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Cognitive sciences are grappling with the reliability paradox: measures that
robustly produce within-group effects tend to have low test-retest reliability,
rendering them unsuitable for studying individual differences. Despite the
growing awareness of this paradox, its full extent remains underappreciated.
Specifically, most research focuses exclusively on how reliability affects
correlational analyses of individual differences, while largely ignoring its effects
on studying group differences. Moreover, some studies explicitly and erroneously
suggest that poor reliability does not pose problems for studying group
differences, possibly due to conflating within- and between-group effects. In this
brief report, we aim to clarify this misunderstanding. Using both data simulations
and mathematical derivations, we show how observed group differences get
attenuated by measurement reliability. We consider multiple scenarios, including
when groups are created based on thresholding a continuous measure (e.g.,
patients vs. controls or median split), when groups are defined exogenously
(e.g., treatment vs. control groups, or male vs. female), and how the observed
effect sizes are further affected by differences in measurement reliability and
between-subject variance between the groups. We provide a set of equations
for calculating attenuation effects across these scenarios. This has important
implications for biomarker research and clinical translation, as well as any
other area of research that relies on group comparisons to inform policy and
real-world applications.

KEYWORDS

reliability paradox, test-retest reliability, individual differences, group differences, group
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1 Introduction

An influential paper by Hedge et al. (2018) has highlighted the “reliability paradox”:
cognitive tasks that produce robust within-group effects tend to have poor test-retest
reliability, undermining their use for studying individual differences. Many studies have
followed, demonstrating the prevalence of low test-retest reliability and emphasizing its
implications for studying individual differences across various research contexts, including
neuroimaging, computational modeling, psychiatric disorders, and clinical translation
(Enkavi et al., 2019; Elliott et al., 2020, 2021; Fröhner et al., 2019; Nikolaidis et al., 2022;
Kennedy et al., 2022; Nitsch et al., 2022; Blair et al., 2022; Zuo et al., 2019; Milham et al.,
2021; Feng et al., 2022; Haines et al., 2023; Parsons et al., 2019; Hedge et al., 2020; Enkavi
and Poldrack, 2021; Zorowitz and Niv, 2023; Gell et al., 2023; Rouder et al., 2023; Karvelis
et al., 2023, 2024; Clayson, 2024; Vrizzi et al., 2025).

Frontiers in Psychology 01 frontiersin.org

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2025.1592658
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2025.1592658&domain=pdf&date_stamp=2025-10-15
mailto:povilas.karvelis@camh.ca
https://doi.org/10.3389/fpsyg.2025.1592658
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1592658/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Karvelis and Diaconescu 10.3389/fpsyg.2025.1592658

However, the studies on this topic tend to focus exclusively
on how test-retest reliability affects correlational individual
differences analyses without making it clear that it is just as
relevant for studying group differences (although see LeBel
and Paunonen, 2011; Zuo et al., 2019). Not only that, some
studies incorrectly suggest that poor test-retest reliability is not
problematic for studying group differences. For example: “Low
reliability scores are problematic only if we were interested in
differences between individuals (within a group) rather than between
groups” (De Schryver et al., 2016); “although improved reliability
is critical for understanding individual differences in correlational
research, it is not very relevant or informative for studies comparing
conditions or groups” (Zhang and Kappenman, 2024); “On a more
positive note, insufficient or unproven test-retest reliability does not
directly imply that one cannot reliably assess group differences (e.g.,
clinical vs. control)” (Schaaf et al., 2023); “while many cognitive tasks
(including those presented here) have been well validated in case-
control studies (e.g., comparing MDD and healthy individuals) where
there may be large group differences, arguably these tests may be
less sensitive at detecting individual differences” (Foley et al., 2024);
“The reliability paradox... implies that many behavioral paradigms
that are otherwise robust at the group-level (e.g., those that produce
highly replicable condition- or group-wise differences) are unsuited
for testing and building theories of individual differences” (Haines
et al., 2020); “Many tasks clearly display robust between-group or
between-condition differences, but they also tend to have sub-optimal
reliability for individual differences research” (Parsons et al., 2019).
Sometimes the opposite mistake is made by suggesting that poor
reliability is equally detrimental for studying both between-group
differences and within-group effects (e.g., see Figure 1 in Zuo et al.,
2019).

