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Background: Major depressive disorder (MDD) remains challenging to diagnose
due to its reliance on subjective interviews and self-reports. Objective,
technology-driven methods are increasingly needed to support clinical
decision-making. Wearable point-of-view (POV) glasses, which capture both
visual and auditory streams, may offer a novel solution for multimodal
behavioral analysis.

Objective: This study investigated whether features extracted from POV glasses,
analyzed with machine learning, can differentiate individuals with MDD from
healthy controls.

Methods: We studied 44 MDD patients and 41 age/sex-matched HCs (18-55
years). During semi-structured interviews, POV glasses recorded video and audio
data. Visual features included gaze distribution, smiling duration, eye-blink
frequency, and head movements. Speech features included response latency,
silence ratio, and word count. Recursive feature elimination was applied. Multiple
classifiers were evaluated, and the primary model—ExtraTrees—was assessed
using leave-one-out cross-validation.

Results: After Bonferroni correction, smiling duration, center gaze and happy
face duration showed significant group differences. The multimodal classifier
achieved an accuracy of 84.7%, sensitivity of 90.9%, specificity of 78%, and an F1
score of 86%.

Conclusions: POV glasses combined with machine learning successfully
captured multimodal behavioral markers distinguishing MDD from controls.
This low-burden, wearable approach demonstrates promise as an objective
adjunct to psychiatric assessment. Future studies should evaluate its
generalizability in larger, more diverse populations and real-world
clinical settings.
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Introduction

Major depressive disorder (MDD) is one of the leading causes of
disability worldwide, affecting more than 280 million people across
different age groups and cultural backgrounds (1). Beyond its
profound impact on quality of life, MDD contributes substantially
to the global burden of disease, ranking among the top contributors
to years lived with disability (2). Early and accurate detection of
MDD is therefore critical, as timely interventions can significantly
improve treatment outcomes and reduce long-term socioeconomic
costs (3).

Despite this urgency, current diagnostic approaches rely
primarily on clinical interviews and self-report questionnaires such
as the Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (DSM-5) criteria and the Beck Depression Inventory (BDI).
While widely adopted, these tools are inherently subjective,
susceptible to recall bias, and may vary in reliability across clinical
contexts (4, 5). Therefore, there is a growing demand for objective,
reproducible, and scalable biomarkers that can complement
traditional psychiatric assessments.

In recent years, advances in Al and ML have enabled automated
extraction of behavioral and affective features from visual and
auditory data. Visual modalities including facial-expression
analysis using the Facial Action Coding System (FACS), gaze
tracking, and head-movement dynamics (6-8) have shown
promise in distinguishing individuals with depression from
healthy controls; depression is often characterized by slower head
movements, reduced smiling, and restricted affect (8, 9). Auditory
and linguistic modalities have also been explored, with features such
as reduced speech intensity, monotony, increased jitter, and less
phonetic variability associated with depressive symptoms (10-12).
Speech-based models using ML classifiers have demonstrated
moderate to high accuracy in detecting MDD, supporting the
potential of audio features as digital biomarkers (13).

While both visual and auditory markers have shown promise
individually, recent studies emphasize the advantage of multimodal
approaches that integrate multiple channels of information (14-16).
By combining complementary data sources, multimodal models
tend to achieve superior accuracy and robustness compared to
unimodal systems. However, most existing research relies on
stationary cameras and webcams in laboratory environments,
which may constrain ecological validity and fail to capture
naturalistic interactions. To address these limitations and realize
the benefits of multimodality in real clinical settings, clinician-worn
point-of-view (POV) glasses can be used to unobtrusively acquire
multimodal signals during psychiatric interviews without altering

Abbreviations: AUC, Area Under the Curve; AU, Action Unit; BDI, Beck
Depression Inventory; DSM-5, Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition; EAR, Eye Aspect Ratio; FACS, Facial Action Coding
System; LOOCV, Leave-One-Out Cross-Validation; MDD, Major Depressive
Disorder; ML, Machine Learning; POV, Point of View; RFE, Recursive Feature
Elimination; ROC, Receiver Operating Characteristic; SCID-5, Structured
Clinical Interview for DSM-5; SPSS, Statistical Package for the Social Sciences;
SVM, Support Vector Machine.
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their natural flow. Because the camera is mounted on the clinician
rather than the patient, no patient-worn hardware is required,
thereby avoiding comfort and adherence burdens and reducing
reactivity (Hawthorne effects) associated with conspicuous
equipment. The egocentric, face-aligned vantage point preserves
authentic clinical context—typical conversational distance,
spontaneous posture, and genuine turn-taking—so that gaze
behavior, affect, and speech timing are recorded as they naturally
occur. In practice, this configuration yields facial footage with fewer
off-axis artifacts than room-mounted webcams and minimizes self-
presentation bias, thereby enhancing ecological validity while
keeping the encounter clinically routine.

A critical gap in the literature concerns the use of wearable
devices to capture multimodal behavioral data in more natural
settings. Point-of-view (POV) glasses, equipped with front-facing
cameras and microphones, provide a unique vantage point by
recording interactions directly from the participant’s perspective.
This technology has the potential to overcome limitations of fixed-
camera setups, offering a more ecological and unobtrusive method
to assess behavioral patterns relevant to MDD. To date, only a
limited number of studies have examined the utility of POV glasses
in psychiatric research, and none have systematically evaluated their
role in multimodal ML frameworks for depression detection.

The present study addresses this gap by investigating whether
multimodal features extracted from POV glasses can be used to
differentiate individuals with MDD from healthy controls.
Specifically, visual features (e.g., gaze distribution, smiling
duration, eye-blink frequency, and head movements) and speech
features (egg, response latency, silence ratio, and word count) were
analyzed within a machine learning framework.

We hypothesized that (1) multimodal behavioral markers (gaze,
affective expressions, eye-blink patterns, head movements, and
speech-derived features) would differ between groups, and (2) a
classifier trained on these features would accurately distinguish
MDD from controls. By introducing a wearable and low-burden
method for capturing behavioral data, this study seeks to advance
the development of objective and scalable tools to support clinical
diagnosis of depression.

