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|dentifying and subtyping
dyscalculia in a sample of
children with and without
dyscalculia — a data-driven
approach

Christian KiRler* and Jérg-Tobias Kuhn

Methods in Empirical Educational Research, Rehabilitation Sciences, TU Dortmund University,
Dortmund, Germany

Introduction: Dyscalculia is a very heterogeneous disorder. This is illustrated
by the fact that numerous possible subtypes have been described in previous
studies. Therefore, the present study addresses the question of whether children
with dyscalculia form a homogeneous group that can be distinguished from
children without dyscalculia or whether distinct dyscalculia subtypes should
be assumed.

Methods: A sample of 1,015 children was analyzed in a data-driven subtyping
approach (mixture model analysis). 93 of these children were identified as
dyscalculic (criterion: percentage rank <10) with a standardized test (HRT
1-4) to examine how these children were distributed across the identified
subtypes. Various cognitive performance domains that were measured with
standardized tests were included in the analyses: mathematical skills (basic
numerical processing, complex number processing, calculation), working
memory, reading fluency, and intelligence. To check the subgrouping results for
robustness, four different approaches were used, which differed with respect to
which variables were included in the mixture model analysis (only mathematical
skills: n; = 1,015/ all variables: ny = 478; n, with a reduced sample size according
to missing data) and to what extent the measured results were aggregated into
constructs (construct level) or considered as individual test results (subtest level).

Results: In three of these four different subtyping approaches, at least one of
the identified subgroups showed significant deficits in mathematical skills and
included disproportionately many children with dyscalculia. Furthermore, one
of these three approaches (the subtyping analysis at the subtest level based on
mathematical skills only) suggests that there may be two subtypes of children
with dyscalculia: a subtype with mild deficits and a severely impaired subtype.
In one approach (subtyping analysis at the construct level with all variables
included), children with dyscalculia were not identified as a separable group.

Discussion: In summary, dyscalculia subtypes (as well as children with
dyscalculia in general) do not seem to be clearly distinguishable from children
without dyscalculia: the boundaries are fluid. For educational practice, this
fluent transition between dyscalculic and non-dyscalculic children means that
all children who have difficulties in mathematics should be supported and not
only those who are classified as dyscalculic.
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1 Introduction

Since this study focuses on subtyping children with dyscalculia
(CwD), dyscalculia will first be described, followed by a discussion of
subtyping approaches (subsection 1.1). Subsequently, the current state
of research regarding the subtyping of CwD is presented
(subsection 1.2).

1.1 Dyscalculia and subtyping approaches

Severe difficulties in the domain of mathematics are described
using different terms, although they refer to similar or identical
phenomena. The DSM-5-TR (American Psychiatric Association,
2022) lists specific learning disorders that can be coded with the
specifier with impairment in mathematics, while the ICD-11 (World
Health Organization, 2020) refers to developmental learning disorder
with impairment in mathematics (6A03.2). In the DSM-5-TR,
dyscalculia is mentioned as an alternative term for a pattern of
difficulties in mathematics. The following section provides a more
detailed description of dyscalculia in the context of this study.

Dyscalculia is understood as a developmental learning disorder
which is characterized by a lack of “skills related to mathematics or
arithmetic, such as number sense, memorization of number facts,
accurate calculation, fluent calculation, and accurate mathematic
reasoning” (ICD-11: World Health Organization, 2020), insofar as the
deficits (a) cannot be explained by another disorder (e.g., an
intellectual impairment) and (b) occur even though the individual had
access to education (World Health Organization, 2020). The
DSM-5-TR describes this disorder very similar (American Psychiatric
Association, 2022). Both the ICD-11 and DSM-5-TR list dyscalculia
as a neurodevelopmental disorder (World Health Organization, 2020;
American Psychiatric Association, 2022). Overall, there are different
approaches that aim to explain children’s difficulties in arithmetic and
mathematical reasoning (e.g., Butterworth, 2005; Noél and
Rousselle, 2011).

Mathematical skills encompass complex subdomains, some of
which appear to stand alone and thus form isolated constructs: in fact,
different areas of mathematical abilities can be impaired in CwD,
which implies that needs of CwD can vary substantially (Skagerlund
and Traff, 2016; Haberstroh and Schulte-Korne, 2019). Therefore,
evidence-based formation of different subareas of mathematical
competencies makes sense from a theoretical and practical perspective.

Different structural models of mathematical skills and
competencies have been suggested. According to factor analytic results
of Kuhn et al. (2017), mathematical skills can be categorized into three
subdomains: basic numerical processing (BNP), complex number
processing (CNP) and calculation competencies. BNP is also known
as core number competencies and is characterized by straightforward
tasks, such as dot counting and the comparison of magnitudes (Reeve
et al., 2012; Kuhn et al,, 2017). CNP encompasses more complex
mathematical precursor skills such as (a) locating a number on a
number line or (b) transcoding/transforming auditorily presented
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numbers into written Arabic symbols, for example (Nuerk et al., 20065
Kuhn etal, 2017). Calculation implies performing concrete arithmetic
operations such as addition, subtraction, and multiplication.

Because there are distinct mathematical abilities, dyscalculia may
also affect these to different degrees; consequently, several theories
have been proposed to explain challenges of CwD. Some approaches
link dyscalculia to theories of number processing: e.g., to the
Approximate Number System (ANS). This is thought to handle
quantities larger than four in an approximate manner, and
complements the Object Tracking System (OTS), which is assumed to
register quantities up to four exactly and instantaneously (Piazza et al.,
2010; Lamb et al., 2024).

Therefore, one perspective suggests that difficulties in mathematics
derive from an impaired ANS (Feigenson et al., 2004; Noél and
Rousselle, 2011; Lamb et al., 2024). Indeed, evidence shows that
10-year-old CwD perform at the level of 5-year-old typically
developing children when estimating dot quantities (Piazza et al.,
2010). In Accordance with the ANS hypothesis, CwD should show
deficits in the following tasks, for example: in pure number-
comparison tasks, mixed comparison tasks of quantities and numbers,
and dot enumerations that go beyond four (Lamb et al., 2024). But
they should not show such deficits in dot enumeration tasks from one
to three (Lamb et al., 2024).

Another perspective to explain deficits in mathematics suggests a
deficit in the ability to access quantity representations from symbols:
the Access Deficit Hypothesis (Rousselle and Noél, 2007; Noél and
Rousselle, 2011; Skagerlund and 'Triff, 2016). If this hypothesis is
correct, CwD should show deficits in specific task domains: for
example, in pure number-comparison tasks as well as in mixed
comparisons of quantities and numbers (Lamb et al., 2024). However,
they should not exhibit deficits when counting dots - regardless of the
number of dots (Lamb et al., 2024).

Thus, it becomes evident that different explanatory approaches for
difficulties observed in CwD should correspond to distinct patterns of
deficits. Nevertheless, these approaches do not need to be exclusive:
there could be separate subtypes of CwD whose difficulties stem from
different underlying causes.

In addition to different deficient math skills, other domain general
abilities such as working memory, and attention or reading
performance are often discussed in the context of dyscalculia, as many
CwD appear to have pronounced deficits in these areas (e.g.,
Schuchardt et al., 2008; Mahler and Schuchardt, 2011; Haberstroh and
Schulte-Korne, 2019; Kifiler et al., 2020; Kifiler et al., 2021). Whether
such deficits really apply to all CwD, or whether these concern (in
particular) specific subtypes, will be discussed in the following
sections in more detail.

Notably, not only CwD, but also children with other learning
disorders - e.g., reading disorder - exhibit difficulties in domain-
general abilities (e.g., Menghini et al,, 2011) and even comorbidities
of different learning disorders are common (e.g., Gross-Tsur et al.,
1996). This raises the question of whether different learning disorders
are truly separable or whether they are more closely related. It may
be worth considering that disorders such as dyslexia and dyscalculia
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should not be viewed categorically, but rather within a dimensional
framework (Peters and Ansari, 2019).

If dyslexia and dyscalculia were distinct, their deficits would
be more likely to be additive (Killer et al., 2020), as different
underlying causes would then be present and co-occur in children
with both disorders. Indeed, Kifller et al. (2020) found evidence for
the additivity of cognitive deficit profiles in children with arithmetic
and reading difficulties. Nevertheless, the high comorbidity between
reading and arithmetic disorders requires further investigation.
Interestingly, CwD showed contradictory results in working memory
tasks assessing visuospatial working memory: an effect was found in
matrix span tasks, whereas no such effect was found in Corsi block
tasks (Kifsler et al., 2020). These results contradict Schuchardt and
Mahler (2010), who found such problems in Cosi block tasks, whereas
Landerl et al. (2009), in turn, did not find such deficits. In a meta-
analysis (Viesel-Nordmeyer et al., 2023) of 74 studies additivity for
deficits in math and reading skills was found, whereas underadditivity
was found in executive functions (inhibition, shifting, and updating).
However, for example, de Weerdt et al. (2013) found no interaction
effect for inhibition and concluded that children with reading
disabilities show inhibition deficits related to alphanumeric stimuli,
but children with mathematical disabilities do not.

Contradicting results may point to the heterogeneity of children
with learning disorders and especially of CwD. But if results vary
across studies (as shown above), it raises the question of whether the
same disorders are investigated or whether different subtypes are
studied, for example due to the use of different diagnostic instruments.
For this reason, the identification of subtypes is an important topic
of research.

In principle, there are two approaches to state subtypes of
disorders such as dyscalculia: top-down and bottom-up (Salvador
etal, 2019; Kiftler et al., 2021). In top-down approaches, individuals
are grouped (=subtyped) based on (a) observations that tend to
be unsystematic or (b) theories that are more the result of logical
reasoning than of systematic approaches that are evidence-based: for
example, children who have difficulties with arithmetic can
be distinguished from children who have difficulties with arithmetic
and reading a priori (Rourke et al., 1971; Rourke and Finlayson, 1978;
Ozols and Rourke, 1988; Rourke, 1993). However, it is unclear whether
each of these two groups includes children with homogeneous
cognitive profiles. Of course, these a priori distinguished groups can
be compared with each other with respect to their performance in
specific sub-areas, and in some cases, differences will undoubtedly
be found. But this does not necessarily clarify the question of whether
specific subtypes of a disorder were studied, or whether the mere effect
of a comorbidity was analyzed.

Nevertheless, it should be noted that top-down approaches are
justified and, in some contexts (for example in educational or
clinical settings in practice), could be the only realistically
applicable approach. Furthermore, the top-down approach can
be used to identify entirely new disorders, if unsystematic
observations lead to the conclusion that specific (behavioral of
cognitive) patterns cannot be explained by previously described
disorders. This is like when Kanner (1943) and Asperger (1944)
categorized children (belonging to the described group vs. not
belonging to the described group), based on observations, and
described specific characteristics of the groups they found. From
that point on, children with similar characteristics were assigned
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top-down to those categories, but these categories were later merged
into the autism spectrum disorder because of new evidence (e.g.,
Lord et al., 2012; World Health Organization, 2020; Habermann
and Kifsler, 2022).

The bottom-up approach is opposed to the top-down approach.
In the bottom-up approach, data on childrens performance in
different subdomains is collected, and then these children are divided
into subgroups in a data-driven way (i.e., evidence-based and
systematic, by applying specific statistical methods or algorithms).
Next, these subgroups are compared with each other (e.g., Bartelet
etal, 2014; Kifller et al., 2021). Top-down and bottom-up approaches
do not always lead to the same groupings: Thus, in a data-driven
research approach, Kifler et al. (2021) were unable to find a subgroup
of children with dyscalculia (CwD) that stood out in terms of their
reading competencies.

