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A random forest dynamic 
threshold imputation method for 
handling missing data in cognitive 
diagnosis assessments
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The handling of missing data in cognitive diagnostic assessment is an important 
issue. The Random Forest Threshold Imputation (RFTI) method proposed by 
You et al. in 2023 is specifically designed for cognitive diagnostic models 
(CDMs) and built on the random forest imputation. However, in RFTI, the 
threshold for determining imputed values to be 0 is fixed at 0.5, which may 
result in uncertainty in this imputation. To address this issue, we proposed an 
improved method, Random Forest Dynamic Threshold Imputation (RFDTI), 
which possess two dynamic thresholds for dichotomous imputed values. A 
simulation study showed that the classification of attribute profiles when using 
RFDTI to impute missing data was always better than the four commonly 
used traditional methods (i.e., person mean imputation, two-way imputation, 
expectation–maximization algorithm, and multiple imputation). Compared 
with RFTI, RFDTI was slightly better for MAR or MCAR data, but slightly worse 
for MNAR or MIXED data, especially with a larger missingness proportion. An 
empirical example with MNAR data demonstrates the applicability of RFDTI, 
which performed similarly as RFTI and much better than the other four 
traditional methods. An R package is provided to facilitate the application of 
the proposed method.
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Introduction

With the development of educational research, there is more demand for personalized 
feedback to enhance students’ learning in a targeted manner (Chatzopoulou and Economides, 
2010; Hattie and Timperley, 2007; Parsons et al., 2018; Wu and Chang, 2023). To address this 
issue, Cognitive Diagnosis Models (CDMs) provide a useful psychometric framework that can 
finely classify students into different attribute profiles according to their responses on the test 
items (de la Torre and Minchen, 2014; Ketterlin-Geller and Yovanoff, 2009; Sia and Lim, 2018; 
You et al., 2019). However, the presence of missing responses is usually inevitable in such 
setting. For example, with the rise of personalized learning and hierarchical teaching in recent 
years, students often respond to only a portion of the items that match their ability instead of 
completing the entire test. Also, in large-scale assessments, the balanced-incomplete-block 
(BIB) design is typically used, in which examinees are administrated only a subset of items 
(Dai et al., 2018). In such cases, the data may be missing completely at random (MCAR), 
missing at random (MAR), missing not at random (MNAR), or even a mixture of two or three 
of those missingness mechanisms (e.g., Liu and Loken, 2025). Therefore, how to obtain 
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accurate classifications of examinees’ attribute mastery status in 
diverse missing data scenarios is a crucial issue (Dai, 2017).

However, most commonly-used methods for handling missing 
data in the field of educational and psychological measurement have 
obvious limitations, and few methods are specifically designed for 
CDM applications. First, the existing methods (such as case deletion 
methods, regression imputation, likelihood-based estimation) often 
make assumptions about the missingness mechanism, whereas the 
mechanism is often unknown and even untestable and two or more 
mechanisms may be mixed in practice (Dai, 2017; de Ayala et al., 
2001). Next, it is difficult for these methods to deal with a high missing 
data proportion (e.g., more than 30%), which however is common in 
practice due to test designs. Furthermore, whether the existing 
conclusions on these methods are applicable to CDMs needs further 
investigation. Current discussions about these methods are mostly 
based on Item Response Theory (IRT) models (Holman and Glas, 
2005; Robitzsch, 2021), while some commonly-recommended 
methods have been found to perform quite differently in different 
research contexts (Dai, 2017; Newman, 2003; Song et al., 2022). For 
example, in Dai (2017)’s and Song et al. (2022)’s research based on 
cognitive diagnosis, the results of some popular methods, such as 
maximum likelihood (ML) and multiple imputation (MI), did not 
show obvious differences for MAR and MNAR data, which however 
should be expected in IRT contexts. For clarity, these commonly-used 
methods (such as case deletion methods, mean imputation, ML 
estimation, and MI) are collectively referred to as traditional methods 
in this article, as opposed to the machine-learning-related approaches 
that will be introduced later.

Since the early 2000s, a new framework for imputing missing 
values through machine learning algorithms has emerged, in which a 
machine learning model is trained based on the data samples with 
observed values for specific variables and then predict the missing 
values (Liu and Gopalakrishnan, 2017). This type of approach is 
gaining popularity due to their applicability and effectiveness in 
handling large datasets (Thomas and Rajabi, 2021). According to 
Thomas and Rajabi’s (2021) review of machine learning-based missing 
data imputation techniques during 2010 ~ 2020, clustering, instance-
based (e.g., k-nearest neighbor or KNN), and ensemble (e.g., random 
forest) techniques are the most popular algorithms applied for data 
imputation. These techniques are nonparametric algorithms that 
make no parametric assumptions about the relationship between 
variables. Thus, when employed in data imputation, they do not 
require strong assumptions about the missingness mechanism, and 
have been found to always perform well (e.g., Kokla et  al., 2019; 
Richman et al., 2009; Suresh et al., 2019). Due to these advantages of 
such new approaches, how to incorporate them into the measurement 
models is getting more and more attention.

In response to the issue of missing data in the implementation of 
CDMs and the increasing popularity of machine learning imputation 
methods, You et  al. (2023) proposed a Random Forest Threshold 
Imputation (RFTI) method, which is an adaption of the Random 
Forest Imputation (RFI; Stekhoven and Büehlmann, 2012). Simply 
put, when imputing missing values for items scored as 0–1, for each 
unobserved value, RFI first predicts a probability value within [0,1] 
based on the random forest algorithms, which indicates the probability 
of the missing value taking the value of 1. In other words, the closer 
the probability value is to 1, the unobserved value is more likely to 
be 1; otherwise, the value is more likely to be 0. The probability value 

is then converted to a dichotomous value of 0 or 1 using a fixed 
threshold (e.g., 0.5). In reality, however, as the probability value 
approaches 0.5, the missing value is more likely to be  incorrectly 
imputed, regardless of whether the imputed value is 0 or 1, due to the 
high uncertainty in the model prediction. Therefore, You et al. (2023) 
proposed to leave the missing value with high uncertainty still missing 
and only impute those with predicted probability values close to 0 or 
1. So, RFTI utilizes two thresholds for the dichotomous imputed value, 
of which the lower one is fixed at 0.5 and the upper one is dynamic 
and determined by an adapted person fit index in CDMs. Therefore, 
RFTI is designed for CDMs based on a machine learning imputation 
algorithm and has been found to be  superior in the recovery of 
examinees’ mastery profiles than RFI and the expectation–
maximization (EM) algorithm (a general method to perform ML 
estimation on incomplete data), especially for MNAR and MIXED 
data and a large missingness proportion (You et al., 2023).

The idea of setting a dynamic threshold is worthwhile. However, 
it can be  noticed that the lower threshold is still fixed at 0.5  in 
RFTI. Although You et al. (2023) mention that it is reasonable to 
consider the unobserved responses as wrong (i.e., replace them with 
0) in the educational assessment if the predicted probability is 0.5 or 
below, there is no substantial evidence to support this claim. Replacing 
missing values with 0 for which the predicted probability is less than 
but close to 0.5 is still subject to high uncertainty. It remains unknown 
that whether this will influence the imputation accuracy and hence the 
classification accuracy of examinees’ attribute patterns. Besides, the 
simulation conditions in You et al. (2023) are limited in that they only 
varied the missing data mechanisms and missingness proportions 
without taking into account other factors in the actual cognitive 
diagnostic assessments, and only three methods, including EM, RFI 
and RFTI, were compared.

Therefore, in this study, we  proposed an improved version of 
RFTI, in which both upper and lower thresholds for converting the 
predicted probability values to dichotomous values are dynamic to 
fully account for imputation uncertainty, and we call the new method 
as Random Forest Dynamic Threshold Imputation (RFDTI) method. 
In the following sections, we first briefly introduce the four missing 
data mechanisms and several traditional methods that are commonly 
used in educational and psychological measurements, especially 
cognitive diagnosis contexts. Then, we describe the principles and 
ideas of the RFTI method in detail and lead to the improved version, 
the RFDTI method, on this basis. Afterward, we show a Monte Carlo 
simulation study, in which we  systematically investigated the 
performance of the proposed RFDTI method under different 
conditions from the perspective of the classification accuracy of 
CDMs and compared it with RFTI as well as several commonly used 
traditional missing data handling methods. An empirical example is 
also provided to illustrate the applicability of the proposed method in 
practice. Finally, we conclude the paper with a discussion.