An apparent common thread across these examples is the
conflation of within-group effects and between-group effects,
treating both simply as “group effects.” However, within- and
between-group effects are often in tension. If an instrument
is designed to produce strong within-group effects (i.e., robust
changes across conditions or time points), it will typically do so by
minimizing between-subject variability – which in turn reduces its
ability to reliably detect individual or between-group differences.
This trade-off lies at the heart of the reliability paradox. The key
insight here is that both group and individual differences live on the
same dimension of between-subject variability and are, therefore,
affected by measurement reliability in the same way.

The aim of this brief report is therefore (1) to clarify and
highlight the relevance of the reliability paradox for studying group
differences (2) to present simulation-based illustrations to make the
implications of the reliability paradox more intuitive, and (3) to
provide a set of mathematical formulae for effect size attenuation
that cover different scenarios of group comparisons.

2 Methods

2.1 Simulated data

To simulate data, we sampled from a normal distribution

X ∼ N (μ, σ 2
b + σ 2

e ) (1)

by independently varying between-subject (σ 2
b ) and error

(σ 2
e ) variances. To represent repeated measurements of task

performance, we generated two distributions (“test” and “retest”)
with the same mean μ = 0. To simulate one-sample effects, we
simply generated another distribution that is shifted upward by
a constant offset (μ = 2). To simulate paired-sample effects,
we generated two distributions (corresponding to Condition 1
and Condition 2) one of which was at μ = 0 and the other at
μ = 2. Finally, to illustrate relationships with external traits,
we generated additional datasets with fixed between-subject
variance (σ 2

b ) and no error variance (σ 2
e = 0). We specified true

population correlations of rtrue = 0.5 and rtrue = 0.9 to represent
different levels of association between task performance and
symptom/trait measures.

Note, while we refer to these data distributions as representing
“task performance” and “traits/symptoms” to make this analysis
more intuitive, these datasets are generated at a high level
of abstraction and do not assume any specific data-generating
process—i.e., we are not simulating trial-level or item-level data,
we are simply generating distributions of individual-level scores.

Patients vs. controls groups were created by splitting the
datasets such that 10% of the distribution with the highest symptom
scores were assigned to the patient group while the remaining
90% were assigned to the control group. For creating high vs.
low trait groups, we simply performed a median split across
the datasets.

To achieve sufficient stability of the test-retest reliability and
effect size estimates, we used a sample size of 10,000 for each
combination of σb and σe, each of which was varied between 0.3
and 2 for most of the analysis. To further increase the stability
of our effects, when investigating the relationship between true
and observed effect size metrics as a function of reliability, we
increased the sample size to 1,000,000. We also kept between-
subject variance fixed at σb = 0.5, and only varied error variance
in the range σe ∈ [0.01 3]. When comparing how the different
statistical metrics fare when it comes to significance testing, we
used a sample of N = 60 (a typical effect size seen in practice)—
to achieve stable estimates of p-values we averaged results over
20,000 repetitions.

2.2 Statistical analysis

To assess test-retest reliability, we used the intraclass
correlation coefficient (ICC) (Fleiss, 2011; Koo and Li, 2016;
Liljequist et al., 2019):

ICC = σ 2
b

σ 2
b + σ 2

e
, (2)

where for clarity we omit the within-subject variance term in the
denominator because throughout our analysis it was kept at 0
between test and retest measurements.

To measure group effects, we used Cohen’s d as the main effect
size metric for both within- and between-group effects. To account
for unequal variances between groups when performing 90/10%
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split (for controls vs. patients), we used d*, a variant of Cohen’s d
that does not assume equal variances:

d = μ2 − μ1

σp
, where

σp =
√

(n1 − 1)σ 2
1 + (n2 − 1)σ 2

2
n1 + n2 − 2

(3)

d∗ = μ2 − μ1

σnp
, where σnp =

√
σ 2

1 + σ 2
2

2
(4)

Equation 3 is the standard method for calculating Cohen’s d
using the pooled standard deviation, where in the numerator we
have the difference between the means of the two groups (μ1 and
μ2), with n1 and n2 denoting the sample sizes of each group,
and σ 2

1 and σ 2 denoting the variances of each group. In contrast,
Cohen’s d* (Equation 4) is based on the non-pooled standard
deviation. While the use of a non-pooled standard deviation
somewhat complicates the interpretation of the resulting effect size
metric, empirical investigations have shown that it possesses robust
inferential properties and may be a more practical option given that
the equal variance requirement is rarely met in practice (Delacre
et al., 2021).