Several studies (as described below) have already attempted to
describe subgroups of dyscalculia top-down or bottom-up. In some
cases, very heterogeneous research results were observed. However, if
the bottom-up approach is taken seriously, it would need to be applied
not only on children with a specific disorder (e.g., dyscalculia) to
identify subgroups of CwD, but also to a large sample of both impaired
and unimpaired children. This would allow for an analysis of (1)
whether dyscalculia can be identified as a homogeneous disorder or
(2) whether children with specific subtypes of dyscalculia can
be distinguished from each other and from children without
dyscalculia. The goal of this study is to investigate precisely that. If
specific subtypes of dyscalculia do indeed exist, this might imply that
these subtypes, although having similarities, represent distinct
disorders that could have different causes and might require
different interventions.

1.2 State of research on the subtyping of
dyscalculia

As described above, there are two contrasting approaches in
research on subtyping (Kifsler et al., 2021): top-down and bottom-up.
Presumably, different findings on subtypes of CwD can partly
be explained by different methodological approaches, small sample
sizes that were analyzed, and the consideration of just a few cognitive
sub-performance domains in the formation of subtypes, as well as by
how dyscalculia was defined.

Rourke and the research team around him were among the first
in researching subtypes of CwD (e.g., Ozols and Rourke, 1988; Rourke,
1993). They categorized CwD into three groups: (1) children who
struggled with arithmetic, reading, and spelling, (2) children who had
poor reading and spelling abilities but showed relatively better skills
in arithmetic (although still deficient), and (3) children who had
average or above-average reading and spelling abilities but experienced
mathematical difficulties. The qualitative nature of arithmetic errors
differed among these groups (Rourke, 1993). For example, group 3
had issues with accurate calculation due to poor handwriting, misread
mathematical symbols, performed arithmetic operations incorrectly,
and showed difficulties in accessing the required calculation rules
from long-term memory (Rourke, 1993). In contrast, children in
group 2 made mistakes that could be linked to their reading problems
(Rourke, 1993). Consequently, this research provides evidence that
reading skills are linked to specific problem areas in some CwD and
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that reading skills have to be considered when discussing
dyscalculia subtypes.

Accessing information from long term memory is a common
problem of a subtype in CwD that was also described by Skagerlund
and Traff (2016). These authors described two subtypes of CwD,
namely the General Dyscalculia Subtype (GDS) and the Arithmetic
Fact Dyscalculia Subtype (AFDS). The GDS had deficits in the innate
ANS: this means that in children with GDS, the ANS - which is
responsible for representing numerosities — showed an arrangement
of numbers on a mental number line that was too imprecise for their
chronological age (Halberda and Feigenson, 2008; Skagerlund and
Traff, 2016). In contrast, the AFDS was characterized by another
deficit: accessing magnitude information from symbols was impaired
(access deficit hypothesis; Rousselle and Noél, 2007; Skagerlund and
Traff, 2016). Moreover, the AFDS did not show deficits in
non-symbolic processing, whereas children of the GDS showed such
deficits (Skagerlund and Tréff, 2016).

In a research project with 226 children (3rd to 6th grade) with
math learning difficulties (percentile rank, abbreviated as PR, of <
16 in an arithmetic fluency test), Bartelet et al. (2014) used a data-
driven approach to identify subtypes of children with math difficulties
by focusing on different variables: Arabic number knowledge,
counting, number line estimation, approximate number knowledge
(e.g., dot comparison task), spatial short-term working memory,
verbal short-term working memory, and intelligence. Bartelet et al.
(2014) found six different dyscalculia subtypes, each with distinct
cognitive characteristics: (1) The weak mental number line subtype,
which exhibited low performance in number line tasks but
demonstrated strong skills in approximate numerical knowledge and
Arabic numeral knowledge; (2) The weak ANS subtype, characterized
by difficulties in approximate number knowledge and number line
tasks, but with a high IQ and a good performance in spatial short-
term working memory compared to other subtypes. This subtype
shared similarities with the GDS subtype described by Skagerlund and
Traff (2016); (3) The spatial difficulties subtype, which struggled
primarily with spatial short-term working memory and approximate
numerical knowledge. Additionally, this subtype seemed to have
difficulties in verbal short-term working memory and in solving
number line tasks; (4) The access deficit subtype: In this subtype,
difficulties in counting and Arabic numerical knowledge were found;
(5) The no numerical cognitive deficit subtype, which showed no
impairments in any area and very high verbal short-term working
memory; (6) The garden variety subtype, characterized by multiple
smaller deficits across various areas. This subtype performed well in
number line tasks but had a lower IQ.

Bartelet et al. (2014) found subtypes in children with math
learning difficulties that were characterized by varying abilities/
problems in different mathematical areas and other cognitive domains.
Rourke (1993) also found that mathematical deficits differ qualitatively
between children with math difficulties (Rourke, 1993). The research
of Kifiler et al. (2021) even suggests that mathematical skills may
be the most relevant factors in subtyping CwD: This means that
children who meet the common criterion for dyscalculia vary in terms
of their mathematical abilities in such a way, that specific subgroups
can also be found among dyscalculic children with regard to their
arithmetic abilities.

Kifller et al. (2021) analyzed two samples (one included 71 CwD,
the other 103 CwD) using mixture model analyses to identify
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subgroups of CwD based on a broad range of constructs (attention,
intelligence, reading fluency, working memory, and different
mathematical skills). They found two subgroups that differed in
particular with respect to their mathematical performance and their
attention: the so-called subtype 2 was inferior to subtype I in terms of
performance in both subareas. Overall, subtype 2 seemed to be more
impaired than subtype 1. Intelligence, working memory, and reading
fluency were not suitable for systematically distinguishing the two
identified subtypes. The results were robust regardless of whether the
analyses were conducted at the construct level or subtest level (e.g.,
construct level: working memory; subtest level for working memory:
matrix span and verbal span) and whether only complete data sets or
data sets with imputations to deal with missing data were used (Kif!ler
etal., 2021).

The finding that CwD differ particularly in their mathematical
abilities also fits to the approach of a recent research (Pedemonte et al.,
2022). Starting with the assumption that CwD show difficulties in
different mathematical subareas, the research team developed the
UCSF Dyscalculia Subtyping Battery (DSB) with the aim to identify
difficulties in specific mathematical subareas and different dyscalculia
subtypes corresponding to these specific mathematical subareas
top-down (arithmetic facts retrieval, arithmetical procedures,
geometrical abilities and number processing). Thus, the subtypes were
formed a priori, based on a specific conceptualization of dyscalculia.
This test battery has been evaluated on a small sample of 93 children/
adolescents aged 7-16 years. 50 of them were diagnosed with dyslexia,
7 with ADHD, and 18 with dyslexia and ADHD. 18 children were
typically developing. Although this study has considerable
methodological limitations (e.g., very small sample size, wide age
range from 7 to 16 years old, limited selection of statistical methods),
the approach of subtyping CwD based on their deficits in different
mathematical subareas using a test battery seems to be an interesting
and consistent approach in view of the evidence from other studies
(e.g., Skagerlund and Tréff, 2016; Kifiler et al., 2021).

The studies previously presented analyzed CwD using a top-down
or bottom-up approach to examine the existence of subtypes of
CwD. But these subtypes were either derived from preexisting
theoretical assumptions about dyscalculia or - in cases where a
bottom-up approach was used - affected children (with dyscalculia)
were initially distinguished from unaffected children a priori: Thus, a
top-down or an incomplete bottom-up approach was used, as a
distinction (affected vs. unaffected children) was made top-down
before subtyping bottom-up. However, the studies presented below
analyzed samples that encompass both CwD and children without
dyscalculia by using a bottom-up approach consistently.

Pieters et al. (2015) used model-based clustering-analyses to
identify subgroups in a sample that encompassed 73 children with
mathematical learning disabilities, 102 children with developmental
coordination disorder, 99 children with both disorders, and 136
children without any of these disorders. Different approaches to
cluster these children were performed: Thus, in one approach only
mathematical variables were considered and, in another approach,
mathematical and motor skills were considered to perform the cluster-
analyses. In the first cluster approach (mathematical variables only),
two clinically relevant clusters were found: one cluster showing deficits
in number fact retrieval and procedural calculation, and the other
cluster showing deficits in procedural calculation. In the other cluster
approach (motor and mathematical skills), two clinically relevant
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clusters were identified as well: here, a subtype with deficits in number
fact retrieval was found, too. In addition, this cluster also showed
further difficulties (deficits in procedural calculation as well as below-
average motor and visual-motor integration skills). The second cluster
found within this approach showed deficits in procedural calculation
and in addition visual-motor problems. Thus, both approaches
(mathematical variables only vs. motor and mathematical skills) that
were reported here produce similar results, which may indicate
robustness of the results.

Salvador et al. (2019) used a data-driven/ bottom-up approach in
a sample of 192 children (age: 8-11 years) and they found 4 clusters.
They used a hierarchical cluster analysis (Ward method with squared
Euclidean distance) and focused on a small range of cognitive
domains: phonological and visuospatial working memory, visuospatial
and visuoconstructional processing, and symbolic as well as
nonsymbolic magnitude accuracy. Two of the clusters that were found
exhibited difficulties typical for children with numeracy difficulties:
cluster 1 showed low visuospatial abilities and the highest percentage
frequency of individuals with identified math difficulties; cluster 2
showed low magnitude processing accuracy. Both clusters showed
average or increased intelligence. The other two clusters showed
average (cluster 3) or high performance (cluster 4) in some areas.
Limitations of the study are the small sample size and the focus on
only a few (mathematical) performance domains.

Like Pieters et al. (2015) and Salvador et al. (2019), Huijsmans
etal. (2020) also did not only focus on CwD: their aim was to discern
distinct cognitive profiles among a group of 281 fourth-grade children
by assessing their skills in fundamental arithmetic and more advanced
mathematical abilities. Only one of four identified cognitive profiles
showed significant mathematical deficits (=the low-achieving profile).
However, 33% of the children in this sample (94 out of 281) could
be assigned to this low-achieving profile, so it does not seem to be a
profile that explicitly includes CwD, because the prevalence for
dyscalculia is considerably lower. In summary, Huijsmans et al. (2020)
did not succeed in distinguishing children with a low-achieving profile
in mathematics from children who met the diagnostic criteria for
dyscalculia. Possibly, this problem can be explained with the small
sample size: Therefore, systematic differences between CwD and
children with a low-achieving profile may not be systematically
identified due to a lack of data/ power.

Overall, it is to be noted that not all subtyping studies were able to
distinguish CwD from children without dyscalculia. Regardless of
whether (1) only children with dyscalculia or (2) children with and
without dyscalculia were investigated, some subtyping approaches
lead to very different results, with other findings in turn (partially)
coinciding. It is necessary to conduct a subtyping analysis with a view
to numerous cognitive sub-performance areas and based on a large
sample to generate further and valid findings in this research area.
Furthermore, such a subtyping analysis with another approach can
be used to check whether the findings from previous studies can
be affirmed and/ or reproduced.

