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Adolescent Psychiatry, Faculty of Medicine, Ege University, Izmir, Türkiye
Background: Major depressive disorder (MDD) remains challenging to diagnose

due to its reliance on subjective interviews and self-reports. Objective,

technology-driven methods are increasingly needed to support clinical

decision-making. Wearable point-of-view (POV) glasses, which capture both

visual and auditory streams, may offer a novel solution for multimodal

behavioral analysis.

Objective: This study investigated whether features extracted from POV glasses,

analyzed with machine learning, can differentiate individuals with MDD from

healthy controls.

Methods: We studied 44 MDD patients and 41 age/sex-matched HCs (18–55

years). During semi-structured interviews, POV glasses recorded video and audio

data. Visual features included gaze distribution, smiling duration, eye-blink

frequency, and head movements. Speech features included response latency,

silence ratio, and word count. Recursive feature elimination was applied. Multiple

classifiers were evaluated, and the primary model—ExtraTrees—was assessed

using leave-one-out cross-validation.

Results: After Bonferroni correction, smiling duration, center gaze and happy

face duration showed significant group differences. The multimodal classifier

achieved an accuracy of 84.7%, sensitivity of 90.9%, specificity of 78%, and an F1

score of 86%.

Conclusions: POV glasses combined with machine learning successfully

captured multimodal behavioral markers distinguishing MDD from controls.

This low-burden, wearable approach demonstrates promise as an objective

adjunct to psychiatric assessment. Future studies should evaluate its

generalizability in larger, more diverse populations and real-world

clinical settings.
KEYWORDS
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Introduction

Major depressive disorder (MDD) is one of the leading causes of

disability worldwide, affecting more than 280 million people across

different age groups and cultural backgrounds (1). Beyond its

profound impact on quality of life, MDD contributes substantially

to the global burden of disease, ranking among the top contributors

to years lived with disability (2). Early and accurate detection of

MDD is therefore critical, as timely interventions can significantly

improve treatment outcomes and reduce long-term socioeconomic

costs (3).

Despite this urgency, current diagnostic approaches rely

primarily on clinical interviews and self-report questionnaires such

as the Diagnostic and Statistical Manual of Mental Disorders, Fifth

Edition (DSM-5) criteria and the Beck Depression Inventory (BDI).

While widely adopted, these tools are inherently subjective,

susceptible to recall bias, and may vary in reliability across clinical

contexts (4, 5). Therefore, there is a growing demand for objective,

reproducible, and scalable biomarkers that can complement

traditional psychiatric assessments.

In recent years, advances in AI and ML have enabled automated

extraction of behavioral and affective features from visual and

auditory data. Visual modalities including facial-expression

analysis using the Facial Action Coding System (FACS), gaze

tracking, and head-movement dynamics (6–8) have shown

promise in distinguishing individuals with depression from

healthy controls; depression is often characterized by slower head

movements, reduced smiling, and restricted affect (8, 9). Auditory

and linguistic modalities have also been explored, with features such

as reduced speech intensity, monotony, increased jitter, and less

phonetic variability associated with depressive symptoms (10–12).

Speech-based models using ML classifiers have demonstrated

moderate to high accuracy in detecting MDD, supporting the

potential of audio features as digital biomarkers (13).

While both visual and auditory markers have shown promise

individually, recent studies emphasize the advantage of multimodal

approaches that integrate multiple channels of information (14–16).

By combining complementary data sources, multimodal models

tend to achieve superior accuracy and robustness compared to

unimodal systems. However, most existing research relies on

stationary cameras and webcams in laboratory environments,

which may constrain ecological validity and fail to capture

naturalistic interactions. To address these limitations and realize

the benefits of multimodality in real clinical settings, clinician-worn

point-of-view (POV) glasses can be used to unobtrusively acquire

multimodal signals during psychiatric interviews without altering
Abbreviations: AUC, Area Under the Curve; AU, Action Unit; BDI, Beck

Depression Inventory; DSM-5, Diagnostic and Statistical Manual of Mental

Disorders, Fifth Edition; EAR, Eye Aspect Ratio; FACS, Facial Action Coding

System; LOOCV, Leave-One-Out Cross-Validation; MDD, Major Depressive

Disorder; ML, Machine Learning; POV, Point of View; RFE, Recursive Feature

Elimination; ROC, Receiver Operating Characteristic; SCID-5, Structured

Clinical Interview for DSM-5; SPSS, Statistical Package for the Social Sciences;