To be more comprehensive in our analysis, alongside Cohen’s
d, we also report a non-parametric alternative, the rank-biserial
correlation coefficient (rrb). To perform the associated statistical
significance tests, we use the t-test and the Mann-Whitney U
test, respectively.

To quantify the impact of reliability on statistical power, we
calculated the required sample sizes for each effect size metric to
achieve 80% power at α = 0.05 (Cohen, 2013). The critical values
zα/2 and zβ are defined as:

zα/2 = �−1(1 − α/2) and zβ = �−1(1 − β), (5)

where �−1 is the inverse cumulative distribution function of
the standard normal distribution, α = 0.05 is the two-sided
significance level, and β = 0.20 (corresponding to 80% power)
is the Type II error rate. With these parameters, zα/2 = 1.96 and
zβ = 0.84.

For Pearson correlation, we used the Fisher z-transform
approach (Cohen, 2013):

Nr = 3 +
(

zα/2 + zβ

atanh(|robs|)
)2

, (6)

where |robs| is the absolute value of the observed correlation
attenuated by measurement error. For Cohen’s d from median split
analysis, we used the standard two-sample t-test power formula
(Cohen, 2013):

Nd = 4
(

zα/2 + zβ

dobs

)2
, (7)

where dobs is the observed effect size attenuated by reliability.
For the rank-biserial correlation with equal group sizes, we used
(Noether, 1987):

Nrb ≈ 4
3

(
zα/2 + zβ

rrb,obs

)2
, (8)

where rrb,obs is the observed rank-biserial correlation coefficient.

3 Results

3.1 The reliability paradox

First, we performed data simulations to illustrate the reliability
paradox—namely, that strong within-group effects are inherently
at odds with high test-retest reliability. We generated multiple
sets of synthetic data by independently varying between-subject
variance (σ 2

b ) and measurement error variance (σ 2
e ), and explored

how this affects test-retest reliability and observed within-group
effects (Figure 1). The key takeaway here is that while test-retest
reliability is determined by the proportion of between-subject
variance relative to total variance σ 2

b /(σ 2
b + σ 2

e ), within-group
effects depend on the total variance σ 2

b + σ 2
e . In other words,

increasing error variance σ 2
e will reduce both reliability and within-

group effect sizes, whereas increasing between-subject variance σ 2
b

will improve reliability but will reduce within-group effects, since
a fixed mean difference becomes smaller relative to the larger
total variance.

Note that for simplicity here we assumed the between-subject
variance in condition 1 and condition 2 to be uncorrelated
(Figure 1C). Under this assumption, the variance of the difference
scores (i.e., the individual-level condition differences used to
compute paired-sample Cohen’s d) is equal to the sum of the
variances in each condition. Due to this linear relationship,
Figure 1F can therefore be interpreted as referring to the between-
subject variance of difference scores. In practice, however, task
conditions are often positively correlated, which reduces the
variance of the difference scores—thereby inflating effect sizes while
reducing the reliability of the underlying scores (Cronbach and
Furby, 1970; Hedge et al., 2018; Draheim et al., 2019). This would
introduce non-linearities in how the between-subject variance
of each condition relates to the observed effect size, but the
relationship between the between-subject variance of difference
scores and the observed effect size, which we aim to convey here,
still holds.

3.2 Group differences: data simulations

3.2.1 Data simulations for groups created by
dichotomizing continuous measures

Next, using data simulations we investigated how measurement
reliability affects group differences when the groups are derived by
thresholding a continuous measure (e.g., symptoms or traits). To
make this more intuitive we considered two common scenarios:
1) mental disorders, which can be generally thought of as
occupying the low end of the wellbeing distribution (Huppert
et al., 2005) or any specific symptom dimension, and 2) “low”
vs. “high” cognitive traits formed by a median split (Figure 2).
Considering these scenarios using simulations helps illustrate
one key insight: raw group differences scale together with
between-subject variance (Figures 2B, C). Hence, unlike with
within-group effects, reducing between-subject variance does not
lead to larger group effects. Adding measurement error can further
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FIGURE 1

