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Identifying and subtyping 
dyscalculia in a sample of 
children with and without 
dyscalculia — a data-driven 
approach
Christian Kißler * and Jörg-Tobias Kuhn 
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Dortmund, Germany

Introduction: Dyscalculia is a very heterogeneous disorder. This is illustrated 
by the fact that numerous possible subtypes have been described in previous 
studies. Therefore, the present study addresses the question of whether children 
with dyscalculia form a homogeneous group that can be  distinguished from 
children without dyscalculia or whether distinct dyscalculia subtypes should 
be assumed.

Methods: A sample of 1,015 children was analyzed in a data-driven subtyping 
approach (mixture model analysis). 93 of these children were identified as 
dyscalculic (criterion: percentage rank <10) with a standardized test (HRT 
1–4) to examine how these children were distributed across the identified 
subtypes. Various cognitive performance domains that were measured with 
standardized tests were included in the analyses: mathematical skills (basic 
numerical processing, complex number processing, calculation), working 
memory, reading fluency, and intelligence. To check the subgrouping results for 
robustness, four different approaches were used, which differed with respect to 
which variables were included in the mixture model analysis (only mathematical 
skills: 1n  = 1,015/ all variables: 2n  = 478; 2n  with a reduced sample size according 
to missing data) and to what extent the measured results were aggregated into 
constructs (construct level) or considered as individual test results (subtest level).

Results: In three of these four different subtyping approaches, at least one of 
the identified subgroups showed significant deficits in mathematical skills and 
included disproportionately many children with dyscalculia. Furthermore, one 
of these three approaches (the subtyping analysis at the subtest level based on 
mathematical skills only) suggests that there may be two subtypes of children 
with dyscalculia: a subtype with mild deficits and a severely impaired subtype. 
In one approach (subtyping analysis at the construct level with all variables 
included), children with dyscalculia were not identified as a separable group.

Discussion: In summary, dyscalculia subtypes (as well as children with 
dyscalculia in general) do not seem to be clearly distinguishable from children 
without dyscalculia: the boundaries are fluid. For educational practice, this 
fluent transition between dyscalculic and non-dyscalculic children means that 
all children who have difficulties in mathematics should be supported and not 
only those who are classified as dyscalculic.
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1 Introduction

Since this study focuses on subtyping children with dyscalculia 
(CwD), dyscalculia will first be described, followed by a discussion of 
subtyping approaches (subsection 1.1). Subsequently, the current state 
of research regarding the subtyping of CwD is presented 
(subsection 1.2).

1.1 Dyscalculia and subtyping approaches

Severe difficulties in the domain of mathematics are described 
using different terms, although they refer to similar or identical 
phenomena. The DSM-5-TR (American Psychiatric Association, 
2022) lists specific learning disorders that can be  coded with the 
specifier with impairment in mathematics, while the ICD-11 (World 
Health Organization, 2020) refers to developmental learning disorder 
with impairment in mathematics (6A03.2). In the DSM-5-TR, 
dyscalculia is mentioned as an alternative term for a pattern of 
difficulties in mathematics. The following section provides a more 
detailed description of dyscalculia in the context of this study.

Dyscalculia is understood as a developmental learning disorder 
which is characterized by a lack of “skills related to mathematics or 
arithmetic, such as number sense, memorization of number facts, 
accurate calculation, fluent calculation, and accurate mathematic 
reasoning” (ICD-11: World Health Organization, 2020), insofar as the 
deficits (a) cannot be  explained by another disorder (e.g., an 
intellectual impairment) and (b) occur even though the individual had 
access to education (World Health Organization, 2020). The 
DSM-5-TR describes this disorder very similar (American Psychiatric 
Association, 2022). Both the ICD-11 and DSM-5-TR list dyscalculia 
as a neurodevelopmental disorder (World Health Organization, 2020; 
American Psychiatric Association, 2022). Overall, there are different 
approaches that aim to explain children’s difficulties in arithmetic and 
mathematical reasoning (e.g., Butterworth, 2005; Noël and 
Rousselle, 2011).

Mathematical skills encompass complex subdomains, some of 
which appear to stand alone and thus form isolated constructs: in fact, 
different areas of mathematical abilities can be  impaired in CwD, 
which implies that needs of CwD can vary substantially (Skagerlund 
and Träff, 2016; Haberstroh and Schulte-Körne, 2019). Therefore, 
evidence-based formation of different subareas of mathematical 
competencies makes sense from a theoretical and practical perspective.

Different structural models of mathematical skills and 
competencies have been suggested. According to factor analytic results 
of Kuhn et al. (2017), mathematical skills can be categorized into three 
subdomains: basic numerical processing (BNP), complex number 
processing (CNP) and calculation competencies. BNP is also known 
as core number competencies and is characterized by straightforward 
tasks, such as dot counting and the comparison of magnitudes (Reeve 
et  al., 2012; Kuhn et  al., 2017). CNP encompasses more complex 
mathematical precursor skills such as (a) locating a number on a 
number line or (b) transcoding/transforming auditorily presented 

numbers into written Arabic symbols, for example (Nuerk et al., 2006; 
Kuhn et al., 2017). Calculation implies performing concrete arithmetic 
operations such as addition, subtraction, and multiplication.

Because there are distinct mathematical abilities, dyscalculia may 
also affect these to different degrees; consequently, several theories 
have been proposed to explain challenges of CwD. Some approaches 
link dyscalculia to theories of number processing: e.g., to the 
Approximate Number System (ANS). This is thought to handle 
quantities larger than four in an approximate manner, and 
complements the Object Tracking System (OTS), which is assumed to 
register quantities up to four exactly and instantaneously (Piazza et al., 
2010; Lamb et al., 2024).

Therefore, one perspective suggests that difficulties in mathematics 
derive from an impaired ANS (Feigenson et  al., 2004; Noël and 
Rousselle, 2011; Lamb et  al., 2024). Indeed, evidence shows that 
10-year-old CwD perform at the level of 5-year-old typically 
developing children when estimating dot quantities (Piazza et al., 
2010). In Accordance with the ANS hypothesis, CwD should show 
deficits in the following tasks, for example: in pure number-
comparison tasks, mixed comparison tasks of quantities and numbers, 
and dot enumerations that go beyond four (Lamb et al., 2024). But 
they should not show such deficits in dot enumeration tasks from one 
to three (Lamb et al., 2024).

Another perspective to explain deficits in mathematics suggests a 
deficit in the ability to access quantity representations from symbols: 
the Access Deficit Hypothesis (Rousselle and Noël, 2007; Noël and 
Rousselle, 2011; Skagerlund and Träff, 2016). If this hypothesis is 
correct, CwD should show deficits in specific task domains: for 
example, in pure number-comparison tasks as well as in mixed 
comparisons of quantities and numbers (Lamb et al., 2024). However, 
they should not exhibit deficits when counting dots – regardless of the 
number of dots (Lamb et al., 2024).

Thus, it becomes evident that different explanatory approaches for 
difficulties observed in CwD should correspond to distinct patterns of 
deficits. Nevertheless, these approaches do not need to be exclusive: 
there could be separate subtypes of CwD whose difficulties stem from 
different underlying causes.

In addition to different deficient math skills, other domain general 
abilities such as working memory, and attention or reading 
performance are often discussed in the context of dyscalculia, as many 
CwD appear to have pronounced deficits in these areas (e.g., 
Schuchardt et al., 2008; Mähler and Schuchardt, 2011; Haberstroh and 
Schulte-Körne, 2019; Kißler et al., 2020; Kißler et al., 2021). Whether 
such deficits really apply to all CwD, or whether these concern (in 
particular) specific subtypes, will be  discussed in the following 
sections in more detail.

Notably, not only CwD, but also children with other learning 
disorders – e.g., reading disorder – exhibit difficulties in domain-
general abilities (e.g., Menghini et al., 2011) and even comorbidities 
of different learning disorders are common (e.g., Gross-Tsur et al., 
1996). This raises the question of whether different learning disorders 
are truly separable or whether they are more closely related. It may 
be worth considering that disorders such as dyslexia and dyscalculia 
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should not be viewed categorically, but rather within a dimensional 
framework (Peters and Ansari, 2019).

If dyslexia and dyscalculia were distinct, their deficits would 
be  more likely to be  additive (Kißler et  al., 2020), as different 
underlying causes would then be present and co-occur in children 
with both disorders. Indeed, Kißler et al. (2020) found evidence for 
the additivity of cognitive deficit profiles in children with arithmetic 
and reading difficulties. Nevertheless, the high comorbidity between 
reading and arithmetic disorders requires further investigation. 
Interestingly, CwD showed contradictory results in working memory 
tasks assessing visuospatial working memory: an effect was found in 
matrix span tasks, whereas no such effect was found in Corsi block 
tasks (Kißler et al., 2020). These results contradict Schuchardt and 
Mähler (2010), who found such problems in Cosi block tasks, whereas 
Landerl et al. (2009), in turn, did not find such deficits. In a meta-
analysis (Viesel-Nordmeyer et al., 2023) of 74 studies additivity for 
deficits in math and reading skills was found, whereas underadditivity 
was found in executive functions (inhibition, shifting, and updating). 
However, for example, de Weerdt et al. (2013) found no interaction 
effect for inhibition and concluded that children with reading 
disabilities show inhibition deficits related to alphanumeric stimuli, 
but children with mathematical disabilities do not.

Contradicting results may point to the heterogeneity of children 
with learning disorders and especially of CwD. But if results vary 
across studies (as shown above), it raises the question of whether the 
same disorders are investigated or whether different subtypes are 
studied, for example due to the use of different diagnostic instruments. 
For this reason, the identification of subtypes is an important topic 
of research.

In principle, there are two approaches to state subtypes of 
disorders such as dyscalculia: top-down and bottom-up (Salvador 
et al., 2019; Kißler et al., 2021). In top-down approaches, individuals 
are grouped (=subtyped) based on (a) observations that tend to 
be unsystematic or (b) theories that are more the result of logical 
reasoning than of systematic approaches that are evidence-based: for 
example, children who have difficulties with arithmetic can 
be distinguished from children who have difficulties with arithmetic 
and reading a priori (Rourke et al., 1971; Rourke and Finlayson, 1978; 
Ozols and Rourke, 1988; Rourke, 1993). However, it is unclear whether 
each of these two groups includes children with homogeneous 
cognitive profiles. Of course, these a priori distinguished groups can 
be compared with each other with respect to their performance in 
specific sub-areas, and in some cases, differences will undoubtedly 
be found. But this does not necessarily clarify the question of whether 
specific subtypes of a disorder were studied, or whether the mere effect 
of a comorbidity was analyzed.

Nevertheless, it should be noted that top-down approaches are 
justified and, in some contexts (for example in educational or 
clinical settings in practice), could be  the only realistically 
applicable approach. Furthermore, the top-down approach can 
be  used to identify entirely new disorders, if unsystematic 
observations lead to the conclusion that specific (behavioral of 
cognitive) patterns cannot be explained by previously described 
disorders. This is like when Kanner (1943) and Asperger (1944) 
categorized children (belonging to the described group vs. not 
belonging to the described group), based on observations, and 
described specific characteristics of the groups they found. From 
that point on, children with similar characteristics were assigned 

top-down to those categories, but these categories were later merged 
into the autism spectrum disorder because of new evidence (e.g., 
Lord et al., 2012; World Health Organization, 2020; Habermann 
and Kißler, 2022).

The bottom-up approach is opposed to the top-down approach. 
In the bottom-up approach, data on children’s performance in 
different subdomains is collected, and then these children are divided 
into subgroups in a data-driven way (i.e., evidence-based and 
systematic, by applying specific statistical methods or algorithms). 
Next, these subgroups are compared with each other (e.g., Bartelet 
et al., 2014; Kißler et al., 2021). Top-down and bottom-up approaches 
do not always lead to the same groupings: Thus, in a data-driven 
research approach, Kißler et al. (2021) were unable to find a subgroup 
of children with dyscalculia (CwD) that stood out in terms of their 
reading competencies.