1.3 Research question and aim of this study
In this study, a large sample of children with and without

dyscalculia is used in a bottom-up (i.e., data-driven) approach to
address the following question: To what extent do children with
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dyscalculia form a homogeneous group that can be distinguished from
children without dyscalculia? This question includes both, (1) the
interest in examining whether CwD can be distinguished from
children without dyscalculia, and (2) the question of whether such a
group of CwD forms one homogeneous group, or whether distinct
dyscalculia subtypes should be assumed. Because the body of research
on the existence of dyscalculia subtypes is ambiguous, a quantitative-
exploratory approach is taken to pursue this research endeavor. As this
is an exploratory, quantitative data analysis with open outcomes —
including whether any subtypes can be identified at all and whether
CwD can be distinguished from children without dyscalculia by using
a data-driven approach - no research hypotheses are stated. Instead,
the research question is answered by using standardized, statistical
methods, and further analyses are conducted to interpret the results.
The data analysis approach is presented in subsection 2.3.

2 Methods
2.1 Sample

The analyzed sample included a total of 1,015 children from
elementary schools in Germany and was part of a large-scale
investigation of mathematical skills. 530 of these children were female,
483 of them were male, and the gender of 2 children was not recorded.
All children were in the 2nd to 4th grade at the time of the survey
(grade 2: 333 children; grade 3: 422 children; grade 4: 260 children).
Therefore, all children were at the age to attend elementary school: the
mean age was 8.98 years (SD = 0.87), although the exact age was not
recorded for 565 children. Parental consent was obtained prior
to testing.

2.2 Tests

2.2.1 Diagnostic test for assessing dyscalculia

The HRT 1-4 (“Heidelberger Rechentest 1-4”) is a pen-and-paper
speed test designed to assess basic mathematical knowledge/
competencies and is composed of two scales: arithmetic operations and
numerical-logical and visual-spatial skills (Haffner et al., 2005). These
two scales were combined to produce a total score. The arithmetic
operations scale includes six subtests, which are addition, subtraction,
fill-the-gap tasks,
comparisons; the scale has a retest reliability of 0.93 (Haffner et al.,

multiplication, division, and greater/less
2005). The numerical-logical and visual-spatial skills scale includes five
subtests, which are numerical series, length estimation, counting
cubes, counting magnitudes, and connecting numbers; this scale has
a retest reliability of 0.87 (Haffner et al., 2005). Thus, the two scales
assess different abilities that are related to mathematical competencies.
According to the S3-guideline, the HRT 1-4 is considered a suitable
instrument for the diagnosis of mathematical learning disorders
(Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen
Fachgesellschaften, 2018).

The overall score of this test was used to decide whether the
children in the study met the criterion for dyscalculia and to examine
how children identified as dyscalculic were distributed across the
identified subtypes. Thus, the results of the HRT 1-4 were used to

analyze whether there are specific subgroups that include only (or
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predominantly) CwD. T-score norms (which have an overall mean of
50 and a standard deviation of 10) are available for each quarter of a
school year. The test was administered in a group setting, either at the
Department of Psychology at the University of Miinster or in
a classroom.

2.2.2 Intelligence

To assess intelligence, two tests were used: CFT 1-R or CFT
20-R. These are language free group tests. Because the data come from
a study that focused on children with learning disorders (reading
disorders as well) and include children with a mother tongue other
than German, a non-verbal intelligence test was used. CFT 1-R was
used to test the intelligence of children in grades 2 and 3 (retest-
reliability: 0.95; Weifs and Osterland, 2013). The CFT 20-R was used
to test the intelligence of children in grade 4 (the retest-reliability
reaches from 0.80 to 0.82 and the consistence coefficient is 0.95;
Weif3, 2006).

CFT 1-R consists of two parts: Part 1 (perception-based
performance) encompasses substitution tasks, mazes and similarity
tasks; part 2 (figural reasoning) comprises classification tasks as well
as matrices and children have to complete sequences (Weifs and
Osterland, 2013).

The CFT-20R, by contrast, consists of two structurally identical
test parts, each containing four subtests: completing Sequences,
classifications, matrices, and topological conclusions (Weifé, 2006).
Compared to part 1, in part 2 the difficulty is increased (Weifs, 2006).

2.2.3 Reading fluency

The Salzburger Lese-Screening (SLS 1-4) was used to assess
reading fluency (Mayringer and Wimmer, 2003): the test with a
parallel test reliability of at least 0.90 involves children reading a set of
simple and unambiguous sentences (such as “Bananas are pink,” but
in German). The children had to read and understand as many
sentences as possible within a 3-min timeframe. To prove that the
sentence was understood correctly, after reading each sentence, the
children had to indicate whether the sentence was correct or incorrect
by ticking a box. A child’s reading fluency was determined based on
the number of correct responses they provide within the timeframe.
This assessment of reading fluency requires a certain level of reading
comprehension and basic knowledge of everyday facts.

2.2.4 Working memory

To assess the visual-spatial working memory, the matrix span task
(retest reliability: 0.61) of the CODY-M 2-4 was used (Kuhn et al,
2017). During this test, first a pattern of dots had to be memorized,
then a distracting task was to be solved and after that, this dot pattern
had to be remembered and reproduced correctly (Raddatz et al., 2017).

2.2.5 Mathematical abilities

The CODY-M 2-4 battery (Kuhn et al., 2017) was used to measure
different mathematical abilities. In the following, the descriptions of
the mathematical tests are based on Raddatz et al. (2017) and Kifller
et al. (2021). These tests belong to three constructs, which are
described in the introduction and are the result of a factor analysis
(Kuhn et al., 2017). According to the S3-guideline, the CODY-M 2-4
is considered a suitable instrument for the diagnosis of mathematical
learning disorders (Arbeitsgemeinschaft der Wissenschaftlichen
Medizinischen Fachgesellschaften, 2018).

Frontiers in Psychology

10.3389/fpsyg.2025.1590581

2.2.5.1 Basic numerical processing (BNP)

The construct BNP (retest reliability: 0.72) encompasses 3 subtests
(Kuhn et al,, 2017). With dot enumeration (counting 1-9 black dots
as quickly and correctly as possible) the efficiency in counting was
tested. Inspired by Defever et al. (2013), symbolic magnitude
comparison tasks (two different Arabic numerals) and mixed
magnitude comparison tasks (dots on the one side and an Arabic
numeral on the other side) were used. Here, children had to decide,
which entity was larger. For these three tests, an efficiency measure
(median of correct response times/ number of correct responses) was
used to assess the children’s performance in these tasks.

2.2.5.2 Complex humber processing (CNP)

Three subtests (number line, number sets, transcoding) of the
construct CNP from the CODY-M 2-4 (Kuhn et al., 2017) were used
in this study (retest reliability: 0.76; Kuhn et al, 2017). These at first
sight very different tasks share the similarity of evaluating mathematical
precursor skills that involve more advanced number processing (Nuerk
et al,, 2006; Kuhn et al, 2017). The transcoding tasks assessed the
individuals’ ability to translate spoken numbers (presented through
headphones) into written Arabic numerals. The task type number sets,
based on Geary et al. (2009), was used to evaluate the individual’s
efficiency in number processing across different presentation formats.
In this speed test, an Arabic numeral (referred to as the target number)
was displayed at the top of the screen, while numbers and/ or geometric
figures (referred to as a number set) were shown at the bottom.
Children were required to compare the sum of the elements
represented by the number set at the bottom of the screen with the
numeral above (either 5 or 9) and determine whether the sum matched
the displayed number. The following example illustrates this type of
task: If three geometric figures and the numeral 1 were displayed at the
bottom as a number set and a 5 (in Arabic numeral form) was shown
above as the target number, then the child would calculate 3 (geometric
figures) + 1 (Arabic numeral) = 4, and had to compare the result (in
this case: 4) with the target number shown above (in this case: 5) to
determine if they are equal or unequal. Based on Siegler and Booth
(2004), another task tested the accuracy of the mental number line: a
number was displayed on the screen, and the children were required
to use a computer mouse to place that number on an unscaled number
line where only the endpoints were marked with 0 and 100.

2.2.5.3 Calculation

The retest reliability of this subscale is 0.85 (Kuhn et al., 2017). The
construct Calculation comprises the subtests (1) addition, (2)
subtraction and (3) multiplication. The addition tasks involve simple
arithmetic fact retrieval (e.g., to solve the task 1 + 6) and more difficult
tasks (e.g., 183 + 18). The subtraction tasks are structured congruently
to the addition tasks, but here numbers are not added but subtracted.
The task category multiplication involves multiplication tasks to
be solved by mental calculation (e.g., 6 * 17). All these tasks, which
belong to the construct Calculation, focus on calculating with
concrete numbers.

2.3 Statistical analysis

For all calculations and analyses version 4.3.3 of the statistical
software R was used (R Core Team, 2024). The values/ scores of all
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variables underwent T-standardization, which produced T-scores.
This led to a standardization of the sample’s data with a mean of 50
and a standard deviation of 10.

2.3.1 General approach to identify possible
subtypes of CwD

Because the aim of this study is to identify subtypes of dyscalculia,
model-based clustering (parameterized finite Gaussian mixture
models) based on the R-package mclust (Scrucca et al., 2016; Fraley
et al., 20205 Fraley et al., 2024) was performed. In principal, the
subtyping procedure was based on Kifiler et al. (2021), although in
contrast to the study of Kifsler et al. (2021) the sample of this study was
much larger, encompassed children with and without dyscalculia and
the research question was not identical, too. However, the subtyping
procedure was suitable because in this study, similar to the study by
Kifdler et al. (2021), the identification of clusters was intended in order
to identify specific cognitive profiles or subgroups/ subtypes
of children.

Model-based clustering was used to assess individuals’ cognitive
profiles, with the Bayesian Information Criterion (BIC) determining
the number of clusters (i.e., subgroups/ subtypes): Each participant in
the sample was assigned to a distinct cluster based on the probability
of belonging to one of the identified clusters (Vanbinst et al., 2015;
Bouveyron et al., 2019). Clusters can vary in their geometric
characteristics as their spatial orientation or their volume (equal vs.
varying volume) and when determining the number of clusters,
different models with those varying geometric characteristics were
used to find out which combination of (1) number of clusters and (2)
geometric characteristics of these models (= number-characteristics-
combination) fit the data best (Makhabel et al., 2017; Bouveyron et al,
2019; Fraley et al., 2020). In the package mclust, each of these different
models has a unique identifier that can be used to look up its
geometric characteristics in the manual: for example, the identifier
EEI stands for a model with diagonal clusters, equal volume, and equal
shape (Fraley et al., 2020). The number-characteristics-combination
with the lowest absolute BIC fits the data best (Vanbinst et al., 2015;
Bouveyron et al., 2019). As the number-characteristics-combination
with the lowest absolute BIC is the best trade-off to fit the data, the
combination with the lowest absolute BIC was selected for further
analyses (Picters et al., 2015; Kifller et al., 2021).

2.3.2 Dealing with missing values and variable
levels

First, subtyping was performed by using the test results that were
measured on subtest level (the subtests were described in subsection
2.2). In a second step, the same analyses were conducted on the
higher-level constructs. The difference between subtest level and
construct level is illustrated by the following example: The subtests dot
enumeration, symbolic magnitude comparison, and mixed magnitude
comparison were aggregated to the construct Basic Numerical
Processing (BNP) by computing the mean of the three subtests. For
both CNP and Calculation, the mean of the subtests belonging to the
respective construct (see subsection 2.2.5) was calculated too. The
construct approach reduces the impact of specific subtests on the
subtyping outcome, as a single subtest might have a disproportionately
strong differentiating effect.

