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A random forest dynamic
threshold imputation method for
handling missing data in cognitive
diagnosis assessments

Xiaofeng You, Jiangin Yang and Xinai Xu*

School of Mathematics and Information Science, Nanchang Normal University, Nanchang, China

The handling of missing data in cognitive diagnostic assessment is an important
issue. The Random Forest Threshold Imputation (RFTI) method proposed by
You et al. in 2023 is specifically designed for cognitive diagnostic models
(CDMs) and built on the random forest imputation. However, in RFTI, the
threshold for determining imputed values to be 0 is fixed at 0.5, which may
result in uncertainty in this imputation. To address this issue, we proposed an
improved method, Random Forest Dynamic Threshold Imputation (RFDTI),
which possess two dynamic thresholds for dichotomous imputed values. A
simulation study showed that the classification of attribute profiles when using
RFDTI to impute missing data was always better than the four commonly
used traditional methods (i.e., person mean imputation, two-way imputation,
expectation—maximization algorithm, and multiple imputation). Compared
with RFTI, RFDTI was slightly better for MAR or MCAR data, but slightly worse
for MNAR or MIXED data, especially with a larger missingness proportion. An
empirical example with MNAR data demonstrates the applicability of RFDTI,
which performed similarly as RFTI and much better than the other four
traditional methods. An R package is provided to facilitate the application of
the proposed method.

KEYWORDS

missing data, cognitive diagnosis assessment, random forest threshold imputation,
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Introduction

With the development of educational research, there is more demand for personalized
feedback to enhance students’ learning in a targeted manner (Chatzopoulou and Economides,
2010; Hattie and Timperley, 2007; Parsons et al., 2018; Wu and Chang, 2023). To address this
issue, Cognitive Diagnosis Models (CDM:s) provide a useful psychometric framework that can
finely classify students into different attribute profiles according to their responses on the test
items (de la Torre and Minchen, 2014; Ketterlin-Geller and Yovanoff, 2009; Sia and Lim, 2018;
You et al., 2019). However, the presence of missing responses is usually inevitable in such
setting. For example, with the rise of personalized learning and hierarchical teaching in recent
years, students often respond to only a portion of the items that match their ability instead of
completing the entire test. Also, in large-scale assessments, the balanced-incomplete-block
(BIB) design is typically used, in which examinees are administrated only a subset of items
(Dai et al,, 2018). In such cases, the data may be missing completely at random (MCAR),
missing at random (MAR), missing not at random (MNAR), or even a mixture of two or three
of those missingness mechanisms (e.g., Liu and Loken, 2025). Therefore, how to obtain
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accurate classifications of examinees’ attribute mastery status in
diverse missing data scenarios is a crucial issue (Dai, 2017).

However, most commonly-used methods for handling missing
data in the field of educational and psychological measurement have
obvious limitations, and few methods are specifically designed for
CDM applications. First, the existing methods (such as case deletion
methods, regression imputation, likelihood-based estimation) often
make assumptions about the missingness mechanism, whereas the
mechanism is often unknown and even untestable and two or more
mechanisms may be mixed in practice (Dai, 2017; de Ayala et al,,
2001). Next, it is difficult for these methods to deal with a high missing
data proportion (e.g., more than 30%), which however is common in
practice due to test designs. Furthermore, whether the existing
conclusions on these methods are applicable to CDMs needs further
investigation. Current discussions about these methods are mostly
based on Item Response Theory (IRT) models (Holman and Glas,
2005; Robitzsch, 2021), while some commonly-recommended
methods have been found to perform quite differently in different
research contexts (Dai, 2017; Newman, 2003; Song et al., 2022). For
example, in Dai (2017)’s and Song et al. (2022)’s research based on
cognitive diagnosis, the results of some popular methods, such as
maximum likelihood (ML) and multiple imputation (MI), did not
show obvious differences for MAR and MNAR data, which however
should be expected in IRT contexts. For clarity, these commonly-used
methods (such as case deletion methods, mean imputation, ML
estimation, and MI) are collectively referred to as traditional methods
in this article, as opposed to the machine-learning-related approaches
that will be introduced later.

Since the early 2000s, a new framework for imputing missing
values through machine learning algorithms has emerged, in which a
machine learning model is trained based on the data samples with
observed values for specific variables and then predict the missing
values (Liu and Gopalakrishnan, 2017). This type of approach is
gaining popularity due to their applicability and effectiveness in
handling large datasets (Thomas and Rajabi, 2021). According to
Thomas and Rajabi’s (2021) review of machine learning-based missing
data imputation techniques during 2010 ~ 2020, clustering, instance-
based (e.g., k-nearest neighbor or KNN), and ensemble (e.g., random
forest) techniques are the most popular algorithms applied for data
imputation. These techniques are nonparametric algorithms that
make no parametric assumptions about the relationship between
variables. Thus, when employed in data imputation, they do not
require strong assumptions about the missingness mechanism, and
have been found to always perform well (e.g., Kokla et al., 2019;
Richman et al., 2009; Suresh et al., 2019). Due to these advantages of
such new approaches, how to incorporate them into the measurement
models is getting more and more attention.

In response to the issue of missing data in the implementation of
CDMs and the increasing popularity of machine learning imputation
methods, You et al. (2023) proposed a Random Forest Threshold
Imputation (RFTI) method, which is an adaption of the Random
Forest Imputation (RFI; Stekhoven and Biichlmann, 2012). Simply
put, when imputing missing values for items scored as 0-1, for each
unobserved value, RFI first predicts a probability value within [0,1]
based on the random forest algorithms, which indicates the probability
of the missing value taking the value of 1. In other words, the closer
the probability value is to 1, the unobserved value is more likely to
be 1; otherwise, the value is more likely to be 0. The probability value
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is then converted to a dichotomous value of 0 or 1 using a fixed
threshold (e.g., 0.5). In reality, however, as the probability value
approaches 0.5, the missing value is more likely to be incorrectly
imputed, regardless of whether the imputed value is 0 or 1, due to the
high uncertainty in the model prediction. Therefore, You et al. (2023)
proposed to leave the missing value with high uncertainty still missing
and only impute those with predicted probability values close to 0 or
1. So, RFTT utilizes two thresholds for the dichotomous imputed value,
of which the lower one is fixed at 0.5 and the upper one is dynamic
and determined by an adapted person fit index in CDMs. Therefore,
RFTI is designed for CDMs based on a machine learning imputation
algorithm and has been found to be superior in the recovery of
examinees mastery profiles than RFI and the expectation-
maximization (EM) algorithm (a general method to perform ML
estimation on incomplete data), especially for MNAR and MIXED
data and a large missingness proportion (You et al., 2023).