Methods
Study design

This study employed an observational, cross-sectional design to
evaluate behavioral and affective markers of major depressive
disorder (MDD) using multimodal data captured with wearable
POV glasses. During semi-structured clinical interviews, the
interviewer (a trained clinician) wore POV glasses equipped with
a front-facing camera and an integrated microphone. This setup
enabled the unobtrusive recording of participants’ visual and
auditory behaviors from the clinician’s natural perspective, such
as facial expressions, gaze patterns, eye-blink dynamics, and speech
characteristics. All interviews were conducted in a standardized
indoor environment to ensure consistency across participants, with
uniform lighting and recording conditions.
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Recruitment

Participants were recruited from the Department of Psychiatry
at Zonguldak Biilent Ecevit University Faculty of Medicine. The
study consisted of two groups: patients diagnosed with major
depressive disorder (MDD) and healthy controls.

Patients in the MDD group were consecutively enrolled among
individuals presenting to the psychiatry outpatient clinic. The
diagnostic process followed a structured two-step procedure: first,
a psychiatric resident conducted the Structured Clinical Interview
for DSM-5 Disorders (SCID-5), and subsequently, the diagnosis
was confirmed by a board-certified psychiatrist with over 20 years of
clinical experience. Healthy controls were recruited on a voluntary
basis from the community and hospital staff and reported no
current or past psychiatric disorders.

Inclusion criteria for both groups were: (1) age between 18 and
55 years and (2) willingness to participate in the study. Additionally,
the MDD group required (3) a DSM-5 diagnosis of major
depressive disorder confirmed through SCID-5 and (4) a Beck
Depression Inventory (BDI) score >20. Healthy controls were
required to score below the clinical threshold on the BDI. Within
the MDD group, BDI severity distribution was as follows: moderate
(20-28), n=28; severe (29-63), n=16, classified according to BDI
thresholds for the Turkish adult population (17).

Exclusion criteria were: (1) history of neurological disorders, (2)
strabismus or severe visual/hearing impairments that could
interfere with audiovisual analysis, (3) cosmetic procedures such
as botulinum toxin (Botox) injections within the past 6 months, (4)
current or recent use of psychiatric medications, (5) comorbid
bipolar disorder in the patient group, and (6) substance use
disorder within the previous 12 months.

A total of 97 individuals were initially recruited for the study,
including 50 patients with MDD and 47 healthy controls. However,
data from several participants were excluded due to recording
quality issues. In the MDD group, audio data from 2 participants
could not be analyzed because of excessive background noise, and
video data from 3 participants were excluded due to poor recording
quality or excessive movement. In the control group, 4 participants
were excluded for the latter reason. Furthermore, in 1 patient and 2
control participants, interaction data could not be obtained due to
technical failures during the recording process. After these
exclusions, the final sample comprised 85 participants: 44 patients
with MDD and 41 healthy controls. The two groups were matched
for age and sex, with no significant demographic differences
between them.

A total of 97 individuals were initially recruited for the study,
including 50 patients with MDD and 47 healthy controls. However,
data from several participants were excluded due to recording
quality issues. Short video dropouts (<2 consecutive frames at 30
FPS) were corrected by linear interpolation; segments with > 10%
missing frames or severe artifacts (e.g., heavy motion blur, or
occlusion) were excluded (excluded participants: n=1 MDD, n=2
HC). At the participant level, recordings with > 20% missing data in
any domain were excluded (18) from the corresponding group
(inferential) analyses (excluded participants: video-based features:
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n=3 MDD, n=4 HC; speech features: n=2 MDD), yielding a
complete-case dataset for hypothesis testing. After these
exclusions, the final sample comprised 85 participants: 44 patients
with MDD and 41 healthy controls. The two groups were matched
for age and sex, with no significant demographic differences
between them. For the machine-learning pipeline, residual
missing entries <20% (per feature X participant) were imputed
within each training fold only (median for continuous, mode for
categorical), and the fitted imputer was applied to the held-out
participant to avoid information leakage. Subsequent statistical tests
and ML modeling were performed on the resulting datasets as
specified above. A flow diagram of the inclusion-exclusion criteria
can be seen in Figure 1.

Data collection

All participants underwent a semi-structured clinical interview
while seated face-to-face with the clinician. During each interview,
the clinician wore POV glasses equipped with a front-facing high-
definition camera (1080p resolution at 30 frames per second) and
an integrated microphone (19). This setup enabled the unobtrusive
audiovisual recording of participants’ verbal and nonverbal
behaviors from the natural perspective of the interviewer.

The interview protocol consisted of four open-ended questions
designed to elicit spontaneous speech, emotional expression, and
natural interaction. The questions were as follows:

1. How have you been feeling recently? Could you describe
this in detail?

. Can you describe a typical day, from the moment you wake
up in the morning until you go to bed at night?

. Can you describe a positive moment that made you feel
good in detail?

. Can you describe a negative moment that made you feel
bad in detail?

Each response lasted a minimum of 30 seconds, yielding sufficient
audiovisual material for subsequent computational analysis.
Interviews were conducted in a standardized clinical room with
controlled environmental conditions. The distance between
participant and clinician was maintained at approximately 100 cm,
and ambient illumination was kept within 400-600 lux to minimize
variability in facial feature detection. Background noise was reduced
to ensure high-quality audio capture.

Following data collection, video recordings were prepared for
analysis by extracting 30-second segments corresponding to each
interview question. This step was performed using Movavi Video
Editor (Version 22.0, Movavi, 2023), ensuring that only the relevant
portions of the recordings were retained for further processing (20).
Importantly, the researcher responsible for analyzing the video
recordings was blinded to the diagnostic status of the participants
to minimize potential bias. All recordings were securely stored in
encrypted format and were accessible only to authorized members
of the research team.
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Participant flow diagram for inclusion and exclusion across eligibility, enrollment, and analysis.

Feature extraction

A comprehensive set of audiovisual features was extracted from
the recordings. The measured parameters included: duration of gaze
directed at the interviewer (center), time spent looking to the right
and left, smiling duration, simultaneous occurrence of forward gaze
with smiling (social smiling), duration of neutral and happy facial
expressions, number and duration of blinks, eye openness, total
head movement, rapid head movements, response latency, silence
ratio, and word count. For each participant, these parameters were
measured across four 30-second video segments corresponding to
the interview questions. To obtain a single representative score per
feature, values from the four segments were averaged. This
procedure minimized variability across questions and provided a
stable estimate of each participant’s typical behavioral pattern.

Facial landmarks, head movements, eye openness, and blink-
related parameters were extracted using MediaPipe. MediaPipe is an
open-source library that provides high-accuracy and accessible
methods for detecting facial and body landmarks in video data (21-
23). In particular, its FaceMesh module enables the estimation of 3D
head pose (pitch, yaw, roll) from 2D video.(Figure 2) Based on these
angles, rapid head movements were defined as frame-to-frame changes
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greater than 5° on any axis, while total head movement was calculated
as the cumulative sum of absolute angular changes across all three axes.