Furthermore, for each of the two approaches described above
(subtest level and construct level), another two-step approach was
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necessary to address the potential impact and distortion resulting
from missing data. One of these two further steps was that the subtest-
approach and the construct-approach were performed by only
considering variables of various mathematical competencies measured
using the CODY-M 2-4 battery (Kuhn et al., 2017), because only for
those variables complete data sets were available (#; = 1,015). This
means, the following variables were not included in these two
subtypings: matrix span, intelligence and reading fluency. Using
mathematical variables only as one among other approaches for
subtyping children is also in line with similar studies (e.g., Picters
etal., 2015).

Besides these analyses on subtest and construct level by only
considering variables of different mathematical competencies
measured by using the CODY-M 2-4 battery (Kuhn et al., 2017), the
analyses were performed again for all variables (now also including
matrix span, intelligence and reading fluency). But data sets with
missing data had to be excluded from these analyses because the
chosen statistical procedure can only be performed with complete
data sets. Therefore, the sample size was reduced accordingly in this
approach (1, = 478). In contrast to Kifller et al. (2021), working with
imputations was not purposeful here to deal with the missing values,
because values were missing for too many subjects to obtain
interpretable results after performing the imputation procedures:
regarding intelligence 526 of 1,015 cases (=51.82%) were missing and
regarding reading fluency 537 of 1,015 cases (=52.91%) were missing.

In summary, the total of four subtyping approaches was used to
check systematically whether the results are robust: (1) subtest-
approach by considering all variables (2) subtest-approach by only
considering variables encompassing mathematical competencies, (3)
construct-approach by considering all variables (4) construct-
approach by only variables

considering encompassing

mathematical competencies.

2.3.3 Methods to investigate the identified
subtypes

The identified subgroups were compared with each other for
differences and similarities. Bayesian t-tests and post-hoc Tukey tests as
well as frequentist t-tests were used for this purpose. Unlike frequentist
statistics, Bayesian methods, such as Bayesian -tests, can not only
be used to check if there is evidence for a difference between groups
but also to inspect whether there is evidence for equality among the
analyzed groups (Rouder et al., 2012; Wagenmakers et al., 2018).
Bayesian analyses in this study were performed by using the R-package
BayesFactor (Morey et al, 2024). A notable distinction between
frequentist and Bayesian statistics is that Bayesian statistics do not
yield p-values (e.g., p smaller than 0.05 means that there is evidence
for the alternative hypothesis); instead, they provide Bayes Factors
(BF). A BF below (1) 0.33 indicates moderate evidence supporting the
null hypothesis, (2) 0.10 suggests strong evidence supporting the null
hypothesis, (3) 0.033 indicates very strong evidence supporting the
null hypothesis (Wagenmakers et al., 2018; Kifller et al., 2021).
Conversely, a BF above (4) 3 suggests moderate evidence for the
alternative hypothesis, (5) 10 suggests strong evidence for the
alternative hypothesis, and (6) 30 suggests very strong evidence for the
alternative hypothesis (Wagenmalkers et al., 2018; Kifdler et al., 2021).
This means that results between 0.33 and 3 provide only indications
of a trend, but the evidence is ambiguous. The results of the frequentist
approach and results of the Bayesian analyses can lead to different
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conclusions, but if the results point into the same direction, this is a
hint for robustness (Lindley, 1957; Sprenger, 2013; Wagenmalkers
etal., 2018).

Cohen’s d was used as an effect size to quantify the difference
between subgroups and was computed with the R-package Isr
(Navarro, 2015). Regardless of which subtest results were used for
clustering, the identified subgroups were compared with respect to all
subtests presented in the chapter about tests (except for the HRT 1-4,
which was only used for identifying dyscalculia). The resulting
cognitive profiles of the identified subgroups were visualized for all
subtests, too.

7 -tests were used to check whether the children with dyscalculia
(categorical variable: yes/ no) were evenly distributed across the
subgroups and Cramér’s V was used to measure the effect size. Here,
dyscalculia was defined by a percentage rank (PR) of less than 16, 10,
or 5 in the diagnostic test for assessing dyscalculia (HRT 1-4: Haffner
et al., 2005). For each of these PRs the y*-test was performed, and
Cramér’s V was calculated, too. Fisher’s exact test for count data was
conducted to check the results of ;(2 -tests for robustness. These
analyses allow for examining the extent to which a different cut-off
(PR) impacts the interpretation of the results.

Furthermore, it was necessary to investigate whether the
subgroups show cognitive profiles that differ equally in all cognitive
domains or whether the identified subgroups exhibit greater
differences in particular cognitive domains than in other: If two
subgroups run parallel to each other, this would mean that the more
severely impaired subgroup of these two groups is equally inferior to
the other subgroup in all subareas. If the cognitive profiles do not run
parallel to each other, the more impaired subgroup shows more
difficulties in specific cognitive subareas than in other cognitive
subdomains. Parallelism was analyzed using profile analysis by using
the R package profileR (Bulut and Desjardins, 2020; Bulut and
Desjardins, 2022).

Parallelism was tested in two ways if more than two subgroups
were identified: In a first step, all resulting subgroups were tested for
parallelism in a joint analysis. If the result of this analysis becomes

10.3389/fpsyg.2025.1590581

significant, at least some identified subgroups do not run parallel to
each other. However, some subgroups might still run parallel to each
other, while others do not. Therefore, in a second step, each subgroup
was tested against each other subgroup to analyze if there is evidence
for parallelism.

3 Results

In this section, the results of the different clustering approaches
are presented. Each subsection focuses on the outcomes obtained
when a specific clustering approach - indicated in the corresponding
heading - was used.

Figures 1-3 present cognitive profiles. Each subsection of the
results section discusses the figure that is relevant to the respective
analysis. For example, Figure 1 is discussed in the first subsection of the
results as it is about the results at subtest level, if all variables were used
for clustering. These figures show T-scores, which have an overall mean
of 50 and a standard deviation of 10. This means that scores below 50
are below average, and scores above 50 are above average. For each
identified subgroup, the corresponding values are visualized to allow
comparisons across subgroups. Exact values can be found in the tables.

The Supplementary materials include Supplementary Table Al
and Supplementary Figure A1, which present the descriptive statistics
based on a division of the total sample into subgroups according to
their results in the HRT 1-4 (PR > 16; PR < 16; PR < 10; PR < 5). This
allows the comparison of the identified subtypes, as presented in the
following subsections, with those groups of children that show a
specific performance in the HRT 1-4.

3.1 Results at subtest level (all variables
were used for clustering)

In this approach, all subtest-level results (except for the HRT 1-4)
described in the methods section were used for subtyping, and

GroupsA
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=8= group 2a

=0= group 3a

551
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g 45
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v
= 40+
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eza evs evg ad su mul zd zt zs ms sls cft
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FIGURE 1
Results at subtest level (all variables were used for clustering). eza = dot enumeration; evs = symbolic magnitude comparison; evg = mixed magnitude
comparison; ad = addition; su = subtraction; mul = multiplication; zd = transcoding; zt = number sets; zs = number line; ms = matrix span;
sls = reading fluency; cft = intelligence; note: the means and standard errors are shown.
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FIGURE 2

Results at subtest level (only mathematical variables were used for clustering). eza = dot enumeration; evs = symbolic magnitude comparison;
evg = mixed magnitude comparison; ad = addition; su = subtraction; mul = multiplication; zd = transcoding; zt = number sets; zs = number line;
ms = matrix span; sls = reading fluency; cft = intelligence; note: the means and standard errors are shown.
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FIGURE 3

Results at construct level (only mathematical variables were used for clustering). eza = dot enumeration; evs = symbolic magnitude comparison;
evg = mixed magnitude comparison; ad = addition; su = subtraction; mul = multiplication; zd = transcoding; zt = number sets; zs = number line;
ms = matrix span; sls = reading fluency; cft = intelligence; note: the means and standard errors are shown.

incomplete data sets were excluded from the analysis (n, = 478). The
analyses revealed three subgroups: Their cognitive profiles are shown
in Figure 1. This three-subgroup-solution with an absolute BIC of
41008.16 was the best solution to subdivide the children of the
analyzed sample into subgroups based on data. The best fitting model
(EEV) that was therefore used for clustering encompasses clusters
with the following characteristics: ellipsoidal distributions with equal
volume and equal shape (Scrucca et al., 2016; Fraley et al., 2024). This
solution will be analyzed in more detail, now.

Figure 1 shows that the curves (cognitive profiles) of group la and
group 3a were very similar and that the mean scores of both subgroups
for the subtests often were close to the T-score of 50, i.e., to the
expected overall mean value on population level for all children in
general. Only regarding the variable transcoding, group la and
group 3a seemed to differ strongly: Here, group 1a was clearly superior
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to group 3a. While group la showed an above-average mean for
transcoding, the mean score of group 3a was even below the T-score
of 45 for this variable. The mean scores of group 2a were below the
T-score of 50 for each test. The curve that displays the cognitive profile
of group 2a was always below the curves of the groups la and 3a.
Descriptive results on the 3 subgroups (mean, standard deviation, and
standard error) are shown in Table 1.

Parallelism was tested for this three-subgroup-solution that is
shown in Figure 1 in two ways. In a first step, all resulting subgroups
were tested for parallelism in a joint analysis with profileR (Bulut and
Desjardins, 2020; Bulut and Desjardins, 2022). As the result of this
analysis became significant (p < 0.001), at least some cognitive profiles
of the identified subgroups did not run parallel to each other. However,
individual cognitive profiles of the subgroups could still have been run
parallel to each other, while others did not. Therefore, in a second step,
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TABLE 1 Descriptive results (Clustering on subtest level, all variables were used for clustering).

Subtests

Group 1a

SD

Group 2a
SD

Group 3a
SD

Dot enumeration 50.99 9.42 0.54 44.25 9.59 1.27 51.44 10.21 0.93
Symbolic magnitude 50.83 9.23 0.53 47.09 13.30 1.76 50.54 8.28 0.76
comparison

Mixed magnitude 49.88 9.41 0.54 49.02 12.90 1.71 51.41 8.44 0.77
comparison

Addition 52.40 7.25 0.42 37.28 6.60 0.87 51.51 6.61 0.60
Subtraction 52.29 8.53 0.49 39.75 7.51 0.99 51.38 7.67 0.70
Multiplication 51.65 8.45 0.49 38.33 6.76 0.90 52.71 7.40 0.68
Transcoding 54.87 2.13 0.12 37.84 6.47 0.86 42.81 4.99 0.46
Number sets 51.62 9.36 0.54 40.68 7.63 1.01 52.80 9.31 0.85
Number line 52.33 9.36 0.54 39.70 8.93 1.18 50.42 8.61 0.79
Matrix span 50.94 9.25 0.53 44.86 8.40 1.11 51.50 10.03 0.92
Reading fluency 51.52 9.26 0.53 39.63 8.38 1.11 51.11 9.64 0.88
Intelligence 51.67 9.39 0.54 39.34 7.21 0.96 50.70 9.84 0.90

each subgroup was tested against every other subgroup individually
to analyze whether there was evidence against parallelism. All of these
analyses led to significant results (at least p < 0.001). Therefore, the
data did not support parallelism for any profile comparison.