Missing data mechanisms and traditional 
handling methods

Missing data and their treatment would substantially affect the 
analysis results based on such data (Cheema, 2014; Little and Rubin, 
2002; Tabachnick and Fidell, 1989). Therefore, appropriate techniques 
for handling missing data should be  adopted, and the method 
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selection is usually based on the mechanism and proportion of 
missingness, as well as the purpose and model of data analysis (Little 
and Rubin, 2002; Tabachnick and Fidell, 1989).

Little and Rubin (2002) defined three types of missing data 
mechanisms, i.e., MCAR, MAR, and MNAR. Under the MCAR 
mechanism, the probability of missingness is unrelated to both 
observed and unobserved data, so the missing values can 
be completely ignored in the analysis. When data are MAR, missing 
data in a particular variable are related to some measured variables in 
the dataset but are unrelated to that variable itself. For example, the 
missingness is conditional on other measurable characteristics of the 
examinee but not on the item score in which missingness occurs. The 
MNAR mechanism refers to the situation in which the missingness on 
a variable is partly or completely related to the unobserved values in 
that variable. For example, the missingness proportion of a difficult 
item is high, while that proportion of an easy item is low. Therefore, 
MNAR is considered nonignorable. In addition to the three 
mechanisms mentioned above, there is a MIXED type of missing data 
mechanism that was used in de Ayala et al. (2001) and Dai (2017). 
Based on an empirical dataset, de Ayala et al. (2001) found that item 
responses (correct, incorrect, or an omitted response) of examinees 
were related to both the person’s ability and the items. Because a test-
taker may omit an item for different reasons in practice and these 
factors cannot be explicitly measured currently, we also include the 
MIXED mechanism in this study.

Based on previous studies (e.g., Dai and Svetina Valdivia, 2022; 
Song et al., 2022), here we review four categories of the traditional 
methods for handling missing data, which may be commonly used in 
cognitive diagnosis contexts: case deletion, single imputation, ML 
estimation, and MI (Gemici et al., 2012; Schafer and Graham, 2002). 
Case deletion methods, including listwise and pairwise deletion, are 
popular and easy to implement, but often result in a large amount of 
information loss, thereby decreasing statistical power. Commonly-
used single imputation methods include person mean imputation 
(PM) and two-way imputation (TW). PM imputes each missing value 
using the corresponding respondent’s mean score across all available 
items. TW method further takes into account information from the 
item mean and the grand mean in addition to the person mean. These 
two methods are also easy to implement and are robust in dealing with 
missing values in multidimensional data (e.g., Bernaards and Sijtsma, 
2000). As for the ML estimation, a general method to perform it on 
incomplete data is EM algorithm, which iterates between an 
expectation step and a maximization step. In the expectation step, 
missing values are filled in using the expectation based on the current 
estimates of unknown parameters, whereas in the maximization step, 
the parameters are re-estimated from the observed and filled data. 
Strictly speaking, EM is also a single imputation method, but it is 
stochastic, unlike the deterministic PM and TW. Another ML method 
is the direct maximum likelihood (also known as full information 
maximum likelihood), which maximizes the likelihood function 
directly based on parameters from a specified distribution, rather than 
first imputing missing values. Therefore, this method is sometimes 
labeled as the “available cases” approach in some software.

MI, as a flexible alternative to likelihood methods, is not a 
specific imputation method but rather a multi-step imputation 
framework. In MI, each missing value is substituted by m  > 1 
simulated values, resulting in m imputed datasets. Each of the m 
datasets is then analyzed using the desired statistical analysis 

method in the same manner. Finally, the results are pooled by 
simple arithmetic to produce overall estimates and standard errors 
(Schafer and Graham, 2002). Theoretically speaking, any stochastic 
imputation method (such as EM and regression-based methods) 
can be used with MI. In general, likelihood methods and MI, both 
considered model-based methods, have been suggested as the 
optimal approaches for handling missing data in many situations 
(Finch, 2008; Schafer and Graham, 2002; van Buuren, 2018; 
Wothke, 2000). Nevertheless, each method for treating missing data 
has its own features and assumption, and no one method can 
consistently outperform the others under different circumstances 
(Finch, 2008).

Regardless of the specific limitations of each method, all these 
traditional missing data handling methods are subject to the following 
issues. First, these methods require (strong) statistical assumptions, 
including the assumption that the missingness mechanism is MCAR 
or MAR, which may not be satisfied in practice. However, traditional 
methods often perform poorly under the MNAR mechanism, and 
what is worse is that the MNAR mechanism is difficult to test in 
advance. Second, most methods can provide desirable results only 
when the missingness proportion is not high. In previous simulation 
studies on missing data handling methods, the specified missing data 
proportions ranged from 2% (de Ayala et al., 2001) to 50% (Glas and 
Pimentel, 2008), most of which were between 5 and 30% (Finch, 
2008). These methods do not work well when the proportion exceeds 
20%, and a large bias may occur in the estimation when the proportion 
reaches above 30%. Third, although a variety of approaches has been 
developed to deal with the problem of missing responses in 
educational measurement, most of them are within the IRT 
framework (Dai and Svetina Valdivia, 2022). For other complex 
measurement models, such as CDMs, there are few missing data 
handling methods that take into account the characteristics of the 
model itself.

Random forest threshold imputation

The rise of machine learning provides a new paradigm for 
imputing missing values. Machine learning models can be trained 
based on the observed data and then used to predict missing values. 
Due to the underlying machine learning algorithms, this type of 
imputation method is often not as dependent on assumptions of 
missingness mechanisms as the traditional methods mentioned above 
and often performs better (e.g., Kokla et al., 2019; Richman et al., 
2009; Suresh et al., 2019).

You et al. (2023) incorporated the Random Forest Imputation 
(RFI; Stekhoven and Büehlmann, 2012), a flexible and effective 
machine learning imputation method, with the features of CDMs to 
develop a Random Forest Threshold Imputation (RFTI) method. It is 
specially designed for CDMs and possesses the advantages of machine 
learning imputation methods.

Basic procedure

The key idea of RFTI is building on the random forest imputation, 
that is, it allows some missing values with low certainty of imputation 
to remain missing, which is realized by setting two thresholds:
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in which ijY  denotes the imputed response of examinee i on item j, ijp  
is the imputed probability for examinee i on item j, NA represents 
missingness, τ  is the dynamic upper threshold and 0.5 is the fixed lower 
threshold. For the same dataset, τ  will be substituted for a range of 
possible values ( ) ( ){ }1 , , Tτ τ…  within a reasonable range of [0.5, 1) in 
evenly spaced increments (e.g., 0.01), and its final value will be the one 
yielding the best imputation effect, which is evaluated using an adapted 
person fit index in CDMs. Therefore, for each 

( ) , 1,2, , ,t t Tτ = …  the 
following procedures of imputation and model fit will be repeated.

Suppose that there is an N × M data matrix Y , where N denotes 
the number of examinees and M is the number of variables (i.e., test 
items). Then it can be viewed as ( )1 2, , , MY Y Y= …Y , in which mY  is the 
collection of all examinees’ responses on the mth item ( 1,2, ,m M= … ).  
Let ( )1,2, ,sY s m∈ …  denote an arbitrary variable with missing data, 
( ) { }1,2, ,s
misi N∈ …  denote the examinees with missing values in sY , 
and  ( ) { }1,2, ,s

obsi N∈ …  denote the remaining examinees with observed 
values in sY . Subsequently, the dataset can be divided into four parts: 
(1) ( )s

obsy , representing the observed values in variable sY ; (2) ( )s
misy , 

representing the missing values in sY ; (3) ( )s
obsx , representing the data of 

examinees ( )s
obsi  in all other ( )1m −  variables except sY ; (4) ( )s

misx , 
representing the data of examinees ( )s

misi  in all other ( )1m −  variables 
except sY . The imputation procedure is an iterative process involving 
the following steps.

The first step is to use a traditional imputation method, such as 
the item mean imputation, to calculate the initial estimates of all the 
missing values. Then, sort all variables with missingness, 
( )1,2, ,sY s m∈ … , in the ascending order of the number of missing 

values. The imputed matrix is denoted by .imp
oldY

The second step is to impute the missing values for each sY  
through the random forest algorithm, in which converting 
probability values to dichotomous values using Equation 2. 
Specifically, to conduct imputation for the variable sY , a random 
forest model is trained using ( )s

obsy  as the response and ( )s
obsx  as the 

predictors. Then, the fitted model is applied to predict the missing 
values ( )s

misy  using ( )s
misx  as input. Notice that at this time, the 

predicted probability values provided by the fitted model are 
converted to dichotomous values (0 or 1) based on the prespecified 
upper threshold ( )tτ  and fixed lower threshold 0.5. This process is 
repeated for all variables with missing values. After completing the 
imputation for all sY , the new imputed matrix obtained is denoted 
by imp

newY  and then compared to imp
oldY .