Several studies (as described below) have already attempted to 
describe subgroups of dyscalculia top-down or bottom-up. In some 
cases, very heterogeneous research results were observed. However, if 
the bottom-up approach is taken seriously, it would need to be applied 
not only on children with a specific disorder (e.g., dyscalculia) to 
identify subgroups of CwD, but also to a large sample of both impaired 
and unimpaired children. This would allow for an analysis of (1) 
whether dyscalculia can be identified as a homogeneous disorder or 
(2) whether children with specific subtypes of dyscalculia can 
be  distinguished from each other and from children without 
dyscalculia. The goal of this study is to investigate precisely that. If 
specific subtypes of dyscalculia do indeed exist, this might imply that 
these subtypes, although having similarities, represent distinct 
disorders that could have different causes and might require 
different interventions.

1.2 State of research on the subtyping of 
dyscalculia

As described above, there are two contrasting approaches in 
research on subtyping (Kißler et al., 2021): top-down and bottom-up. 
Presumably, different findings on subtypes of CwD can partly 
be explained by different methodological approaches, small sample 
sizes that were analyzed, and the consideration of just a few cognitive 
sub-performance domains in the formation of subtypes, as well as by 
how dyscalculia was defined.

Rourke and the research team around him were among the first 
in researching subtypes of CwD (e.g., Ozols and Rourke, 1988; Rourke, 
1993). They categorized CwD into three groups: (1) children who 
struggled with arithmetic, reading, and spelling, (2) children who had 
poor reading and spelling abilities but showed relatively better skills 
in arithmetic (although still deficient), and (3) children who had 
average or above-average reading and spelling abilities but experienced 
mathematical difficulties. The qualitative nature of arithmetic errors 
differed among these groups (Rourke, 1993). For example, group 3 
had issues with accurate calculation due to poor handwriting, misread 
mathematical symbols, performed arithmetic operations incorrectly, 
and showed difficulties in accessing the required calculation rules 
from long-term memory (Rourke, 1993). In contrast, children in 
group 2 made mistakes that could be linked to their reading problems 
(Rourke, 1993). Consequently, this research provides evidence that 
reading skills are linked to specific problem areas in some CwD and 
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that reading skills have to be  considered when discussing 
dyscalculia subtypes.

Accessing information from long term memory is a common 
problem of a subtype in CwD that was also described by Skagerlund 
and Träff (2016). These authors described two subtypes of CwD, 
namely the General Dyscalculia Subtype (GDS) and the Arithmetic 
Fact Dyscalculia Subtype (AFDS). The GDS had deficits in the innate 
ANS: this means that in children with GDS, the ANS  – which is 
responsible for representing numerosities – showed an arrangement 
of numbers on a mental number line that was too imprecise for their 
chronological age (Halberda and Feigenson, 2008; Skagerlund and 
Träff, 2016). In contrast, the AFDS was characterized by another 
deficit: accessing magnitude information from symbols was impaired 
(access deficit hypothesis; Rousselle and Noël, 2007; Skagerlund and 
Träff, 2016). Moreover, the AFDS did not show deficits in 
non-symbolic processing, whereas children of the GDS showed such 
deficits (Skagerlund and Träff, 2016).

In a research project with 226 children (3rd to 6th grade) with 
math learning difficulties (percentile rank, abbreviated as PR, of < 
16 in an arithmetic fluency test), Bartelet et al. (2014) used a data-
driven approach to identify subtypes of children with math difficulties 
by focusing on different variables: Arabic number knowledge, 
counting, number line estimation, approximate number knowledge 
(e.g., dot comparison task), spatial short-term working memory, 
verbal short-term working memory, and intelligence. Bartelet et al. 
(2014) found six different dyscalculia subtypes, each with distinct 
cognitive characteristics: (1) The weak mental number line subtype, 
which exhibited low performance in number line tasks but 
demonstrated strong skills in approximate numerical knowledge and 
Arabic numeral knowledge; (2) The weak ANS subtype, characterized 
by difficulties in approximate number knowledge and number line 
tasks, but with a high IQ and a good performance in spatial short-
term working memory compared to other subtypes. This subtype 
shared similarities with the GDS subtype described by Skagerlund and 
Träff (2016); (3) The spatial difficulties subtype, which struggled 
primarily with spatial short-term working memory and approximate 
numerical knowledge. Additionally, this subtype seemed to have 
difficulties in verbal short-term working memory and in solving 
number line tasks; (4) The access deficit subtype: In this subtype, 
difficulties in counting and Arabic numerical knowledge were found; 
(5) The no numerical cognitive deficit subtype, which showed no 
impairments in any area and very high verbal short-term working 
memory; (6) The garden variety subtype, characterized by multiple 
smaller deficits across various areas. This subtype performed well in 
number line tasks but had a lower IQ.

Bartelet et  al. (2014) found subtypes in children with math 
learning difficulties that were characterized by varying abilities/ 
problems in different mathematical areas and other cognitive domains. 
Rourke (1993) also found that mathematical deficits differ qualitatively 
between children with math difficulties (Rourke, 1993). The research 
of Kißler et al. (2021) even suggests that mathematical skills may 
be  the most relevant factors in subtyping CwD: This means that 
children who meet the common criterion for dyscalculia vary in terms 
of their mathematical abilities in such a way, that specific subgroups 
can also be found among dyscalculic children with regard to their 
arithmetic abilities.

Kißler et al. (2021) analyzed two samples (one included 71 CwD, 
the other 103 CwD) using mixture model analyses to identify 

subgroups of CwD based on a broad range of constructs (attention, 
intelligence, reading fluency, working memory, and different 
mathematical skills). They found two subgroups that differed in 
particular with respect to their mathematical performance and their 
attention: the so-called subtype 2 was inferior to subtype 1 in terms of 
performance in both subareas. Overall, subtype 2 seemed to be more 
impaired than subtype 1. Intelligence, working memory, and reading 
fluency were not suitable for systematically distinguishing the two 
identified subtypes. The results were robust regardless of whether the 
analyses were conducted at the construct level or subtest level (e.g., 
construct level: working memory; subtest level for working memory: 
matrix span and verbal span) and whether only complete data sets or 
data sets with imputations to deal with missing data were used (Kißler 
et al., 2021).

The finding that CwD differ particularly in their mathematical 
abilities also fits to the approach of a recent research (Pedemonte et al., 
2022). Starting with the assumption that CwD show difficulties in 
different mathematical subareas, the research team developed the 
UCSF Dyscalculia Subtyping Battery (DSB) with the aim to identify 
difficulties in specific mathematical subareas and different dyscalculia 
subtypes corresponding to these specific mathematical subareas 
top-down (arithmetic facts retrieval, arithmetical procedures, 
geometrical abilities and number processing). Thus, the subtypes were 
formed a priori, based on a specific conceptualization of dyscalculia. 
This test battery has been evaluated on a small sample of 93 children/ 
adolescents aged 7–16 years. 50 of them were diagnosed with dyslexia, 
7 with ADHD, and 18 with dyslexia and ADHD. 18 children were 
typically developing. Although this study has considerable 
methodological limitations (e.g., very small sample size, wide age 
range from 7 to 16 years old, limited selection of statistical methods), 
the approach of subtyping CwD based on their deficits in different 
mathematical subareas using a test battery seems to be an interesting 
and consistent approach in view of the evidence from other studies 
(e.g., Skagerlund and Träff, 2016; Kißler et al., 2021).

The studies previously presented analyzed CwD using a top-down 
or bottom-up approach to examine the existence of subtypes of 
CwD. But these subtypes were either derived from preexisting 
theoretical assumptions about dyscalculia or  – in cases where a 
bottom-up approach was used – affected children (with dyscalculia) 
were initially distinguished from unaffected children a priori: Thus, a 
top-down or an incomplete bottom-up approach was used, as a 
distinction (affected vs. unaffected children) was made top-down 
before subtyping bottom-up. However, the studies presented below 
analyzed samples that encompass both CwD and children without 
dyscalculia by using a bottom-up approach consistently.

Pieters et  al. (2015) used model-based clustering-analyses to 
identify subgroups in a sample that encompassed 73 children with 
mathematical learning disabilities, 102 children with developmental 
coordination disorder, 99 children with both disorders, and 136 
children without any of these disorders. Different approaches to 
cluster these children were performed: Thus, in one approach only 
mathematical variables were considered and, in another approach, 
mathematical and motor skills were considered to perform the cluster-
analyses. In the first cluster approach (mathematical variables only), 
two clinically relevant clusters were found: one cluster showing deficits 
in number fact retrieval and procedural calculation, and the other 
cluster showing deficits in procedural calculation. In the other cluster 
approach (motor and mathematical skills), two clinically relevant 
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clusters were identified as well: here, a subtype with deficits in number 
fact retrieval was found, too. In addition, this cluster also showed 
further difficulties (deficits in procedural calculation as well as below-
average motor and visual-motor integration skills). The second cluster 
found within this approach showed deficits in procedural calculation 
and in addition visual-motor problems. Thus, both approaches 
(mathematical variables only vs. motor and mathematical skills) that 
were reported here produce similar results, which may indicate 
robustness of the results.

Salvador et al. (2019) used a data-driven/ bottom-up approach in 
a sample of 192 children (age: 8–11 years) and they found 4 clusters. 
They used a hierarchical cluster analysis (Ward method with squared 
Euclidean distance) and focused on a small range of cognitive 
domains: phonological and visuospatial working memory, visuospatial 
and visuoconstructional processing, and symbolic as well as 
nonsymbolic magnitude accuracy. Two of the clusters that were found 
exhibited difficulties typical for children with numeracy difficulties: 
cluster 1 showed low visuospatial abilities and the highest percentage 
frequency of individuals with identified math difficulties; cluster 2 
showed low magnitude processing accuracy. Both clusters showed 
average or increased intelligence. The other two clusters showed 
average (cluster 3) or high performance (cluster 4) in some areas. 
Limitations of the study are the small sample size and the focus on 
only a few (mathematical) performance domains.

Like Pieters et al. (2015) and Salvador et al. (2019), Huijsmans 
et al. (2020) also did not only focus on CwD: their aim was to discern 
distinct cognitive profiles among a group of 281 fourth-grade children 
by assessing their skills in fundamental arithmetic and more advanced 
mathematical abilities. Only one of four identified cognitive profiles 
showed significant mathematical deficits (=the low-achieving profile). 
However, 33% of the children in this sample (94 out of 281) could 
be assigned to this low-achieving profile, so it does not seem to be a 
profile that explicitly includes CwD, because the prevalence for 
dyscalculia is considerably lower. In summary, Huijsmans et al. (2020) 
did not succeed in distinguishing children with a low-achieving profile 
in mathematics from children who met the diagnostic criteria for 
dyscalculia. Possibly, this problem can be explained with the small 
sample size: Therefore, systematic differences between CwD and 
children with a low-achieving profile may not be  systematically 
identified due to a lack of data/ power.

Overall, it is to be noted that not all subtyping studies were able to 
distinguish CwD from children without dyscalculia. Regardless of 
whether (1) only children with dyscalculia or (2) children with and 
without dyscalculia were investigated, some subtyping approaches 
lead to very different results, with other findings in turn (partially) 
coinciding. It is necessary to conduct a subtyping analysis with a view 
to numerous cognitive sub-performance areas and based on a large 
sample to generate further and valid findings in this research area. 
Furthermore, such a subtyping analysis with another approach can 
be  used to check whether the findings from previous studies can 
be affirmed and/ or reproduced.