The idea of setting a dynamic threshold is worthwhile. However,
it can be noticed that the lower threshold is still fixed at 0.5 in
RFTI. Although You et al. (2023) mention that it is reasonable to
consider the unobserved responses as wrong (i.e., replace them with
0) in the educational assessment if the predicted probability is 0.5 or
below, there is no substantial evidence to support this claim. Replacing
missing values with 0 for which the predicted probability is less than
but close to 0.5 is still subject to high uncertainty. It remains unknown
that whether this will influence the imputation accuracy and hence the
classification accuracy of examinees’ attribute patterns. Besides, the
simulation conditions in You et al. (2023) are limited in that they only
varied the missing data mechanisms and missingness proportions
without taking into account other factors in the actual cognitive
diagnostic assessments, and only three methods, including EM, RFI
and RFTI, were compared.

Therefore, in this study, we proposed an improved version of
RFTIL in which both upper and lower thresholds for converting the
predicted probability values to dichotomous values are dynamic to
fully account for imputation uncertainty, and we call the new method
as Random Forest Dynamic Threshold Imputation (RFDTI) method.
In the following sections, we first briefly introduce the four missing
data mechanisms and several traditional methods that are commonly
used in educational and psychological measurements, especially
cognitive diagnosis contexts. Then, we describe the principles and
ideas of the RFTT method in detail and lead to the improved version,
the REDTI method, on this basis. Afterward, we show a Monte Carlo
simulation study, in which we systematically investigated the
performance of the proposed RFDTI method under different
conditions from the perspective of the classification accuracy of
CDMs and compared it with RFTT as well as several commonly used
traditional missing data handling methods. An empirical example is
also provided to illustrate the applicability of the proposed method in
practice. Finally, we conclude the paper with a discussion.

Missing data mechanisms and traditional
handling methods

Missing data and their treatment would substantially affect the
analysis results based on such data (Cheema, 2014; Little and Rubin,
2002; Tabachnick and Fidell, 1989). Therefore, appropriate techniques
for handling missing data should be adopted, and the method
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selection is usually based on the mechanism and proportion of
missingness, as well as the purpose and model of data analysis (Little
and Rubin, 2002; Tabachnick and Fidell, 1989).

Little and Rubin (2002) defined three types of missing data
mechanisms, i.e., MCAR, MAR, and MNAR. Under the MCAR
mechanism, the probability of missingness is unrelated to both
observed and unobserved data, so the missing values can
be completely ignored in the analysis. When data are MAR, missing
data in a particular variable are related to some measured variables in
the dataset but are unrelated to that variable itself. For example, the
missingness is conditional on other measurable characteristics of the
examinee but not on the item score in which missingness occurs. The
MNAR mechanism refers to the situation in which the missingness on
a variable is partly or completely related to the unobserved values in
that variable. For example, the missingness proportion of a difficult
item is high, while that proportion of an easy item is low. Therefore,
MNAR is considered nonignorable. In addition to the three
mechanisms mentioned above, there is a MIXED type of missing data
mechanism that was used in de Ayala et al. (2001) and Dai (2017).
Based on an empirical dataset, de Ayala et al. (2001) found that item
responses (correct, incorrect, or an omitted response) of examinees
were related to both the person’s ability and the items. Because a test-
taker may omit an item for different reasons in practice and these
factors cannot be explicitly measured currently, we also include the
MIXED mechanism in this study.

Based on previous studies (e.g., Dai and Svetina Valdivia, 2022;
Song et al., 2022), here we review four categories of the traditional
methods for handling missing data, which may be commonly used in
cognitive diagnosis contexts: case deletion, single imputation, ML
estimation, and MI (Gemici et al., 2012; Schafer and Graham, 2002).
Case deletion methods, including listwise and pairwise deletion, are
popular and easy to implement, but often result in a large amount of
information loss, thereby decreasing statistical power. Commonly-
used single imputation methods include person mean imputation
(PM) and two-way imputation (TW). PM imputes each missing value
using the corresponding respondent’s mean score across all available
items. TW method further takes into account information from the
item mean and the grand mean in addition to the person mean. These
two methods are also easy to implement and are robust in dealing with
missing values in multidimensional data (e.g., Bernaards and Sijtsma,
2000). As for the ML estimation, a general method to perform it on
incomplete data is EM algorithm, which iterates between an
expectation step and a maximization step. In the expectation step,
missing values are filled in using the expectation based on the current
estimates of unknown parameters, whereas in the maximization step,
the parameters are re-estimated from the observed and filled data.
Strictly speaking, EM is also a single imputation method, but it is
stochastic, unlike the deterministic PM and TW. Another ML method
is the direct maximum likelihood (also known as full information
maximum likelihood), which maximizes the likelihood function
directly based on parameters from a specified distribution, rather than
first imputing missing values. Therefore, this method is sometimes
labeled as the “available cases” approach in some software.

MI, as a flexible alternative to likelihood methods, is not a
specific imputation method but rather a multi-step imputation
framework. In MI, each missing value is substituted by m > 1
simulated values, resulting in m imputed datasets. Each of the m
datasets is then analyzed using the desired statistical analysis
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method in the same manner. Finally, the results are pooled by
simple arithmetic to produce overall estimates and standard errors
(Schafer and Graham, 2002). Theoretically speaking, any stochastic
imputation method (such as EM and regression-based methods)
can be used with MI. In general, likelihood methods and MI, both
considered model-based methods, have been suggested as the
optimal approaches for handling missing data in many situations
(Finch, 2008; Schafer and Graham, 2002; van Buuren, 2018;
Wothke, 2000). Nevertheless, each method for treating missing data
has its own features and assumption, and no one method can
consistently outperform the others under different circumstances
(Finch, 2008).