If the difference between the two imputed matrices does not meet 
the stopping criterion, the next iteration will be carried out. In the new 
iteration, imp

newY  in the previous iteration will be assigned to imp
oldY , and 

the second imputation step will be  repeated to update imp
newY . The 

stopping criterion is that the difference between imp
newY  and imp

oldY  
increases for the first time. For the set of M  discrete variables, that 
difference is measured by ∆ , which is calculated by Equation 2.

	

1 1

#

imp imp
new old

M N
j i I

NA
≠= =∆ =

∑ ∑ Y Y

	
(2)

in which # NA is the number of all missing values in the matrix ,Y  and 
imp imp

new old
I ≠Y Y  is an indicator variable that records whether the imputed 
value in Row i, Column j differs between two successive iterations. If 
that value differs, 1I = ; otherwise, 0I = . Therefore, the numerator in 
Equation 2 represents the number of imputed values that change 
between two iterations (Stekhoven and Büehlmann, 2012).

After obtaining a final imputed data matrix related to ( )tτ , a CDM 
selected by researchers is fitted to this data matrix, in which the EM 
algorithm is used for item parameter estimation and the maximum a 
posterior (MAP) method is used to estimate latent attribute patterns. 
The remaining missing values after imputation are simply ignored. 
Based on the estimated attribute patterns and Q-matrix expectations, 
an adapted person fit index is calculated for evaluating the imputation 
accuracy for each ( )tτ .

Determination of the upper thresholds τ

The determination of the upper thresholds (τ ) is a balance between 
the imputation proportion and imputation accuracy in actual situations. 
A higher τ  will result in fewer but more accurate imputed values. On 
the other hand, the missingness proportion in the imputed dataset 
should be low enough (preferably less than 10, 10% ~ 15% sometimes 
acceptable) (e.g., Dai, 2017; Hair et al., 2010; Little and Rubin, 2002; 
Muthén et al., 2011), so that simply ignoring these remaining missing 
values in the subsequent analysis will not bring a substantial bias.

Logically, the imputed values with high certainty should not 
damage the overall fit between the data and the expectations of 
the CDM used in the analysis. The more errors in imputed values, 
the greater the deviation of the imputed data from the ideal 
response patterns. When the deviation is large enough, the 
imputation should be stopped. Out of this consideration, You et al. 
(2023) adapted the response conformity index (RCI) proposed by 
Cui and Li (2015), which is a person fit index in CDMs, to evaluate 
the deviation of the imputed data using a possible value ( )tτ  of τ  
from the ideal response patterns based on the current 
estimated model.

The adapted index is calculated in two steps. In the first step, an 
_ iRCI C  is calculated for each examinee i as

	

( )
( ) ( )

( )ˆ

1 ln

_

ˆ
ˆ ˆ

α
α

α α

+
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 −
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i

Y I
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j j i j i

i
i
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(3)

in which im  (0 im M< ≤ ) is the number of nonmissing items for 
examinee i in the imputed data matrix with M  items; ijY  denotes the 
observed or imputed response of examinee i on item j; ˆiα  represents 
the estimated attribute profile of examinee i since the true profile is 
unknown in practice; ( )ˆj iP α  denotes the probability of a correct 
response to item j given iα , ( )ˆj iI α  is the corresponding ideal response, 
and ( ) 1ˆj iI α = only if examinee i masters all the attributes required 
by item j, otherwise, ( ) 0ˆj iI α = . The Q matrix specifies the attributes 
required for each item. In the second step, the mean of _ iRCI C  is 
calculated across all examinees, that is,
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Therefore, for each ( )tτ , a value of _RCI C can be obtained. More 
accurate imputations will result in imputed response patterns that are 
more consistent with expectations, thereby generating a 
smaller _RCI C.

In { ( ) ( )1 , , Tτ τ… }, the value resulting in the smallest _RCI C  is 
selected as the optimal upper threshold, and the corresponding 
imputed data matrix is the final imputed result that will be used in the 
subsequent analysis. In practical application, it is sufficient to export 
the final imputed data matrix only.

Random forest dynamic threshold 
imputation

RFTI is built on the random forest imputation algorithms while 
leveraging the characteristics of CDMs to dynamically determine 
the upper threshold to reduce the imputation errors. However, 
according to Equation 1, the lower threshold is still fixed at 0.5 in 
RFTI. That is, any missing value with a predicted probability not 
greater than 0.5 is replaced with 0. When thinking about the 
starting point of RFTI to reduce estimation uncertainty, this is 
puzzling. Replacing missing values with 0 for which the predicted 
probability approaches 0.5 is still subject to a high degree of 
uncertainty, and so carries the risk of imputation errors. Although 
You et  al. (2023) mention that it is reasonable to consider the 
unobserved responses as wrong (i.e., replace them with 0) in the 
educational assessment if the predicted probability is 0.5 or below, 
there is no substantial evidence to support this claim in their study. 
It remains unknown that whether this will influence the imputation 
accuracy and hence the classification accuracy of examinees’ 
attribute patterns.

Therefore, in this study, we  proposed an improved version of 
RFTI, i.e., Random Forest Dynamic Threshold Imputation (RFDTI). 
The key difference between them is that in RFDTI, both upper and 
lower thresholds ( uτ  and lτ ) for converting the predicted probability 
values to dichotomous values are dynamic to fully account for 
imputation uncertainty. In other words, the following Equation 5 is 
used instead of Equation 1 when determine the imputed 
dichotomous values.
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0

ij u

ij l ij u

ij l

p
Y NA p

p

τ
τ τ

τ

 ≥
= < <
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in which 0 0.5lτ< <  and 0.5 1uτ≤ < . The dynamic upper and lower 
thresholds will be simultaneously determined based on the adapted 
person fit index _RCI C, while other procedures are the same as those 
of RFTI. That is, for each combination of ( ) ( )1,2, ,lt

ll t Tτ = …  and 
( ) ( )1,2, ,ut
u u ut Tτ = … , an imputed data matrix can be  obtained 

according to the predicted probability of missing values and 
Equation 5, for which an _RCI C can be  calculated according to 
Equations 3, 4. The combination of lτ  and uτ  values corresponding to 
the smallest _RCI C  is selected as the optimal thresholds, and the 

corresponding imputed data matrix will be  used in the 
subsequent analysis.

To facilitate the application of the proposed RFDTI, we developed 
the corresponding R package missForestCDA, which can 
be downloaded from https://jianlingsoft.oss-cn-beijing.aliyuncs.com/
missForestCDA.rar. This package requires preinstallation of the R 
package missForest (Stekhoven, 2013) for implementing the random 
forest imputation and the R package CDM (George et  al., 2016; 
Robitzsch et al., 2017) for the estimation of CDMs. After installing and 
loading the missForestCDA package, the incomplete dataset can 
be  imputed by simply handing it over to the main function of 
this package:

	 ( ), , , 0.05missForestCDA missData Q missN stepV =

in which missData is the input incomplete dataset, Q is the Q matrix 
that needs to be  specified by researchers, missN is the number of 
persons with missing responses, and stepV is the increment δ  used to 
generate a sequence of possible values for lτ  and uτ , which is set at 0.05 
by default. This function will directly return the final imputed dataset.

In this study, we conducted a Monte Carlo simulation study and 
an empirical study to investigated the performance of the proposed 
RFDTI method under different conditions and compared it with RFTI 
as well as several commonly used traditional missing data handling 
methods. According to Equations 3, 4, the adapted person fit statistic 

_RCI C  can be obtained for any CDMs with explicitly defined item 
response function ( )j iP α . In this study, for the purpose of illustration, 
the generalized Deterministic Inputs, Noisy and Gate (DINA) model 
(de la Torre, 2011) is used as an example.

Note that in You et al. (2023)’s study, the superiority of RFTI over 
RFI and EM was mainly in the classification of attribute profiles, 
whereas the estimation of item parameters using RFTI was inferior to 
that of EM. This may be because the training and prediction of the 
random forest model underlying RFTI are mainly based on the 
characteristics of individual response patterns across items, while 
information about responses from different examinees to the same 
item is rarely used. Based on this, we focus on the classification of 
attributes’ mastery status in this study, leaving aside the item 
parameter estimation temporarily.