The reliability paradox. Top panels (A–C) illustrate the statistical tests under consideration: (A) test-retest correlation (same measure obtained twice),
(B) one-sample test (mean of a single condition compared to zero), and (C) paired-sample test (mean difference between two conditions). Bottom
panels (D–F) show how the observed outcomes of these tests depend on the relative contributions of error variance and between-subject variance.
Test-retest reliability (D) increases when error variance is minimized and between-subject variance is maximized, whereas observed one-sample and
paired-sample effect sizes (E, F) increase when both error and between-subject variances are minimized.

FIGURE 2

Group differences as a function of population variance. (A) The dimensional view of mental disorders; adapted from Huppert et al. (2005). (B) The
relationship between patients vs. controls group differences and population variance, assuming that patients are defined as 10% of the population
with the poorest mental health. (C) A more general case illustrating the group differences resulting from the median split of the data (based on some
cognitive measure) as a function of population variance. In both (B) and (C) we see that as true population variance increases, raw group difference
increase too, while adding measurement error to the true scores results in misclassification of some individuals—which will end up attenuating
observed group differences in the measures of interest.

increase raw group differences, but it also leads to misclassification
(Figures 2B, C), which ultimately reduces observed group
differences in any other measures of interest, as we will
see next.

We generated correlated “symptoms/traits” and “task
performance” datasets such that they had rtrue = 0.7 Pearson’s
correlation. To derive the groups, we defined patients as occupying
the 10% of the population with the poorest mental health
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FIGURE 3

Test-retest reliability effects on observed group differences. The top row panels (A–C) illustrate the different analysis scenarios, while the 2 row
panels (D–F) show the corresponding observed effects for different error and between-subject variance values of task performance, and the bottom
row panels (G–I) show the corresponding observed effects for different error and between-subject variance values of symptoms/traits. (A) An
illustration of correlation between traits or symptoms and task performance. The vertical dashed lines indicate how the data was split for the two
analysis scenarios. (B) An illustration of patient and control groups created by assigning 10% of the population with the poorest mental health to
patient group and the remaining 90% to control group. (C) An illustration of “low” and “high” trait groups by performing a median split. Overall, the
test results show that both observed correlation strength and observed group differences increase with increasing test-retest reliability (i.e., with
reducing error variance/increasing between-subject variance) both when varying between-subject and error variances of task performance
measures (D–F) and symptoms/traits measures (G–I).

(Figures 3A, B), with the rest of the population being controls;
using the median split along the trait dimension Figure 3A, we
grouped individuals into “low” and “high” trait groups (Figure 3C).

We then examined how the observed effect size metrics were
affected by independently varying σb and σe of task performance
and then of traits/symptoms (see Methods for more details). In
both cases, we find the same results: reducing reliability in either
task performance measures (Figures 3D–F) or symptoms/traits
measures (Figures 3G–I) leads to attenuation of observed effect
sizes that mirror those of correlational analyses of individual
differences (Equation 9).

3.2.2 Comparing attenuation effects across
effect size metrics

In a correlational analysis, the true correlation strength between
a measure x and a measure y is attenuated by their respective
reliabilities following (Spearman, 1904):

robserved = rtrue
√

ICCxICCy. (9)

We compared the observed effect sizes from our simulations
to the predicted attenuation relationship and found that both
parametric (Cohen’s d) and non-parametric (rank-biserial rrb)
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estimates closely followed the same reliability-based scaling as
Pearson’s r, especially for moderate true correlations (rtrue = 0.5;
Figure 4A). However, Cohen’s d deviated more substantially when
rtrue = 0.9 (Figure 4A) inset due to increasing deviations from
normality caused by dichotomization. Thus, when the assumptions
of the effect size metric hold, observed between-group differences
can be approximated as:

δobserved = δtrue
√

ICCxICCy (10)

Although attenuation similarly affects both correlations and
group differences, it is important to keep in mind that correlational
analyses generally retain greater statistical power. Figure 4B
illustrates that p-values for group comparisons of dichotomized
data are larger than those for correlation tests (N = 60, rtrue =
0.5) and Figure 4C similarly illustrates that required sample sizes
(to have 80% power at α = 0.05) for dichotomized data are
substantially larger than those for correlational analysis, especially
when reliability is low. That is simply because the variance
discarded during dichotomization results in information loss. This
is well documented in previous work (e.g., MacCallum et al., 2002;
Royston et al., 2006; Naggara et al., 2011; Streiner, 2002) therefore
we will not go into any further details here. Just, please, avoid
dichotomizing your continuous data as much as you can.