Regardless of the specific limitations of each method, all these
traditional missing data handling methods are subject to the following
issues. First, these methods require (strong) statistical assumptions,
including the assumption that the missingness mechanism is MCAR
or MAR, which may not be satisfied in practice. However, traditional
methods often perform poorly under the MNAR mechanism, and
what is worse is that the MNAR mechanism is difficult to test in
advance. Second, most methods can provide desirable results only
when the missingness proportion is not high. In previous simulation
studies on missing data handling methods, the specified missing data
proportions ranged from 2% (de Ayala et al., 2001) to 50% (Glas and
Pimentel, 2008), most of which were between 5 and 30% (Finch,
2008). These methods do not work well when the proportion exceeds
20%, and a large bias may occur in the estimation when the proportion
reaches above 30%. Third, although a variety of approaches has been
developed to deal with the problem of missing responses in
educational measurement, most of them are within the IRT
framework (Dai and Svetina Valdivia, 2022). For other complex
measurement models, such as CDMs, there are few missing data
handling methods that take into account the characteristics of the
model itself.

Random forest threshold imputation

The rise of machine learning provides a new paradigm for
imputing missing values. Machine learning models can be trained
based on the observed data and then used to predict missing values.
Due to the underlying machine learning algorithms, this type of
imputation method is often not as dependent on assumptions of
missingness mechanisms as the traditional methods mentioned above
and often performs better (e.g., Kokla et al., 2019; Richman et al,,
2009; Suresh et al., 2019).

You et al. (2023) incorporated the Random Forest Imputation
(RFI; Stekhoven and Biiehlmann, 2012), a flexible and effective
machine learning imputation method, with the features of CDMs to
develop a Random Forest Threshold Imputation (RFTT) method. It is
specially designed for CDMs and possesses the advantages of machine
learning imputation methods.

Basic procedure
The key idea of RFTT is building on the random forest imputation,

that is, it allows some missing values with low certainty of imputation
to remain missing, which is realized by setting two thresholds:
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1 le >T
Y ={NA 0.5<pj<rt (1)
0 Pij <0.5

in which ¥;; denotes the imputed response of examinee i on item j, p;;
is the imputed probability for examinee i on item j, NA represents
missingness, 7 is the dynamic upper threshold and 0.5 is the fixed lower
threshold. For the same dataset, 7 will be substituted for a range of
possible values T(l),. . .,r(T within a reasonable range of [0.5, 1) in
evenly spaced increments (e.g., 0.01), and its final value will be the one
yielding the best imputation effect, which is evalu‘?}jed using an adapted
person fit index in CDMs. Therefore, for each 7 JA=12,...,T, the
following procedures of imputation and model fit will be repeated.
Suppose that there is an N x M data matrix ¥, where N denotes
the number of examinees and M is the number of variables (i.e., test
items). Then it can be viewed as ¥ = (Y Yo, Yy ), in which Y, is the
collection of all examinees’ responses on the mth item (m =1,2,...,M).
Let ¥; (s el2,.. .,m) denote an arbitrary variable with missing data,
imsis € {1,2,...,N } denote the examinees with missing values in Y5,
and OZ . € {1,2, N } denote the remaining examinees with observed
values in Y. Subsequently, the dataset can be divided into four parts:
1)y OZS, representing the observed values in variable ¥j; (2) ymsis,
representing(tshe missing values in Y5; (3) x osb . representing the dat& )of
examinees i, i
representing the data of examinees imsis in all other (m —1) variables

in all other (m—l) variables except Yg; (4) x,

except Y;. The imputation procedure is an iterative process involving
the following steps.

The first step is to use a traditional imputation method, such as
the item mean imputation, to calculate the initial estimates of all the
missing values. Then, sort all variables with missingness,
Yy (s € 1,2,...,m), in the ascending order of the number of missing
values. The imputed matrix is denoted by ¥,

The second step is to impute the missing values for each Y
through the random forest algorithm, in which converting
probability values to dichotomous values using Equation 2.
Specifically, to conduct imputation for the variable Y5, a random
forest model is trained using yazs as the response and xosbs as the
predictors. Then, the fitted model is applied to predict the missing
values ymsis using xgrfil

predicted probability values provided by the fitted model are

as input. Notice that at this time, the

converted to dichotomous values (0 or 1) based on the prespecified
upper threshold (") and fixed lower threshold 0.5. This process is
repeated for all variables with missing values. After completing the
imputation for all Yy, the new imputed matrix obtained is denoted
by ¥,;™P and then compared to ¥ ;le .

If the difference between the two imputed matrices does not meet
the stopping criterion, the next iteration will be carried out. In the new
iteration, Y,f;"vff in the previous iteration will be assigned to ¥ ;;"p ,and
the second imputation step will be repeated to update ¥,. The
stopping criterion is that the difference between ¥, and ¥ ;Z;p
increases for the first time. For the set of M discrete variables, that
difference is measured by A , which is calculated by Equation 2.

M N
2 il ey

A= 4NA )
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in which # NA is the number of all missing values in the matrix ¥, and
Iym ,ym is an indicator variable that records whether the imputed
value in Row i, Column j differs between two successive iterations. If
that value differs, 7 = 1; otherwise, I = 0. Therefore, the numerator in
Equation 2 represents the number of imputed values that change
between two iterations (Stekhoven and Biiehlmann, 2012).

After obtaining a final imputed data matrix related to z'(t), aCDM
selected by researchers is fitted to this data matrix, in which the EM
algorithm is used for item parameter estimation and the maximum a
posterior (MAP) method is used to estimate latent attribute patterns.
The remaining missing values after imputation are simply ignored.
Based on the estimated attribute patterns and Q-matrix expectations,
an adapted person fit index is calculated for evaluating the imputation
accuracy for each 7 b

Determination of the upper thresholds -

The determination of the upper thresholds () is a balance between
the imputation proportion and imputation accuracy in actual situations.
A higher 7 will result in fewer but more accurate imputed values. On
the other hand, the missingness proportion in the imputed dataset
should be low enough (preferably less than 10, 10% ~ 15% sometimes
acceptable) (e.g., Dai, 2017; Hair et al., 2010; Little and Rubin, 2002;
Muthén et al,, 2011), so that simply ignoring these remaining missing
values in the subsequent analysis will not bring a substantial bias.