Group comparisons are shown in Table 2. As group 2a was
significantly inferior to groups 1a and 3a in almost all areas, group 2a
seemed to be considerably impaired. Only in some areas of basic
numerical processing (symbolic magnitude comparison and mixed
magnitude comparison) the mentioned differences between group la
and group 2a, respectively, group 2a and group 3a were not always
significant, whereas Bayesian analyses actually suggested equality
only between group la and group 2a regarding the variable mixed
magnitude comparison (BF = 0.17). Regarding the non-significant
differences between group 2a and group 3a, the Bayesian analyses did
not clearly confirm that there was equality because the BF was above
0.33. Significant difference between groups 1a and 3a was found in
transcoding, only. In fact, if comparing group la and 3a there were
non-significant differences in most subtests and Bayesian analyses
even showed that equality has to be assumed in many cases because
the BF was below 0.33, often. The different transcoding abilities
seemed to be decisive for the differentiation between group 1la and
group 3a.

There was a disproportionate accumulation of children with
dyscalculia or arithmetic difficulties in subgroup 2a (58.93% had a PR
below 16, 55.36% had a PR below 10, and 26.79% had even a PR below
5): more than half of the individuals (if cut-off scores of PR < 16 or
PR < 10 were applied) in this subgroup were dyscalculic. No group
consisted solely of either dyscalculic or non-dyscalculic children.
However, the proportion of dyscalculic children in group 2a was very
high. The p*-Tests confirmed that the proportion of dyscalculic
children was not equally distributed among the subgroups (if PR < 16:
x* =87.30, p<0.001, Cramérs V=0.40; if PR<10: y*=103.73,
P <0.001, Cramér’s V = 0.47; if PR < 5: y* = 54.02, p < 0.001, Cramér’s
V' =0.34). The results for Fisher’s exact test to check the results of the
*-tests for robustness were almost identical and therefore robust. If
the exact distributions of dyscalculic versus non-dyscalculic children

Frontiers in Psychology 10

across the groups (based on the PR) are of interest, these can be found
in Supplementary Table A2.

3.2 Results at subtest level (only
mathematical variables were used for
clustering)

In this approach, only the results from the mathematical subtests
of the CODY-M 2-4 (Kuhn et al., 2017) were used for subtyping
(1 = 1,015). The analysis revealed six subgroups, which are shown in
Figure 2. This six-subgroup-solution with an absolute BIC of 63700.88
was the best solution to subdivide children of the analyzed sample into
subgroups based on data: The best fitting model (EVE) that was
therefore used for clustering encompasses clusters with the following
characteristics: ellipsoidal distributions with equal volume and equal
orientation (Scrucca et al,, 2016; Fraley et al., 2024). This solution will
be analyzed in more detail, now.

If looking at the different curves which reflect cognitive profiles,
it was striking that especially group 3b laid below the curves of all the
other groups (except for two variables, which belong to the construct
basic numerical processing (BNP): symbolic magnitude comparison and
mixed magnitude comparison). The graph of group 4b stood out
because the mean values for the individual variables fluctuated only
weakly around the T-scores of 50. Children in this subgroup thus
seemed to have predominantly average scores and were neither high-
nor low-performers. Even though the graph of group 2b was similar
to the graph of group 4b, the mean values of group 2b were usually
somewhat lower. The graph of group 1b was almost constantly slightly
above the graph of group 4b and the T-scores were slightly above 50.
The graph of group 5b was similar to the graph of group 1b, but the
children of group 5b tended to perform slightly better on average than
the children of group 1b. In transcoding, group 5b showed the highest
scores of all groups. Group 6b showed a very heterogeneous
competence profile: in BNP, group 6b’s scores were in the average
range; the calculations skills of group 6b seemed to be very high
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TABLE 2 Group comparison for the resulting subgroups (clustered on subtest level, all variables were used for clustering).

Subtests Group lavs. 2a Group lavs. 3a Group 2a vs. 3a
Tukey BF Tukey BF Tukey BF

Dot enumeration 6.75%%% 1.17*10* 0.71 —0.45 0.13 0.05 —7.20%%* 1.22*%10° 0.72
Symbolic 3.75% 1.08 0.38 0.29 0.12 0.03 —3.45 0.77 0.34
magnitude

comparison

Mixed magnitude 0.86 0.17 0.09 -1.53 0.38 0.17 -2.39 0.37 0.34
comparison

Addition 15.12%%* 5.13%10* 2.11 0.89 0.23 0.13 —14.23%%% 1.62*%10% 2.15
Subtraction 12.53%%* 1.50%10* 1.50 091 0.20 0.11 —11.63%%* 2.45%10" 1.53
Multiplication 13.31%%* 4.51%10% 1.62 -1.06 0.26 0.13 —14.38%%* 2.69%10% 2.00
Transcoding 17.03%%* 9.32%10* 5.28 12.06%** 4.60%10% 3.76 —4.97%%% 1.74*10* 0.90
Number sets 10.94%* 1.55%10' 1.20 -1.18 0.23 0.13 —12.12%%% 3.48%10" 1.38
Number line 12.627%%* 5.73%10" 1.36 191 0.71 0.21 —10.72%%%* 4.70*%10° 1.23
Matrix span 6,087 2.83*%10° 0.67 —0.56 0.14 0.06 —6.647%F%* 2.12%10° 0.70
Reading fluency 11.89%** 3.40%10" 1.30 0.42 0.13 0.04 —11.48%%* 6.84*%10° 1.24
Intelligence 12.33%%* 9.04*10* 1.36 0.97 0.18 0.10 —11.36%%* 6.34*%10" 1.25

#p <0.05; **p < 0.01; **¥p < 0.001.

because the children of group 6b reached the highest scores of all
groups in this area. But transcoding skills of group 6b were lower than
the transcoding skills of the (other) groups that tended to perform
above average in other subtests: group 6b’s mean score in transcoding
was below the T-score of 45. In intelligence and reading ability,
group 6b also appeared to be in the average performance range.
Descriptive results on the 6 subgroups (mean, standard deviation, and
standard error) are shown in Table 3.

Parallelism was tested for this six-subgroup-solution that is
shown in Figure 2 in two ways. In a first step, all resulting subgroups
were tested for parallelism in a joint analysis with profileR (Bulut and
Desjardins, 2020; Bulut and Desjardins, 2022). As the result of this
analysis became significant (p < 0.001), at least some cognitive
profiles of the identified subgroups did not run parallel to each other.
However, individual cognitive profiles of the subgroups could still
have been run parallel to each other, while others did not. Therefore,
in a second step, each subgroup was tested against every other
subgroup individually to analyze whether there was evidence for
parallelism. All of these analyses led to significant results (at least
p <0.01). Therefore, the data did not support parallelism for any
direct profile comparison.

Group comparisons are shown in Tables 4-9. In Table 6 is shown
that group 3b was consistently (and often significantly) inferior to all
other groups in all mathematical tests (except for the subtests that can
be assigned to the BNP: dot enumeration, symbolic magnitude
comparison, mixed magnitude comparison). Earlier, it was described
that the graph of group 2b laid slightly, but noticeable below the
graphs of the other groups in most areas (except of group 3b). In
Table 5, it can be seen that many of these differences became
significant, and also with Bayesian analyses, evidence emerged that
group 2b showed reduced performance in many subtests compared to
the groups 1b, 5b, and 6b (especially in mathematical subdomains).
Although group 4b tended to show higher performance descriptively
compared to group 2b (Table 5), most of these differences did not
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become significant, and in some subtests, due to the fact that BFs were
below 0.33, their performance seemed equal. Even though group 2b
and group 4b were hardly distinguishable in many subtests because
the differences in these subtests were not significant, they still seemed
to be separable groups due to the visually different curves in the
coordinate system and the significant difference in transcoding
(p < 0.001; BF = 5.87*10/65). The performance of group 4b seemed
to be slightly better than the performance of group 2b in 8 of 12
subtests (the exceptions are dot enumeration, number sets, matrix span
and reading fluency, although these differences did not become
significant): Therefore, group 4b seemed less impaired if these two
groups were compared with each other.

There was a disproportionately large number of children with
dyscalculia in group 3b (39.76% had a PR below 16, 36.14% had a PR
below 10 and 21.69% had even a PR below 5). However, there was no
group in which there was no child with dyscalculia, if cut-off scores of
PR < 16 or PR < 10 were applied - but if a cut-off score of PR < 5 was
applied, there was no dyscalculic child in group 4b or 6b. Besides
group 3b, larger accumulations of children with dyscalculia were also
found in group 2b (18.25% had a PR below 16, 14.60% had a PR below
10 and 5.84% had even a PR below 5) and group 4b (16.05% had a PR
below 16, 12.35% had a PR below 10, but no child of this subgroup had
a PR below 5). This comparison of group 2b and 4b supports the
previously stated assumption that group 4b seemed to encompass less
impaired children than group 2b did. The y*-tests showed that the
proportion of dyscalculic children was not equally distributed among
the subgroups (if PR < 16: y* = 79.78, p < 0.001, Cramér’s V = 0.28; if
PR < 10: y* = 95.06, p < 0.001, Cramér’s V = 0.31; if PR < 5: * = 80.09,
P <0.001, Cramér’s V = 0.28). The results for Fisher’s exact test to
check the results of y*-tests for robustness were almost identical and
therefore robust. If the exact distributions of dyscalculic versus
non-dyscalculic children across the groups (based on the PR) are of
interest, these can be found in the electronic supplements
(Supplementary Table A3).
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TABLE 3 Descriptive results (Clustering on subtest level; mathematical variables were used for clustering).

Group 1b Group 2b Group 3b Group 4b Group 5b Group 6b
Subtests
SD SD SD

Dot enumeration 51.11 9.72 0.45 50.12 9.25 0.79 45.49 10.04 1.08 49.63 10.58 117 52.08 8.79 0.62 50.67 10.26 1.57
Symbolic 51.03 9.58 0.44 4737 9.49 0.81 51.21 1131 1.22 50.09 8.47 0.94 51.46 9.00 0.64 49.28 8.77 1.34
magnitude

comparison

Mixed magnitude 50.47 9.48 0.44 48.82 9.49 0.81 53.74 11.19 1.21 51.02 8.87 0.98 50.11 9.66 0.69 49.79 8.95 137
comparison

Addition 51.71 7.61 0.35 48.53 7.83 0.67 4043 7.59 0.82 49.55 6.83 0.75 53.48 6.81 0.48 56.16 6.87 1.05
Subtraction 52.02 8.48 039 48.03 7.57 0.64 4120 7.90 0.85 50.29 7.00 0.77 53.19 8.40 0.60 58.05 7.64 117
Multiplication 51.45 8.24 0.38 48.93 8.52 073 42.58 8.82 0.95 49.55 8.18 0.90 52.52 8.58 0.61 57.19 8.22 1.25
Transcoding 53.27 0.44 0.02 41.18 2.09 0.18 34.66 4.84 0.52 48.16 1.78 020 57.78 0.89 0.06 43.88 6.09 0.93
Number sets 51.23 9.67 0.45 51.32 9.25 0.79 43.36 8.83 0.95 49.95 7.85 0.87 53.17 9.18 0.65 52.00 11.22 1.71
Number line 51.59 9.63 0.44 48.57 9.32 0.79 39.53 7.12 0.77 50.35 7.32 0.81 53.69 9.20 0.65 55.67 8.44 1.29
Matrix span 50.44 9.54 0.44 50.43 9.64 0.82 46.36 9.33 1.01 48.82 9.81 1.08 51.79 9.41 0.67 53.30 10.07 1.54
Reading fluency 50.97 9.39 0.72 49.38 10.69 1.29 4323 10.31 1.50 4851 10.28 1.65 52.07 9.24 0.80 49.08 9.78 2.13
Intelligence 51.96 9.06 0.68 48.65 10.57 1.26 41.77 8.57 1.25 49.54 1114 1.78 51.17 9.76 0.84 49.84 8.95 1.91
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TABLE 4 Comparison between subgroup 1b and the other subgroups (clustered on subtest level; mathematical variables were used for clustering).