Eye openness and blink metrics were quantified using the Eye
Aspect Ratio (EAR) (24). EAR is a geometric index that determines
whether the eye is open or closed by using six landmarks around the
eye (pl-p6), measured with MediaPipe. (Figure 3) It is defined as:

EAR = (d(p2,p6) + d(p3,p5)/2))/d(p1,p4)

where d(-) represents the Euclidean distance between two
points. A blink was identified when EAR <0.2, a threshold
commonly reported in the literature. For analysis, an EAR value
greater than 0.20 was taken to indicate that the eyes were open. Eye
openness was therefore calculated as the mean EAR value across all
frames exceeding this threshold, representing the average degree of
eye opening. Blink count was defined as the number of discrete
sequences in which the EAR dropped below 0.20 and subsequently
rose above it again, each such cycle being counted as one blink.
Blink duration was defined as the average length of these sequences,
calculated by dividing the total number of frames with EAR < 0.20
by the total number of blinks in the recording.

Eye gaze direction was estimated using L2CS-Net, a deep
convolutional neural network developed for fine-grained gaze
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https://doi.org/10.3389/fpsyt.2025.1720990
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

Kayis et al.

3

FIGURE 2

Example frame demonstrating MediaPipe FaceMesh feature
detection used in this study. Green facial landmarks represent
automatically identified key points across the participant’s face,
which were utilized to calculate head pose, eye aspect ratio, and
blink metrics.

estimation in unconstrained environments. L2CS-Net employs a
dual-branch architecture in which yaw and pitch angles are
predicted independently through a combination of classification
and regression. Discretized angle bins are used for classification via
a softmax cross-entropy loss, while continuous estimates are refined
through regression using mean squared error. This hybrid loss
design allows the model to achieve both categorical robustness and
fine-grained precision (25). In our study, gaze direction was

10.3389/fpsyt.2025.1720990

categorized into left, right, and center classes, (Figure 4) with
aggregated measures calculated for each interview segment. Raw
yaw and pitch values are output in radians (-m to +m). In our
recordings, due to the camera/model axis convention, the
horizontal component of gaze aligned with the model’s pitch
(pitch > 0 — right, pitch < 0 — left), whereas yaw reflected
vertical orientation and was not used for class assignment.
Accordingly, frames were classified as right if pitch > +0.17 rad
(=10°), left if pitch < —0.17 rad, and center if |pitch| < 0.17 rad. To
avoid confounds from extreme vertical gaze, we further restricted
analyses to frames with |yaw| < 0.35 rad (~20°); frames outside this
range were marked invalid and excluded from aggregation.
Emotional expressions were analyzed using the Facial Action
Coding System (FACS) (Ekman & Friesen, 1978), which decomposes
facial expressions into individual muscle movements referred to as
Action Units (AUs) (26). For example, AUI2 corresponds to the
contraction of the zygomaticus major muscle, which produces a
smile, while combinations of AUs can represent complex emotions
such as happiness or sadness. Happiness was identified by the co-
activation of AU6 (orbicularis oculi, producing eye constriction) and
AU12, a combination that is commonly used in the literature to index
genuine positive affect (Duchenne smiles). Neutral emotion was
defined as the absence of major expressive AUs, reflecting a
baseline or affectively flat facial configuration. In this study, the Py-
Feat software was used to automatically code AUs from video frames
(27). Smiling was quantified by the presence of AU12, and social
smiling was operationalized as the simultaneous occurrence of AU12
activation and center gaze. This operationalization of social gaze was
adapted from prior POV-based studies in children with autism (28).
Finally, speech features were extracted using Whisper, an open-
source deep learning model for automatic speech recognition
trained on a large-scale multilingual and multitask dataset.
Whisper has demonstrated high performance in Turkish
automatic speech recognition tasks, making it a suitable tool for
analyzing speech features in this study (29). Transcripts were

FIGURE 3

Illustration of the Eye Aspect Ratio (EAR) measurement used for blink detection. Six key landmarks (P1-P6) define the geometric relationships
between the upper and lower eyelids. EAR is computed as the ratio of the vertical to horizontal distances between these points, allowing automated

identification of eye-opening and eye-closing states across video frames.
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FIGURE 4

Examples of gaze direction estimation using L2CS-Net. The model predicts yaw and pitch angles from facial landmarks to classify gaze orientation
into right, center, and left directions. The arrows illustrate the estimated gaze vectors, and angle values (pitch, yaw) are displayed for each frame.

generated with word-level timestamps and aligned to the interview
structure. Question-answer boundaries were defined using the end
of the interviewer’s question (question-end time) as the reference
point. Response latency was computed as the time (ms) from this
question-end to the onset of the participant’s first frame in the
subsequent answer segment. Speech/silence segmentation relied on
voice-activity detection (VAD) with 30-ms frames and 10-ms hops;
non-speech frames were identified by the VAD and very short gaps
(<150 ms) were merged to avoid spurious pauses. The silence ratio
was defined as the proportion of non-speech frames within each
answer segment (leading/trailing silences outside the answer
boundaries were excluded). Word count was computed on
participant speech only. These features (response latency, silence
ratio, word count) were then used in subsequent statistical and
machine-learning analyses. All features were derived automatically.
Manual spot-checks on a random subset confirmed alignment
between visual overlays and extracted values across all domains.

Statistical analysis

All statistical analyses were conducted using IBM SPSS Statistics
(Version 27, IBM Corp, Armonk, NY) and Python (Version 3.9)
with the SciPy library. The normality of continuous variables was
assessed using the Shapiro-Wilk test. For normally distributed data,
independent-samples t tests were used to compare group means
between the MDD and control groups. For non-normally
distributed data, Mann-Whitney U tests were applied. Categorical
variables were compared using chi-square tests.