Simulation study

A Monte Carlo simulation study was conducted to investigate the 
imputation effect of the proposed RFDTI method under different 
missingness conditions and its relative performance compared with 
the RFTI as well as four commonly used imputation methods in 
educational assessments.

Design

A total of 4 × 5 × 3 × 6 = 360 conditions were created by 
manipulating four factors, including the missing data mechanism 
(MIXED, MNAR, MAR, and MCAR), missingness proportion (10, 20, 
30, 40, and 50%), sample size (N = 500, 1,000 and 2000) and the 
number of attributes (K = 3, 4, 5, 6, 7, 8). The missing data proportion 
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and the number of attributes were chosen according to common 
settings in related studies. Specifically, the missing rate reported in the 
educational measurement literature, as mentioned above, was between 
2 and 50%, and most existing CDM studies used three to eight 
attributes (Dai, 2017). In addition, a sample size of 1,000 was widely 
used (Dai, 2017) and was considered sufficient for the DINA model to 
obtain an accurate parameter estimation (de la Torre et al., 2010). 
Therefore, we considered three levels of sample size centered at 1000. 
Each simulation condition was replicated 100 times. Each generated 
dataset was imputed using six approaches, including RFTI, RFDTI, 
and four frequently used methods in educational assessments, 
including PM, TW, EM, and MI.

Other specifications reflected the common settings in simulations 
and empirical studies of CDMs reported in previous literature. 
According to the review of CDM studies by Dai (2017), the number of 
items was mostly between 20 and 40, so a test length of 30 items was 
used here. For simplicity, we assumed that attributes were independent 
of each other. The Q-matrix reflecting the mapping relationship 
between attributes and items was randomly generated. Specifically, 
q-entries in the Q-matrix were randomly drawn from the uniform 
distribution U(0,1) and then dichotomized by the cut-off point of 0.5. 
Therefore, each item might measure one or more attributes.

Data generation

Data generation was implemented in R language and involved two 
steps: generating the complete datasets and then generating the 
missing data.

Complete data generation
First, the DINA model was used to simulate the complete 

dichotomous responses under each condition. In the DINA model, 
the item response probability is written as:

	

( ) ( )

( )1

1|
0

1
1 1

ijij

j i ij i

j ij
jj

j ij

P P X
g if

g s
s if

ηη

α α
η
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= =

== − =  − = 	
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in which ijX  is the response of examinee i to item j, ( )1, ,i i iKα α α= …  

is the examinee’s attribute profile, jg  is the guessing parameter of item 

j, js  is the slipping parameter of item j, 
1

jk

K
q

ij ik
k

η α
=

=∏  is the ideal 
response of examinee i to item j, and jkq  is the element in the Q 
matrix indicating whether attribute k is required for a correct response 
to item j.

Following the literature (e.g., Cui et al., 2012; Dai and Svetina 
Valdivia, 2022), examinees’ attribute profiles ( iα ) were generated from 
a dichotomized multivariate normal distribution ( ),KMVN 0 Σ . 
Specifically, K0  is a 1 K×  vector of zeros with K being the number of 
attributes measured by the test, Σ  is a K K× covariance matrix with 
all diagonal elements being 1 and all off-diagonal elements being 0.5, 
as shown in Equation 7:

	

1 0.5

0.5 1

… 
 Σ =  
 … 

  

	

(7)

and the cut point for each attribute was set to zero. Item parameters 
in the DINA model, including the slipping parameter s and the 
guessing parameter g, were drawn from the uniform distribution 
[0.05, 0.25]. Then, according to Equation 6, the probability of a correct 
response of examinee i to item j, ( )j iP α , was calculated and compared 
to a uniform random number [0, 1]. If ( )j iP α  was not less than the 
random number, the response ijX  was coded as 1 for correct; 
otherwise, 0ijX = .

Missing data generation
Considering that the trained models in RFTI and RFDTI methods 

are based on examinees with observed data on the target variable, the 
training accuracy can be improved if there are some examinees with 
complete response data. Therefore, we randomly selected 80% of the 
sample (e.g., 800 out of 1,000 simulated examinees) to generate 
missing values, leaving a small number of examinees with complete 
data. Note, however, that the application of the two methods do not 
require some examinees in the sample have complete data.

MCAR missing samples were simulated by randomly removing a 
specified percentage of responses from the complete dataset. This was 
achieved by comparing the specified overall missingness proportion 
(e.g., 30%) with a uniform random number [0, 1] generated for each 
response. If the random number was greater than or equal to the 
proportion, the corresponding response was removed as missing.

Generation of missing responses of MAR followed the methods 
outlined in de Ayala et al. (2001), Peugh and Enders (2004), and Finch 
(2008). Based on the complete dataset, the number-correct score was 
calculated for each examinee on all but the target item as an ability-
proxy variable. Examinees were divided into seven fractiles based on 
the 5th, 15th, 30th, 70th, 85th, and 95th percentiles of their normalized 
scores on the proxy variable. Examinees of each fractile were assigned 
a missingness probability that was inversely related to their scores (see 
Table 1), while the average missing rate across fractiles was kept at the 
desired level. Uniform random numbers [0, 1] were used to select 
responses for deletion according to the missing rate of each fractile.

Following the method outlined in Dai (2017), the MNAR data were 
generated by calculating the omission probability based on the responses 
in the complete dataset. Examinees with an incorrect response to an item 
were assigned a higher probability of omission than those who answered 
the item correctly. In addition, the missing rate on items increased with 

TABLE 1  MAR missing rate of each fractile.

Percentile Missing rate (%)

0 ~ 5th MR × 1.50

5 ~ 15th MR × 1.35

15 ~ 30th MR × 1.15

30 ~ 70th MR × 1.00

70 ~ 85th MR × 0.85

85 ~ 95th MR × 0.65

95 ~ 100th MR × 0.50

MR = the desired overall missing rate in each condition. Fractiles are represented by the 
percentiles of the normalized scores on the proxy variable.
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the item difficulty. The generation procedure is as follows. The number 
of omitted responses for each examinee was first calculated based on the 
desired overall missingness proportion. A probability factor ε  was then 
specified for each examinee, with an initial value of 0. A uniform random 
number [0, 1] was compared with p ε+  to determine whether to remove 
a response as an omission, in which p is the probability of a correct 
response. If the random number was larger, the response was removed. 
During the procedure, if the number of missing responses for an 
examinee was greater (or less) than the prespecified number, the value of 
ε  would be increased (or decreased). For each examinee, the value of ε  
was constantly adjusted to regenerate the missing data until the number 
of omitted items was equal to the desired number.

To generate data of the MIXED mechanism, we first adopted the 
same procedure as generating the MAR data, that is, dividing the 
sample into seven fractiles and calculating the missing rate of each 
fractile, in which examinees with higher scores had a lower 
missingness proportion. Subsequently, the number of missing 
responses for each examinee could be calculated according to the 
assigned fractile, and the omissions were generated through the 
procedure of generating the MNAR data mentioned above.

Analysis

All missing data were imputed using the corresponding R 
packages. Specifically, PM, TW, and EM were conducted using the 
TestDataImputation package (Dai et al., 2021). MI was carried out 
using function mice() in mice package (van Buuren et al., 2021), in 
which the specific imputation method used was logistic regression 
imputation and 20 imputed datasets were created for each incomplete 
dataset (Graham et al., 2007). RFTI and RFDTI were implemented 
with the missForestDINA and missForestCDA packages, respectively.

After the imputation, the DINA model was fit to the data using the 
R package CDM (Robitzsch et al., 2017). The estimation of examinees’ 
attribute profiles, as the focus of this study, was then evaluated across all 
100 replications in each condition. Note that when using MI for 
imputation, since attribute profiles were dichotomous data, their 
estimation accuracy results (rather than estimates) were pooled by 
averaging the corresponding results across multiple imputations.

Evaluation criteria

As this study focuses on the classification of attribute mastery 
status, we adopted two relevant criteria to evaluate the performance 
of each imputation method: the pattern-wise classification accuracy 
(PCA) and the attribute-wise classification accuracy (ACA).
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where ( )1, ,ˆ ˆ ˆi i iKα α α= …  and ( )1, ,i i iKα α α= …  are the estimated 
and true attribute patterns for examinee I, respectively, and [ ]I   is an 

indicator function that takes the value of 1 or 0 depending on whether 
the condition in brackets is met; R is the number of successfully 
converged replications in each condition; N is the sample size; and K 
is the number of attributes. PCA measures the average classification 
accuracy of examinees’ attribute patterns, and ACA measures the 
average classification accuracy of the attributes. A larger value of PCA 
or ACA indicates a more accurate classification of the attribute 
mastery status.