Subtests

Tukey

Vs. Group 2b

Tukey

Vs. Group 3b
BF

Group 1b
Vs. Group 4b

Tukey

Vs. Group 5b

Vs. Group 6b

Tukey

Dot enumeration 1.00 0.19 0.10 5.62%%% 1.06%10* 0.58 1.48 0.28 0.15 -0.97 0.19 0.10 0.44 0.18 0.04
Symbolic 3.66%% 1.91%10? 0.38 —0.18 0.13 0.02 0.94 0.18 0.10 —0.43 0.11 0.05 1.75 0.32 0.18
magnitude

comparison

Mixed magnitude 1.65 0.51 0.17 —3.27% 2.83 0.34 —0.55 0.15 0.06 0.36 0.10 0.04 0.68 0.19 0.07
comparison

Addition 3.18%#* 6.95%10% 0.41 11.28%%* 8.09%10% 1.48 2.16 2.04 0.29 -1.78 6.79 0.24 —4.46%* 94.70 0.59
Subtraction 3.99%#* 6.38%10* 0.48 10.82%%#* 1.74%10% 1.29 1.72 0.86 0.21 -1.17 0.34 0.14 —6.03%%* 1.87%10° 0.72
Multiplication 2.52% 11.83 0.30 8.87%%% 2.01%10" 1.06 1.90 0.77 0.23 —-1.07 0.29 0.13 —5.74%%* 1.11%10° 0.70
Transcoding 12.09%%* 1.78%10%7 11.32 18.60%%* 9.18%10™ 9.58 501 6.15%10% 6.41 —4.51%%% 1.22%10%° 7.38 9.38##5% 5.25%10'% 5.21
Number sets —0.09 0.11 0.01 7.87%%% 1.12%10° 0.82 1.28 0.30 0.14 -1.93 1.53 0.20 —-0.77 0.19 0.08
Number line 3.02%* 17.97 0.32 12.05%%#* 8.96%10% 1.30 1.23 0.31 0.13 —-2.10 2.55 0.22 —4.09 4.81 0.43
Matrix span 0.01 0.11 0.00 4.08%* 72.09 0.43 1.62 0.34 0.17 —-1.35 0.37 0.14 —2.86 0.87 0.30
Reading fluency 1.59 0.28 0.16 7.74%%% 7.27%10° 0.81 2.46 0.49 0.26 -1.10 0.21 0.81 1.88 0.33 0.20
Intelligence 331 2.59 0.35 10.19%%#* 1.59%10° 1.14 2.42 0.49 0.26 0.79 0.16 0.08 2.12 0.37 0.23

#p <0.05; *#p < 0.01; *#¥p < 0.001.
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TABLE 5 Comparison between subgroup 2b and the other subgroups (clustered on subtest level; mathematical variables were used for clustering).

Subtests

Tukey

Vs. Group 1b

Vs. Group 3b

Tukey BF

Group 2b
Vs. Group 4b

Tukey

BF

. Group 5b

BF

Vs. Group 6b

Tukey

Dot enumeration —1.00 0.19 0.10 4.63%* 45.78 0.48 0.48 0.16 0.05 —-1.96 0.78 0.22 —0.56 0.20 0.06
Symbolic —3.66%* 1.91%10? 0.38 —3.84% 4.82 0.38 —2.72 1.27 0.30 —4.10%* 2.38%10? 0.44 -1.91 0.35 0.20
magnitude

comparison

Mixed magnitude —1.65 0.51 0.17 —4.93%* 45.62 0.48 -221 0.59 0.24 -1.29 0.25 0.13 —0.97 0.22 0.10
comparison

Addition —3.18%%* 6.95%10” 0.41 8.10%#* 8.59*10° 1.05 -1.02 0.24 0.14 —4.96%+%% 2.03*10° 0.68 —7.63%%% 2.71*%10° 1.00
Subtraction —3.99%%* 6.38%10* 0.48 6.83%%% 1.36%107 0.89 —2.26 1.46 0.31 —5.16%%* 9.59%10° 0.64 —10.02%%* 3.11%10° 1.32
Multiplication —2.52% 11.83 0.30 6.35%%% 5.73%10* 0.74 —-0.61 0.17 0.07 —3.59%* 1.03*10? 0.42 —8.25% % 1.36%10° 0.98
Transcoding —12.09%%% 1.78%10%7° 11.32 6,52 1.17#10* 1.91 —6.98%#% 5.87%10%° 3.53 —16.60%** 3.90%10% 11.06 —2.70%%* 7.37 0.78
Number sets 0.09 0.11 0.01 7.96%%* 8.41%10° 0.88 1.37 0.29 0.16 -1.85 0.58 0.20 —0.68 0.20 0.07
Number line —3.02%* 17.97 0.32 9.03%#% 2.52%10" 1.06 -1.79 0.49 0.21 —5.127%%% 1.35%10* 0.55 —7.11%%% 1.22%10° 0.78
Matrix span —0.01 0.11 0.00 4.07* 13.14 0.43 1.61 0.29 0.17 —-1.36 0.27 0.14 -2.87 0.68 0.30
Reading fluency —1.59 0.28 0.16 6.15% 13.00 0.58 0.87 0.23 0.08 —2.69 0.80 0.28 0.29 0.26 0.03
Intelligence —3.31 2.59 0.35 6.88%* 79.01 0.70 —-0.89 0.23 0.08 —2.52 0.62 0.25 -1.19 0.28 0.12

#p <0.05; *#p < 0.01; ##¥p < 0.001.
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TABLE 6 Comparison between subgroup 3b and the other subgroups (clustered on subtest level; mathematical variables were used for clustering).

Subtests

Vs. Group 1b
BF

Tukey

Vs. Group 2b

Tukey

BF

Group 3b
Vs. Group 4b

Tukey BF

Vs. Group 5b

Tukey

BF

Vs. Group 6b

Tukey BF

Dot enumeration —5.62%%* 1.06*10* 0.58 —4.63%% 45.78 0.48 —4.15 3.73 0.40 —6.59%%* 4.63*10* 0.72 —5.19% 5.58 0.51
Symbolic 0.18 0.13 0.02 3.84* 4.82 0.38 1.12 0.21 0.11 —-0.26 0.14 0.03 1.93 0.33 0.18
magnitude

comparison

Mixed 3.27% 2.83 0.34 4.93%* 45.62 0.48 2.72 0.68 0.27 3.63* 3.50 0.36 3.95 1.62 0.38
magnitude

comparison

Addition —11.28%%% 8.09*10% 1.48 —8.10%** 8.59*10° 1.05 —9.12%%% 7.60%10" 1.26 —13.05%#%* 7.31%10* 1.85 —15.73%#% 1.03*10'8 2.14
Subtraction —10.827%*%* 1.74*10% 1.29 —6.83%%* 1.36%107 0.89 —9.10%** 1.54*10"° 1.22 —11.99%#* 1.67%10* 1.45 —16.85%** 1.82%10" 2.16
Multiplication —8.87%** 2.01%10" 1.06 —6.35%%* 5.73%10* 0.74 —6.97%%* 3.57%10* 0.82 —9.94 %% 6.36%10" 1.15 —14.60%** 2.38%10" 1.69
Transcoding —18.60%** 9.18%10' 9.58 —6.52%%* 1.17%10* 1.91 —13.50%%% 3.72%10% 3.67 —23.11%%% 1.16%10'* 8.38 —9.22%%% 2.75%10" 1.75
Number sets —7.87%%* 1.12%10° 0.82 —7.96%%* 8.41%10° 0.88 —6.59%%* 1.54*10* 0.79 —9.81%#% 1.90%10" 1.08 —8.64%%% 8.49%10” 0.89
Number line —12.05%#%* 8.96%10% 1.30 —9.03%** 2.52%10" 1.06 —10.827%%% 6.55%10™ 1.50 —14.15%%% 6.88%10% 1.64 —16.14%%% 8.17%10" 2.13
Matrix span —4.08%* 72.09 0.43 —4.07* 13.14 0.43 —2.46 0.60 0.26 —5.43%%k% 1.46%10° 0.58 —6.94%% 1.37%10? 0.72
Reading fluency —7.74%%* 7.27%10° 0.81 —6.15% 13.00 0.58 —5.28 2.51 0.51 —8.84% % 7.72%10* 0.93 —5.85 1.93 0.58
Intelligence —10.19%%* 1.59%10° 1.14 —6.88%% 79.01 0.70 —7.77%%* 46.73 0.79 —9.40%%* 4.69*%10° 0.99 —8.07* 45.89 0.93

#p < 0.05; *#p < 0.01; *#¥p < 0.001.
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TABLE 7 Comparison between subgroup 4b and the other subgroups (clustered on subtest level; mathematical variables were used for clustering).

Subtests

Vs. Group 1b
BF

Tukey

Tukey

Vs. Group 2b

BF

Tukey

Group 4b
Vs. Group 3b
BF

Vs. Group 5b

Vs. Group 6b

Tukey

Dot enumeration —1.48 0.28 0.15 —0.48 0.16 0.05 4.15 3.73 0.40 —2.45 0.71 0.26 —-1.04 0.23 0.10
Symbolic —0.94 0.18 0.10 2.72 1.27 0.30 -1.12 0.21 0.11 —-1.38 0.28 0.16 0.81 0.22 0.09
magnitude

comparison

Mixed magnitude 0.55 0.15 0.06 221 0.59 0.24 -2.72 0.68 0.27 0.91 0.19 0.10 123 0.25 0.14
comparison

Addition -2.16 2.04 0.29 1.02 0.24 0.14 9.12%%% 7.60%10" 1.26 —3.94%k* 1.06%10° 0.58 —6.61%%* 1.28%10* 0.97
Subtraction -1.72 0.86 0.21 2.26 1.46 0.31 9.10%%* 1.54*10" 1.22 -2.89 8.59 0.36 —7.75%%% 1.36%10° 1.07
Multiplication -1.90 0.77 0.23 0.61 0.17 0.07 6.97%%% 3.57*%10* 0.82 -2.97 4.06 0.35 —7.64%%* 6.29%10° 0.93
Transcoding —5.11%%% 6.15%107 6.41 6,985 5.87%10° 3.53 13.50%%*% 3.72%10% 3.67 —9.627%%% 1.07#10™ 7.89 4.27%%% 1.17%10° 111
Number sets -1.28 0.30 0.14 -1.37 0.29 0.16 6.59%%* 1.54%10* 0.79 -3.22 5.32 0.37 —2.05 0.33 0.22
Number line -1.23 0.31 0.13 1.79 0.49 0.21 10.82%%* 6.55%10" 1.50 —3.33 17.29 0.38 —5.32% 68.16 0.69
Matrix span -1.62 0.34 0.17 —-1.61 0.29 0.17 2.46 0.60 0.26 -2.97 2.02 0.31 —4.49 2.61 0.45
Reading fluency —2.46 0.49 0.26 —-0.87 0.23 0.08 5.28 2,51 0.51 —3.56 1.31 0.38 —0.57 0.28 0.06
Intelligence —2.42 0.49 0.26 0.89 0.23 0.08 7.77%% 46.73 0.79 -1.63 0.28 0.16 —-0.30 0.27 0.03

#p <0.05; *#p < 0.01; *#¥p < 0.001.
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TABLE 8 Comparison between subgroup 5b and the other subgroups (clustered on subtest level; mathematical variables were used for clustering).