Because multiple, conceptually related outcomes were tested, we
controlled the family-wise error rate within behavioral domains
rather than across all individual variables. Specifically, the 15
features were organized a priori into five domains based on
theoretical and measurement considerations: (i) gaze-related
measures (center/”eye contact”, right, left; m(gaze)=3), (ii) facial
affect measures (smiling duration [AU12], happy faces, neutral
faces, social smiling [AU12 with center gaze]; m(affect)=4), (iii)
ocular physiology (blink count, blink duration, eye openness; m
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(ocular)=3), (iv) head movement (total head movements, rapid
head movements; m(head)=2), and (v) speech-derived features
(response latency, silence ratio, word count; m(speech)=3).
Within each domain, a Bonferroni correction was applied as
o_domain = .05/m_domain, yielding the following adjusted
thresholds used for primary inference:

> Gaze: o0 = .05/3 =.0167

> Facial affect: o0 = .05/4 = .0125

> QOcular physiology: o = .05/3 =.0167

> Head movement: o0 = .05/2 = .0250

> Speech: o = .05/3 =.0167

This domain-wise control limits Type I error where outcomes
are correlated within the same construct, while avoiding the over-
conservatism of correcting across all 15 endpoints simultaneously.
In the Results, we report exact P values; findings surpassing the
domain-specific o thresholds are denoted as significant after
correction, and findings with P <.05 but > o_domain are
described as nominal (uncorrected) and interpreted cautiously.

With a total sample of n=85 (MDD = 44, HC = 41), two-sided
tests at a=.05 provide 80% power to detect a standardized mean
difference of approximately Cohen’s d = 0.61 (= r = 0.29, medium).
Under the domain-wise thresholds used in this study, the 80%
power minimum detectable effects are d = 0.67 for a=.025 (head
movement), d = 0.70 for 0=.0167 (gaze/ocular/speech), and d = 0.72
for 0=.0125 (facial affect) (corresponding r = 0.32-0.34). Thus, the
study is well-powered to detect medium-to-large effects, while
smaller effects (d < ~0.6) may be underpowered.

Machine learning analysis

In addition to group-level comparisons, machine learning
methods were employed to evaluate the classification performance
of behavioral features in distinguishing between patients with MDD
and healthy controls. We implemented a supervised learning
pipeline and evaluated several algorithms (e.g., ExtraTrees,
Random Forests, Gradient Boosting, k-nearest neighbors, and
support vector machines
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To enhance generalizability while preventing information
leakage, recursive feature elimination (RFE) and all preprocessing
steps were performed within each training fold of the cross-
validation procedure. RFE systematically removed features with
the lowest importance at each iteration until an optimal subset of
predictors was identified.

To ensure robust evaluation with limited data, model
performance was assessed using nested leave-one-out cross-
validation (LOOCYV). In the inner loop, RFE and hyperparameter
tuning were conducted using only the training data, while in the
outer loop the held-out participant served exclusively for testing. To
improve calibration and interpretability, probabilistic outputs were
adjusted in a fold-specific manner using either Platt scaling or
isotonic regression on the training fold only. Performance metrics
included accuracy, precision, recall (sensitivity), specificity, F1-
score, and the area under the receiver operating characteristic
curve (ROC-AUC). Feature importance scores were also
examined to identify the most discriminative behavioral markers.

Ethical considerations

The study protocol was reviewed and approved by the Non-
Interventional Clinical Research Ethics Committee of Zonguldak
Biillent Ecevit University (approval number: 2024/21). Written
informed consent was obtained from all participants prior to
enrollment. All data were anonymized, and confidentiality was
strictly maintained throughout the study.

Results
Statistical analysis

The demographic characteristics of the groups were
comparable. The MDD group consisted of 24 women and 20
men, while the control group included 21 women and 20 men,
with no significant difference in sex distribution (y*(1)=0.05, P =
.829). The mean age of patients with MDD was 37.81 years,
compared with 37.17 years in the control group, again showing
no significant difference (#(83)=0.238, P = .813).

Prior to group comparisons, the distribution of variables was
examined using both Kolmogorov-Smirnov and Shapiro-Wilk
tests. Only center gaze and word count met the criteria for
normal distribution across both groups, and these were analyzed
using independent-samples t-tests. All other behavioral features
deviated significantly from normality and were therefore examined
using Mann-Whitney U tests. This analytical approach ensured
that the most appropriate statistical methods were applied based on
the distributional characteristics of each variable.

Happy facial expressions were markedly reduced in patients
with MDD (mean rank=34.53) relative to controls (mean
rank=52.09), Mann-Whitney U = 529.5, Z=-3.29, P = .001.
This difference survived Bonferroni correction (ot=.0125) and
thus represents a robust group-level effect.
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Clear between-group differences were found in multiple facial
affect parameters, with some effects surviving Bonferroni correction
and others reaching only nominal significance. Smiling duration
was significantly shorter in the MDD group (mean rank=35.75)
compared with controls (mean rank=50.78), Mann-Whitney U =
583.0, Z=-2.82, P = .005. This effect reached significance at the
corrected threshold (corrected o=.0125).

Social smiling, defined as the simultaneous occurrence of
smiling and center gaze, was also lower in the MDD group (mean
rank=37.09) compared with controls (mean rank=49.34), Mann-
Whitney U = 642.0, Z=-2.33, P = .020. This result achieved nominal
significance but did not survive the corrected threshold.

Clear group differences emerged in gaze directed toward the
interviewer, whereas lateral gaze parameters showed weaker or
nonsignificant effects. Patients with MDD spent significantly less
time fixating on the interviewer’s face compared with healthy
controls (M = 13.51, SD = 5.75 vs M = 19.22, SD = 3.78). This
difference was highly robust, Welch’s #(74.87) = -5.44, P <.001, 95%
CI [-7.80, -3.62], Cohen’s d = -1.16, and survived Bonferroni
correction for the gaze domain (corrected o. = .0167).

For rightward gaze, patients with MDD displayed longer gaze
durations (mean rank=48.89) relative to controls (mean rank=36.68),
Mann-Whitney U = 643.0, Z=-2.28, P = .023. Although this
difference reached nominal significance at the uncorrected
threshold (P <.05), it did not survive the domain-specific
Bonferroni adjustment. Leftward gaze duration did not differ
between groups (mean rank=46.83 vs 38.89; U = 733.5, P = .138).

Finally, neutral facial expressions were more prevalent in the
MDD group (mean rank=49.27) than in controls (mean
rank=37.09), Mann-Whitney U = 626.0, Z=-2.42, P = .015. This
effect was nominally significant but did not remain after
Bonferroni correction.

Group comparisons of ocular features revealed differences in
blink-related parameters, whereas eye openness did not vary
between groups. For blink count, patients with MDD (mean
rank=46.42) did not differ significantly from controls (mean
rank=39.33), Mann-Whitney U = 751.5, Z=-1.32, P = .185. Blink
duration was longer in the MDD group (mean rank=48.73)
compared with controls (mean rank=36.85), Mann-Whitney U =
650.0, Z=-2.22, P = .026. This effect reached nominal significance (P
<.05) but did not survive Bonferroni correction for the ocular
domain (corrected a=.0167). Eye openness did not differ
significantly between groups (mean rank=44.57 vs 41.32), Mann-
Whitney U = 833.0, Z=-0.61, P = .543.