1.3 Research question and aim of this study

In this study, a large sample of children with and without 
dyscalculia is used in a bottom-up (i.e., data-driven) approach to 
address the following question: To what extent do children with 

dyscalculia form a homogeneous group that can be distinguished from 
children without dyscalculia? This question includes both, (1) the 
interest in examining whether CwD can be  distinguished from 
children without dyscalculia, and (2) the question of whether such a 
group of CwD forms one homogeneous group, or whether distinct 
dyscalculia subtypes should be assumed. Because the body of research 
on the existence of dyscalculia subtypes is ambiguous, a quantitative-
exploratory approach is taken to pursue this research endeavor. As this 
is an exploratory, quantitative data analysis with open outcomes – 
including whether any subtypes can be identified at all and whether 
CwD can be distinguished from children without dyscalculia by using 
a data-driven approach – no research hypotheses are stated. Instead, 
the research question is answered by using standardized, statistical 
methods, and further analyses are conducted to interpret the results. 
The data analysis approach is presented in subsection 2.3.

2 Methods

2.1 Sample

The analyzed sample included a total of 1,015 children from 
elementary schools in Germany and was part of a large-scale 
investigation of mathematical skills. 530 of these children were female, 
483 of them were male, and the gender of 2 children was not recorded. 
All children were in the 2nd to 4th grade at the time of the survey 
(grade 2: 333 children; grade 3: 422 children; grade 4: 260 children). 
Therefore, all children were at the age to attend elementary school: the 
mean age was 8.98 years (SD = 0.87), although the exact age was not 
recorded for 565 children. Parental consent was obtained prior 
to testing.

2.2 Tests

2.2.1 Diagnostic test for assessing dyscalculia
The HRT 1–4 (“Heidelberger Rechentest 1–4”) is a pen-and-paper 

speed test designed to assess basic mathematical knowledge/ 
competencies and is composed of two scales: arithmetic operations and 
numerical-logical and visual–spatial skills (Haffner et al., 2005). These 
two scales were combined to produce a total score. The arithmetic 
operations scale includes six subtests, which are addition, subtraction, 
multiplication, division, fill-the-gap tasks, and greater/less 
comparisons; the scale has a retest reliability of 0.93 (Haffner et al., 
2005). The numerical-logical and visual–spatial skills scale includes five 
subtests, which are numerical series, length estimation, counting 
cubes, counting magnitudes, and connecting numbers; this scale has 
a retest reliability of 0.87 (Haffner et al., 2005). Thus, the two scales 
assess different abilities that are related to mathematical competencies. 
According to the S3-guideline, the HRT 1–4 is considered a suitable 
instrument for the diagnosis of mathematical learning disorders 
(Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen 
Fachgesellschaften, 2018).

The overall score of this test was used to decide whether the 
children in the study met the criterion for dyscalculia and to examine 
how children identified as dyscalculic were distributed across the 
identified subtypes. Thus, the results of the HRT 1–4 were used to 
analyze whether there are specific subgroups that include only (or 
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predominantly) CwD. T-score norms (which have an overall mean of 
50 and a standard deviation of 10) are available for each quarter of a 
school year. The test was administered in a group setting, either at the 
Department of Psychology at the University of Münster or in 
a classroom.

2.2.2 Intelligence
To assess intelligence, two tests were used: CFT 1-R or CFT 

20-R. These are language free group tests. Because the data come from 
a study that focused on children with learning disorders (reading 
disorders as well) and include children with a mother tongue other 
than German, a non-verbal intelligence test was used. CFT 1-R was 
used to test the intelligence of children in grades 2 and 3 (retest-
reliability: 0.95; Weiß and Osterland, 2013). The CFT 20-R was used 
to test the intelligence of children in grade 4 (the retest-reliability 
reaches from 0.80 to 0.82 and the consistence coefficient is 0.95; 
Weiß, 2006).

CFT 1-R consists of two parts: Part 1 (perception-based 
performance) encompasses substitution tasks, mazes and similarity 
tasks; part 2 (figural reasoning) comprises classification tasks as well 
as matrices and children have to complete sequences (Weiß and 
Osterland, 2013).

The CFT-20R, by contrast, consists of two structurally identical 
test parts, each containing four subtests: completing Sequences, 
classifications, matrices, and topological conclusions (Weiß, 2006). 
Compared to part 1, in part 2 the difficulty is increased (Weiß, 2006).

2.2.3 Reading fluency
The Salzburger Lese-Screening (SLS 1–4) was used to assess 

reading fluency (Mayringer and Wimmer, 2003): the test with a 
parallel test reliability of at least 0.90 involves children reading a set of 
simple and unambiguous sentences (such as “Bananas are pink,” but 
in German). The children had to read and understand as many 
sentences as possible within a 3-min timeframe. To prove that the 
sentence was understood correctly, after reading each sentence, the 
children had to indicate whether the sentence was correct or incorrect 
by ticking a box. A child’s reading fluency was determined based on 
the number of correct responses they provide within the timeframe. 
This assessment of reading fluency requires a certain level of reading 
comprehension and basic knowledge of everyday facts.

2.2.4 Working memory
To assess the visual–spatial working memory, the matrix span task 

(retest reliability: 0.61) of the CODY-M 2–4 was used (Kuhn et al., 
2017). During this test, first a pattern of dots had to be memorized, 
then a distracting task was to be solved and after that, this dot pattern 
had to be remembered and reproduced correctly (Raddatz et al., 2017).

2.2.5 Mathematical abilities
The CODY-M 2–4 battery (Kuhn et al., 2017) was used to measure 

different mathematical abilities. In the following, the descriptions of 
the mathematical tests are based on Raddatz et al. (2017) and Kißler 
et  al. (2021). These tests belong to three constructs, which are 
described in the introduction and are the result of a factor analysis 
(Kuhn et al., 2017). According to the S3-guideline, the CODY-M 2-4 
is considered a suitable instrument for the diagnosis of mathematical 
learning disorders (Arbeitsgemeinschaft der Wissenschaftlichen 
Medizinischen Fachgesellschaften, 2018).

2.2.5.1 Basic numerical processing (BNP)
The construct BNP (retest reliability: 0.72) encompasses 3 subtests 

(Kuhn et al., 2017). With dot enumeration (counting 1–9 black dots 
as quickly and correctly as possible) the efficiency in counting was 
tested. Inspired by Defever et  al. (2013), symbolic magnitude 
comparison tasks (two different Arabic numerals) and mixed 
magnitude comparison tasks (dots on the one side and an Arabic 
numeral on the other side) were used. Here, children had to decide, 
which entity was larger. For these three tests, an efficiency measure 
(median of correct response times/ number of correct responses) was 
used to assess the children’s performance in these tasks.

2.2.5.2 Complex number processing (CNP)
Three subtests (number line, number sets, transcoding) of the 

construct CNP from the CODY-M 2–4 (Kuhn et al., 2017) were used 
in this study (retest reliability: 0.76; Kuhn et al., 2017). These at first 
sight very different tasks share the similarity of evaluating mathematical 
precursor skills that involve more advanced number processing (Nuerk 
et  al., 2006; Kuhn et  al., 2017). The transcoding tasks assessed the 
individuals’ ability to translate spoken numbers (presented through 
headphones) into written Arabic numerals. The task type number sets, 
based on Geary et al. (2009), was used to evaluate the individual’s 
efficiency in number processing across different presentation formats. 
In this speed test, an Arabic numeral (referred to as the target number) 
was displayed at the top of the screen, while numbers and/ or geometric 
figures (referred to as a number set) were shown at the bottom. 
Children were required to compare the sum of the elements 
represented by the number set at the bottom of the screen with the 
numeral above (either 5 or 9) and determine whether the sum matched 
the displayed number. The following example illustrates this type of 
task: If three geometric figures and the numeral 1 were displayed at the 
bottom as a number set and a 5 (in Arabic numeral form) was shown 
above as the target number, then the child would calculate 3 (geometric 
figures) + 1 (Arabic numeral) = 4, and had to compare the result (in 
this case: 4) with the target number shown above (in this case: 5) to 
determine if they are equal or unequal. Based on Siegler and Booth 
(2004), another task tested the accuracy of the mental number line: a 
number was displayed on the screen, and the children were required 
to use a computer mouse to place that number on an unscaled number 
line where only the endpoints were marked with 0 and 100.

2.2.5.3 Calculation
The retest reliability of this subscale is 0.85 (Kuhn et al., 2017). The 

construct Calculation comprises the subtests (1) addition, (2) 
subtraction and (3) multiplication. The addition tasks involve simple 
arithmetic fact retrieval (e.g., to solve the task 1 + 6) and more difficult 
tasks (e.g., 183 + 18). The subtraction tasks are structured congruently 
to the addition tasks, but here numbers are not added but subtracted. 
The task category multiplication involves multiplication tasks to 
be solved by mental calculation (e.g., 6 * 17). All these tasks, which 
belong to the construct Calculation, focus on calculating with 
concrete numbers.

2.3 Statistical analysis

For all calculations and analyses version 4.3.3 of the statistical 
software R was used (R Core Team, 2024). The values/ scores of all 

https://doi.org/10.3389/fpsyg.2025.1590581
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Kißler and Kuhn� 10.3389/fpsyg.2025.1590581

Frontiers in Psychology 07 frontiersin.org

variables underwent T-standardization, which produced T-scores. 
This led to a standardization of the sample’s data with a mean of 50 
and a standard deviation of 10.

2.3.1 General approach to identify possible 
subtypes of CwD

Because the aim of this study is to identify subtypes of dyscalculia, 
model-based clustering (parameterized finite Gaussian mixture 
models) based on the R-package mclust (Scrucca et al., 2016; Fraley 
et  al., 2020; Fraley et  al., 2024) was performed. In principal, the 
subtyping procedure was based on Kißler et al. (2021), although in 
contrast to the study of Kißler et al. (2021) the sample of this study was 
much larger, encompassed children with and without dyscalculia and 
the research question was not identical, too. However, the subtyping 
procedure was suitable because in this study, similar to the study by 
Kißler et al. (2021), the identification of clusters was intended in order 
to identify specific cognitive profiles or subgroups/ subtypes 
of children.

Model-based clustering was used to assess individuals’ cognitive 
profiles, with the Bayesian Information Criterion (BIC) determining 
the number of clusters (i.e., subgroups/ subtypes): Each participant in 
the sample was assigned to a distinct cluster based on the probability 
of belonging to one of the identified clusters (Vanbinst et al., 2015; 
Bouveyron et  al., 2019). Clusters can vary in their geometric 
characteristics as their spatial orientation or their volume (equal vs. 
varying volume) and when determining the number of clusters, 
different models with those varying geometric characteristics were 
used to find out which combination of (1) number of clusters and (2) 
geometric characteristics of these models (= number-characteristics-
combination) fit the data best (Makhabel et al., 2017; Bouveyron et al., 
2019; Fraley et al., 2020). In the package mclust, each of these different 
models has a unique identifier that can be  used to look up its 
geometric characteristics in the manual: for example, the identifier 
EEI stands for a model with diagonal clusters, equal volume, and equal 
shape (Fraley et al., 2020). The number-characteristics-combination 
with the lowest absolute BIC fits the data best (Vanbinst et al., 2015; 
Bouveyron et al., 2019). As the number-characteristics-combination 
with the lowest absolute BIC is the best trade-off to fit the data, the 
combination with the lowest absolute BIC was selected for further 
analyses (Pieters et al., 2015; Kißler et al., 2021).

2.3.2 Dealing with missing values and variable 
levels

First, subtyping was performed by using the test results that were 
measured on subtest level (the subtests were described in subsection 
2.2). In a second step, the same analyses were conducted on the 
higher-level constructs. The difference between subtest level and 
construct level is illustrated by the following example: The subtests dot 
enumeration, symbolic magnitude comparison, and mixed magnitude 
comparison were aggregated to the construct Basic Numerical 
Processing (BNP) by computing the mean of the three subtests. For 
both CNP and Calculation, the mean of the subtests belonging to the 
respective construct (see subsection 2.2.5) was calculated too. The 
construct approach reduces the impact of specific subtests on the 
subtyping outcome, as a single subtest might have a disproportionately 
strong differentiating effect.