3.3 Group differences: mathematical
derivations

3.3.1 Attenuation for exogenously defined
groups

In previous sections, we used simulations to illustrate how poor
reliability attenuates group differences when groups are derived
from a noisy continuous measure. These visualizations were meant
to provide an intuitive understanding of the attenuation effect.
Here, we derive the same effect mathematically, but this time
considering exogenously defined groups (e.g., male vs. female or
treatment vs. control), which are categorical and not subject to
measurement error.

For such externally defined groups, random measurement error
does not systematically bias the raw mean difference (Lord and
Novick, 1968; Nunnally and Bernstein, 1994) but inflates total
variance (σ 2

b + σ 2
e ). Consequently, the raw difference scales with

between-subject variance rather than total variance (Cohen, 1988;
Ellis, 2010):

μ2 − μ1 = δtrue σb. (11)

The expression for δobserved will then depend on total variance,
such that:

δobserved = μ2 − μ1√
σ 2

b + σ 2
e

(12)

= δtrue
σb√

σ 2
b + σ 2

e

(13)

= δtrue
√

ICC , (14)

where used Equations 11, 2 to get to the final expression.
Notably, this same attenuation mechanism applies to

both externally defined groups and groups formed via
dichotomization, although the latter additionally suffers from
misclassification effects.

3.3.2 Attenuation when the groups have different
reliabilities

Equation 14 assumes both groups have the same measurement
reliability, but this is not always the case. Here, we derive a more
general formula that accounts for differing reliabilities. If the groups
have reliabilities ICC1 and ICC2, their observed standard deviations
are:

σ1 = σb√
ICC1

, σ2 = σb√
ICC2

, (15)

where we assume both groups share the same true between-subject
standard deviation. Using the non-pooled variance estimation (see
Methods for more details), the observed standard deviation is
given by:

σnp =
√

σ 2
1 + σ 2

2
2

=
√

σ 2
b

2

(
1

ICC1
+ 1

ICC2

)

= σb

√
1
2

(
1

ICC1
+ 1

ICC2

)
. (16)

Thus, the observed standardized difference is:

δobserved = μ2 − μ1

σnp
(17)

= δtrue σb

σb

√
1
2

(
1

ICC1
+ 1

ICC2

) (18)

= δtrue

√
2

1
ICC1

+ 1
ICC2

(19)

= δtrue

√
2 ICC1 ICC2

ICC1 + ICC2
. (20)

In the special case where ICC1 = ICC2 = ICC, this expression
simplifies to Equation 14, consistent with the earlier result.

3.3.3 Attenuation when true variances are also
unequal

Thus far, we assumed that both groups share the same
underlying between-subject standard deviation. Here, we relax
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FIGURE 4

Test-retest reliability effects across different effect size metrics and statistical tests. (A) The observed effect sizes as a function of reliability for
rtrue = 0.5, comparing group differences to correlational strength. Note, because the effect sizes among the tests are not directly comparable, each
effect size is normalized by its own maximum value at ICC = 1. The inset shows the results for rtrue = 0.9. The dashed line denotes
robserved = rtrue

√
ICCxICCy . (B) The p-value as a function of reliability for rtrue = 0.5 and the total sample size of N = 60. Dichotomizing data

substantially increases p-values, especially when reliability is low. (C) The required sample size to achieve 80% statistical power at α = 0.05 as a
function of reliability for the three effect size metrics. Dichotomizing data substantially increases the required sample sizes to detect the same true
effect, especially when reliability is low.

that assumption and allow the two groups to have different true
variances, such that the total true variance is

σb,np =
√

σ 2
b,1 + σ 2

b,2
2

, (21)

and the observed variances are

σobs,1 = σb,1√
ICC1

, σobs,2 = σb,2√
ICC2

, (22)

and so the total observed unpooled variance is

σnp =
√

σ 2
obs,1 + σ 2

obs,2
2

=
√

σ 2
b,1/ICC1 + σ 2

b,2/ICC2

2
. (23)

Thus, the observed standardized difference is

δobserved = μ2 − μ1

σnp
= δtrue σb,np

σnp
. (24)

Substituting Equations 21, 23 into Equation 24 yields

δobserved = δtrue

√√√√ σ 2
b,1 + σ 2

b,2

σ 2
b,1/ICC1 + σ 2

b,2/ICC2
. (25)

In the special case where σb,1 = σb,2 = σb, Equation 25
simplifies to Equation 20.