No significant between-group differences were found for head
movement parameters. For total head movements, the MDD group
(mean rank=45.09) and controls (mean rank=40.76) did not differ
significantly, Mann-Whitney U = 810.0, Z=-0.81, P = .418.
Similarly, rapid head movements were comparable across groups
(mean rank=42.49 vs 43.55), Mann-Whitney U = 879.5, Z=-0.20,
P = .843. Both effects were far from significance and did not
approach the corrected o threshold for the head movement
domain (0=.025).

No significant group differences were observed for speech-
derived features. For word count, patients with MDD (M = 43.02,
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SD = 10.40) and controls (M = 45.89, SD = 9.29) did not differ
significantly, #(83)=-1.34, P = .183, 95% CI [-7.13, 1.38]. Response
latency (time to first word) was comparable between groups (mean
rank=44.50 vs 41.39), Mann-Whitney U = 836.0, Z=-0.58, P = .561.
Similarly, silence ratio did not differ significantly between patients
(mean rank=43.25) and controls (mean rank=42.73), Mann-
Whitney U = 891.0, Z=-0.10, P = .923. None of these measures
approached significance under the uncorrected threshold, and
therefore no effects survived Bonferroni adjustment for the speech
domain (0=.0167). Statistically significant and nominally
significant features are provided in Table 1. The comprehensive
version of this table (which includes non-significant features) can be
found in Table 2.

Machine learning classification results

To complement the group-level comparisons, machine learning
analyses were conducted to evaluate the predictive value of
multimodal behavioral features for distinguishing individuals with
MDD from healthy controls. Several supervised learning methods
were initially tested, including tree-based algorithms (random
forests, gradient boosting), nearest neighbor classifiers, and
support vector machines. Among these, the ExtraTrees algorithm
demonstrated superior and more stable performance across
evaluation metrics and was therefore selected as the primary
model (30).

Prior to model training, the feature importance values were
calculated. This was achieved through obtaining importance values
for each supervised learning method described above. The Gini
impurity-based feature importances are automatically calculated
through each fitting procedure, as part of most supervised learning
models’ supported programming libraries. Once feature
importances were calculated, they were averaged across each
supervised learning model, yielding a robust perspective of
importance for each feature. Importance results are provided in
the figure below. (Figure 5) Recursive feature elimination (RFE) was
applied to iteratively remove features with the lowest importance
scores, yielding a reduced subset of predictors with higher
generalizability. This procedure aimed to minimize overfitting,
particularly given the relatively modest sample size.

10.3389/fpsyt.2025.1720990

Model validation was performed using the leave-one-out cross-
validation (LOOCYV) strategy, which maximizes data utilization by
iteratively training on all participants except one and testing on the
held-out individual. This approach provides a robust estimate of
model performance in small-sample studies.

The ExtraTrees classifier demonstrated strong performance,
achieving an AUC of 0.89, accuracy of 84.7%, precision of 81.6%,
sensitivity (recall) of 90.9%, specificity of 78.0%, and an F1 score of
86%. The model also achieved an AUC score of 0.89, indicating a
high overall ability to distinguish between the two classes.

Performance with confidence intervals. Using pooled outer-fold
test predictions from LOOCYV, proportion metrics were reported
with Wilson 95% Cls: accuracy 84.7% (75.5-90.8), precision 81.6%
(72.1-88.4), sensitivity 90.9% (82.9-95.4), and specificity 78.0%
(68.1-85.5) (n=85). The Fl-score was 86.0% (77.1-91.8),
estimated via stratified bootstrap. The ROC-AUC was 0.89 (95%
CI 0.82-0.96), with the interval computed using the Hanley &
McNeil (1982) normal approximation based on the pooled outer-
fold predictions (positives N;=44 MDD, negatives N,=41 HC) (31).
These intervals quantify uncertainty using held-out (outer-fold) test
outputs only.

Figure 6 presents the Receiver Operating Characteristic (ROC)
curve for the classification task addressed in this study. The curve
illustrates the relationship between the true positive rate and the
false positive rate across varying classification thresholds, thereby
providing an overall view of the model’s discriminative
performance. The area under the curve (AUC) is used as a
quantitative indicator of performance, where higher values denote
stronger separation between the positive and negative classes. As
shown, multiple ROC curves have been obtained, each by a different
supervised learning model. The Extra Trees algorithm (curves
labeled ‘xtr’ and ‘xtr/2’, green and brown, respectively) can be
observed to be outperforming the remaining models in effectively
distinguishing between the two classes, confirming its reliability in
the context of the problem. The support vector machines and
nearest neighbor methods were excluded from this specific
analysis as they were already eliminated from the pool of
potential models. Extra Trees introduces more randomization by
selecting split thresholds at random, which helped reduce
overfitting and improved generalization, especially on noisy data.
Additionally, the increased randomness led to greater model

TABLE 1 Summary of statistically significant and nominally significant features across domains.

Measure Statistic

Group difference

Bonferroni (domain) 5K < He)

Center gaze Welch’s t-test t(74.87) = -5.44

Right gaze Mann-Whitney U U =643.0,Z=-2.28

Smiling duration Mann-Whitney U U =583.0,Z=-282

Happy face Mann-Whitney U U =52952Z=-329

Social smiling Mann-Whitney U U =6420,Z=-2.33

Neutral face Mann-Whitney U U =626.0,Z=-242

Blink duration Mann-Whitney U U =65002Z=-222

Frontiers in Psychiatry

<.001 Significant after correction MDD < HC
.023 Nominally significant only MDD > HC
.005 Significant after correction MDD < HC
.001 Significant after correction MDD < HC
.020 Nominally significant only MDD < HC
.015 Nominally significant only MDD > HC
.026 Nominally significant only MDD > HC
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TABLE 2 Group comparisons of behavioral features between MDD and control groups.