Furthermore, for each of the two approaches described above 
(subtest level and construct level), another two-step approach was 

necessary to address the potential impact and distortion resulting 
from missing data. One of these two further steps was that the subtest-
approach and the construct-approach were performed by only 
considering variables of various mathematical competencies measured 
using the CODY-M 2–4 battery (Kuhn et al., 2017), because only for 
those variables complete data sets were available ( 1n  = 1,015). This 
means, the following variables were not included in these two 
subtypings: matrix span, intelligence and reading fluency. Using 
mathematical variables only as one among other approaches for 
subtyping children is also in line with similar studies (e.g., Pieters 
et al., 2015).

Besides these analyses on subtest and construct level by only 
considering variables of different mathematical competencies 
measured by using the CODY-M 2–4 battery (Kuhn et al., 2017), the 
analyses were performed again for all variables (now also including 
matrix span, intelligence and reading fluency). But data sets with 
missing data had to be  excluded from these analyses because the 
chosen statistical procedure can only be performed with complete 
data sets. Therefore, the sample size was reduced accordingly in this 
approach ( 2n  = 478). In contrast to Kißler et al. (2021), working with 
imputations was not purposeful here to deal with the missing values, 
because values were missing for too many subjects to obtain 
interpretable results after performing the imputation procedures: 
regarding intelligence 526 of 1,015 cases (=51.82%) were missing and 
regarding reading fluency 537 of 1,015 cases (=52.91%) were missing.

In summary, the total of four subtyping approaches was used to 
check systematically whether the results are robust: (1) subtest-
approach by considering all variables (2) subtest-approach by only 
considering variables encompassing mathematical competencies, (3) 
construct-approach by considering all variables (4) construct-
approach by only considering variables encompassing 
mathematical competencies.

2.3.3 Methods to investigate the identified 
subtypes

The identified subgroups were compared with each other for 
differences and similarities. Bayesian t-tests and post-hoc Tukey tests as 
well as frequentist t-tests were used for this purpose. Unlike frequentist 
statistics, Bayesian methods, such as Bayesian t-tests, can not only 
be used to check if there is evidence for a difference between groups 
but also to inspect whether there is evidence for equality among the 
analyzed groups (Rouder et  al., 2012; Wagenmakers et  al., 2018). 
Bayesian analyses in this study were performed by using the R-package 
BayesFactor (Morey et  al., 2024). A notable distinction between 
frequentist and Bayesian statistics is that Bayesian statistics do not 
yield p-values (e.g., p smaller than 0.05 means that there is evidence 
for the alternative hypothesis); instead, they provide Bayes Factors 
(BF). A BF below (1) 0.33 indicates moderate evidence supporting the 
null hypothesis, (2) 0.10 suggests strong evidence supporting the null 
hypothesis, (3) 0.033 indicates very strong evidence supporting the 
null hypothesis (Wagenmakers et  al., 2018; Kißler et  al., 2021). 
Conversely, a BF above (4) 3 suggests moderate evidence for the 
alternative hypothesis, (5) 10 suggests strong evidence for the 
alternative hypothesis, and (6) 30 suggests very strong evidence for the 
alternative hypothesis (Wagenmakers et al., 2018; Kißler et al., 2021). 
This means that results between 0.33 and 3 provide only indications 
of a trend, but the evidence is ambiguous. The results of the frequentist 
approach and results of the Bayesian analyses can lead to different 
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conclusions, but if the results point into the same direction, this is a 
hint for robustness (Lindley, 1957; Sprenger, 2013; Wagenmakers 
et al., 2018).

Cohen’s d was used as an effect size to quantify the difference 
between subgroups and was computed with the R-package lsr 
(Navarro, 2015). Regardless of which subtest results were used for 
clustering, the identified subgroups were compared with respect to all 
subtests presented in the chapter about tests (except for the HRT 1–4, 
which was only used for identifying dyscalculia). The resulting 
cognitive profiles of the identified subgroups were visualized for all 
subtests, too.

χ2-tests were used to check whether the children with dyscalculia 
(categorical variable: yes/ no) were evenly distributed across the 
subgroups and Cramér’s V was used to measure the effect size. Here, 
dyscalculia was defined by a percentage rank (PR) of less than 16, 10, 
or 5 in the diagnostic test for assessing dyscalculia (HRT 1–4: Haffner 
et al., 2005). For each of these PRs the χ2-test was performed, and 
Cramér’s V was calculated, too. Fisher’s exact test for count data was 
conducted to check the results of χ2-tests for robustness. These 
analyses allow for examining the extent to which a different cut-off 
(PR) impacts the interpretation of the results.

Furthermore, it was necessary to investigate whether the 
subgroups show cognitive profiles that differ equally in all cognitive 
domains or whether the identified subgroups exhibit greater 
differences in particular cognitive domains than in other: If two 
subgroups run parallel to each other, this would mean that the more 
severely impaired subgroup of these two groups is equally inferior to 
the other subgroup in all subareas. If the cognitive profiles do not run 
parallel to each other, the more impaired subgroup shows more 
difficulties in specific cognitive subareas than in other cognitive 
subdomains. Parallelism was analyzed using profile analysis by using 
the R package profileR (Bulut and Desjardins, 2020; Bulut and 
Desjardins, 2022).

Parallelism was tested in two ways if more than two subgroups 
were identified: In a first step, all resulting subgroups were tested for 
parallelism in a joint analysis. If the result of this analysis becomes 

significant, at least some identified subgroups do not run parallel to 
each other. However, some subgroups might still run parallel to each 
other, while others do not. Therefore, in a second step, each subgroup 
was tested against each other subgroup to analyze if there is evidence 
for parallelism.

3 Results

In this section, the results of the different clustering approaches 
are presented. Each subsection focuses on the outcomes obtained 
when a specific clustering approach – indicated in the corresponding 
heading – was used.

Figures  1–3 present cognitive profiles. Each subsection of the 
results section discusses the figure that is relevant to the respective 
analysis. For example, Figure 1 is discussed in the first subsection of the 
results as it is about the results at subtest level, if all variables were used 
for clustering. These figures show T-scores, which have an overall mean 
of 50 and a standard deviation of 10. This means that scores below 50 
are below average, and scores above 50 are above average. For each 
identified subgroup, the corresponding values are visualized to allow 
comparisons across subgroups. Exact values can be found in the tables.

The Supplementary materials include Supplementary Table A1 
and Supplementary Figure A1, which present the descriptive statistics 
based on a division of the total sample into subgroups according to 
their results in the HRT 1–4 (PR > 16; PR < 16; PR < 10; PR < 5). This 
allows the comparison of the identified subtypes, as presented in the 
following subsections, with those groups of children that show a 
specific performance in the HRT 1–4.

3.1 Results at subtest level (all variables 
were used for clustering)

In this approach, all subtest-level results (except for the HRT 1–4) 
described in the methods section were used for subtyping, and 

FIGURE 1

Results at subtest level (all variables were used for clustering). eza = dot enumeration; evs = symbolic magnitude comparison; evg = mixed magnitude 
comparison; ad = addition; su = subtraction; mul = multiplication; zd = transcoding; zt = number sets; zs = number line; ms = matrix span; 
sls = reading fluency; cft = intelligence; note: the means and standard errors are shown.
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incomplete data sets were excluded from the analysis ( 2n = 478). The 
analyses revealed three subgroups: Their cognitive profiles are shown 
in Figure 1. This three-subgroup-solution with an absolute BIC of 
41008.16 was the best solution to subdivide the children of the 
analyzed sample into subgroups based on data. The best fitting model 
(EEV) that was therefore used for clustering encompasses clusters 
with the following characteristics: ellipsoidal distributions with equal 
volume and equal shape (Scrucca et al., 2016; Fraley et al., 2024). This 
solution will be analyzed in more detail, now.

Figure 1 shows that the curves (cognitive profiles) of group 1a and 
group 3a were very similar and that the mean scores of both subgroups 
for the subtests often were close to the T-score of 50, i.e., to the 
expected overall mean value on population level for all children in 
general. Only regarding the variable transcoding, group  1a and 
group 3a seemed to differ strongly: Here, group 1a was clearly superior 

to group  3a. While group  1a showed an above-average mean for 
transcoding, the mean score of group 3a was even below the T-score 
of 45 for this variable. The mean scores of group 2a were below the 
T-score of 50 for each test. The curve that displays the cognitive profile 
of group 2a was always below the curves of the groups 1a and 3a. 
Descriptive results on the 3 subgroups (mean, standard deviation, and 
standard error) are shown in Table 1.

Parallelism was tested for this three-subgroup-solution that is 
shown in Figure 1 in two ways. In a first step, all resulting subgroups 
were tested for parallelism in a joint analysis with profileR (Bulut and 
Desjardins, 2020; Bulut and Desjardins, 2022). As the result of this 
analysis became significant (p < 0.001), at least some cognitive profiles 
of the identified subgroups did not run parallel to each other. However, 
individual cognitive profiles of the subgroups could still have been run 
parallel to each other, while others did not. Therefore, in a second step, 

FIGURE 2

Results at subtest level (only mathematical variables were used for clustering). eza = dot enumeration; evs = symbolic magnitude comparison; 
evg = mixed magnitude comparison; ad = addition; su = subtraction; mul = multiplication; zd = transcoding; zt = number sets; zs = number line; 
ms = matrix span; sls = reading fluency; cft = intelligence; note: the means and standard errors are shown.

FIGURE 3

Results at construct level (only mathematical variables were used for clustering). eza = dot enumeration; evs = symbolic magnitude comparison; 
evg = mixed magnitude comparison; ad = addition; su = subtraction; mul = multiplication; zd = transcoding; zt = number sets; zs = number line; 
ms = matrix span; sls = reading fluency; cft = intelligence; note: the means and standard errors are shown.
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each subgroup was tested against every other subgroup individually 
to analyze whether there was evidence against parallelism. All of these 
analyses led to significant results (at least p < 0.001). Therefore, the 
data did not support parallelism for any profile comparison.

Group comparisons are shown in Table  2. As group  2a was 
significantly inferior to groups 1a and 3a in almost all areas, group 2a 
seemed to be considerably impaired. Only in some areas of basic 
numerical processing (symbolic magnitude comparison and mixed 
magnitude comparison) the mentioned differences between group 1a 
and group 2a, respectively, group 2a and group 3a were not always 
significant, whereas Bayesian analyses actually suggested equality 
only between group 1a and group 2a regarding the variable mixed 
magnitude comparison (BF = 0.17). Regarding the non-significant 
differences between group 2a and group 3a, the Bayesian analyses did 
not clearly confirm that there was equality because the BF was above 
0.33. Significant difference between groups 1a and 3a was found in 
transcoding, only. In fact, if comparing group 1a and 3a there were 
non-significant differences in most subtests and Bayesian analyses 
even showed that equality has to be assumed in many cases because 
the BF was below 0.33, often. The different transcoding abilities 
seemed to be decisive for the differentiation between group 1a and 
group 3a.

There was a disproportionate accumulation of children with 
dyscalculia or arithmetic difficulties in subgroup 2a (58.93% had a PR 
below 16, 55.36% had a PR below 10, and 26.79% had even a PR below 
5): more than half of the individuals (if cut-off scores of PR < 16 or 
PR < 10 were applied) in this subgroup were dyscalculic. No group 
consisted solely of either dyscalculic or non-dyscalculic children. 
However, the proportion of dyscalculic children in group 2a was very 
high. The χ2-Tests confirmed that the proportion of dyscalculic 
children was not equally distributed among the subgroups (if PR < 16: 
χ2 =87.30, p < 0.001, Cramér’s V = 0.40; if PR < 10: χ2 = 103.73, 
p < 0.001, Cramér’s V = 0.47; if PR < 5: χ2 = 54.02, p < 0.001, Cramér’s 
V = 0.34). The results for Fisher’s exact test to check the results of the 
χ2-tests for robustness were almost identical and therefore robust. If 
the exact distributions of dyscalculic versus non-dyscalculic children 

across the groups (based on the PR) are of interest, these can be found 
in Supplementary Table A2.