Results

Missing rate of data imputed by RFDTI

Considering that RFDTI may not impute all missing values and a 
low proportion of missing data may be retained and ignored in the 
following analysis, we first examined the remaining missing rates of 
the data imputed by RFDTI in different conditions. Due to the same 
issue faced by RFTI, we  also provided the results from RFTI for 
comparison. Results showed that the missing rate of RFDTI imputed 
data was mainly affected by the missingness mechanism and 
proportion, while the sample size and the number of attributes had 
little effect. Therefore, the missing rates of RFDTI imputed data under 
different missingness mechanisms and proportions are listed in 
Table 2.

In general, the remaining missing rate showed an upward trend as 
the missingness proportion in the original data increased, and it was 

TABLE 2  Remaining missing rates of data imputed by RFDTI and RFTI 
under different missing mechanisms and proportions.

Missingness 
mechanism

Missingness 
proportion

RFDTI RFTI

MCAR

10% 2.44% 1.03%

20% 4.65% 2.33%

30% 6.98% 4.32%

40% 9.99% 6.48%

50% 13.73% 9.16%

MAR

10% 2.47% 1.02%

20% 4.55% 2.33%

30% 7.04% 4.15%

40% 9.94% 6.50%

50% 13.59% 9.21%

MNAR

10% 1.53% 1.10%

20% 4.15% 2.99%

30% 8.09% 5.92%

40% 11.69% 9.81%

50% 14.30% 14.14%

MIXED

10% 1.29% 0.86%

20% 3.65% 2.29%

30% 7.61% 4.55%

40% 12.07% 8.00%

50% 14.83% 12.60%
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below or approximate 10% in most conditions considered in this 
study. Only when the original missing proportion reached 50% under 
the MCAR and MAR mechanisms, or when the original missing 
proportion reached 40% under the MNAR or MIXED mechanisms, 
the remaining missing rate of RFDTI imputed data was about 
10% ~ 15%. Therefore, in the subsequent analysis based on the RFDTI 
imputed data, the remaining missing values after being imputed by 
RFDTI were temporarily ignored (Hartz et al., 2002; Little and Rubin, 
2002; Muthén et al., 2011). In addition, as expected, the remaining 
missing rates of RFDTI were slightly higher that those of RFTI.

Classification accuracy of attribute profiles

In general, PCA and ACA results had similar trends between 
methods or the different levels of design factors, while the differences 
in ACA values were smaller than those in PCA values. Figure 1 shows 
the average PCA and ACA of the estimated attribute profiles for the 
six methods under different missingness mechanisms and proportions. 
According to Figure 1, the higher the missingness proportion, the 
worse the classification accuracy tends to be.

Then we focused on the comparison between methods. When the 
missing data was MCAR (Figures  1A,E) or MAR (Figures  1B,F), 
RFDTI performed very similarly or even slightly better than RFTI, 
and both outperformed the other four methods, especially when the 
missing proportion increased. EM and MI performed slightly better 
in PCA than TW and PM, while these four methods resulted in quite 
similar ACA results. Under the MNAR (Figures 1C,G) or MIXED 
(Figures 1D,H) mechanism, RFDTI also performed reasonably well. 
Specifically, RFDTI performed better than the other four traditional 
methods (i.e., PM, TW, EM, and MI) in terms of PCA. In addition, 
based on ACA results, RFDTI performed similarly to PM and TW and 
better than EM and MI. However, for MNAR or MIXED data, the 
recovery of attribute patterns based on RFDTI was no better than that 
from RFTI, and the difference between two methods increased with a 
larger missingness proportion. This might be related to the fact that 
the remaining missing rate in RFDTI-imputed data was higher than 
that of RFTI.

The average PCA and ACA values of each method under different 
missingness mechanism, missing proportions, number of attributes, 
or sample sizes are provided in Table A1 of Appendix A. When 
comparing the results across different missingness mechanisms, 
we  found that the classification accuracy of each method for the 
MNAR and MIXED data was slightly higher than that for the MAR 
and MCAR data. This pattern was more apparent for PM, TW, and 
RFTI. As for the other two design factors (i.e., the number of attributes 
and the sample size), the classification accuracy for each method 
tended to decrease when the test measured more attributes, while the 
sample size had little effect on the classification accuracy for all 
six methods.

Empirical study

In this section, we  illustrate the application of the proposed 
RFDTI method using the data collected from a cognitive diagnosis 
assessment designed for Chinese seventh-grade students. Missing 
data were MNAR by design, which will be explained in detail in the 

subsection Test administration. Students’ academic achievements in 
Chinese and mathematics in the final examination and their attribute 
patterns estimated from the complete data in a parallel test were used 
as the criteria to evaluate the performance of RFDTI.

Instrument

We adopted a cognitive aptitude test for seventh-grade 
students developed by the psychometric research center of Beijing 
Normal University. It contains two parallel test forms (A and B) 
with identical test length and structure (i.e., Q matrix). Each test 
form has 50 items and measures five attributes, including verbal 
reasoning, analogical reasoning, symbolic operation, matrix 
reasoning, and spatial reasoning. In each form, each item 
measures only one attribute, and each attribute is measured by 10 
items (see Table B1 of Appendix B). The instruments and 
assessment procedures were reviewed and approved by the 
research committee of Beijing Normal University. The school 
teachers, students, and their parents had a clear understanding of 
this project and how data was collected. Parents of all student 
participants approved and signed informed consent forms.

Before using the two forms of the cognitive aptitude test, 
we performed a prior analysis to examine their instrument quality. 
We  collected response data from 181 and 186 seventh-grade 
students from Dalian City, Liaoning Province on test forms A and 
B, respectively. Then, under the classical test theory (CTT) 
framework, we  calculated the difficulty and discrimination of 
each item, the difficulty and reliability of each attribute and the 
entire test (see Appendix B). In general, the difficulty of most 
items was between 0.3 and 0.7 and the discrimination was between 
0.3 and 0.5. The test difficulty of the two forms was 0.421 and 
0.471, respectively, and their test reliability was 0.870 and 0.899, 
respectively.

According to the item difficulty, test form A was divided into 
two subtests with identical length and structure. The easier subtest 
A1 was composed of the 5 easiest items for each of the five 
attributes, totaling 25 items. Subtest A2, the more difficult one, 
consisted of the remaining 5 items for each attribute.

Test administration

The test administration involved two phases. In the first 
phase, each student was required to complete test form B within 
60 min. The responses were then analyzed using the DINA model 
to estimate the students’ attribute mastery patterns, which were 
transformed into attribute mastery scores (i.e., the number of 
attributes mastered) ranging from 0 to 5. Afterward, all the 
students were divided into two groups, including a low-level 
group with attribute mastery scores from 0 to 2, and a high-level 
group with attribute mastery scores from 3 to 5.

The second phase was conducted two weeks later. The 
low-level group and the high-level group were administered the 
easy subtest A1 and the difficult subtest A2, respectively, within 
30 min. In this case, the missing responses of the low-level group 
on subtest A2 and the high-level group on subtest A1 could 
be regarded as MNAR.
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FIGURE 1

Average attribute classification accuracy under different missing mechanisms and proportions. (A–D) PCA values of attribute profiles under four 
missingness mechanisms. (E–H) ACA values of attribute profiles under four missingness mechanisms.
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TABLE 4  Correlation between attribute mastery scores and academic 
achievements.

Test 
form

Method Chinese Mathematics

A

PM 0.271 0.318

TW 0.371 0.416

EM 0.253 0.296

MI 0.455 0.511

RFTI 0.484 0.530

RFDTI 0.494 0.523

B / 0.544 0.613

Sample

A total of 610 seventh-grade students from a junior middle school 
in Dalian City, Liaoning Province in China participated in the first 
phase of the test (completing test form B), of which 52.78% were boys 
and 47.22% were girls. Only 599 of them participated in the second 
phase (completing test form A1 or A2), including 271 in the low-level 
group and 328 in the high-level group. Therefore, the sample used for 
analysis in this study was 599 students, each of whom responded to 
just half of the items on test form A.

Analysis

Data analysis consists of two stages: (1) dealing with missing data 
using different methods and estimating students’ attribute mastery 
patterns based on responses of subtests A1 and A2; and (2) evaluating 
the performance of those methods.