Domain

Gaze

Measure

Center gaze

Welch’s t-test

NENN T

t(74.87) = -5.44

10.3389/fpsyt.2025.1720990

Right gaze

Left gaze

Mann-Whitney U

Mann-Whitney U

U =643.0,Z =-2.28

U=173352=-148

Facial affect

Ocular physiology

Smiling duration

Happy face

Social smiling

Mann-Whitney U

Mann-Whitney U

Mann-Whitney U

U =583.0,Z=-2.82

U =52952Z=-329

U =642.0,7 = -2.33

Neutral face

Blink count

Mann-Whitney U

Mann-Whitney U

U =6260,7Z=-2.42

U=75152=-132

Blink duration

Eye openness

Mann-Whitney U

Mann-Whitney U

U =65002=-222

U = 833.0, Z = -0.61

Head movement

Total head movement

Mann-Whitney U

U = 810.0, Z = -0.81

Rapid head movement

Mann-Whitney U

U =879.5,Z =-0.20

Speech

Word count

Time to first word

Silence ratio

Independent t-test
Mann-Whitney U

Mann-Whitney U

t(83) = -1.34
U = 836.0, Z = —0.58

U =891.0, Z = -0.10

. Grou
Bonferroni roup
I difference
(MDD vs. HC)

<001 Slgmﬁc.ant after MDD < HC
correction

023 Nominally MDD > HC
significant only

138 Not significant No difference

005 Slgmﬁc}ant after MDD < HC
correction

001 Slgnlﬁ?ant after MDD < HC
correction

020 Nominally MDD < HC
significant only

015 Nominally MDD > HC
significant only

.185 Not significant No difference

026 Nominally MDD > HC
significant only

.543 Not significant No difference

418 Not significant No difference

.843 Not significant No difference

183 Not significant No difference

.561 Not significant No difference

923 Not significant No difference

diversity, resulting in slightly better predictive performance
compared to methods like Random Forests and Gradient Boosting.

Discussion
Principal findings

This study demonstrated that behavioral features extracted from
point-of-view (POV) video recordings during clinical interviews can
reliably distinguish patients with major depressive disorder (MDD)
from healthy controls. To our knowledge, this is the first study to use
clinician-worn point-of-view (POV) video to capture multimodal
behavioral signals during real clinical interviews with patients
diagnosed with MDD. In our results, although the two groups were
comparable in age and sex, significant differences emerged in gaze and
affective expression. Specifically, patients with MDD exhibited shorter
durations of smiling duration, center gaze and happy facial expressions
compared to controls. These three parameters remained significant
even after Bonferroni correction for multiple comparisons, highlighting
their robustness as potential behavioral markers of depression.

Additional group-level differences were observed at nominal
significance levels, including reduced social smiling (simultaneous
smiling and center gaze), and prolonged neutral facial expressions
among patients with MDD. Right gaze and blink duration were also

rontiers in Psychiatry

higher in the MDD group, though these findings did not survive
correction for multiple testing. Together, these results suggest that
both gaze-related and affective cues may reflect disruptions in social
engagement and emotional expressivity characteristic of depression.

In contrast, head movement parameters (total and rapid head
movements) and speech-derived features (response latency, silence
ratio, and word count) did not differ significantly between groups.

Beyond group-level comparisons, the application of machine
learning further supported the diagnostic value of these multimodal
features. The ExtraTrees classifier—optimized using recursive
feature elimination and validated through leave-one-out cross-
validation—demonstrated strong overall performance (accuracy =
84.7%, AUC = 0.89, Fl-score = 86%). These results suggest that
multimodal behavioral data, collected through a low-burden point-
of-view (POV) methodology, provide a meaningful contribution to
the objective and scalable assessment of depression.

Comparison with prior work

Our findings align with prior research indicating that patients
with MDD exhibit reduced gaze toward social partners and
diminished positive affective expressions. Previous eye-tracking
studies in laboratory settings have consistently reported shorter
fixation durations and reduced eye contact in individuals with
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Word count 3.06220 |
Silence ratio 4.60550 |
Time to first word 3.32417 |
Rapid head movement 4.86143 |
Total head movement 4.49519 |
Eye openness 4.34832 |
Blink duration 8.46010
Blink count 4.61372 |
Social smiling 3.97671 |
Neutralface 6.85149
Happy face 8.30384 |
Smiling duration 6.23168 |
Left gaze 4.11411 |
Right gaze 6.46221 |
Center gaze 11.28935 |
2 4 6 8 10 12
FIGURE 5
Model-averaged feature importances; higher values indicate greater contribution to classification.
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FIGURE 6

Receiver operating characteristic (ROC) curves for multiple supervised machine learning models used to classify major depressive disorder (MDD)
and healthy controls. The ExtraTrees classifier achieved the highest performance (AUC = 0.89), followed by AdaBoost (AUC = 0.83) and Random
Forest (AUC = 0.81). The diagonal dashed line represents chance-level performance.
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depression, which have been interpreted as behavioral markers of
social withdrawal and negative self-referential bias (32-34). Eye
contact, broadly defined as the mutual exchange of gaze between
two individuals, is a cornerstone of social communication. It
facilitates conversation initiation, turn-taking, and the regulation
of arousal during interpersonal interactions, while also allowing
individuals to track the attentional and emotional states of their
partners (35-38). Developmental research further underscores its
importance, showing that infants preferentially orient to direct gaze
and that mutual gaze plays a key role in attachment and bonding
(39, 40).

Against this background, the reduced center gaze duration
observed in our study supports the notion that depression
disrupts core mechanisms of social engagement. Interestingly,
patients with MDD in our sample also showed a tendency toward
prolonged rightward gaze. Alghowinem et al. similarly reported that
depressed individuals spent more time directing their head and gaze
to the right side during stationary camera recordings, which was
interpreted as a behavioral manifestation of gaze aversion and
reduced willingness to engage in social interaction (41). Although
this lateralization effect did not remain significant after correction
in our data, the pattern may nonetheless reflect a subtle form of
social disengagement or avoidance of direct interpersonal contact.

Eye blinking is not merely a reflexive behavior but is also
regulated by the central nervous system and influenced by
neurotransmitters such as dopamine (42). Blink rate has been
proposed as an indirect marker of dopaminergic activity and is
known to vary with attentional demands, emotional state, and
mental tension (43). However, findings regarding the association
between blink rate and depression remain inconsistent across
studies. Mackintosh et al. reported that patients with depression
exhibited higher blink rates in video-based assessments, which
subsequently decreased following treatment (44). Similarly, Lee
et al. observed increased blink frequency particularly in late-life
depression (45). Another study employing OpenCV and
convolutional neural networks (CNNs) to detect blinking found a
weak but positive correlation between blink rate and depression
severity (R®~0.035) (46). In our study, patients with MDD also
showed numerically higher blink counts compared with controls,
although this difference did not reach statistical significance.