3.2 Results at subtest level (only 
mathematical variables were used for 
clustering)

In this approach, only the results from the mathematical subtests 
of the CODY-M 2–4 (Kuhn et  al., 2017) were used for subtyping 
( 1n  = 1,015). The analysis revealed six subgroups, which are shown in 
Figure 2. This six-subgroup-solution with an absolute BIC of 63700.88 
was the best solution to subdivide children of the analyzed sample into 
subgroups based on data: The best fitting model (EVE) that was 
therefore used for clustering encompasses clusters with the following 
characteristics: ellipsoidal distributions with equal volume and equal 
orientation (Scrucca et al., 2016; Fraley et al., 2024). This solution will 
be analyzed in more detail, now.

If looking at the different curves which reflect cognitive profiles, 
it was striking that especially group 3b laid below the curves of all the 
other groups (except for two variables, which belong to the construct 
basic numerical processing (BNP): symbolic magnitude comparison and 
mixed magnitude comparison). The graph of group  4b stood out 
because the mean values for the individual variables fluctuated only 
weakly around the T-scores of 50. Children in this subgroup thus 
seemed to have predominantly average scores and were neither high- 
nor low-performers. Even though the graph of group 2b was similar 
to the graph of group 4b, the mean values of group 2b were usually 
somewhat lower. The graph of group 1b was almost constantly slightly 
above the graph of group 4b and the T-scores were slightly above 50. 
The graph of group 5b was similar to the graph of group 1b, but the 
children of group 5b tended to perform slightly better on average than 
the children of group 1b. In transcoding, group 5b showed the highest 
scores of all groups. Group  6b showed a very heterogeneous 
competence profile: in BNP, group 6b’s scores were in the average 
range; the calculations skills of group  6b seemed to be  very high 

TABLE 1  Descriptive results (Clustering on subtest level, all variables were used for clustering).

Subtests Group 1a Group 2a Group 3a

M SD SE M SD SE M SD SE

Dot enumeration 50.99 9.42 0.54 44.25 9.59 1.27 51.44 10.21 0.93

Symbolic magnitude 

comparison

50.83 9.23 0.53 47.09 13.30 1.76 50.54 8.28 0.76

Mixed magnitude 

comparison

49.88 9.41 0.54 49.02 12.90 1.71 51.41 8.44 0.77

Addition 52.40 7.25 0.42 37.28 6.60 0.87 51.51 6.61 0.60

Subtraction 52.29 8.53 0.49 39.75 7.51 0.99 51.38 7.67 0.70

Multiplication 51.65 8.45 0.49 38.33 6.76 0.90 52.71 7.40 0.68

Transcoding 54.87 2.13 0.12 37.84 6.47 0.86 42.81 4.99 0.46

Number sets 51.62 9.36 0.54 40.68 7.63 1.01 52.80 9.31 0.85

Number line 52.33 9.36 0.54 39.70 8.93 1.18 50.42 8.61 0.79

Matrix span 50.94 9.25 0.53 44.86 8.40 1.11 51.50 10.03 0.92

Reading fluency 51.52 9.26 0.53 39.63 8.38 1.11 51.11 9.64 0.88

Intelligence 51.67 9.39 0.54 39.34 7.21 0.96 50.70 9.84 0.90
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because the children of group 6b reached the highest scores of all 
groups in this area. But transcoding skills of group 6b were lower than 
the transcoding skills of the (other) groups that tended to perform 
above average in other subtests: group 6b’s mean score in transcoding 
was below the T-score of 45. In intelligence and reading ability, 
group  6b also appeared to be  in the average performance range. 
Descriptive results on the 6 subgroups (mean, standard deviation, and 
standard error) are shown in Table 3.

Parallelism was tested for this six-subgroup-solution that is 
shown in Figure 2 in two ways. In a first step, all resulting subgroups 
were tested for parallelism in a joint analysis with profileR (Bulut and 
Desjardins, 2020; Bulut and Desjardins, 2022). As the result of this 
analysis became significant (p < 0.001), at least some cognitive 
profiles of the identified subgroups did not run parallel to each other. 
However, individual cognitive profiles of the subgroups could still 
have been run parallel to each other, while others did not. Therefore, 
in a second step, each subgroup was tested against every other 
subgroup individually to analyze whether there was evidence for 
parallelism. All of these analyses led to significant results (at least 
p < 0.01). Therefore, the data did not support parallelism for any 
direct profile comparison.

Group comparisons are shown in Tables 4–9. In Table 6 is shown 
that group 3b was consistently (and often significantly) inferior to all 
other groups in all mathematical tests (except for the subtests that can 
be  assigned to the BNP: dot enumeration, symbolic magnitude 
comparison, mixed magnitude comparison). Earlier, it was described 
that the graph of group  2b laid slightly, but noticeable below the 
graphs of the other groups in most areas (except of group 3b). In 
Table  5, it can be  seen that many of these differences became 
significant, and also with Bayesian analyses, evidence emerged that 
group 2b showed reduced performance in many subtests compared to 
the groups 1b, 5b, and 6b (especially in mathematical subdomains). 
Although group 4b tended to show higher performance descriptively 
compared to group 2b (Table 5), most of these differences did not 

become significant, and in some subtests, due to the fact that BFs were 
below 0.33, their performance seemed equal. Even though group 2b 
and group 4b were hardly distinguishable in many subtests because 
the differences in these subtests were not significant, they still seemed 
to be  separable groups due to the visually different curves in the 
coordinate system and the significant difference in transcoding 
(p < 0.001; BF = 5.87*10^65). The performance of group 4b seemed 
to be  slightly better than the performance of group 2b in 8 of 12 
subtests (the exceptions are dot enumeration, number sets, matrix span 
and reading fluency, although these differences did not become 
significant): Therefore, group 4b seemed less impaired if these two 
groups were compared with each other.

There was a disproportionately large number of children with 
dyscalculia in group 3b (39.76% had a PR below 16, 36.14% had a PR 
below 10 and 21.69% had even a PR below 5). However, there was no 
group in which there was no child with dyscalculia, if cut-off scores of 
PR < 16 or PR < 10 were applied – but if a cut-off score of PR < 5 was 
applied, there was no dyscalculic child in group 4b or 6b. Besides 
group 3b, larger accumulations of children with dyscalculia were also 
found in group 2b (18.25% had a PR below 16, 14.60% had a PR below 
10 and 5.84% had even a PR below 5) and group 4b (16.05% had a PR 
below 16, 12.35% had a PR below 10, but no child of this subgroup had 
a PR below 5). This comparison of group 2b and 4b supports the 
previously stated assumption that group 4b seemed to encompass less 
impaired children than group 2b did. The χ2-tests showed that the 
proportion of dyscalculic children was not equally distributed among 
the subgroups (if PR < 16: χ2 = 79.78, p < 0.001, Cramér’s V = 0.28; if 
PR < 10: χ2 = 95.06, p < 0.001, Cramér’s V = 0.31; if PR < 5: χ2 = 80.09, 
p < 0.001, Cramér’s V = 0.28). The results for Fisher’s exact test to 
check the results of χ2-tests for robustness were almost identical and 
therefore robust. If the exact distributions of dyscalculic versus 
non-dyscalculic children across the groups (based on the PR) are of 
interest, these can be  found in the electronic supplements 
(Supplementary Table A3).

TABLE 2  Group comparison for the resulting subgroups (clustered on subtest level, all variables were used for clustering).

Subtests Group 1a vs. 2a Group 1a vs. 3a Group 2a vs. 3a

Tukey BF d Tukey BF d Tukey BF d

Dot enumeration 6.75*** 1.17*104 0.71 −0.45 0.13 0.05 −7.20*** 1.22*103 0.72

Symbolic 

magnitude 

comparison

3.75* 1.08 0.38 0.29 0.12 0.03 −3.45 0.77 0.34

Mixed magnitude 

comparison

0.86 0.17 0.09 −1.53 0.38 0.17 −2.39 0.37 0.34

Addition 15.12*** 5.13*1034 2.11 0.89 0.23 0.13 −14.23*** 1.62*1025 2.15

Subtraction 12.53*** 1.50*1022 1.50 0.91 0.20 0.11 −11.63*** 2.45*1014 1.53

Multiplication 13.31*** 4.51*1028 1.62 −1.06 0.26 0.13 −14.38*** 2.69*1022 2.00

Transcoding 17.03*** 9.32*1054 5.28 12.06*** 4.60*1083 3.76 −4.97*** 1.74*104 0.90

Number sets 10.94*** 1.55*1016 1.20 −1.18 0.23 0.13 −12.12*** 3.48*1013 1.38

Number line 12.62*** 5.73*1015 1.36 1.91 0.71 0.21 −10.72*** 4.70*109 1.23

Matrix span 6.08*** 2.83*103 0.67 −0.56 0.14 0.06 −6.64*** 2.12*103 0.70

Reading fluency 11.89*** 3.40*1014 1.30 0.42 0.13 0.04 −11.48*** 6.84*109 1.24

Intelligence 12.33*** 9.04*1021 1.36 0.97 0.18 0.10 −11.36*** 6.34*1010 1.25

*p < 0.05; **p < 0.01; ***p < 0.001.
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TABLE 3  Descriptive results (Clustering on subtest level; mathematical variables were used for clustering).

Subtests
Group 1b Group 2b Group 3b Group 4b Group 5b Group 6b

M SD SE M SD SE M SD SE M SD SE M SD SE M SD SE

Dot enumeration 51.11 9.72 0.45 50.12 9.25 0.79 45.49 10.04 1.08 49.63 10.58 1.17 52.08 8.79 0.62 50.67 10.26 1.57

Symbolic 

magnitude 

comparison

51.03 9.58 0.44 47.37 9.49 0.81 51.21 11.31 1.22 50.09 8.47 0.94 51.46 9.00 0.64 49.28 8.77 1.34

Mixed magnitude 

comparison

50.47 9.48 0.44 48.82 9.49 0.81 53.74 11.19 1.21 51.02 8.87 0.98 50.11 9.66 0.69 49.79 8.95 1.37

Addition 51.71 7.61 0.35 48.53 7.83 0.67 40.43 7.59 0.82 49.55 6.83 0.75 53.48 6.81 0.48 56.16 6.87 1.05

Subtraction 52.02 8.48 0.39 48.03 7.57 0.64 41.20 7.90 0.85 50.29 7.00 0.77 53.19 8.40 0.60 58.05 7.64 1.17

Multiplication 51.45 8.24 0.38 48.93 8.52 0.73 42.58 8.82 0.95 49.55 8.18 0.90 52.52 8.58 0.61 57.19 8.22 1.25

Transcoding 53.27 0.44 0.02 41.18 2.09 0.18 34.66 4.84 0.52 48.16 1.78 0.20 57.78 0.89 0.06 43.88 6.09 0.93

Number sets 51.23 9.67 0.45 51.32 9.25 0.79 43.36 8.83 0.95 49.95 7.85 0.87 53.17 9.18 0.65 52.00 11.22 1.71

Number line 51.59 9.63 0.44 48.57 9.32 0.79 39.53 7.12 0.77 50.35 7.32 0.81 53.69 9.20 0.65 55.67 8.44 1.29

Matrix span 50.44 9.54 0.44 50.43 9.64 0.82 46.36 9.33 1.01 48.82 9.81 1.08 51.79 9.41 0.67 53.30 10.07 1.54

Reading fluency 50.97 9.39 0.72 49.38 10.69 1.29 43.23 10.31 1.50 48.51 10.28 1.65 52.07 9.24 0.80 49.08 9.78 2.13

Intelligence 51.96 9.06 0.68 48.65 10.57 1.26 41.77 8.57 1.25 49.54 11.14 1.78 51.17 9.76 0.84 49.84 8.95 1.91
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TABLE 4  Comparison between subgroup 1b and the other subgroups (clustered on subtest level; mathematical variables were used for clustering).