In the first stage, we used six methods, i.e., PM, TW, EM, MI, 
RFTI, and RFDTI, to impute missing data on test form A, respectively, 
and fit the DINA model to each of the six imputed datasets to obtain 
a set of estimates of students’ attribute patterns. In order to improve 
the results of different imputation methods, we added the complete 
data of 181 students on test form A into the current response data, 
which were collected for quality analysis of the test instrument (see 
subsection Instrument). Therefore, all the available response data of 
181 + 599 = 780 students on Test A were used and the missingness 
proportion was 38.40% in this stage.

In the second stage, the performance of different imputation 
methods was evaluated through two external criteria, i.e., attribute 
patterns estimated from response data on test B and academic 
achievements, based on the sample of 599 students.

First, we calculated the consistency between the classifications 
estimated based on the response data on test form B and the data on 
test A dealt with by each imputation method. Specifically, the DINA 
model was fitted to the 599 students’ responses to test B, estimating 
their attribute patterns. These estimates were used as criteria to 
evaluate the imputation accuracy of the six missing data handling 
methods. PCA and ACA were still used as the evaluation criteria, 
while the true attribute patterns in Equations 8, 9 were replaced with 
the estimated attribute patterns based on test form B. Therefore, PCA 
and ACA measured the consistency between the classifications 
estimated based on the data of the two test forms. The higher the 
consistency, the better the performance of the imputation method.

Next, we  calculated the correlation between the estimated 
attribute mastery scores and the academic achievements in Chinese 
and mathematics, and then compared these correlations based on test 
forms A and B. Specifically, for test form A, we  calculated the 
correlations between the academic achievements and attribute 
mastery scores obtained by using different missing data handling 
methods, so each method had a corresponding correlation value. 
Then, the correlations between the attribute mastery scores from test 
form B and the academic achievements were taken as the comparison 
standards. A smaller difference between the correlation of a missing 
data handling method and that coefficient based on test form B 
indicated better performance of this method.

Note that, as in the simulation study, MI results were pooled by 
averaging the corresponding measures of the estimation (i.e., PCA, 
ACA, or the correlation between the estimated attribute mastery 
scores and external criteria) across all imputed datasets.

Results

Table 3 shows the PCA and ACA of each missing data handling 
method for the whole sample, as well as the two groups with 
different ability levels. In this MNAR design, RFTI always resulted 
in highest values of PCA and ACA among the methods, above 0.9, 
both for the whole sample or for subgroups. The proposed RFDTI 
could provide similar results as RFTI, of which the PCA and ACA 
values were close to or above 0.90. Among the remaining four 

TABLE 3  PCA and ACA of six missing data handling methods.

Method PCA ACA

Whole sample Low-level 
group

High-level 
group

Whole sample Low-level 
group

High-level 
group

PM 0.576 0.815 0.378 0.581 0.865 0.458

TW 0.788 0.775 0.799 0.810 0.825 0.836

EM 0.701 0.749 0.662 0.723 0.796 0.701

MI 0.650 0.715 0.596 0.683 0.751 0.642

RFTI 0.920 0.915 0.924 0.941 0.931 0.946

RFDTI 0.901 0.899 0.905 0.934 0.928 0.932
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traditional methods, TW performed relatively better and its 
results were similar between the two ability level groups, while PM 
performed the worst for the whole sample (both PCA and ACA 
were lower than 0.6) and quite differentially between two groups. 
The PCA of PM was even below 0.4 for the high-level group, but 
exceeded 0.8 for the low-level group.

Table  4 presents the correlation coefficients between the 
attribute mastery scores based on two test forms and academic 
achievements in Chinese and mathematics. The pattern of results 
among six imputation methods was consistent for the two 
subjects. The estimated attribute mastery scores after using 
RFDTI or RFTI to deal with missing data were the most strongly 
correlated with academic achievements, and these correlations 
were the closest to those based on the complete responses from 
test B. MI also performed well, while EM was the worst.

Discussion

In this study, we  improved the Random Forest Threshold 
Imputation method proposed by You et  al. (2023), which is 
designed for handling missing data in the implementation of 
CDMs and demonstrates superiority for MNAR and MIXED data 
and a large missingness proportion. Specifically, motivated by the 
fixed lower threshold in RFTI and related uncertainty of 
imputation, in this study, we adapted the RFTI method by setting 
both dynamic upper  and lower thresholds to increase the 
imputation accuracy. For ease of application, we also developed 
an R package missForestCDA for the RFDTI method.

Based on the machine learning algorithm, RFDTI is a 
nonparametric method, and it relies much less on the 
assumptions of the distribution or the missingness mechanism 
of the data compared with traditional methods such as EM and 
MI. Results of the current simulation and empirical studies also 
demonstrate the effectiveness of the RFDTI method from the 
perspective of attribute pattern classification. The attribute 
profile estimations for RFDTI were consistently more accurate 
than the four traditional methods (PM, TW, EM, MI), even 
when the missingness proportion was high (>30%). The 
performance of RFDTI for the empirical MNAR data was also 
better than the four methods and much closer to the results 
based on complete data.

However, RFDTI did not show obvious advantages over RFTI. In 
the simulation, for MCAR or MAR data, RFDTI slightly 
outperformed RFTI. However, for MIXED and MNAR data, the 
situation was reversed. The differences between the two methods can 
be negligible in the case of a small percentage of missingness, but 
became larger with a higher missingness proportion. This may 
be  related to the percentage of remaining missing data after 
imputation. When the missing percentage of the original data is 
higher, the remaining missing percentage after imputation will also 
be  relatively higher, while this part of missing values will not 
be treated, but just ignored. RFDTI would produce a higher missing 
percentage than RFTI. According to Table 2, in the case of an original 
missing percentage of 50%, the remaining missing percentage after 
imputation using RFDTI could approach 15%, while it is lower in 
RFTI. Under the MNAR and MIXED missing mechanism, the 
requirement for the percentage of missing data that can be negligible 

may be lower. So the accuracy of RFDTI is instead lower than RFTI 
with a large missing proportion for MNAR or MIXED data.

The findings of this study also indicate the need to pay special 
attention to the treatment of missing data in CDM applications, 
which is also one of the starting points of the current study. In the 
current simulation, the estimation of attribute profiles for each 
method was better under the MIXED and MNAR mechanisms than 
under the MAR and MCAR mechanisms. For the traditional missing 
data handling methods, this finding is inconsistent with previous 
research results in the IRT context (e.g., Finch, 2008; Wolkowitz and 
Skorupski, 2013). The reason is likely that the person parameters to 
be estimated in CDMs are binary variables (i.e., the classification of 
attribute mastery status), rather than continuous variables (such as 
latent ability) as in IRT models. Research has found that the 
performance of missing data handling methods is related to the 
missingness mechanism and the relationship relies on the specific 
research contexts, including the analysis model and data type 
(categorical or continuous) (Dai, 2017; Newman, 2003; Poleto et al., 
2011; Song et al., 2022; Zhuchkova and Rotmistrov, 2022; Fu et al., 
2025; Qin et al., 2024). Accordingly, it is conceivable that the impact 
of the missing data mechanism on the traditional methods may 
differ between CDM and IRT. On the other hand, the good 
performance of the RFDTI method may be related to its greater use 
of individual response patterns that may provide additional useful 
information under nonrandom missingness mechanisms. Therefore, 
the proposed method and its comparison with traditional methods 
in this study provide users with more choices of missing data 
handling methods in CDM applications and provide a basis for the 
method selection.

Although the RFDTI method seems very promising, there are 
some issues for further study. First, in this study, we only focus on the 
estimation of the attribute mastery status, leaving the item parameter 
estimation aside temporarily. However, how the item parameter 
estimation of CDMs will be affected when using RFDTI to deal with 
missing data needs further investigation. Second, in this study, 
we  only explored the performance of the RFDTI method in the 
context of the common DINA model. In future research, the RFDTI 
method can be applied in combination with other CDMs, such as the 
fusion model (Hartz et al., 2002), the hierarchical DINA model (de 
la Torre and Douglas, 2004; Yan et al., 2025), and the DINO model, 
so as to explore its performance in more research contexts. Third, 
simulation conditions related to cognitive diagnosis assessments 
should be  enriched (e.g., varying test lengths and hierarchical 
relationships of attributes) to more comprehensively demonstrate the 
performance of the RFDTI approach.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

The studies involving humans were approved by Academic 
Ethics Committee of School of Mathematics and Information 
Science, Nanchang Normal University. The studies were 

https://doi.org/10.3389/fpsyg.2025.1487111
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


You et al.� 10.3389/fpsyg.2025.1487111

Frontiers in Psychology 12 frontiersin.org

conducted in accordance with the local legislation and 
institutional requirements. Written informed consent for 
participation was not required from the participants or the 
participants’ legal guardians/next of kin in accordance with the 
national legislation and institutional requirements.