Beyond blink frequency, additional ocular parameters such as
blink duration and eye openness provide complementary
information about oculomotor control and affective state. Prior
studies have used webcam recordings during the presentation of
emotionally valenced stimuli (e.g., happy or sad videos) and applied
the Eye Aspect Ratio (EAR) to categorize eye states as open,
partially closed, or closed (47). These works suggested that
reduced eye openness and a “partially closed eye” appearance
may be more frequently observed in individuals with depression,
potentially serving as behavioral markers of affective blunting.
Furthermore, it has been proposed that combining blink
dynamics with other ocular signals, such as gaze direction or
pupil diameter, could improve the reliability of depression-related
biomarkers. Ramalho et al. reported that patients with depression
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showed decreased eye openness and prolonged blink duration when
measured via EAR-based analysis from webcam recordings (47).

In line with these findings, our study revealed that eye openness
did not differ between groups, but blink duration was significantly
prolonged in the MDD group. One possible explanation for this
pattern is that extended eyelid closure may reflect psychomotor
retardation, a common clinical feature of depression, manifesting as
slowed or prolonged motor acts. Alternatively, longer blinks could
represent subtle disengagement from social interaction, consistent
with broader withdrawal tendencies observed in depression.
However, given the mixed results in the literature, further studies
incorporating multimodal ocular measures will be necessary to
clarify the mechanisms underlying these differences.

Reduced smiling and diminished happy facial expressions are
well-documented features of depression, repeatedly confirmed
across behavioral and observational studies (48, 49). In depressed
individuals, the frequency, intensity, and duration of smiling and
happy facial expressions are consistently lower compared with
healthy controls (50, 51), with spontaneous (nonvolitional) smiles
being particularly reduced (52, 53). By contrast, research on neutral
facial expressions in depression remains relatively scarce and lacks a
clear consensus. For instance, Lee et al. reported reduced neutral
expressions in a simulation paradigm; however, participants in that
study deliberately exaggerated sadness-related expressions, which
may confound interpretation (54). Similarly, Wang et al. using
stationary cameras and instructed emotion tasks, found a general
reduction in facial variability among depressed individuals,
suggesting less flexibility in affective expression (55).

In our study, both smiling and happy expressions were attenuated
in the MDD group, while neutral expressions were increased. These
findings are consistent with previous evidence identifying anhedonia
and affective blunting as core behavioral manifestations of depression.
These results suggest that reduced positive affect—captured through
multimodal visual markers such as smiling and gaze engagement—
may reflect diminished reward sensitivity and social motivation. In
parallel, the clinical management of treatment-resistant depression
(TRD) remains an active area of debate and development (56), and
recent studies report pharmacological avenues targeting anhedonia and
affective functioning (57) as well as related cross-diagnostic evidence
(58). These trends underscore that, beyond treating TRD, objective
markers are needed to identify, monitor, and compare treatment
response across settings.

Our POV-based markers quantify state-level expressions of
positive affect and social engagement that dovetail with trait-level
affective temperaments described in contemporary spectrum models.
Temperament research indicates that these genetically influenced
dispositions underlie mood, substance-use, and risk-taking disorders;
shape clinical presentation, course, and treatment response
(especially in bipolar disorder and MDD); and relate to insight and
role functioning across phases (59, 60). Within this framework, our
results align with temperamental liabilities linked to anhedonia/
affective blunting (e.g., depressive/cyclothymic poles), while also
suggesting that hyperthymia—often discussed as protective—may
correspond to greater smiling and sustained gaze engagement. Taken

frontiersin.org


https://doi.org/10.3389/fpsyt.2025.1720990
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

Kayis et al.

together, integrating objective, POV-derived behavioral biomarkers
with pharmacological evidence and temperament assessments
strengthens the translational potential of digital phenotyping.

The operationalization of “social smiling” as the temporal overlap
of forward gaze and smiling provides an ecologically meaningful
index of socially contingent affective responses. While this construct
has been primarily studied in POV-based research on children with
autism (28), it has not, to our knowledge, been systematically
investigated in adult psychiatric populations, highlighting the
novelty of the present study. In our sample, the duration of social
smiling was numerically reduced in patients with MDD and reached
nominal significance at the uncorrected level. However, this effect did
not survive Bonferroni correction, indicating that the finding should
be interpreted with caution. Nevertheless, the trend toward
diminished social smiling is consistent with the broader literature
on depression, which emphasizes reductions in both eye contact and
positive affective displays.

Prior research has consistently associated depression with
reduced or slowed head movement dynamics. Alghowinem et al.
examined 30 patients with severe depression and 30 healthy
controls using stationary camera recordings, extracting head pose
changes at 10-frame intervals. Their results indicated markedly
slower head movements, characterized by lower pitch and yaw
velocities, and fewer directional changes overall, reflecting
generalized motor slowing (41). Similarly, Kacem et al. employed
the ZFace toolkit to identify 49 facial landmarks and reported
decreased head motion amplitude in participants with more
severe depressive symptoms (61).

In contrast to these findings, our study did not observe
significant group differences in total or rapid head movements.
Several methodological factors may account for this discrepancy.
First, our sample comprised individuals meeting diagnostic criteria
for MDD but not necessarily exhibiting severe symptomatology,
and depression severity was not modeled continuously. Second,
unlike prior studies that relied on stationary laboratory cameras,
our recordings were collected from naturalistic clinical interviews
using a POV setup worn by the interviewer. This configuration
captures ecologically valid interpersonal exchanges but may
introduce variability related to interactive dynamics. For instance,
participants in the control group tended to maintain a more
sustained center gaze toward the interviewer, potentially reducing
the need for larger head movements. Conversely, subtle nods or
posture adjustments during conversation might have been more
frequent but less pronounced in depressed participants, making
quantitative differences harder to detect.

Taken together, these findings suggest that head movement
patterns may be sensitive to both methodological context and
depression severity. Future research integrating continuous severity
measures and multimodal motion tracking could help clarify whether
diminished head movement represents a stable biomarker or a
context-dependent behavioral correlate of depression.

Alterations in speech patterns have long been recognized as
characteristic features of depressive states. Prior studies have
demonstrated that individuals with depression tend to speak
more slowly, with lower vocal intensity, reduced prosodic
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variation, and longer pauses compared with healthy controls. For
example, Cummins et al. reported that pause duration was
significantly prolonged among English-speaking participants with
depression, although this effect was not consistently replicated
across other languages, suggesting potential linguistic or cultural
modulation of speech-related markers (62). Similarly, Yamamoto
et al. analyzed unstructured interview recordings and found that
patients with depression exhibited slower speech rate, longer
response latencies, and extended pauses relative to nondepressed
participants (63).