Group 5b

Subtests Vs. Group 1b Vs. Group 2b Vs. Group 3b Vs. Group 4b Vs. Group 6b

Tukey Tukey BF Tukey BF Tukey BF Tukey BF
Dot enumeration 0.97 0.19 0.10 1.96 0.78 022 6,593 4.63%10* 0.72 245 0.71 0.26 1.41 0.25 0.16
Symbolic 0.43 0.11 0.05 4.10%% 2.38%10? 0.44 0.26 0.14 0.03 1.38 0.28 0.16 2.19 0.47 0.24
magnitude
comparison
Mixed magnitude -0.36 0.10 0.04 1.29 0.25 0.13 —3.63* 3.50 0.36 -0.91 0.19 0.10 032 0.18 0.03
comparison
Addition 1.78 6.79 0.24 4,96%%* 2.03*10° 0.68 13.05%%*% 7.31%10% 1.85 3,947k 1.06*10° 0.58 —2.68 2.15 0.39
Subtraction 117 0.34 0.14 5.16%%* 9.59%10° 0.64 11,9955 1.67%10% 1.45 2.89 8.59 0.36 —4.86%* 44.56 0.59
Multiplication 1.07 0.29 0.13 3,595 1.03%10? 0.42 9,947 6.36*10" L15 297 4.06 0.35 —4.67* 21.99 0.55
Transcoding 4,515 1.22%10%¢ 7.38 16.60%% 3.90%102 11.06 23.1 1% 1.16%10 8.38 9,623 1.07%10™ 7.89 13.89%% 3.13%10% 5.19
Number sets 1.93 1.53 0.20 1.85 0.58 0.20 9.8 1.90%10% 1.08 322 532 037 117 022 0.12
Number line 2.10 255 0.22 5,120 1.35%10% 055 14,1555 6.88%10% 1.64 333 17.29 0.38 -1.99 0.39 0.22
Matrix span 135 0.37 0.14 1.36 027 0.14 5,435 1.46%10° 0.58 297 2.02 031 ~1.51 027 0.16
Reading fluency 1.10 0.21 0.81 2.69 0.80 0.28 8,847 7.72%10* 0.93 356 131 0.38 2.98 0.54 032
Intelligence -0.79 0.16 0.08 252 0.62 025 9,407 4.69%10° 0.99 1.63 0.28 0.16 133 0.28 0.14

#p <0.05; *#p < 0.01; *#¥p < 0.001.
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TABLE 9 Comparison between subgroup 6b and the other subgroups (clustered on subtest level; mathematical variables were used for clustering).

Group 6b

Subtests Vs. Group 1b Vs. Group 2b Vs. Group 3b Vs. Group 4b Vs. Group 5b

Tukey Tukey Tukey BF Tukey BF Tukey BF
Dot enumeration —0.44 0.18 0.04 0.56 0.20 0.06 519 % 558 051 1.04 0.23 0.10 —1.41 0.25 0.16
Symbolic ~1.75 032 0.18 1.91 035 0.20 -1.93 0.33 0.18 —0.81 022 0.09 -2.19 0.47 0.24
magnitude
comparison
Mixed magnitude —0.68 0.19 0.07 0.97 0.22 0.10 -3.95 1.62 0.38 -1.23 0.25 0.14 -0.32 0.18 0.03
comparison
Addition 4,465 94.70 0.59 7,635 2.71%10° 1.00 15,735 1.03%10' 2.14 6,615 1.28%10% 097 2.68 2.15 0.39
Subtraction 6.03%5% 1.87%10° 0.72 10,027 3.11%10° 1.32 16.85%% 1.82%10" 2.16 7.75% 8% 1.36%10° 1.07 4.86%* 44.56 0.59
Multiplication 5.74%% 1.11%10° 0.70 8254 1.36%10° 0.98 14,6077 2.38%10"2 1.69 7.64%5% 6.29%10° 0.93 4.67% 21.99 0.55
Transcoding —9.3gu 5.25%10" 521 270545 7.37 0.78 9,224 2.75%10" 1.75 —4.27%5% 1.17%10° L11 —13.89% 3.13%10® 5.19
Number sets 0.77 0.19 0.08 0.68 0.20 0.07 8,647 8.49%10? 0.89 2.05 033 022 -1.17 0.22 0.12
Number line 4.09 481 0.43 7,115 1.22%10° 0.78 161475 8.17107 2.13 532+ 68.16 0.69 1.99 039 0.22
Matrix span 2.86 0.87 0.30 2.87 0.68 0.30 6.94% 1.37%10? 0.72 4.49 261 045 1.51 027 0.16
Reading fluency —1.88 033 0.20 —0.29 0.26 0.03 5.85 1.93 0.58 0.57 0.28 0.06 298 0.54 032
Intelligence —2.12 037 0.23 119 0.28 0.12 8.07* 45.89 0.93 0.30 027 0.03 -1.33 0.28 0.14

#p <0.05; *#p < 0.01; *#¥p < 0.001.
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KiBler and Kuhn

3.3 Results at construct level (both
approaches)

When the analyses were conducted at the construct level and all
variables were considered, no meaningful subgroups were detected.
Thus, it was not possible to divide the children/ their cognitive profiles
into subgroups in a meaningful way using the selected analysis
approach. This means that children with and without dyscalculia were
not distinguishable in this approach.

But when only mathematical variables were considered to subtype
at the construct level, two subgroups were identified. This
two-subgroup-solution with an absolute BIC of 19858.66 was the best
solution to subdivide children of the analyzed sample into subgroups
based on data: The best fitting model (EEE) that was therefore used
for clustering encompasses clusters with the following characteristics:
ellipsoidal distributions with equal volume, shape, and orientation
(Scruccaetal, 2016; Fraley et al., 2024). This solution will be analyzed
in more detail, now.

If looking at the two resulting curves which reflect cognitive
profiles, it was striking that the means of group 2c laid below the
means of group lc (except for two variables, which belong to the
construct BNP: symbolic magnitude comparison and mixed magnitude
comparison). In symbolic magnitude comparison and mixed magnitude
comparison, group 2c¢ showed higher scores than group lc, even
though group 2c¢ otherwise appeared inferior to group lc in the
mathematical domain. In dot enumeration, the two groups were very
close to each other. It is noticeable that group 1c had mean scores that
fluctuated around the T-score of 50 or were often slightly above 50.
Although the mean scores of group 2¢ in matrix span, reading fluency,
and intelligence were higher than in the tasks reflecting calculation or
CNP, the mean scores of group 2c in these three subareas (matrix
span, reading fluency, intelligence) were still lower than those of
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group lc. Descriptive results on the 2 subgroups (mean, standard
deviation, and standard error) are shown in Table 10.

Parallelism was tested for this two-subgroup-solution that is
shown in Figure 3. As the result of this analysis with profileR (Bulut
and Desjardins, 2020; Bulut and Desjardins, 2022) became significant
(p < 0.001), the cognitive profiles of the identified subgroups did not
run parallel to each other.

Group comparisons are shown in Table 10. Group 1c and group 2c¢
differed significantly from each other in all areas except for dot
enumeration. In all subtests that belong to the constructs calculation
and CNP - as well as in the domain-general subareas as matrix span,
reading fluency, and intelligence - group lc outperformed group 2c.
However, in symbolic magnitude comparison and mixed magnitude
comparison, group 2c¢ achieved significantly higher results. The
significant frequentist t-test results are supported by the Bayesian
analyses, indicating the robustness of these results. Only for dot
enumeration there was no significant difference apparent - the
Bayesian analyses suggested equality, as the BF lays below 0.33.

There were a disproportionately large number of children with
dyscalculia in group 2c (42.22% had a PR below 16, 37.78% had a PR
below 10 and 21.11% had even a PR below 5). In comparison, children
of group 1c were less likely to be dyscalculic (9.41% had a PR below
16, 6.53% had a PR below 10 and only 2.33% had a PR below 5). The
- Tests showed that the proportion of dyscalculic children was not
equally distributed among the subgroups (if PR < 16: y* = 78.18,
P <0.001, Cramér’s V = 0.28; if PR < 10: y* = 90.48, p < 0.001, Cramér’s
V'=0.30; if PR<5: > =69.93, p<0.001, Cramérs V =0.27). The
results for Fisher’s exact test to check the results of the y*-tests for
robustness were almost identical and therefore robust. If the exact
distributions of dyscalculic versus non-dyscalculic children across the
groups (based on the PR) are of interest, these can be found in
Supplementary Table A4.

TABLE 10 Descriptive results and group comparisons (Clustering on construct level, mathematical variables were used for clustering).

Group 1c Group 2c Group 1c vs. Group 2c
Subtests
SD t-test

Dot enumeration 50.70 9.57 0.32 49.02 11.15 1.16 1.41 0.31 0.31
Symbolic magnitude 50.14 9.24 0.30 53.86 11.91 1.23 —2.92%% 7.20 0.39
comparison

Mixed magnitude 49.80 9.30 0.31 57.12 10.61 1.10 641 3.62%107 0.78
comparison

Addition 51.73 7.51 0.25 40.31 7.64 0.79 139475 9.94%10% 1.52
Subtraction 51.92 8.32 0.27 40.81 8.02 0.83 12,3075 1.20%10% 1.34
Multiplication 51.67 8.40 0.28 40.62 7.15 0.74 13.95%#3 1.05%107 1.33
Transcoding 51.15 6.23 0.21 39.86 9.28 0.96 114875 2.49%10% 1.72
Number sets 52.00 9.10 0.30 39.83 8.23 0.85 13.46%%5% 3.80%10* 1.35
Number line 51.86 9.23 0.30 38.52 7.09 0.73 16.78%%% 1.65%10% 147
Matrix span 50.86 9.61 0.32 45.26 8.57 0.89 5.41%% 1.34¥10° 0.59
Reading fluency 50.85 9.61 0.47 43.30 10.56 1.44 538 9.68*10" 0.78
Intelligence 50.93 9.87 047 42.53 7.74 1.05 7.27%% 4.20%10° 0.87

#p < 0.05; #%p < 0.01; ##%p < 0,001,
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4 Discussion

The purpose of this study was to answer the following question:
To what extent do children with dyscalculia form a homogeneous
group that can be distinguished from children without dyscalculia? To
answer this research question, a large sample of 1,015 children was
analyzed, although in two of the four approaches only a subset (1,
= 478) was analyzed because children with missing values could not
be included when this statistical subtyping approach was used.