Logically, the imputed values with high certainty should not
damage the overall fit between the data and the expectations of
the CDM used in the analysis. The more errors in imputed values,
the greater the deviation of the imputed data from the ideal
response patterns. When the deviation is large enough, the
imputation should be stopped. Out of this consideration, You et al.
(2023) adapted the response conformity index (RCI) proposed by
Cuiand Li (2015), which is a person fit index in CDMs, to evaluate
the deviation of the imputed data using a possible value ) of 7
from the ideal response patterns based on the current
estimated model.

The adapted index is calculated in two steps. In the first step, an
RCI _C; is calculated for each examinee i as

RCI_C; = (3)

in which m; (0 <m; <M ) is the number of nonmissing items for
examinee i in the imputed data matrix with M items; Y denotes the
observed or imputed response of examinee i on item j; &; represents
the estimated attribute profile of examinee i since the true profile is
unknown in practice; P;(¢;) denotes the probability of a correct
response to item j given az;, 1 j (¢ )is the corresponding ideal response,
and /(d;) =1 only if examinee i masters all the attributes required
by item j, otherwise, 1 (¢; ) = 0. The Q matrix specifies the attributes
required for each item. In the second step, the mean of RCI _C; is
calculated across all examinees, that is,
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>V RCI_C;
SE )

RCI C=

Therefore, for each r(t), avalue of RCI _ C can be obtained. More
accurate imputations will result in imputed response patterns that are
more consistent with
smaller RCI _C.

In {T(l),. . .,T(T)}, the value resulting in the smallest RCI _C is
selected as the optimal upper threshold, and the corresponding

expectations, thereby generating a

imputed data matrix is the final imputed result that will be used in the
subsequent analysis. In practical application, it is sufficient to export
the final imputed data matrix only.

Random forest dynamic threshold
imputation

RFTI is built on the random forest imputation algorithms while
leveraging the characteristics of CDMs to dynamically determine
the upper threshold to reduce the imputation errors. However,
according to Equation 1, the lower threshold is still fixed at 0.5 in
RFTI. That is, any missing value with a predicted probability not
greater than 0.5 is replaced with 0. When thinking about the
starting point of RFTI to reduce estimation uncertainty, this is
puzzling. Replacing missing values with 0 for which the predicted
probability approaches 0.5 is still subject to a high degree of
uncertainty, and so carries the risk of imputation errors. Although
You et al. (2023) mention that it is reasonable to consider the
unobserved responses as wrong (i.e., replace them with 0) in the
educational assessment if the predicted probability is 0.5 or below,
there is no substantial evidence to support this claim in their study.
It remains unknown that whether this will influence the imputation
accuracy and hence the classification accuracy of examinees’
attribute patterns.

Therefore, in this study, we proposed an improved version of
RFT]L, i.e., Random Forest Dynamic Threshold Imputation (RFDTI).
The key difference between them is that in REDTI, both upper and
lower thresholds (7,, and 7;) for converting the predicted probability
values to dichotomous values are dynamic to fully account for
imputation uncertainty. In other words, the following Equation 5 is
used instead of Equation 1 when determine the imputed
dichotomous values.

1 Pij 2Ty,
Yj={NA T < pij <Ty (5)
0 Pij <7

in which 0 <77 <0.5and 0.5 < 7,, <1. The dynamic upper and lower
thresholds will be simultaneously determined based on the adapted

person fit index RCI _ C, while other procedures are the same as those
of RFTI. That is, for each combination of Tl(t/) (t = 1,2,...,T1) and
rut“ (tu :1,2,...,Tu), an imputed data matrix can be obtained
according to the predicted probability of missing values and

Equation 5, for which an RCI _C can be calculated according to
Equations 3, 4. The combination of 7; and 7,, values corresponding to
the smallest RCI _C is selected as the optimal thresholds, and the
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corresponding imputed data matrix will be used in the
subsequent analysis.

To facilitate the application of the proposed RFDTI, we developed
missForestCDA, which can

be downloaded from https://jianlingsoft.oss-cn-beijing.aliyvuncs.com/
J tel ) tel ]

the corresponding R package

missForestCDA rar. This package requires preinstallation of the R
package missForest (Stekhoven, 2013) for implementing the random
forest imputation and the R package CDM (George et al., 20165
Robitzsch etal., 2017) for the estimation of CDMs. After installing and
loading the missForestCDA package, the incomplete dataset can
be imputed by simply handing it over to the main function of
this package:

missForestCDA(missData,Q,missN ,StepV = 0.05)

in which missData is the input incomplete dataset, Q is the Q matrix
that needs to be specified by researchers, missN is the number of
persons with missing responses, and stepV’ is the increment & used to
generate a sequence of possible values for 77 and 7,,, which is set at 0.05
by default. This function will directly return the final imputed dataset.

In this study, we conducted a Monte Carlo simulation study and
an empirical study to investigated the performance of the proposed
RFDTI method under different conditions and compared it with RFTT
as well as several commonly used traditional missing data handling
methods. According to Equations 3, 4, the adapted person fit statistic
RCI _C can be obtained for any CDMs with explicitly defined item
response function P; (; ). In this study, for the purpose of illustration,

the generalized Deterministic Inputs, Noisy and Gate (DINA) model
(dela Torre, 2011) is used as an example.

Note that in You et al. (2023)’s study, the superiority of RFTT over
RFI and EM was mainly in the classification of attribute profiles,
whereas the estimation of item parameters using RFTT was inferior to
that of EM. This may be because the training and prediction of the
random forest model underlying RFTI are mainly based on the
characteristics of individual response patterns across items, while
information about responses from different examinees to the same
item is rarely used. Based on this, we focus on the classification of
attributes’ mastery status in this study, leaving aside the item
parameter estimation temporarily.