Subtests

Group 1b

Vs. Group 2b Vs. Group 3b Vs. Group 4b Vs. Group 5b Vs. Group 6b

Tukey BF d Tukey BF d Tukey BF d Tukey BF d Tukey BF d

Dot enumeration 1.00 0.19 0.10 5.62*** 1.06*104 0.58 1.48 0.28 0.15 −0.97 0.19 0.10 0.44 0.18 0.04

Symbolic 

magnitude 

comparison

3.66** 1.91*102 0.38 −0.18 0.13 0.02 0.94 0.18 0.10 −0.43 0.11 0.05 1.75 0.32 0.18

Mixed magnitude 

comparison

1.65 0.51 0.17 −3.27* 2.83 0.34 −0.55 0.15 0.06 0.36 0.10 0.04 0.68 0.19 0.07

Addition 3.18*** 6.95*102 0.41 11.28*** 8.09*1028 1.48 2.16 2.04 0.29 −1.78 6.79 0.24 −4.46** 94.70 0.59

Subtraction 3.99*** 6.38*104 0.48 10.82*** 1.74*1022 1.29 1.72 0.86 0.21 −1.17 0.34 0.14 −6.03*** 1.87*103 0.72

Multiplication 2.52* 11.83 0.30 8.87*** 2.01*1015 1.06 1.90 0.77 0.23 −1.07 0.29 0.13 −5.74*** 1.11*103 0.70

Transcoding 12.09*** 1.78*10279 11.32 18.60*** 9.18*10140 9.58 5.11*** 6.15*1092 6.41 −4.51*** 1.22*10296 7.38 9.38*** 5.25*1018 5.21

Number sets −0.09 0.11 0.01 7.87*** 1.12*109 0.82 1.28 0.30 0.14 −1.93 1.53 0.20 −0.77 0.19 0.08

Number line 3.02** 17.97 0.32 12.05*** 8.96*1032 1.30 1.23 0.31 0.13 −2.10 2.55 0.22 −4.09 4.81 0.43

Matrix span 0.01 0.11 0.00 4.08** 72.09 0.43 1.62 0.34 0.17 −1.35 0.37 0.14 −2.86 0.87 0.30

Reading fluency 1.59 0.28 0.16 7.74*** 7.27*103 0.81 2.46 0.49 0.26 −1.10 0.21 0.81 1.88 0.33 0.20

Intelligence 3.31 2.59 0.35 10.19*** 1.59*108 1.14 2.42 0.49 0.26 0.79 0.16 0.08 2.12 0.37 0.23

*p < 0.05; **p < 0.01; ***p < 0.001.
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TABLE 5  Comparison between subgroup 2b and the other subgroups (clustered on subtest level; mathematical variables were used for clustering).

Subtests

Group 2b

Vs. Group 1b Vs. Group 3b Vs. Group 4b Vs. Group 5b Vs. Group 6b

Tukey BF d Tukey BF d Tukey BF d Tukey BF d Tukey BF d

Dot enumeration −1.00 0.19 0.10 4.63** 45.78 0.48 0.48 0.16 0.05 −1.96 0.78 0.22 −0.56 0.20 0.06

Symbolic 

magnitude 

comparison

−3.66** 1.91*102 0.38 −3.84* 4.82 0.38 −2.72 1.27 0.30 −4.10** 2.38*102 0.44 −1.91 0.35 0.20

Mixed magnitude 

comparison

−1.65 0.51 0.17 −4.93** 45.62 0.48 −2.21 0.59 0.24 −1.29 0.25 0.13 −0.97 0.22 0.10

Addition −3.18*** 6.95*102 0.41 8.10*** 8.59*109 1.05 −1.02 0.24 0.14 −4.96*** 2.03*106 0.68 −7.63*** 2.71*105 1.00

Subtraction −3.99*** 6.38*104 0.48 6.83*** 1.36*107 0.89 −2.26 1.46 0.31 −5.16*** 9.59*105 0.64 −10.02*** 3.11*109 1.32

Multiplication −2.52* 11.83 0.30 6.35*** 5.73*104 0.74 −0.61 0.17 0.07 −3.59** 1.03*102 0.42 −8.25*** 1.36*105 0.98

Transcoding −12.09*** 1.78*10279 11.32 6.52*** 1.17*1022 1.91 −6.98*** 5.87*1065 3.53 −16.60*** 3.90*10228 11.06 −2.70*** 7.37 0.78

Number sets 0.09 0.11 0.01 7.96*** 8.41*106 0.88 1.37 0.29 0.16 −1.85 0.58 0.20 −0.68 0.20 0.07

Number line −3.02** 17.97 0.32 9.03*** 2.52*1011 1.06 −1.79 0.49 0.21 −5.12*** 1.35*104 0.55 −7.11*** 1.22*103 0.78

Matrix span −0.01 0.11 0.00 4.07* 13.14 0.43 1.61 0.29 0.17 −1.36 0.27 0.14 −2.87 0.68 0.30

Reading fluency −1.59 0.28 0.16 6.15* 13.00 0.58 0.87 0.23 0.08 −2.69 0.80 0.28 0.29 0.26 0.03

Intelligence −3.31 2.59 0.35 6.88** 79.01 0.70 −0.89 0.23 0.08 −2.52 0.62 0.25 −1.19 0.28 0.12

*p < 0.05; **p < 0.01; ***p < 0.001.

https://doi.org/10.3389/fpsyg.2025.1590581
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


K
iß

ler an
d

 K
u

h
n

�
10

.3
3

8
9

/fp
syg

.2
0

2
5.159

0
58

1

Fro
n

tie
rs in

 P
sych

o
lo

g
y

15
fro

n
tie

rsin
.o

rg

TABLE 6  Comparison between subgroup 3b and the other subgroups (clustered on subtest level; mathematical variables were used for clustering).

Subtests

Group 3b

Vs. Group 1b Vs. Group 2b Vs. Group 4b Vs. Group 5b Vs. Group 6b

Tukey BF d Tukey BF d Tukey BF d Tukey BF d Tukey BF d

Dot enumeration −5.62*** 1.06*104 0.58 −4.63** 45.78 0.48 −4.15 3.73 0.40 −6.59*** 4.63*104 0.72 −5.19* 5.58 0.51

Symbolic

magnitude 

comparison

0.18 0.13 0.02 3.84* 4.82 0.38 1.12 0.21 0.11 −0.26 0.14 0.03 1.93 0.33 0.18

Mixed

magnitude 

comparison

3.27* 2.83 0.34 4.93** 45.62 0.48 2.72 0.68 0.27 3.63* 3.50 0.36 3.95 1.62 0.38

Addition −11.28*** 8.09*1028 1.48 −8.10*** 8.59*109 1.05 −9.12*** 7.60*1010 1.26 −13.05*** 7.31*1031 1.85 −15.73*** 1.03*1018 2.14

Subtraction −10.82*** 1.74*1022 1.29 −6.83*** 1.36*107 0.89 −9.10*** 1.54*1010 1.22 −11.99*** 1.67*1021 1.45 −16.85*** 1.82*1018 2.16

Multiplication −8.87*** 2.01*1015 1.06 −6.35*** 5.73*104 0.74 −6.97*** 3.57*104 0.82 −9.94*** 6.36*1013 1.15 −14.60*** 2.38*1012 1.69

Transcoding −18.60*** 9.18*10140 9.58 −6.52*** 1.17*1022 1.91 −13.50*** 3.72*1052 3.67 −23.11*** 1.16*10124 8.38 −9.22*** 2.75*1011 1.75

Number sets −7.87*** 1.12*109 0.82 −7.96*** 8.41*106 0.88 −6.59*** 1.54*104 0.79 −9.81*** 1.90*1012 1.08 −8.64*** 8.49*102 0.89

Number line −12.05*** 8.96*1032 1.30 −9.03*** 2.52*1011 1.06 −10.82*** 6.55*1014 1.50 −14.15*** 6.88*1030 1.64 −16.14*** 8.17*1017 2.13

Matrix span −4.08** 72.09 0.43 −4.07* 13.14 0.43 −2.46 0.60 0.26 −5.43*** 1.46*103 0.58 −6.94** 1.37*102 0.72

Reading fluency −7.74*** 7.27*103 0.81 −6.15* 13.00 0.58 −5.28 2.51 0.51 −8.84*** 7.72*104 0.93 −5.85 1.93 0.58

Intelligence −10.19*** 1.59*108 1.14 −6.88** 79.01 0.70 −7.77** 46.73 0.79 −9.40*** 4.69*105 0.99 −8.07* 45.89 0.93

*p < 0.05; **p < 0.01; ***p < 0.001.

https://doi.org/10.3389/fpsyg.2025.1590581
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


K
iß

ler an
d

 K
u

h
n

�
10

.3
3

8
9

/fp
syg

.2
0

2
5.159

0
58

1

Fro
n

tie
rs in

 P
sych

o
lo

g
y

16
fro

n
tie

rsin
.o

rg

TABLE 7  Comparison between subgroup 4b and the other subgroups (clustered on subtest level; mathematical variables were used for clustering).

Subtests

Group 4b

Vs. Group 1b Vs. Group 2b Vs. Group 3b Vs. Group 5b Vs. Group 6b

Tukey BF d Tukey BF d Tukey BF d Tukey BF d Tukey BF d

Dot enumeration −1.48 0.28 0.15 −0.48 0.16 0.05 4.15 3.73 0.40 −2.45 0.71 0.26 −1.04 0.23 0.10

Symbolic 

magnitude 

comparison

−0.94 0.18 0.10 2.72 1.27 0.30 −1.12 0.21 0.11 −1.38 0.28 0.16 0.81 0.22 0.09

Mixed magnitude 

comparison

0.55 0.15 0.06 2.21 0.59 0.24 −2.72 0.68 0.27 0.91 0.19 0.10 1.23 0.25 0.14

Addition −2.16 2.04 0.29 1.02 0.24 0.14 9.12*** 7.60*1010 1.26 −3.94*** 1.06*103 0.58 −6.61*** 1.28*104 0.97

Subtraction −1.72 0.86 0.21 2.26 1.46 0.31 9.10*** 1.54*1010 1.22 −2.89 8.59 0.36 −7.75*** 1.36*105 1.07

Multiplication −1.90 0.77 0.23 0.61 0.17 0.07 6.97*** 3.57*104 0.82 −2.97 4.06 0.35 −7.64*** 6.29*103 0.93

Transcoding −5.11*** 6.15*1092 6.41 6.98*** 5.87*1065 3.53 13.50*** 3.72*1052 3.67 −9.62*** 1.07*10129 7.89 4.27*** 1.17*103 1.11

Number sets −1.28 0.30 0.14 −1.37 0.29 0.16 6.59*** 1.54*104 0.79 −3.22 5.32 0.37 −2.05 0.33 0.22

Number line −1.23 0.31 0.13 1.79 0.49 0.21 10.82*** 6.55*1014 1.50 −3.33 17.29 0.38 −5.32* 68.16 0.69

Matrix span −1.62 0.34 0.17 −1.61 0.29 0.17 2.46 0.60 0.26 −2.97 2.02 0.31 −4.49 2.61 0.45

Reading fluency −2.46 0.49 0.26 −0.87 0.23 0.08 5.28 2.51 0.51 −3.56 1.31 0.38 −0.57 0.28 0.06

Intelligence −2.42 0.49 0.26 0.89 0.23 0.08 7.77** 46.73 0.79 −1.63 0.28 0.16 −0.30 0.27 0.03

*p < 0.05; **p < 0.01; ***p < 0.001.

https://doi.org/10.3389/fpsyg.2025.1590581
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


K
iß

ler an
d

 K
u

h
n

�
10

.3
3

8
9

/fp
syg

.2
0

2
5.159

0
58

1

Fro
n

tie
rs in

 P
sych

o
lo

g
y

17
fro

n
tie

rsin
.o

rg

TABLE 8  Comparison between subgroup 5b and the other subgroups (clustered on subtest level; mathematical variables were used for clustering).