SVM, Support Vector Machine.
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their natural flow. Because the camera is mounted on the clinician

rather than the patient, no patient-worn hardware is required,

thereby avoiding comfort and adherence burdens and reducing

reactivity (Hawthorne effects) associated with conspicuous

equipment. The egocentric, face-aligned vantage point preserves

authentic clinical context—typical conversational distance,

spontaneous posture, and genuine turn-taking—so that gaze

behavior, affect, and speech timing are recorded as they naturally

occur. In practice, this configuration yields facial footage with fewer

off-axis artifacts than room-mounted webcams and minimizes self-

presentation bias, thereby enhancing ecological validity while

keeping the encounter clinically routine.

A critical gap in the literature concerns the use of wearable

devices to capture multimodal behavioral data in more natural

settings. Point-of-view (POV) glasses, equipped with front-facing

cameras and microphones, provide a unique vantage point by

recording interactions directly from the participant’s perspective.

This technology has the potential to overcome limitations of fixed-

camera setups, offering a more ecological and unobtrusive method

to assess behavioral patterns relevant to MDD. To date, only a

limited number of studies have examined the utility of POV glasses

in psychiatric research, and none have systematically evaluated their

role in multimodal ML frameworks for depression detection.

The present study addresses this gap by investigating whether

multimodal features extracted from POV glasses can be used to

differentiate individuals with MDD from healthy controls.

Specifically, visual features (e.g., gaze distribution, smiling

duration, eye-blink frequency, and head movements) and speech

features (egg, response latency, silence ratio, and word count) were

analyzed within a machine learning framework.

We hypothesized that (1) multimodal behavioral markers (gaze,

affective expressions, eye-blink patterns, head movements, and

speech-derived features) would differ between groups, and (2) a

classifier trained on these features would accurately distinguish

MDD from controls. By introducing a wearable and low-burden

method for capturing behavioral data, this study seeks to advance

the development of objective and scalable tools to support clinical

diagnosis of depression.
Methods

Study design

This study employed an observational, cross-sectional design to

evaluate behavioral and affective markers of major depressive

disorder (MDD) using multimodal data captured with wearable

POV glasses. During semi-structured clinical interviews, the

interviewer (a trained clinician) wore POV glasses equipped with

a front-facing camera and an integrated microphone. This setup

enabled the unobtrusive recording of participants’ visual and

auditory behaviors from the clinician’s natural perspective, such

as facial expressions, gaze patterns, eye-blink dynamics, and speech

characteristics. All interviews were conducted in a standardized

indoor environment to ensure consistency across participants, with

uniform lighting and recording conditions.
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Recruitment

Participants were recruited from the Department of Psychiatry

at Zonguldak Bülent Ecevit University Faculty of Medicine. The

study consisted of two groups: patients diagnosed with major

depressive disorder (MDD) and healthy controls.

Patients in the MDD group were consecutively enrolled among

individuals presenting to the psychiatry outpatient clinic. The

diagnostic process followed a structured two-step procedure: first,

a psychiatric resident conducted the Structured Clinical Interview

for DSM-5 Disorders (SCID-5), and subsequently, the diagnosis

was confirmed by a board-certified psychiatrist with over 20 years of

clinical experience. Healthy controls were recruited on a voluntary

basis from the community and hospital staff and reported no

current or past psychiatric disorders.

Inclusion criteria for both groups were: (1) age between 18 and

55 years and (2) willingness to participate in the study. Additionally,

the MDD group required (3) a DSM-5 diagnosis of major

depressive disorder confirmed through SCID-5 and (4) a Beck

Depression Inventory (BDI) score ≥20. Healthy controls were

required to score below the clinical threshold on the BDI. Within

the MDD group, BDI severity distribution was as follows: moderate

(20–28), n=28; severe (29–63), n=16, classified according to BDI

thresholds for the Turkish adult population (17).

Exclusion criteria were: (1) history of neurological disorders, (2)

strabismus or severe visual/hearing impairments that could

interfere with audiovisual analysis, (3) cosmetic procedures such

as botulinum toxin (Botox) injections within the past 6 months, (4)

current or recent use of psychiatric medications, (5) comorbid

bipolar disorder in the patient group, and (6) substance use

disorder within the previous 12 months.