Simulation study

A Monte Carlo simulation study was conducted to investigate the
imputation effect of the proposed RFDTI method under different
missingness conditions and its relative performance compared with
the RFTI as well as four commonly used imputation methods in
educational assessments.

Design

A total of 4x5x3x6=360 conditions were created by
manipulating four factors, including the missing data mechanism
(MIXED, MNAR, MAR, and MCAR), missingness proportion (10, 20,
30, 40, and 50%), sample size (N =500, 1,000 and 2000) and the
number of attributes (K = 3, 4, 5, 6, 7, 8). The missing data proportion
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and the number of attributes were chosen according to common
settings in related studies. Specifically, the missing rate reported in the
educational measurement literature, as mentioned above, was between
2 and 50%, and most existing CDM studies used three to eight
attributes (Dai, 2017). In addition, a sample size of 1,000 was widely
used (Dai, 2017) and was considered sufficient for the DINA model to
obtain an accurate parameter estimation (de la Torre et al., 2010).
Therefore, we considered three levels of sample size centered at 1000.
Each simulation condition was replicated 100 times. Each generated
dataset was imputed using six approaches, including RFTI, RFDTI,
and four frequently used methods in educational assessments,
including PM, TW, EM, and MI.

Other specifications reflected the common settings in simulations
and empirical studies of CDMs reported in previous literature.
According to the review of CDM studies by Dai (2017), the number of
items was mostly between 20 and 40, so a test length of 30 items was
used here. For simplicity, we assumed that attributes were independent
of each other. The Q-matrix reflecting the mapping relationship
between attributes and items was randomly generated. Specifically,
g-entries in the Q-matrix were randomly drawn from the uniform
distribution U(0,1) and then dichotomized by the cut-off point of 0.5.
Therefore, each item might measure one or more attributes.

Data generation

Data generation was implemented in R language and involved two
steps: generating the complete datasets and then generating the
missing data.

Complete data generation

First, the DINA model was used to simulate the complete
dichotomous responses under each condition. In the DINA model,
the item response probability is written as:

Pj(ai) = P(Xy =1la;)

=g (1-5;)" = {;g,_ 5;

if ;=0 .
if =1 (©)

in which X7; is the response of examinee i to item j, &;; = (aﬂ yee s QK )

. e . . ter of it
is the examinees attribute profile, g ; is the gu<2551n§<13amme erotitem

j, 57 is the slipping parameter of item j, 7ij = ga{i’* is the ideal
response of examinee i to item j, and ¢ j; is the element in the Q
matrix indicating whether attribute k is required for a correct response
to item j.

Following the literature (e.g., Cui et al., 2012; Dai and Svetina
Valdivia, 2022), examinees’ attribute profiles (¢;) were generated from
a dichotomized multivariate normal distribution M VN(OK,Z).
Specifically, 0 is a I x K vector of zeros with K being the number of
attributes measured by the test, X is a K x K covariance matrix with
all diagonal elements being 1 and all off-diagonal elements being 0.5,
as shown in Equation 7:

Frontiers in Psychology

10.3389/fpsyg.2025.1487111

= T (7

and the cut point for each attribute was set to zero. Item parameters
in the DINA model, including the slipping parameter s and the
guessing parameter g, were drawn from the uniform distribution
[0.05, 0.25]. Then, according to Equation 6, the probability of a correct
response of examinee i to item j, P; (c; ), was calculated and compared
to a uniform random number [0, 1]. If P; (a'i) was not less than the
random number, the response X, ij was coded as 1 for correct;
otherwise, X i = 0.

Missing data generation

Considering that the trained models in RFTT and RFDTI methods
are based on examinees with observed data on the target variable, the
training accuracy can be improved if there are some examinees with
complete response data. Therefore, we randomly selected 80% of the
sample (e.g., 800 out of 1,000 simulated examinees) to generate
missing values, leaving a small number of examinees with complete
data. Note, however, that the application of the two methods do not
require some examinees in the sample have complete data.

MCAR missing samples were simulated by randomly removing a
specified percentage of responses from the complete dataset. This was
achieved by comparing the specified overall missingness proportion
(e.g.» 30%) with a uniform random number [0, 1] generated for each
response. If the random number was greater than or equal to the
proportion, the corresponding response was removed as missing.

Generation of missing responses of MAR followed the methods
outlined in de Ayala et al. (2001), Peugh and Enders (2004), and Finch
(2008). Based on the complete dataset, the number-correct score was
calculated for each examinee on all but the target item as an ability-
proxy variable. Examinees were divided into seven fractiles based on
the 5th, 15th, 30th, 70th, 85th, and 95th percentiles of their normalized
scores on the proxy variable. Examinees of each fractile were assigned
a missingness probability that was inversely related to their scores (see
Table 1), while the average missing rate across fractiles was kept at the
desired level. Uniform random numbers [0, 1] were used to select
responses for deletion according to the missing rate of each fractile.

Following the method outlined in Dai (2017), the MNAR data were
generated by calculating the omission probability based on the responses
in the complete dataset. Examinees with an incorrect response to an item
were assigned a higher probability of omission than those who answered
the item correctly. In addition, the missing rate on items increased with

TABLE 1 MAR missing rate of each fractile.

Percentile ‘ Missing rate (%)
0~ 5th MR x 1.50
5~ 15th MR x 1.35
15 ~ 30th MR x 1.15
30 ~ 70th MR x 1.00
70 ~ 85th MR x 0.85
85 ~ 95th MR x 0.65
95 ~ 100th MR x 0.50

MR = the desired overall missing rate in each condition. Fractiles are represented by the
percentiles of the normalized scores on the proxy variable.
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the item difficulty. The generation procedure is as follows. The number
of omitted responses for each examinee was first calculated based on the
desired overall missingness proportion. A probability factor & was then
specified for each examinee, with an initial value of 0. A uniform random
number [0, 1] was compared with p + £ to determine whether to remove
a response as an omission, in which p is the probability of a correct
response. If the random number was larger, the response was removed.
During the procedure, if the number of missing responses for an
examinee was greater (or less) than the prespecified number, the value of
& would be increased (or decreased). For each examinee, the value of &
was constantly adjusted to regenerate the missing data until the number
of omitted items was equal to the desired number.