3.3.4 Attenuation by classification reliability
We can further extend these equations to take into account the

reliability of group labels (e.g., patients vs. controls). Note, that
we have already demonstrated via simulations that when group
classification is error prone, the observed group differences scales
as

√
ICC for the underlying continuous measure. However, when

comparing two groups, a more likely measure of classification
reliability that would be used is Cohen’s Kappa (κ) (Cohen,
1960), which measures the reliability of categorical labels (and
is often used to quantify the inter-rater reliability of clinical
diagnoses). The relationship between κ and the underlying
reliability of continuous measures ICC can be shown to be Kraemer
(1979):
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κ = 2
π

arcsin
(√

ICC
)

. (26)

Rearranging this for ICC gives

ICC = sin2
(π

2
κ
)

. (27)

Now, the expression Equation 10 can be re-
expressed in terms of classification reliability, while
Equations 20, 25 can be further extended to account for
classification reliability:

δobserved = δtrue

√
ICC · sin

(π

2
κ
)

, (28)

δobserved = δtrue

√
2 ICC1 ICC2

ICC1 + ICC2
sin

(π

2
κ
)

, (29)

δobserved = δtrue

√√√√ σ 2
b,1 + σ 2

b,2

σ 2
b,1/ICC1 + σ 2

b,2/ICC2
sin

(π

2
κ
)

. (30)

We summarize all the attenuation equations in Box 1.

4 Discussion

This report extends the implications of the reliability paradox
beyond its original focus on individual differences (Hedge
et al., 2018), demonstrating that it presents the same problems
when studying group differences. When groups are formed by
thresholding continuous measures (e.g., patients vs. controls), the
resulting loss of statistical power makes detecting group differences
(vs. individual differences) even harder when reliability is low.
We hope that this work will help raise awareness of measurement
reliability implications in group differences research and that the
provided mathematical expressions will help researchers better
account for the magnitude of the effect size attenuation in
their studies.

4.1 Implications for clinical translation

Poor reliability leads to small observed effects, which severely
impedes clinical translation (Karvelis et al., 2023; Nikolaidis et al.,
2022; Gell et al., 2023; Tiego et al., 2023; Moriarity and Alloy,
2021; Paulus and Thompson, 2019; Hajcak et al., 2017). For
example, for a measure to have diagnostic utility—defined as ≥
80% sensitivity and ≥ 80% specificity—it must show a group
difference of d ≥ 1.66 (Loth et al., 2021). Note that d ≥ 0.8
is considered “large” and it is rarely seen in practice. This may
also explain why treatment response prediction research, where
it is common to dichotomize symptom change into responders
vs. non-responders, has so far shown limited success (Karvelis
et al., 2022). Improving the reliability of measures to uncover the
landscape of large effects is therefore of paramount importance
(DeYoung et al., 2025; Nikolaidis et al., 2022; Zorowitz and Niv,
2023). This applies not only to cognitive performance measures—
where the reliability paradox discussion originates—but equally to
other instruments including clinical rating scales and diagnostic
criteria (Regier et al., 2013; Shrout, 1998), self-report questionnaires
(Enkavi et al., 2019; Vrizzi et al., 2025), and experience sampling
methods (ESM) (Dejonckheere et al., 2022; Csikszentmihalyi and
Larson, 1987). To begin uncovering large effect sizes, however,
reliability analysis and reporting must first become a routine
research practice (Karvelis et al., 2023; Parsons et al., 2019;
LeBel and Paunonen, 2011). While some guidelines such as APA’s
JARS for psychological research (Appelbaum et al., 2018) and
COSMIN for health measurement instruments (Mokkink et al.,
2010) do encourage routine reporting of reliability, others, such
as PECANS for cognitive and neuropsychological studies (Costa
et al., 2025), do not mention reliability or psychometric quality
at all, underscoring the need to continue raising awareness of
measurement reliability issues.