Subtests

Group 5b

Vs. Group 1b Vs. Group 2b Vs. Group 3b Vs. Group 4b Vs. Group 6b

Tukey BF d Tukey BF d Tukey BF d Tukey BF d Tukey BF d

Dot enumeration 0.97 0.19 0.10 1.96 0.78 0.22 6.59*** 4.63*104 0.72 2.45 0.71 0.26 1.41 0.25 0.16

Symbolic 

magnitude 

comparison

0.43 0.11 0.05 4.10** 2.38*102 0.44 0.26 0.14 0.03 1.38 0.28 0.16 2.19 0.47 0.24

Mixed magnitude 

comparison

−0.36 0.10 0.04 1.29 0.25 0.13 −3.63* 3.50 0.36 −0.91 0.19 0.10 0.32 0.18 0.03

Addition 1.78 6.79 0.24 4.96*** 2.03*106 0.68 13.05*** 7.31*1031 1.85 3.94*** 1.06*103 0.58 −2.68 2.15 0.39

Subtraction 1.17 0.34 0.14 5.16*** 9.59*105 0.64 11.99*** 1.67*1021 1.45 2.89 8.59 0.36 −4.86** 44.56 0.59

Multiplication 1.07 0.29 0.13 3.59** 1.03*102 0.42 9.94*** 6.36*1013 1.15 2.97 4.06 0.35 −4.67* 21.99 0.55

Transcoding 4.51*** 1.22*10296 7.38 16.60*** 3.90*10228 11.06 23.11*** 1.16*10124 8.38 9.62*** 1.07*10129 7.89 13.89*** 3.13*1032 5.19

Number sets 1.93 1.53 0.20 1.85 0.58 0.20 9.81*** 1.90*1012 1.08 3.22 5.32 0.37 1.17 0.22 0.12

Number line 2.10 2.55 0.22 5.12*** 1.35*104 0.55 14.15*** 6.88*1030 1.64 3.33 17.29 0.38 −1.99 0.39 0.22

Matrix span 1.35 0.37 0.14 1.36 0.27 0.14 5.43*** 1.46*103 0.58 2.97 2.02 0.31 −1.51 0.27 0.16

Reading fluency 1.10 0.21 0.81 2.69 0.80 0.28 8.84*** 7.72*104 0.93 3.56 1.31 0.38 2.98 0.54 0.32

Intelligence −0.79 0.16 0.08 2.52 0.62 0.25 9.40*** 4.69*105 0.99 1.63 0.28 0.16 1.33 0.28 0.14

*p < 0.05; **p < 0.01; ***p < 0.001.
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TABLE 9  Comparison between subgroup 6b and the other subgroups (clustered on subtest level; mathematical variables were used for clustering).

Subtests

Group 6b

Vs. Group 1b Vs. Group 2b Vs. Group 3b Vs. Group 4b Vs. Group 5b

Tukey BF d Tukey BF d Tukey BF d Tukey BF d Tukey BF d

Dot enumeration −0.44 0.18 0.04 0.56 0.20 0.06 5.19 * 5.58 0.51 1.04 0.23 0.10 −1.41 0.25 0.16

Symbolic 

magnitude 

comparison

−1.75 0.32 0.18 1.91 0.35 0.20 −1.93 0.33 0.18 −0.81 0.22 0.09 −2.19 0.47 0.24

Mixed magnitude 

comparison

−0.68 0.19 0.07 0.97 0.22 0.10 −3.95 1.62 0.38 −1.23 0.25 0.14 −0.32 0.18 0.03

Addition 4.46** 94.70 0.59 7.63*** 2.71*105 1.00 15.73*** 1.03*1018 2.14 6.61*** 1.28*104 0.97 2.68 2.15 0.39

Subtraction 6.03*** 1.87*103 0.72 10.02*** 3.11*109 1.32 16.85*** 1.82*1018 2.16 7.75*** 1.36*105 1.07 4.86** 44.56 0.59

Multiplication 5.74*** 1.11*103 0.70 8.25*** 1.36*105 0.98 14.60*** 2.38*1012 1.69 7.64*** 6.29*103 0.93 4.67* 21.99 0.55

Transcoding −9.38*** 5.25*1018 5.21 2.70*** 7.37 0.78 9.22*** 2.75*1011 1.75 −4.27*** 1.17*103 1.11 −13.89*** 3.13*1032 5.19

Number sets 0.77 0.19 0.08 0.68 0.20 0.07 8.64*** 8.49*102 0.89 2.05 0.33 0.22 −1.17 0.22 0.12

Number line 4.09 4.81 0.43 7.11*** 1.22*103 0.78 16.14*** 8.17*1017 2.13 5.32* 68.16 0.69 1.99 0.39 0.22

Matrix span 2.86 0.87 0.30 2.87 0.68 0.30 6.94** 1.37*102 0.72 4.49 2.61 0.45 1.51 0.27 0.16

Reading fluency −1.88 0.33 0.20 −0.29 0.26 0.03 5.85 1.93 0.58 0.57 0.28 0.06 −2.98 0.54 0.32

Intelligence −2.12 0.37 0.23 1.19 0.28 0.12 8.07* 45.89 0.93 0.30 0.27 0.03 −1.33 0.28 0.14

*p < 0.05; **p < 0.01; ***p < 0.001.
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3.3 Results at construct level (both 
approaches)

When the analyses were conducted at the construct level and all 
variables were considered, no meaningful subgroups were detected. 
Thus, it was not possible to divide the children/ their cognitive profiles 
into subgroups in a meaningful way using the selected analysis 
approach. This means that children with and without dyscalculia were 
not distinguishable in this approach.

But when only mathematical variables were considered to subtype 
at the construct level, two subgroups were identified. This 
two-subgroup-solution with an absolute BIC of 19858.66 was the best 
solution to subdivide children of the analyzed sample into subgroups 
based on data: The best fitting model (EEE) that was therefore used 
for clustering encompasses clusters with the following characteristics: 
ellipsoidal distributions with equal volume, shape, and orientation 
(Scrucca et al., 2016; Fraley et al., 2024). This solution will be analyzed 
in more detail, now.

If looking at the two resulting curves which reflect cognitive 
profiles, it was striking that the means of group 2c laid below the 
means of group 1c (except for two variables, which belong to the 
construct BNP: symbolic magnitude comparison and mixed magnitude 
comparison). In symbolic magnitude comparison and mixed magnitude 
comparison, group  2c showed higher scores than group  1c, even 
though group  2c otherwise appeared inferior to group  1c in the 
mathematical domain. In dot enumeration, the two groups were very 
close to each other. It is noticeable that group 1c had mean scores that 
fluctuated around the T-score of 50 or were often slightly above 50. 
Although the mean scores of group 2c in matrix span, reading fluency, 
and intelligence were higher than in the tasks reflecting calculation or 
CNP, the mean scores of group 2c in these three subareas (matrix 
span, reading fluency, intelligence) were still lower than those of 

group 1c. Descriptive results on the 2 subgroups (mean, standard 
deviation, and standard error) are shown in Table 10.

Parallelism was tested for this two-subgroup-solution that is 
shown in Figure 3. As the result of this analysis with profileR (Bulut 
and Desjardins, 2020; Bulut and Desjardins, 2022) became significant 
(p < 0.001), the cognitive profiles of the identified subgroups did not 
run parallel to each other.

Group comparisons are shown in Table 10. Group 1c and group 2c 
differed significantly from each other in all areas except for dot 
enumeration. In all subtests that belong to the constructs calculation 
and CNP – as well as in the domain-general subareas as matrix span, 
reading fluency, and intelligence – group 1c outperformed group 2c. 
However, in symbolic magnitude comparison and mixed magnitude 
comparison, group  2c achieved significantly higher results. The 
significant frequentist t-test results are supported by the Bayesian 
analyses, indicating the robustness of these results. Only for dot 
enumeration there was no significant difference apparent  – the 
Bayesian analyses suggested equality, as the BF lays below 0.33.

There were a disproportionately large number of children with 
dyscalculia in group 2c (42.22% had a PR below 16, 37.78% had a PR 
below 10 and 21.11% had even a PR below 5). In comparison, children 
of group 1c were less likely to be dyscalculic (9.41% had a PR below 
16, 6.53% had a PR below 10 and only 2.33% had a PR below 5). The 
χ2-Tests showed that the proportion of dyscalculic children was not 
equally distributed among the subgroups (if PR < 16: χ2 = 78.18, 
p < 0.001, Cramér’s V = 0.28; if PR < 10: χ2 = 90.48, p < 0.001, Cramér’s 
V = 0.30; if PR < 5: χ2 = 69.93, p < 0.001, Cramér’s V = 0.27). The 
results for Fisher’s exact test to check the results of the χ2-tests for 
robustness were almost identical and therefore robust. If the exact 
distributions of dyscalculic versus non-dyscalculic children across the 
groups (based on the PR) are of interest, these can be  found in 
Supplementary Table A4.

TABLE 10  Descriptive results and group comparisons (Clustering on construct level, mathematical variables were used for clustering).

Subtests
Group 1c Group 2c Group 1c vs. Group 2c

M SD SE M SD SE t-test BF d

Dot enumeration 50.70 9.57 0.32 49.02 11.15 1.16 1.41 0.31 0.31

Symbolic magnitude 

comparison

50.14 9.24 0.30 53.86 11.91 1.23 −2.92** 7.20 0.39

Mixed magnitude 

comparison

49.80 9.30 0.31 57.12 10.61 1.10 −6.41*** 3.62*107 0.78

Addition 51.73 7.51 0.25 40.31 7.64 0.79 13.94*** 9.94*1036 1.52

Subtraction 51.92 8.32 0.27 40.81 8.02 0.83 12.30*** 1.20*1029 1.34

Multiplication 51.67 8.40 0.28 40.62 7.15 0.74 13.95*** 1.05*1037 1.33

Transcoding 51.15 6.23 0.21 39.86 9.28 0.96 11.48*** 2.49*1025 1.72

Number sets 52.00 9.10 0.30 39.83 8.23 0.85 13.46*** 3.80*1034 1.35

Number line 51.86 9.23 0.30 38.52 7.09 0.73 16.78*** 1.65*1052 1.47

Matrix span 50.86 9.61 0.32 45.26 8.57 0.89 5.41*** 1.34*105 0.59

Reading fluency 50.85 9.61 0.47 43.30 10.56 1.44 5.38*** 9.68*104 0.78

Intelligence 50.93 9.87 0.47 42.53 7.74 1.05 7.27*** 4.20*109 0.87

*p < 0.05; **p < 0.01; ***p < 0.001.
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4 Discussion

The purpose of this study was to answer the following question: 
To what extent do children with dyscalculia form a homogeneous 
group that can be distinguished from children without dyscalculia? To 
answer this research question, a large sample of 1,015 children was 
analyzed, although in two of the four approaches only a subset ( 2n
= 478) was analyzed because children with missing values could not 
be included when this statistical subtyping approach was used.