To generate data of the MIXED mechanism, we first adopted the
same procedure as generating the MAR data, that is, dividing the
sample into seven fractiles and calculating the missing rate of each
fractile, in which examinees with higher scores had a lower
missingness proportion. Subsequently, the number of missing
responses for each examinee could be calculated according to the
assigned fractile, and the omissions were generated through the
procedure of generating the MNAR data mentioned above.

Analysis

All missing data were imputed using the corresponding R
packages. Specifically, PM, TW, and EM were conducted using the
TestDatalmputation package (Dai et al., 2021). MI was carried out
using function mice() in mice package (van Buuren et al., 2021), in
which the specific imputation method used was logistic regression
imputation and 20 imputed datasets were created for each incomplete
dataset (Graham et al., 2007). RFTI and RFDTI were implemented
with the missForestDINA and missForestCDA packages, respectively.

After the imputation, the DINA model was fit to the data using the
R package CDM (Robitzsch et al., 2017). The estimation of examinees’
attribute profiles, as the focus of this study, was then evaluated across all
100 replications in each condition. Note that when using MI for
imputation, since attribute profiles were dichotomous data, their
estimation accuracy results (rather than estimates) were pooled by
averaging the corresponding results across multiple imputations.

Evaluation criteria

As this study focuses on the classification of attribute mastery
status, we adopted two relevant criteria to evaluate the performance
of each imputation method: the pattern-wise classification accuracy
(PCA) and the attribute-wise classification accuracy (ACA).

PCA= i%l[&,- =a;]/(RxN)

r=li=l

®)

R K N

ACA=Y"%">I[éik = i |/ (Rx K xN)

r=lk=li=1

)

where ¢; = ((ft,-l,. LAk ) ando; = (aﬂ,. LAk ) are the estimated
and true attribute patterns for examinee I, respectively, and [+] isan
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indicator function that takes the value of 1 or 0 depending on whether
the condition in brackets is met; R is the number of successfully
converged replications in each condition; N is the sample size; and K
is the number of attributes. PCA measures the average classification
accuracy of examinees’ attribute patterns, and ACA measures the
average classification accuracy of the attributes. A larger value of PCA
or ACA indicates a more accurate classification of the attribute
mastery status.

Results
Missing rate of data imputed by RFDTI

Considering that REDTT may not impute all missing values and a
low proportion of missing data may be retained and ignored in the
following analysis, we first examined the remaining missing rates of
the data imputed by RFDTT in different conditions. Due to the same
issue faced by RFTI, we also provided the results from RFTTI for
comparison. Results showed that the missing rate of REDTI imputed
data was mainly affected by the missingness mechanism and
proportion, while the sample size and the number of attributes had
little effect. Therefore, the missing rates of REDTT imputed data under
different missingness mechanisms and proportions are listed in
Table 2.

In general, the remaining missing rate showed an upward trend as
the missingness proportion in the original data increased, and it was

TABLE 2 Remaining missing rates of data imputed by RFDTI and RFTI
under different missing mechanisms and proportions.

Missingness Missingness RFDTI RFTI
mechanism proportion

10% 2.44% 1.03%

20% 4.65% 2.33%

MCAR 30% 6.98% 4.32%
40% 9.99% 6.48%

50% 13.73% 9.16%

10% 2.47% 1.02%

20% 4.55% 2.33%

MAR 30% 7.04% 4.15%
40% 9.94% 6.50%

50% 13.59% 9.21%

10% 1.53% 1.10%

20% 4.15% 2.99%

MNAR 30% 8.09% 5.92%
40% 11.69% 9.81%

50% 14.30% 14.14%

10% 1.29% 0.86%

20% 3.65% 2.29%

MIXED 30% 7.61% 4.55%
40% 12.07% 8.00%

50% 14.83% 12.60%
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below or approximate 10% in most conditions considered in this
study. Only when the original missing proportion reached 50% under
the MCAR and MAR mechanisms, or when the original missing
proportion reached 40% under the MNAR or MIXED mechanisms,
the remaining missing rate of RFDTI imputed data was about
10% ~ 15%. Therefore, in the subsequent analysis based on the RFDTI
imputed data, the remaining missing values after being imputed by
RFDTI were temporarily ignored (Hartz et al., 2002; Little and Rubin,
20025 Muthén et al., 2011). In addition, as expected, the remaining
missing rates of REDTT were slightly higher that those of RFTT.

Classification accuracy of attribute profiles

In general, PCA and ACA results had similar trends between
methods or the different levels of design factors, while the differences
in ACA values were smaller than those in PCA values. Figure 1 shows
the average PCA and ACA of the estimated attribute profiles for the
six methods under different missingness mechanisms and proportions.
According to Figure 1, the higher the missingness proportion, the
worse the classification accuracy tends to be.

Then we focused on the comparison between methods. When the
missing data was MCAR (Figures 1A,E) or MAR (Figures 1B,F),
RFDTI performed very similarly or even slightly better than RFTI,
and both outperformed the other four methods, especially when the
missing proportion increased. EM and MI performed slightly better
in PCA than TW and PM, while these four methods resulted in quite
similar ACA results. Under the MNAR (Figures 1C,G) or MIXED
(Figures 11D,H) mechanism, RFDTI also performed reasonably well.
Specifically, REDTI performed better than the other four traditional
methods (i.e., PM, TW, EM, and MI) in terms of PCA. In addition,
based on ACA results, REDTI performed similarly to PM and TW and
better than EM and MI. However, for MNAR or MIXED data, the
recovery of attribute patterns based on RFDTI was no better than that
from RFTI, and the difference between two methods increased with a
larger missingness proportion. This might be related to the fact that
the remaining missing rate in REDTI-imputed data was higher than
that of RFTL

The average PCA and ACA values of each method under different
missingness mechanism, missing proportions, number of attributes,
or sample sizes are provided in Table Al of Appendix A. When
comparing the results across different missingness mechanisms,
we found that the classification accuracy of each method for the
MNAR and MIXED data was slightly higher than that for the MAR
and MCAR data. This pattern was more apparent for PM, TW, and
RFTTI. As for the other two design factors (i.e., the number of attributes
and the sample size), the classification accuracy for each method
tended to decrease when the test measured more attributes, while the
sample size had little effect on the classification accuracy for all
six methods.

