news-room/fact-sheets/detail/dementia

Wu, R., Li, A., Xue, C., Chai, J., Qiang, Y., Zhao, J., et al. (2023). Screening for Mild
Cognitive impairment with speech interaction based on virtual reality and wearable
devices. Brain Sci. 13:1222. doi: 10.3390/brainsci13081222

Frontiers in Psychology 23 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1606562
https://doi.org/10.2196/48093
https://doi.org/10.1109/JBHI.2022.3147847
https://doi.org/10.1016/j.arr.2023.101889
https://doi.org/10.3389/frvir.2021.760064
https://doi.org/10.1016/j.arr.2020.101210
https://doi.org/10.1186/s13195-017-0290-6
https://doi.org/10.1159/000452486
https://doi.org/10.3390/s22218249
https://doi.org/10.1016/j.compbiomed.2025.110039
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1007/s11065-021-09495-3
https://doi.org/10.1371/journal.pmed.1003583
https://www.fiercebiotech.com/medtech/altoida-s-alzheimer-s-predicting-smartphone-app-snags-fda-breakthrough-status
https://www.fiercebiotech.com/medtech/altoida-s-alzheimer-s-predicting-smartphone-app-snags-fda-breakthrough-status
https://www.fiercebiotech.com/medtech/altoida-s-alzheimer-s-predicting-smartphone-app-snags-fda-breakthrough-status
https://doi.org/10.2196/54538
https://doi.org/10.3390/ijerph19169950
https://doi.org/10.1002/jrsm.1439
https://doi.org/10.1111/j.1365-2796.2004.01388.x
https://doi.org/10.1212/CON.0000000000000313
https://doi.org/10.1111/joim.12190
https://doi.org/10.1001/archneur.62.7.1160
https://doi.org/10.1001/archneurol.2009.266
https://doi.org/10.1001/archneur.56.3.303
https://doi.org/10.1038/d41586-023-02321-1
https://doi.org/10.1016/j.jclinepi.2005.02.022
https://doi.org/10.1080/23279095.2020.1864733
https://doi.org/10.1371/journal.pone.0181883
https://doi.org/10.1186/s12911-024-02478-3
https://doi.org/10.1007/978-3-319-08939-3_11
https://doi.org/10.3389/fnagi.2015.00050
https://doi.org/10.2196/games.2778
https://www.cochrane.org/authors/handbooks-and-manuals/handbook/current/chapter-02
https://www.cochrane.org/authors/handbooks-and-manuals/handbook/current/chapter-02
https://doi.org/10.1037/1040-3590.8.1.48
https://doi.org/10.1109/TNSRE.2021.3118918
https://doi.org/10.1001/jamainternmed.2015.2152
https://doi.org/10.7717/peerj.5478
https://doi.org/10.1136/jnnp.2005.082867
https://doi.org/10.7326/0003-4819-155-8-201110180-00009
https://doi.org/10.1002/gps.2610
https://doi.org/10.1002/gps.6126
https://doi.org/10.1016/j.trci.2019.06.001
https://www.who.int/news-room/fact-sheets/detail/dementia
https://doi.org/10.3390/brainsci13081222
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
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