4.2 Double bias: reliability attenuation and
small-sample inflation

Correct interpretation of observed effects requires considering
not only the attenuation effects we describe here, but also

BOX 1 Attenuation of observed group differences in different scenarios.

δobserved = δtrue
√

ICC Continuous outcome measured with reliability ICC; classification is error-free.

δobserved = δtrue
√

ICC · sin
(
π
2 κ

)
Continuous outcome measured with reliability ICC while classification
reliability is κ .

δobserved = δtrue
√

2 ICC1 ICC2
ICC1+ICC2

Continuous outcome with group-specific reliabilities ICC1 and ICC2;
classification is error-free.

δobserved = δtrue
√

2 ICC1 ICC2
ICC1+ICC2

sin
(
π
2 κ

)
Continuous outcome measured with group-specific reliabilities ICC1 and ICC2
while classificaiton reliability is κ .

δobserved = δtrue

√
σ 2

b,1+σ 2
b,2

σ 2
b,1/ICC1+σ 2

b,2/ICC2
Continuous outcome with group-specific variances σ 2

b,1, σ 2
b,2 and reliabilities

ICC1, ICC2; classification is error-free.

δobserved =

δtrue

√
σ 2

b,1+σ 2
b,2

σ 2
b,1/ICC1+σ 2

b,2/ICC2
sin

(
π
2 κ

) Continuous outcome measures with with group-specific variances σ 2
b,1, σ 2

b,2
and reliabilities ICC1, ICC2, while classification reliability is κ .
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sampling error. While low measurement reliability attenuates
observed effect sizes, small samples produce unstable estimates
that are often selectively reported, leading to systematic inflation
of reported effects—known as the winner’s curse (Sidebotham and
Barlow, 2024; Button et al., 2013; Ioannidis, 2008). Currently,
research in cognitive neuroscience and psychology is dominated
by small samples, with an estimated 50% of research reporting
false positive results (Szucs and Ioannidis, 2017); also see Schäfer
and Schwarz (2019). While the attenuation of effect sizes can
be addressed by the equations we provide, inflation due to the
winner’s curse can be mitigated by collecting larger samples,
preregistering analyses, applying bias-aware estimation or meta-
analytic techniques (Button et al., 2013; Nosek et al., 2018; Zöllner
and Pritchard, 2007; Vevea and Hedges, 1995).

4.3 Broader implications for real-world
impact

Although we presented our statistical investigation with
psychiatry and cognitive sciences in mind, the implications of our
results are quite general and could inform any area of research that
relies on group comparisons, including education, sex, gender, age,
race, and ethnicity (e.g., Hyde, 2016; Ones and Anderson, 2002;
Roth et al., 2001; Rea-Sandin et al., 2021; Perna, 2005; Vedel, 2016).
The reliability of measures is rarely considered in such studies, but
the observed effect sizes are often treated as proxies for practical
importance (Cook et al., 2018; Funder and Ozer, 2019; Kirk, 2001,
1996; Olejnik and Algina, 2000) and are used to inform clinical
practice (e.g., Ferguson, 2009; McGough and Faraone, 2009) and
policy (e.g., Lipsey et al., 2012; Pianta et al., 2009; McCartney and
Rosenthal, 2000). Not accounting for the reliability of measures
can therefore create a very misleading scientific picture and lead
to damaging real-world consequences.

4.4 Limitations and caveats

Our derivations of effect size attenuation are based on
parametric assumptions and may not give precise estimates when
the data is highly non-normal or is contaminated with outliers. By
extension, they may not give precise estimates for non-parametric
group differences metrics, although it should still provide a
good approximation. Furthermore, we should highlight once
again that our derivations rely on using non-pooled variance for
calculating standardized mean differences, which allows dropping
the assumption of equal variance. Thus, when the true variances are
indeed not equal between the groups, it is important to use the non-
pooled variance version of Cohen’s d* (see Delacre et al., 2021, for
further details) when using the attenuation equations. However, if
the true variances are roughly equal, the attenuation relationships
derived here will hold just as well for the standard Cohen’s d, which
uses pooled variance.
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