Author contributions

XY: Writing – original draft, Methodology, Formal analysis. JY: 
Writing  – review & editing. XX: Writing  – review & editing, 
Investigation, Funding acquisition, Software.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 
by Nanchang Normal University Doctoral Research Start Up Fund, 
no: NSBSJJ2020013.

Acknowledgments

We are very grateful to Yue Xiao and Hongyun Liu for their 
support and assistance in the preparation of the initial draft of 
this manuscript.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Correction note

A correction has been made to this article. Details can be found 
at: 10.3389/fpsyg.2025.1686437.

Publisher’s note

All claims expressed in this article are solely those of the authors and 
do not necessarily represent those of their affiliated organizations, or those 
of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, 
is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1487111/
full#supplementary-material

References
Bernaards, C. A., and Sijtsma, K. (2000). Influence of imputation and EM methods on 

factor analysis when item nonresponse in questionnaire data is nonignorable. Multivar. 
Behav. Res. 35, 321–364. doi: 10.1207/S15327906MBR3503_03

Chatzopoulou, D. I., and Economides, A. A. (2010). Adaptive assessment of student’s 
knowledge in programming courses. J. Comput. Assist. Learn. 26, 258–269. doi: 
10.1111/j.1365-2729.2010.00363.x

Cheema, J. R. (2014). A review of missing data handling methods in education 
research. Rev. Educ. Res. 84, 487–508. doi: 10.3102/0034654314532697

Cui, Y., Gierl, M. J., and Chang, H.-H. (2012). Estimating classification consistency 
and accuracy for cognitive diagnostic assessment. J. Educ. Meas. 49, 19–38. doi: 
10.1111/j.1745-3984.2011.00158.x

Cui, Y., and Li, L. (2015). Evaluating person fit for cognitive diagnostic assessment. 
Appl. Psychol. Meas. 39, 223–238. doi: 10.1177/0146621614557272

Dai, S. (2017). Investigation of missing responses in implementation of cognitive 
diagnostic models [Unpublished doctoral dissertation]. Bloomington, IN: Indiana 
University.

Dai, S., and Svetina Valdivia, D. (2022). Dealing with missing responses in cognitive 
diagnostic modeling. Psych 4, 318–342. doi: 10.3390/psych4020028

Dai, S., Svetina Valdivia, D., and Chen, C. (2018). Investigation of missing responses 
in Q-matrix validation. Appl. Psychol. Meas. 42, 660–676. doi: 
10.1177/0146621618762742

Dai, S., Wang, X., and Svetina, D. (2021). TestDataImputation: missing item responses 
imputation for test and assessment data (version 2.3) [R package]. Available online at: 
https://cran.r-project.org/web/packages/TestDataImputation/index.html

de Ayala, R. J., Plake, B. S., and Impara, J. C. (2001). The impact of omitted responses 
on the accuracy of ability estimation in item response theory. J. Educ. Meas. 38, 213–234. 
doi: 10.1111/j.1745-3984.2001.tb01124.x

de la Torre, J. (2011). The generalized DINA model framework. Psychometrika 76, 
179–199. doi: 10.1007/S11336-011-9207-7

de la Torre, J., and Douglas, J. A. (2004). Higher-order latent trait models for cognitive 
diagnosis. Psychometrika 69, 333–353. doi: 10.1007/BF02295640

de la Torre, J., Hong, Y., and Deng, W. (2010). Factors affecting the item parameter 
estimation and classification accuracy of the DINA model. J. Educ. Meas. 47, 227–249. 
doi: 10.1111/j.1745-3984.2010.00110.x

de la Torre, J., and Minchen, N. (2014). Cognitively diagnostic assessments and the 
cognitive diagnosis model framework. Psicología Educativa 20, 89–97. doi: 
10.1016/j.pse.2014.11.001

Finch, H. (2008). Estimation of item response theory parameters in the presence of 
missing data. J. Educ. Meas. 45, 225–245. doi: 10.1111/j.1745-3984.2008.00062.x

Fu, D. X., Qin, C. Y., Luo, Z. S., Li, Y. J., Yu, X. F., and Ye, Z. Y. (2025). Using regularized 
methods to validate Q-matrix in cognitive diagnostic assessment. J. Educ. Behav. stat. 
50, 149–179. doi: 10.3102/10769986241240084

Gemici, S., Bednarz, A., and Lim, P. (2012). A primer for handling missing values in 
the analysis of education and training data. Int. J. Train. Res. 10, 233–250. doi: 
10.5172/ijtr.2012.10.3.233

George, A. C., Robitzsch, A., Kiefer, T., Groß, J., and Ünlü, A. (2016). The R package 
CDM for cognitive diagnosis models. J. Stat. Softw. 74, 1–24. doi: 10.18637/jss.v074.i02

Glas, C., and Pimentel, J. (2008). Modeling nonignorable missing data in speeded 
tests. Educ. Psychol. Meas. 68, 907–922. doi: 10.1177/0013164408315262

Graham, J. W., Olchowski, A. E., and Gilreath, T. D. (2007). How many imputations 
are really needed? Some practical clarifications of multiple imputation theory. Prev. Sci. 
8, 206–213. doi: 10.1007/s11121-007-0070-9

Hair, J. F., Black, W., Babin, B. J., and Anderson, R. E. (2010). Multivariate data 
analysis. 7th Edn. Edinburgh, England: Pearson.

Hartz, S., Roussos, L., and Stout, W. (2002). Skill diagnosis: Theory and practice 
[computer software user manual for arpeggio software]. New Jersey, USA: Educational 
Testing Service.

Hattie, J., and Timperley, H. (2007). The power of feedback. Rev. Educ. Res. 77, 81–112. 
doi: 10.3102/003465430298487

Holman, R., and Glas, C. A. W. (2005). Modelling non-ignorable missing-data 
mechanisms with item response theory models. British J. Math. Stat. Psychol. 58, 1–17. 
doi: 10.1111/j.2044-8317.2005.tb00312.x

Ketterlin-Geller, L. R., and Yovanoff, P. (2009). Diagnostic assessments in mathematics 
to support instructional decision making. Pract. Assess. Res. Eval. 14:16. doi: 
10.7275/vxrk-3190

Kokla, M., Virtanen, J., Kolehmainen, M., Paananen, J., and Hanhineva, K. (2019). 
Random forest-based imputation outperforms other methods for imputing LC-MS 

https://doi.org/10.3389/fpsyg.2025.1487111
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.3389/fpsyg.2025.1686437
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1487111/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1487111/full#supplementary-material
https://doi.org/10.1207/S15327906MBR3503_03
https://doi.org/10.1111/j.1365-2729.2010.00363.x
https://doi.org/10.3102/0034654314532697
https://doi.org/10.1111/j.1745-3984.2011.00158.x
https://doi.org/10.1177/0146621614557272
https://doi.org/10.3390/psych4020028
https://doi.org/10.1177/0146621618762742
https://cran.r-project.org/web/packages/TestDataImputation/index.html
https://doi.org/10.1111/j.1745-3984.2001.tb01124.x
https://doi.org/10.1007/S11336-011-9207-7
https://doi.org/10.1007/BF02295640
https://doi.org/10.1111/j.1745-3984.2010.00110.x
https://doi.org/10.1016/j.pse.2014.11.001
https://doi.org/10.1111/j.1745-3984.2008.00062.x
https://doi.org/10.3102/10769986241240084
https://doi.org/10.5172/ijtr.2012.10.3.233
https://doi.org/10.18637/jss.v074.i02
https://doi.org/10.1177/0013164408315262
https://doi.org/10.1007/s11121-007-0070-9
https://doi.org/10.3102/003465430298487
https://doi.org/10.1111/j.2044-8317.2005.tb00312.x
https://doi.org/10.7275/vxrk-3190


You et al.� 10.3389/fpsyg.2025.1487111

Frontiers in Psychology 13 frontiersin.org

metabolomics data: a comparative study. BMC Bioinform. 20:492. doi: 
10.1186/s12859-019-3110-0

Little, R., and Rubin, D. B. (2002). Statistical analysis with missing data. 2nd Edn. New 
York, USA: Wiley.