Empirical study

In this section, we illustrate the application of the proposed
RFDTI method using the data collected from a cognitive diagnosis
assessment designed for Chinese seventh-grade students. Missing
data were MNAR by design, which will be explained in detail in the
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subsection Test administration. Students’ academic achievements in
Chinese and mathematics in the final examination and their attribute
patterns estimated from the complete data in a parallel test were used
as the criteria to evaluate the performance of REDTL

Instrument

We adopted a cognitive aptitude test for seventh-grade
students developed by the psychometric research center of Beijing
Normal University. It contains two parallel test forms (A and B)
with identical test length and structure (i.e., Q matrix). Each test
form has 50 items and measures five attributes, including verbal
reasoning, analogical reasoning, symbolic operation, matrix
reasoning, and spatial reasoning. In each form, each item
measures only one attribute, and each attribute is measured by 10
items (see Table Bl of Appendix B). The instruments and
assessment procedures were reviewed and approved by the
research committee of Beijing Normal University. The school
teachers, students, and their parents had a clear understanding of
this project and how data was collected. Parents of all student
participants approved and signed informed consent forms.

Before using the two forms of the cognitive aptitude test,
we performed a prior analysis to examine their instrument quality.
We collected response data from 181 and 186 seventh-grade
students from Dalian City, Liaoning Province on test forms A and
B, respectively. Then, under the classical test theory (CTT)
framework, we calculated the difficulty and discrimination of
each item, the difficulty and reliability of each attribute and the
entire test (see Appendix B). In general, the difficulty of most
items was between 0.3 and 0.7 and the discrimination was between
0.3 and 0.5. The test difficulty of the two forms was 0.421 and
0.471, respectively, and their test reliability was 0.870 and 0.899,
respectively.

According to the item difficulty, test form A was divided into
two subtests with identical length and structure. The easier subtest
Al was composed of the 5 easiest items for each of the five
attributes, totaling 25 items. Subtest A2, the more difficult one,
consisted of the remaining 5 items for each attribute.

Test administration

The test administration involved two phases. In the first
phase, each student was required to complete test form B within
60 min. The responses were then analyzed using the DINA model
to estimate the students’ attribute mastery patterns, which were
transformed into attribute mastery scores (i.e., the number of
attributes mastered) ranging from 0 to 5. Afterward, all the
students were divided into two groups, including a low-level
group with attribute mastery scores from 0 to 2, and a high-level
group with attribute mastery scores from 3 to 5.

The second phase was conducted two weeks later. The
low-level group and the high-level group were administered the
easy subtest Al and the difficult subtest A2, respectively, within
30 min. In this case, the missing responses of the low-level group
on subtest A2 and the high-level group on subtest Al could
be regarded as MNAR.
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FIGURE 1
Average attribute classification accuracy under different missing mechanisms and proportions. (A—D) PCA values of attribute profiles under four
missingness mechanisms. (E—H) ACA values of attribute profiles under four missingness mechanisms.
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TABLE 3 PCA and ACA of six missing data handling methods.

Method PCA ACA
Whole sample Low-level High-level Whole sample Low-level High-level
group group group group

PM 0.576 0.815 0378 0.581 0.865 0.458
™ 0.788 0.775 0.799 0.810 0.825 0.836
EM 0.701 0.749 0.662 0.723 0.796 0.701
MI 0.650 0.715 0.596 0.683 0.751 0.642
RFTI 0.920 0915 0.924 0.941 0.931 0.946
REDTI 0.901 0.899 0.905 0.934 0.928 0.932

TABLE 4 Correlation between attribute mastery scores and academic
achievements.

Test Method Chinese Mathematics
form
PM 0.271 0.318
™W 0.371 0.416
EM 0.253 0.296
A
MI 0.455 0.511
RFTI 0.484 0.530
RFDTI 0.494 0.523
B / 0.544 0.613
Sample

A total of 610 seventh-grade students from a junior middle school
in Dalian City, Liaoning Province in China participated in the first
phase of the test (completing test form B), of which 52.78% were boys
and 47.22% were girls. Only 599 of them participated in the second
phase (completing test form Al or A2), including 271 in the low-level
group and 328 in the high-level group. Therefore, the sample used for
analysis in this study was 599 students, each of whom responded to
just half of the items on test form A.

Analysis

Data analysis consists of two stages: (1) dealing with missing data
using different methods and estimating students’ attribute mastery
patterns based on responses of subtests Al and A2; and (2) evaluating
the performance of those methods.

In the first stage, we used six methods, i.e., PM, TW, EM, MI,
RFTIL, and RFDTI, to impute missing data on test form A, respectively,
and fit the DINA model to each of the six imputed datasets to obtain
a set of estimates of students’ attribute patterns. In order to improve
the results of different imputation methods, we added the complete
data of 181 students on test form A into the current response data,
which were collected for quality analysis of the test instrument (see
subsection Instrument). Therefore, all the available response data of
181 + 599 = 780 students on Test A were used and the missingness
proportion was 38.40% in this stage.
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In the second stage, the performance of different imputation
methods was evaluated through two external criteria, i.e., attribute
patterns estimated from response data on test B and academic
achievements, based on the sample of 599 students.

First, we calculated the consistency between the classifications
estimated based on the response data on test form B and the data on
test A dealt with by each imputation method. Specifically, the DINA
model was fitted to the 599 students’ responses to test B, estimating
their attribute patterns. These estimates were used as criteria to
evaluate the imputation accuracy of the six missing data handling
methods. PCA and ACA were still used as the evaluation criteria,
while the true attribute patterns in Equations 8, 9 were replaced with
the estimated attribute patterns based on test form B. Therefore, PCA
and ACA measured the consistency between the classifications
estimated based on the data of the two test forms. The higher the
consistency, the better the performance of the imputation method.