Limitations of previous studies (e.g., Salvador et al., 2019) were
that only small sample sizes were analyzed and/ or only a few
(mathematical) subdomains of performance were taken into account
for subtyping. In contrast, in this research a large sample was analyzed
and the analyses included a variety of mathematical skills as well as
other cognitive areas: intelligence, working memory, and reading
fluency. Furthermore, to check the results for robustness, four different
subtyping approaches were conducted which differed with respect to
which variables were included (all variables/only mathematical skills)
and to what extent the measured results were aggregated into
constructs (construct level) or considered as individual subtest results
(subtest level).

On subtest level, three subgroups (by taking all variables into
account) or six subgroups (by taking only mathematical variables into
account) were identified. On construct level, two subgroups were
found (by taking only mathematical variables into account). The
results of these three analyses have in common that always one group
was identified that showed severe and significant deficits in different
mathematical skills: groups 2a, 3b and 2c. These three groups showed
similar curves that reflect their cognitive profiles, and they consisted
of disproportional many children who can be labeled as dyscalculic.
This suggests that many children who are severely affected by
arithmetic difficulties can be reliably distinguished from those without
such difficulties — but some children identified as dyscalculic with the
HRT 1-4 also appeared in other groups.

However, even though many children in the groups 2a, 3b, and 2¢
were dyscalculic, there was a considerable number of children in these
subgroups that could not be identified as dyscalculic with the HRT
1-4 (Haffner et al., 2005) - regardless of whether the cut-off (PR) was
set at 16, 10, or 5. This means, the boundaries between CwD and
non-dyscalculic children appear to be fluid rather than strict.
Nonetheless, dyscalculic and non-dyscalculic children tended to show
different cognitive profiles. The assumption that the boundaries are
fluid is also underlined by the fact that no subgroups were found in
one analysis at construct level and thus children with and without
dyscalculia could not be differentiated, here.

The cognitive profile of subgroup 3b showed some noticeable
similarities to the cognitive profile that Kisler et al. (2021) found in
their research project and that was called subtype 2 by them: it was
described as a severely impaired subtype in children with dyscalculia
(Kifsler et al., 2021). In this study, the cognitive profile of subgroup 2b
(a group with mild deficits in some mathematical domains but without
pronounced deficits in the non-mathematical domains) resembles the
dyscalculia subtype that Kifler et al. (2021) named subtype 1: a
subtype that showed minor deficits in comparison to the other subtype
(subtype 2). This suggests that there is a group of children who are
severely and unambiguously (presumably also persistently or long-
term) impaired in their mathematical skills (subgroup 3b/subtype 2),
while other children (subgroup 2b/subtype 1) show minor (and
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perhaps temporary) deficits in performing mathematical tasks. These
two groups of children seem to differ.

With a view to these findings, it would be desirable if the
definition of dyscalculia and the diagnostic criteria of this
disorder were to be further developed in such a way that
dyscalculia could not only be diagnosed on the basis of behavior
or performance, but especially on the basis of more manifest
criteria (e.g., specific neuronal divergences). This would make
sense, as dyscalculia is classified as a neurodevelopmental disorder
according to both the ICD-11 (World Health Organization, 2020)
and DSM-5-TR (American Psychiatric Association, 2022).
Therefore, a reliable way is needed to differentiate children with
dyscalculia (a serious and long-term or persistent
neurodevelopmental disorder as categorized in the ICD11: World
Health Organization, 2020) from (1) other children with
(temporary) deficits in mathematics/arithmetic that are of a
different nature (e.g., temporary performance weakness due to
challenging life circumstances) and (2) children in the normal
range of development. Children who have an altered neuronal
structure probably need different support than children who
perform poorly in math for other reasons.

It can also be observed that children who scored very low on the
HRT 1-4 (PR < 10 or PR < 5) achieved T-scores in the CODY-M 2-4
that correspond to a higher PR (Supplementary Table A1). However,
this is not surprising considering the phenomenon of regression to the
mean: This phenomenon occurs (especially with tests that are not
perfectly correlated with each other, for example because they focus
to varying degrees on different mathematical subdomains) when
initially very high or very low scores are obtained and a subsequent
measurement is taken (Barnett et al., 2005). This, in turn, leads to
inconsistencies in the categorization of children as dyscalculic or
non-dyscalculic, which once again highlights the need for more
precise testing procedures.

Indeed, CwD seem to show structural divergences in special brain
regions (e.g., in the parietal lobe, respectively, bilateral intra-parietal
sulci) and these neurological divergences are hypothesized to
be accountable for the core deficits in CwD (Butterworth, 1999;
Dehaene et al., 2003; Landerl] et al., 2004; Rykhlevskaia et al., 2009;
Sziics and Goswami, 2013). Nevertheless, there may also be approaches
to foster mathematical competencies that are helpful for children with
such neurological conditions as well as for children who have
problems with acquiring arithmetic competencies for other reasons.
This needs to be investigated in more detail.

On a first sight some results of this study may seem to contradict
the results of Kifsler et al. (2021) because the subgroups that were
found in this study and which encompass many children with
dyscalculia (group 2a, 3b, and 2¢) do not only show deficits in terms
of their mathematical competencies, but also below average results in
reading fluency, intelligence, and working memory (i.e., matrix span).
Kiftler et al. (2021) were unable to find robust significant differences
in these areas between the two subtypes they had characterized. But
this does not have to mean that the severe impaired subtype 2 was
unimpaired in these areas, because the study by Kiftler et al. (2021)
lacks a comparison with unimpaired/ non-dyscalculic children.
However, the mean T-scores of subtype 2 were below the T-score of
50 in working memory, intelligence, and reading fluency (Kiftler et al.,
2021). This indicates below average performance in these areas.
However, it should be noted that the deficits in reading fluency,
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intelligence, and working memory that were found in subgroups 2a,
3b, and 2¢ should not be understood as impairments in the narrower
sense, but rather as weaknesses in comparison to the other subgroups,
because, in summary, the T-scores are reduced but still tend to be in
the lower normal range. Thus, when referring to a deficit (especially
with a view to subgroup 2b), a reduced score relative to the other
identified subgroups is meant.

In this study, the deficits that were shown by groups 2a, 3b, and 2¢
in reading fluency, intelligence, and working memory (matrix span)
were significant in most analyses when frequentist statistics were used
to compare these groups with other groups. These results were
reconfirmed by Bayesian analyses. Therefore, these deficits of the
groups 2a, 3b, and 2¢ appear robust and, in light of the findings by
Kifdler et al. (2021), consistent as well. Interestingly, group 2b (the
group with less severe deficits in mathematical areas compared to
group 3b) did not show those significant differences in working
memory (matrix span), reading fluency and intelligence if compared
to group 1b, group 4b, group 5b, and group 6b. Furthermore, group 2b
showed significant better performance in these three performance
areas than group 3b. These differences between group 2b and group 3b
were reconfirmed by Bayesian analyses. In summary, these findings
also suggest that there are substantial differences between children
with more severe arithmetic difficulties (dyscalculia in the narrower
sense) and children that tend to show lower performance in
arithmetic. However, this lower performance subtype that was
identified in the six-group solution (group 2b) was not identified in
other approaches. Maybe, in the other analysis on subtest level the
sample size was too small to detect this subtype.

Using model-based clustering-analyses to identify subgroups in
children, Pieters et al. (2015) found different subgroups of children
that differed qualitatively in terms of their arithmetic difficulties.
Bartelet et al. (2014) also found different types of difficulties in
mathematical skills that were characteristic for specific subtypes (e.g.,
the weak mental number line subtype, the weak ANS subtype and the
access deficit subtype) in children with math learning difficulties
(PR < 16 in an arithmetic fluency test). More detailed analyses on
qualitative differences in arithmetic difficulties and/ or deficits in
mathematical precursor skills as well as the severity of those could
shed light on what distinguishes these subgroups. As already suggested
in the introduction and in accordance with the results of Bartelet et al.
(2014), different difficulties might be attributable to different
underlying causes (e.g., deficits in the ANS vs. the access
deficit hypothesis).

In contrast to Bartelet et al. (2014), no dyscalculia subtype or any
other subgroup was found that was only or especially noticeable due
to deficits in working memory. However, this difference could also
be due to the fact that Bartelet et al. (2014) analyzed different working
memory areas, whereas in this study only the matrix span was
considered in the analyses.

It is striking that at construct level the results were different from
the results at subtest level: In one analysis at construct level, it was not
even possible to distinguish meaningful subgroups in any way because
the one subgroup solution was the best solution. This is probably due
to the fact that subgroups in the analyses at the subtest level showed
the greatest differences in their transcoding skills. Thus, in particular
this subtest served to differentiate the subgroups from one another.
However, when the constructs were calculated, the variable transcoding
merged into the variable for the construct complex number processing,
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which presumably involved a loss of information. Therefore, the
information at the construct level was probably no longer sufficient to
identify subgroups. This means that even the category dyscalculia
could not be found exploratively as a separable group with
this approach.

The three-subgroup solution (if subtyping was carried out by taking
all variables into account on subtest level) and two-subgroup solution
(if subtyping was carried out by taking only mathematical variables into
account on construct level) have in common that each identified a
single group with pronounced arithmetic difficulties but no other group
with severe difficulties in mathematics. In the three-subgroup-solution,
two-subgroup-solution, and six-subgroup-solutions, the group with the
most severe arithmetic difficulties (2a, 3b, and 2c¢) showed better
performance in BNP-tasks compared to their performance in
calculation or tasks reflecting CNP. This suggests that dyscalculic
children show severe deficits in arithmetic/calculating as well as in CNP
but show less deficits in BNP tasks as magnitude comparison.

This findings for BNP have to be discussed. Children who were
severely affected by arithmetic difficulties (groups 2a, 3b, and 2c) seem
to have performed better in symbolic magnitude comparison and
mixed magnitude comparison tasks — even achieved above-average
results (groups 3b and 2c). This may initially seem peculiar, but in this
study, an efficiency measure (median of correct response times/
number of correct responses) was used for these tasks, meaning that
the goal was to respond both quickly and correctly. Careless errors
could thus significantly impair the score. It can be assumed that
children who are aware of their substantial difficulties in arithmetic
(e.g., because of bad marks at school) try to compensate for their
weaknesses by exerting extra effort and concentration/ attention,
approaching these simple tasks more deliberately than children
without such difficulties. Consequently, children with arithmetic
difficulties might have made fewer errors, resulting in average or
above-average performance - even if they then require a bit more time
to solve the tasks. This could explain the observed phenomenon.

Why transcoding performance varies substantially across identified
subgroups, and why it even seems to enable subgrouping, is an open
question. The triple code model (Dehaene, 1992) suggests that
transcoding/ transforming information from auditory verbal word
frame (e.g., “thirteen”) into the visual Arabic number form (e.g., “13”)
is something else than transforming an analog magnitude representation
(e.g., “13 objects that are seen”) into the visual Arabic number form.
Possibly, performance in transcoding verbal information into the visual
Arabic number form could be a process that characterizes different
subgroups of children at the children’s age examined in this study and
possibly also allows predictions about their future development. This
should be investigated in more detail by future studies.

The findings of this research highlight that children with dyscalculia
appear to be heterogeneous. Therefore, dyscalculia does not seem to be a
disorder with (1) a homogeneous cognitive profile and (2) a clear
borderline to normality, making it difficult to systematically subgroup
children with dyscalculia — much like children without dyscalculia are
very heterogeneous in terms of their cognitive profiles, too.
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