Limitations of previous studies (e.g., Salvador et al., 2019) were 
that only small sample sizes were analyzed and/ or only a few 
(mathematical) subdomains of performance were taken into account 
for subtyping. In contrast, in this research a large sample was analyzed 
and the analyses included a variety of mathematical skills as well as 
other cognitive areas: intelligence, working memory, and reading 
fluency. Furthermore, to check the results for robustness, four different 
subtyping approaches were conducted which differed with respect to 
which variables were included (all variables/only mathematical skills) 
and to what extent the measured results were aggregated into 
constructs (construct level) or considered as individual subtest results 
(subtest level).

On subtest level, three subgroups (by taking all variables into 
account) or six subgroups (by taking only mathematical variables into 
account) were identified. On construct level, two subgroups were 
found (by taking only mathematical variables into account). The 
results of these three analyses have in common that always one group 
was identified that showed severe and significant deficits in different 
mathematical skills: groups 2a, 3b and 2c. These three groups showed 
similar curves that reflect their cognitive profiles, and they consisted 
of disproportional many children who can be labeled as dyscalculic. 
This suggests that many children who are severely affected by 
arithmetic difficulties can be reliably distinguished from those without 
such difficulties – but some children identified as dyscalculic with the 
HRT 1–4 also appeared in other groups.

However, even though many children in the groups 2a, 3b, and 2c 
were dyscalculic, there was a considerable number of children in these 
subgroups that could not be identified as dyscalculic with the HRT 
1–4 (Haffner et al., 2005) – regardless of whether the cut-off (PR) was 
set at 16, 10, or 5. This means, the boundaries between CwD and 
non-dyscalculic children appear to be  fluid rather than strict. 
Nonetheless, dyscalculic and non-dyscalculic children tended to show 
different cognitive profiles. The assumption that the boundaries are 
fluid is also underlined by the fact that no subgroups were found in 
one analysis at construct level and thus children with and without 
dyscalculia could not be differentiated, here.

The cognitive profile of subgroup 3b showed some noticeable 
similarities to the cognitive profile that Kißler et al. (2021) found in 
their research project and that was called subtype 2 by them: it was 
described as a severely impaired subtype in children with dyscalculia 
(Kißler et al., 2021). In this study, the cognitive profile of subgroup 2b 
(a group with mild deficits in some mathematical domains but without 
pronounced deficits in the non-mathematical domains) resembles the 
dyscalculia subtype that Kißler et  al. (2021) named subtype 1: a 
subtype that showed minor deficits in comparison to the other subtype 
(subtype 2). This suggests that there is a group of children who are 
severely and unambiguously (presumably also persistently or long-
term) impaired in their mathematical skills (subgroup 3b/subtype 2), 
while other children (subgroup  2b/subtype 1) show minor (and 

perhaps temporary) deficits in performing mathematical tasks. These 
two groups of children seem to differ.

With a view to these findings, it would be  desirable if the 
definition of dyscalculia and the diagnostic criteria of this 
disorder were to be  further developed in such a way that 
dyscalculia could not only be diagnosed on the basis of behavior 
or performance, but especially on the basis of more manifest 
criteria (e.g., specific neuronal divergences). This would make 
sense, as dyscalculia is classified as a neurodevelopmental disorder 
according to both the ICD-11 (World Health Organization, 2020) 
and DSM-5-TR (American Psychiatric Association, 2022). 
Therefore, a reliable way is needed to differentiate children with 
dyscalculia (a serious and long-term or persistent 
neurodevelopmental disorder as categorized in the ICD11: World 
Health Organization, 2020) from (1) other children with 
(temporary) deficits in mathematics/arithmetic that are of a 
different nature (e.g., temporary performance weakness due to 
challenging life circumstances) and (2) children in the normal 
range of development. Children who have an altered neuronal 
structure probably need different support than children who 
perform poorly in math for other reasons.

It can also be observed that children who scored very low on the 
HRT 1–4 (PR < 10 or PR < 5) achieved T-scores in the CODY-M 2–4 
that correspond to a higher PR (Supplementary Table A1). However, 
this is not surprising considering the phenomenon of regression to the 
mean: This phenomenon occurs (especially with tests that are not 
perfectly correlated with each other, for example because they focus 
to varying degrees on different mathematical subdomains) when 
initially very high or very low scores are obtained and a subsequent 
measurement is taken (Barnett et al., 2005). This, in turn, leads to 
inconsistencies in the categorization of children as dyscalculic or 
non-dyscalculic, which once again highlights the need for more 
precise testing procedures.

Indeed, CwD seem to show structural divergences in special brain 
regions (e.g., in the parietal lobe, respectively, bilateral intra-parietal 
sulci) and these neurological divergences are hypothesized to 
be  accountable for the core deficits in CwD (Butterworth, 1999; 
Dehaene et al., 2003; Landerl et al., 2004; Rykhlevskaia et al., 2009; 
Szűcs and Goswami, 2013). Nevertheless, there may also be approaches 
to foster mathematical competencies that are helpful for children with 
such neurological conditions as well as for children who have 
problems with acquiring arithmetic competencies for other reasons. 
This needs to be investigated in more detail.

On a first sight some results of this study may seem to contradict 
the results of Kißler et al. (2021) because the subgroups that were 
found in this study and which encompass many children with 
dyscalculia (group 2a, 3b, and 2c) do not only show deficits in terms 
of their mathematical competencies, but also below average results in 
reading fluency, intelligence, and working memory (i.e., matrix span). 
Kißler et al. (2021) were unable to find robust significant differences 
in these areas between the two subtypes they had characterized. But 
this does not have to mean that the severe impaired subtype 2 was 
unimpaired in these areas, because the study by Kißler et al. (2021) 
lacks a comparison with unimpaired/ non-dyscalculic children. 
However, the mean T-scores of subtype 2 were below the T-score of 
50 in working memory, intelligence, and reading fluency (Kißler et al., 
2021). This indicates below average performance in these areas. 
However, it should be  noted that the deficits in reading fluency, 

https://doi.org/10.3389/fpsyg.2025.1590581
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Kißler and Kuhn� 10.3389/fpsyg.2025.1590581

Frontiers in Psychology 21 frontiersin.org

intelligence, and working memory that were found in subgroups 2a, 
3b, and 2c should not be understood as impairments in the narrower 
sense, but rather as weaknesses in comparison to the other subgroups, 
because, in summary, the T-scores are reduced but still tend to be in 
the lower normal range. Thus, when referring to a deficit (especially 
with a view to subgroup 2b), a reduced score relative to the other 
identified subgroups is meant.

In this study, the deficits that were shown by groups 2a, 3b, and 2c 
in reading fluency, intelligence, and working memory (matrix span) 
were significant in most analyses when frequentist statistics were used 
to compare these groups with other groups. These results were 
reconfirmed by Bayesian analyses. Therefore, these deficits of the 
groups 2a, 3b, and 2c appear robust and, in light of the findings by 
Kißler et al. (2021), consistent as well. Interestingly, group 2b (the 
group with less severe deficits in mathematical areas compared to 
group  3b) did not show those significant differences in working 
memory (matrix span), reading fluency and intelligence if compared 
to group 1b, group 4b, group 5b, and group 6b. Furthermore, group 2b 
showed significant better performance in these three performance 
areas than group 3b. These differences between group 2b and group 3b 
were reconfirmed by Bayesian analyses. In summary, these findings 
also suggest that there are substantial differences between children 
with more severe arithmetic difficulties (dyscalculia in the narrower 
sense) and children that tend to show lower performance in 
arithmetic. However, this lower performance subtype that was 
identified in the six-group solution (group 2b) was not identified in 
other approaches. Maybe, in the other analysis on subtest level the 
sample size was too small to detect this subtype.

Using model-based clustering-analyses to identify subgroups in 
children, Pieters et al. (2015) found different subgroups of children 
that differed qualitatively in terms of their arithmetic difficulties. 
Bartelet et  al. (2014) also found different types of difficulties in 
mathematical skills that were characteristic for specific subtypes (e.g., 
the weak mental number line subtype, the weak ANS subtype and the 
access deficit subtype) in children with math learning difficulties 
(PR < 16 in an arithmetic fluency test). More detailed analyses on 
qualitative differences in arithmetic difficulties and/ or deficits in 
mathematical precursor skills as well as the severity of those could 
shed light on what distinguishes these subgroups. As already suggested 
in the introduction and in accordance with the results of Bartelet et al. 
(2014), different difficulties might be  attributable to different 
underlying causes (e.g., deficits in the ANS vs. the access 
deficit hypothesis).

In contrast to Bartelet et al. (2014), no dyscalculia subtype or any 
other subgroup was found that was only or especially noticeable due 
to deficits in working memory. However, this difference could also 
be due to the fact that Bartelet et al. (2014) analyzed different working 
memory areas, whereas in this study only the matrix span was 
considered in the analyses.

It is striking that at construct level the results were different from 
the results at subtest level: In one analysis at construct level, it was not 
even possible to distinguish meaningful subgroups in any way because 
the one subgroup solution was the best solution. This is probably due 
to the fact that subgroups in the analyses at the subtest level showed 
the greatest differences in their transcoding skills. Thus, in particular 
this subtest served to differentiate the subgroups from one another. 
However, when the constructs were calculated, the variable transcoding 
merged into the variable for the construct complex number processing, 

which presumably involved a loss of information. Therefore, the 
information at the construct level was probably no longer sufficient to 
identify subgroups. This means that even the category dyscalculia 
could not be  found exploratively as a separable group with 
this approach.

The three-subgroup solution (if subtyping was carried out by taking 
all variables into account on subtest level) and two-subgroup solution 
(if subtyping was carried out by taking only mathematical variables into 
account on construct level) have in common that each identified a 
single group with pronounced arithmetic difficulties but no other group 
with severe difficulties in mathematics. In the three-subgroup-solution, 
two-subgroup-solution, and six-subgroup-solutions, the group with the 
most severe arithmetic difficulties (2a, 3b, and 2c) showed better 
performance in BNP-tasks compared to their performance in 
calculation or tasks reflecting CNP. This suggests that dyscalculic 
children show severe deficits in arithmetic/calculating as well as in CNP 
but show less deficits in BNP tasks as magnitude comparison.

This findings for BNP have to be discussed. Children who were 
severely affected by arithmetic difficulties (groups 2a, 3b, and 2c) seem 
to have performed better in symbolic magnitude comparison and 
mixed magnitude comparison tasks – even achieved above-average 
results (groups 3b and 2c). This may initially seem peculiar, but in this 
study, an efficiency measure (median of correct response times/ 
number of correct responses) was used for these tasks, meaning that 
the goal was to respond both quickly and correctly. Careless errors 
could thus significantly impair the score. It can be  assumed that 
children who are aware of their substantial difficulties in arithmetic 
(e.g., because of bad marks at school) try to compensate for their 
weaknesses by exerting extra effort and concentration/ attention, 
approaching these simple tasks more deliberately than children 
without such difficulties. Consequently, children with arithmetic 
difficulties might have made fewer errors, resulting in average or 
above-average performance – even if they then require a bit more time 
to solve the tasks. This could explain the observed phenomenon.

Why transcoding performance varies substantially across identified 
subgroups, and why it even seems to enable subgrouping, is an open 
question. The triple code model (Dehaene, 1992) suggests that 
transcoding/ transforming information from auditory verbal word 
frame (e.g., “thirteen”) into the visual Arabic number form (e.g., “13”) 
is something else than transforming an analog magnitude representation 
(e.g., “13 objects that are seen”) into the visual Arabic number form. 
Possibly, performance in transcoding verbal information into the visual 
Arabic number form could be a process that characterizes different 
subgroups of children at the children’s age examined in this study and 
possibly also allows predictions about their future development. This 
should be investigated in more detail by future studies.

The findings of this research highlight that children with dyscalculia 
appear to be heterogeneous. Therefore, dyscalculia does not seem to be a 
disorder with (1) a homogeneous cognitive profile and (2) a clear 
borderline to normality, making it difficult to systematically subgroup 
children with dyscalculia – much like children without dyscalculia are 
very heterogeneous in terms of their cognitive profiles, too.
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