Next, we calculated the correlation between the estimated
attribute mastery scores and the academic achievements in Chinese
and mathematics, and then compared these correlations based on test
forms A and B. Specifically, for test form A, we calculated the
correlations between the academic achievements and attribute
mastery scores obtained by using different missing data handling
methods, so each method had a corresponding correlation value.
Then, the correlations between the attribute mastery scores from test
form B and the academic achievements were taken as the comparison
standards. A smaller difference between the correlation of a missing
data handling method and that coefficient based on test form B
indicated better performance of this method.

Note that, as in the simulation study, MI results were pooled by
averaging the corresponding measures of the estimation (i.e., PCA,
ACA, or the correlation between the estimated attribute mastery
scores and external criteria) across all imputed datasets.

Results

Table 3 shows the PCA and ACA of each missing data handling
method for the whole sample, as well as the two groups with
different ability levels. In this MNAR design, RFTT always resulted
in highest values of PCA and ACA among the methods, above 0.9,
both for the whole sample or for subgroups. The proposed RFDTI
could provide similar results as RFTI, of which the PCA and ACA
values were close to or above 0.90. Among the remaining four
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traditional methods, TW performed relatively better and its
results were similar between the two ability level groups, while PM
performed the worst for the whole sample (both PCA and ACA
were lower than 0.6) and quite differentially between two groups.
The PCA of PM was even below 0.4 for the high-level group, but
exceeded 0.8 for the low-level group.

Table 4 presents the correlation coefficients between the
attribute mastery scores based on two test forms and academic
achievements in Chinese and mathematics. The pattern of results
among six imputation methods was consistent for the two
subjects. The estimated attribute mastery scores after using
RFDTI or RFTI to deal with missing data were the most strongly
correlated with academic achievements, and these correlations
were the closest to those based on the complete responses from
test B. MI also performed well, while EM was the worst.

Discussion

In this study, we improved the Random Forest Threshold
Imputation method proposed by You et al. (2023), which is
designed for handling missing data in the implementation of
CDMs and demonstrates superiority for MNAR and MIXED data
and a large missingness proportion. Specifically, motivated by the
fixed lower threshold in RFTI and related uncertainty of
imputation, in this study, we adapted the RFTI method by setting
both dynamic upper and lower thresholds to increase the
imputation accuracy. For ease of application, we also developed
an R package missForestCDA for the REDTI method.

Based on the machine learning algorithm, RFDTI is a
nonparametric method, and it relies much less on the
assumptions of the distribution or the missingness mechanism
of the data compared with traditional methods such as EM and
MI. Results of the current simulation and empirical studies also
demonstrate the effectiveness of the RFDTI method from the
perspective of attribute pattern classification. The attribute
profile estimations for RFDTI were consistently more accurate
than the four traditional methods (PM, TW, EM, MI), even
when the missingness proportion was high (>30%). The
performance of RFDTI for the empirical MNAR data was also
better than the four methods and much closer to the results
based on complete data.

However, RFDTI did not show obvious advantages over RFTI. In
the simulation, for MCAR or MAR data, RFDTI slightly
outperformed RFTI. However, for MIXED and MNAR data, the
situation was reversed. The differences between the two methods can
be negligible in the case of a small percentage of missingness, but
became larger with a higher missingness proportion. This may
be related to the percentage of remaining missing data after
imputation. When the missing percentage of the original data is
higher, the remaining missing percentage after imputation will also
be relatively higher, while this part of missing values will not
be treated, but just ignored. REDTI would produce a higher missing
percentage than RFTT. According to Table 2, in the case of an original
missing percentage of 50%, the remaining missing percentage after
imputation using RFDTI could approach 15%, while it is lower in
RFTI. Under the MNAR and MIXED missing mechanism, the
requirement for the percentage of missing data that can be negligible
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may be lower. So the accuracy of RFDTT is instead lower than RFTT
with a large missing proportion for MNAR or MIXED data.

The findings of this study also indicate the need to pay special
attention to the treatment of missing data in CDM applications,
which is also one of the starting points of the current study. In the
current simulation, the estimation of attribute profiles for each
method was better under the MIXED and MNAR mechanisms than
under the MAR and MCAR mechanisms. For the traditional missing
data handling methods, this finding is inconsistent with previous
research results in the IRT context (e.g., Finch, 2008; Wolkowitz and
Skorupski, 2013). The reason is likely that the person parameters to
be estimated in CDMs are binary variables (i.e., the classification of
attribute mastery status), rather than continuous variables (such as
latent ability) as in IRT models. Research has found that the
performance of missing data handling methods is related to the
missingness mechanism and the relationship relies on the specific
research contexts, including the analysis model and data type
(categorical or continuous) (Dai, 2017; Newman, 2003; Poleto et al.,
2011; Song et al., 2022; Zhuchkova and Rotmistrov, 2022; Fu et al,,
2025; Qin et al., 2024). Accordingly, it is conceivable that the impact
of the missing data mechanism on the traditional methods may
differ between CDM and IRT. On the other hand, the good
performance of the RFDTI method may be related to its greater use
of individual response patterns that may provide additional useful
information under nonrandom missingness mechanisms. Therefore,
the proposed method and its comparison with traditional methods
in this study provide users with more choices of missing data
handling methods in CDM applications and provide a basis for the
method selection.

Although the REDTI method seems very promising, there are
some issues for further study. First, in this study, we only focus on the
estimation of the attribute mastery status, leaving the item parameter
estimation aside temporarily. However, how the item parameter
estimation of CDMs will be affected when using RFDTT to deal with
missing data needs further investigation. Second, in this study,
we only explored the performance of the RFDTI method in the
context of the common DINA model. In future research, the REDTI
method can be applied in combination with other CDMs, such as the
fusion model (Hartz et al., 2002), the hierarchical DINA model (de
la Torre and Douglas, 2004; Yan et al,, 2025), and the DINO model,
so as to explore its performance in more research contexts. Third,
simulation conditions related to cognitive diagnosis assessments
should be enriched (e.g., varying test lengths and hierarchical
relationships of attributes) to more comprehensively demonstrate the
performance of the RFDTT approach.
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