Liu, Y., and Gopalakrishnan, V. (2017). An overview and evaluation of recent machine 
learning imputation methods using cardiac imaging data. Data 2, 8–23. doi: 
10.3390/data2010008

Liu, X., and Loken, E. (2025). The impact of missing data on parameter estimation: 
three examples in computerized adaptive testing. Educ. Psychol. Meas. doi: 
10.1177/00131644241306990

Muthén, B., Asparouhov, T., Hunter, A., and Leuchter, A. (2011). Growth modeling 
with non-ignorable dropout: alternative analyses of the STAR*D antidepressant trial. 
Psychol. Methods 16, 17–33. doi: 10.1037/a0022634

Newman, D. A. (2003). Longitudinal modeling with randomly and systematically 
missing data: a simulation of ad hoc, maximum likelihood, and multiple 
imputation techniques. Organ. Res. Methods 6, 328–362. doi: 
10.1177/1094428103254673

Parsons, S. A., Vaughn, M., Scales, R. Q., Gallagher, M. A., Parsons, A. W., Davis, S. G., 
et al. (2018). Teachers’ instructional adaptations: a research synthesis. Rev. Educ. Res. 88, 
205–242. doi: 10.3102/0034654317743198

Peugh, J. L., and Enders, C. K. (2004). Missing data in educational research: a review 
of reporting practices and suggestions for improvement. Rev. Educ. Res. 74, 525–556. 
doi: 10.3102/00346543074004525

Poleto, F., Singer, J., and Paulino, C. (2011). Missing data mechanisms and their 
implications on the analysis of categorical data. Knowledge-Based Systems. 21, 31–43. 
doi: 10.1007/s11222-009-9143-x

Qin, C. Y., Dong, S. H., and Yu, X. F. (2024). Exploration of polytomous-attribute 
Q-matrix validation in cognitive diagnostic assessment. Int. J. Train. Res. 292:111577. 
doi: 10.1016/j.knosys.2024.111577

Richman, M., Trafalis, T., and Adrianto, I. (2009). “Missing data imputation through 
machine learning algorithms” in Artificial intelligence methods through machine 
learning algorithms. eds. S. E. Haupt, A. Pasini and C. Marzban. (Dordrecht: Springer), 
153–169.

Robitzsch, A. (2021). On the treatment of missing item responses in educational large-
scale assessment data: an illustrative simulation study and a case study using PISA 2018 
mathematics data. Europ. J. Invest. Health Psychol. Educ. 11, 1653–1687. doi: 
10.3390/ejihpe11040117

Robitzsch, A., Kiefer, T., George, A. C., and Uenlue, A. (2017). CDM: cognitive 
diagnosis modeling (version 6.0-101) [R package]. Available online at: https://cran.r-
project.org/web/packages/CDM/index.html

Schafer, J., and Graham, J. W. (2002). Missing data: our view of the state of the art. 
Psychol. Methods 7, 147–177. doi: 10.1037/1082-989X.7.2.147

Sia, C. J. L., and Lim, C. S. (2018). “Cognitive diagnostic assessment: an 
alternative mode of assessment for learning” in Classroom assessment in 
mathematics. eds. D. R. Thompson, M. Burton, A. Cusi and D. Wright. (Cham: 
Springer), 123–137.

Song, Z., Guo, L., and Zheng, T. (2022). Comparison of missing data handling 
methods in cognitive diagnosis: zero replacement, multiple imputation and maximum 
likelihood estimation. Acta Psychol. Sin. 54, 426–440. [In Chinese]. doi: 10.3724/
SP.J.1041.2022.00426

Stekhoven, D. (2013). MissForest: nonparametric missing value imputation using 
random forest (version 1.4) [R package]. Available at: https://cran.r-project.org/web/
packages/missForest/index.html

Stekhoven, D., and Büehlmann, P. (2012). MissForest–nonparametric missing value 
imputation for mixed-type data. Bioinformatics 28, 112–118. doi: 10.1093/bioinformatics/ 
btr597

Suresh, M., Taib, R., Zhao, Y., and Jin, W. (2019). “Sharpening the BLADE: missing 
data imputation using supervised machine learning” in AI 2019: advances in Artificial 
Intelligence. eds. J. Liu and J. Bailey. (Cham: Springer), 215–227.

Tabachnick, B. G., and Fidell, L. S. (1989). Using multivariate statistics. 2nd Edn. New 
York, USA: Harper & R.

Thomas, T., and Rajabi, E. (2021). A systematic review of machine learning-based 
missing value imputation techniques. Data Technol. Appl. 55, 558–585. doi: 
10.1108/DTA-12-2020-0298

van Buuren, S. (2018). Flexible imputation of missing data. Second Edn: Chapman and 
Hall/CRC.

van Buuren, S., Groothuis-Oudshoorn, K., Robitzsch, A., Vink, G., Schouten, R., 
Robitzsch, A., et al. (2021). Mice: multivariate imputation by chained equations (version 3.14.0) 
[R package]. Available online at: https://cran.r-project.org/web/packages/mice/index.html

Wolkowitz, A. A., and Skorupski, W. P. (2013). A method for imputing response 
options for missing data on multiple-choice assessments. Educ. Psychol. Meas. 73, 
1036–1053. doi: 10.1177/0013164413497016

Wothke, W. (2000). “Longitudinal and multigroup modeling with missing data” in 
Modeling longitudinal and multilevel data. eds. T. D. Little, K. U. Schnabel and J. 
Baumert. (New York: Psychology Press), 205–224.

Wu, L. J., and Chang, K.-E. (2023). Effect of embedding a cognitive diagnosis into the 
adaptive dynamic assessment of spatial geometry learning. Interact. Learn. Environ. 31, 
890–907. doi: 10.1080/10494820.2020.1815216

Yan, Y. Z., Dong, S. H., and Yu, X. F. (2025). Using ordering theory to learn attribute 
hierarchies from examinees’ attribute profiles. J. Educ. Behav. stat. doi: 10.3102/107699 
86241280389

You, X., Li, M., Xiao, Y., and Liu, H. (2019). The feedback of the Chinese learning 
diagnosis system for personalized learning in classrooms. Front. Psychol. 10:1751. doi: 
10.3389/fpsyg.2019.01751

You, X., Yang, J., Qin, C., and Liu, H. (2023). Missing data analysis in cognitive 
diagnostic models: random forest threshold imputation method. Acta Psychologica 
Sinica 55, 1192–1206. doi: 10.3724/SP.J.1041.2023.01192

Zhuchkova, S., and Rotmistrov, A. (2022). How to choose an approach to handling 
missing categorical data: (un)expected findings from a simulated statistical experiment. 
Qual. Quant. 56, 1–22. doi: 10.1007/s11135-021-01114-w

https://doi.org/10.3389/fpsyg.2025.1487111
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.1186/s12859-019-3110-0
https://doi.org/10.3390/data2010008
https://doi.org/10.1177/00131644241306990
https://doi.org/10.1037/a0022634
https://doi.org/10.1177/1094428103254673
https://doi.org/10.3102/0034654317743198
https://doi.org/10.3102/00346543074004525
https://doi.org/10.1007/s11222-009-9143-x
https://doi.org/10.1016/j.knosys.2024.111577
https://doi.org/10.3390/ejihpe11040117
https://cran.r-project.org/web/packages/CDM/index.html
https://cran.r-project.org/web/packages/CDM/index.html
https://doi.org/10.1037/1082-989X.7.2.147
https://doi.org/10.3724/SP.J.1041.2022.00426
https://doi.org/10.3724/SP.J.1041.2022.00426
https://cran.r-project.org/web/packages/missForest/index.html
https://cran.r-project.org/web/packages/missForest/index.html
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1108/DTA-12-2020-0298
https://cran.r-project.org/web/packages/mice/index.html
https://doi.org/10.1177/0013164413497016
https://doi.org/10.1080/10494820.2020.1815216
https://doi.org/10.3102/10769986241280389
https://doi.org/10.3102/10769986241280389
https://doi.org/10.3389/fpsyg.2019.01751
https://doi.org/10.3724/SP.J.1041.2023.01192
https://doi.org/10.1007/s11135-021-01114-w

	A random forest dynamic threshold imputation method for handling missing data in cognitive diagnosis assessments
	Introduction
	Missing data mechanisms and traditional handling methods

	Random forest threshold imputation
	Basic procedure
	Determination of the upper thresholds 

	Random forest dynamic threshold imputation
	Simulation study
	Design
	Data generation
	Complete data generation
	Missing data generation
	Analysis
	Evaluation criteria

	Results
	Missing rate of data imputed by RFDTI
	Classification accuracy of attribute profiles

	Empirical study
	Instrument
	Test administration
	Sample
	Analysis
	Results

	Discussion

	References