In our study, although the MDD group produced fewer words
on average than healthy controls, this difference did not reach
statistical significance. This finding may indicate that while verbal
productivity shows a downward trend in depression, the magnitude
of the effect can vary depending on contextual factors such as task
structure, language, or interview dynamics. Given that our data
were collected during naturalistic clinical interviews rather than
constrained reading or speech tasks, subtle alterations in temporal
features of speech may have been less pronounced.

With the rapid advancement of artificial intelligence, machine
learning (ML) has become an increasingly valuable tool for
identifying complex behavioral and biological markers of
psychiatric disorders. Traditional diagnostic methods in
psychiatry rely heavily on clinician-administered interviews and
self-reported questionnaires, which can be subjective and prone to
bias. In contrast, ML-based approaches enable the extraction of
objective, high-dimensional features from multimodal data such as
facial expressions, speech, physiological signals, and self-reports,
offering new pathways for early detection and personalized
treatment of depression. Recent work introduced Clinical 15, a
machine learning model trained on multimodal data from primary
care settings, which achieved a balanced accuracy of 88.2% and
demonstrated the feasibility of integrating biological, physiological,
and self-reported information for differential diagnosis (64).
Similarly, a deep learning framework was proposed that combines
facial video and audio modalities using spatiotemporal attention
and graph convolutional networks to enhance multimodal feature
fusion, achieving robust performance in automatic depression
detection (65). Complementing these findings, it has been
emphasized that incorporating behavioral and physiological
signals into ML-based frameworks can outperform traditional
rating scales in predicting depressive states, underscoring the
importance of multimodal integration for improving clinical
validity (66). In this context, our study adds novel evidence by
demonstrating that a wearable, first-person (POV) system can
achieve a high classification accuracy (84.7%) and AUC of 0.89,
comparable to or exceeding performance metrics reported in prior
multimodal ML studies. Importantly, by using a low-burden and
ecologically valid setup, our approach bridges the gap between
controlled laboratory research and real-world clinical application,
underscoring the potential of wearable ML-assisted systems for
scalable, objective assessment of depression in everyday contexts.
Beyond its technical contribution, this study also introduces a novel
methodological framework by integrating multiple behavioral
domains—facial affect, gaze behavior, head movement, and
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speech—captured during authentic clinician—patient interactions.
Unlike webcam-based or stationary laboratory recordings, our
approach collects data from real clinical interviews without
disrupting their natural flow, providing a more genuine
representation of social and affective behavior in depression. This
integration of ecological validity with multimodal computational
analysis represents an important step toward objective, clinically
applicable assessment methods for depressive disorders.

Finally, responsible deployment of POV-based capture in clinical
settings requires explicit attention to ethics and data protection.
Because POV capture can incidentally record bystanders and
sensitive contexts, its use should follow privacy-by-design: clear
consent and user control; purpose-limited collection; data
minimization with on-device or ephemeral processing and
retention of derived features rather than raw video when feasible;
de-identification/pseudonymization, encrypted storage and role-
based access; time-bound retention and deletion; and site-level
governance and transparency. These safeguards, aligned with
contemporary frameworks are essential for any clinical deployment.
If these privacy conditions can be met in practice, POV capture may
be a feasible option for clinical research and—subject to context, clear
opt-out pathways, and human oversight—could potentially be
considered for clinician use at the point of care. These practices
align with recent calls in the affective computing literature to ground
deployments in privacy-by-design and societal value (67).

Limitations

Several limitations should be acknowledged. First, although the
sample encompassed participants across a spectrum of depressive
severity—including some severe cases—the recruitment was not
restricted solely to severe MDD. Diagnostic classification was based
on SCID-5 interviews combined with Beck Depression Inventory
(BDI) scores above 20, leading to a binary grouping (MDD vs.
control). Consequently, we did not model depression severity as a
continuous variable or examine stratified performance across
severity levels. Future studies should incorporate continuous BDI
scores as predictive features to explore whether accounting for
symptom intensity enhances model discrimination. While
restricting the sample to more severe cases may yield higher
classification accuracy, prior work indicates that machine learning
models often exhibit lower accuracy when trained on
heterogeneous, real-world clinical populations, highlighting the
trade-off between performance and ecological generalizability.

Second, this single-site study enrolled 85 participants—a sample
size comparable to prior depression-recognition work yet still
modest for high-dimensional multimodal analyses. To establish
robustness and transportability, external validation in independent,
demographically diverse cohorts is essential; multi-center external
validation studies are planned.

Third, our speech features were restricted to basic linguistic and
timing measures (e.g., word count, response latency, silence ratio),
which may overlook relevant acoustic-prosodic cues. Future studies
could incorporate FO/pitch, intensity, jitter-shimmer, MFCCs,
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spectral/temporal prosody, and turn-taking dynamics to
potentially enhance sensitivity and interpretability.

In addition, the wearable POV setup—central to the study’s
ecological validity—introduces variability related to participant
motion, lighting conditions, and camera alignment, which may
have introduced minor measurement noise despite averaging
across four 30-second conversational segments. Finally, some
automatically extracted features (e.g., gaze and facial action units)
depend on computer vision pipelines that are inherently susceptible
to tracking errors. Implementing confidence-weighted smoothing,
temporal filtering, or hybrid sensing methods in future studies
could improve reliability.

For real-world scalability, future work could (a) pilot a mobile-
health workflow that ships a lightweight POV device to participants
(with consented upload via a secure app) to replicate our features in
natural home settings, and (b) develop a telepsychiatry-compatible
variant using a brief left—center-right gaze and affect calibration plus
domain adaptation to handle off-axis views and lighting. Such studies
would help ensure generalizability and calibration across settings,
while accelerating privacy-preserving, real-world deployment.

Conclusions

This study demonstrates that multimodal behavioral features—
captured through wearable point-of-view (POV) glasses during
clinical interviews—can reliably differentiate individuals with major
depressive disorder (MDD) from healthy controls. Visual markers,
particularly reduced center gaze and diminished positive affect,
emerged as robust indicators of depression, aligning with
established theories of social withdrawal and affective blunting.
Importantly, a machine learning classifier trained on features
derived from naturalistic audiovisual recordings achieved high
diagnostic accuracy (84.7%) and strong discriminative performance
(AUC = 0.89).

These findings underscore the potential of wearable, low-
burden technologies to facilitate objective, scalable, and
ecologically valid assessments of depression in real-world clinical
settings. By capturing authentic clinician—patient interactions, the
proposed framework advances the integration of behavioral signal
processing and machine learning in psychiatric evaluation.
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