A total of 97 individuals were initially recruited for the study,

including 50 patients with MDD and 47 healthy controls. However,

data from several participants were excluded due to recording

quality issues. In the MDD group, audio data from 2 participants

could not be analyzed because of excessive background noise, and

video data from 3 participants were excluded due to poor recording

quality or excessive movement. In the control group, 4 participants

were excluded for the latter reason. Furthermore, in 1 patient and 2

control participants, interaction data could not be obtained due to

technical failures during the recording process. After these

exclusions, the final sample comprised 85 participants: 44 patients

with MDD and 41 healthy controls. The two groups were matched

for age and sex, with no significant demographic differences

between them.

A total of 97 individuals were initially recruited for the study,

including 50 patients with MDD and 47 healthy controls. However,

data from several participants were excluded due to recording

quality issues. Short video dropouts (≤2 consecutive frames at 30

FPS) were corrected by linear interpolation; segments with ≥ 10%

missing frames or severe artifacts (e.g., heavy motion blur, or

occlusion) were excluded (excluded participants: n=1 MDD, n=2

HC). At the participant level, recordings with ≥ 20%missing data in

any domain were excluded (18) from the corresponding group

(inferential) analyses (excluded participants: video-based features:
Frontiers in Psychiatry 03
n=3 MDD, n=4 HC; speech features: n=2 MDD), yielding a

complete-case dataset for hypothesis testing. After these

exclusions, the final sample comprised 85 participants: 44 patients

with MDD and 41 healthy controls. The two groups were matched

for age and sex, with no significant demographic differences

between them. For the machine-learning pipeline, residual

missing entries <20% (per feature × participant) were imputed

within each training fold only (median for continuous, mode for

categorical), and the fitted imputer was applied to the held-out

participant to avoid information leakage. Subsequent statistical tests

and ML modeling were performed on the resulting datasets as

specified above. A flow diagram of the inclusion-exclusion criteria

can be seen in Figure 1.
Data collection

All participants underwent a semi-structured clinical interview

while seated face-to-face with the clinician. During each interview,

the clinician wore POV glasses equipped with a front-facing high-

definition camera (1080p resolution at 30 frames per second) and

an integrated microphone (19). This setup enabled the unobtrusive

audiovisual recording of participants’ verbal and nonverbal

behaviors from the natural perspective of the interviewer.

The interview protocol consisted of four open-ended questions

designed to elicit spontaneous speech, emotional expression, and

natural interaction. The questions were as follows:
1. How have you been feeling recently? Could you describe

this in detail?

2. Can you describe a typical day, from the moment you wake

up in the morning until you go to bed at night?

3. Can you describe a positive moment that made you feel

good in detail?

4. Can you describe a negative moment that made you feel

bad in detail?
Each response lasted aminimum of 30 seconds, yielding sufficient

audiovisual material for subsequent computational analysis.

Interviews were conducted in a standardized clinical room with

controlled environmental conditions. The distance between

participant and clinician was maintained at approximately 100 cm,

and ambient illumination was kept within 400–600 lux to minimize

variability in facial feature detection. Background noise was reduced

to ensure high-quality audio capture.

Following data collection, video recordings were prepared for

analysis by extracting 30-second segments corresponding to each

interview question. This step was performed using Movavi Video

Editor (Version 22.0, Movavi, 2023), ensuring that only the relevant

portions of the recordings were retained for further processing (20).

Importantly, the researcher responsible for analyzing the video

recordings was blinded to the diagnostic status of the participants

to minimize potential bias. All recordings were securely stored in

encrypted format and were accessible only to authorized members

of the research team.
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Feature extraction

A comprehensive set of audiovisual features was extracted from

the recordings. The measured parameters included: duration of gaze

directed at the interviewer (center), time spent looking to the right

and left, smiling duration, simultaneous occurrence of forward gaze

with smiling (social smiling), duration of neutral and happy facial

expressions, number and duration of blinks, eye openness, total

head movement, rapid head movements, response latency, silence

ratio, and word count. For each participant, these parameters were

measured across four 30-second video segments corresponding to

the interview questions. To obtain a single representative score per

feature, values from the four segments were averaged. This

procedure minimized variability across questions and provided a

stable estimate of each participant’s typical behavioral pattern.

Facial landmarks, head movements, eye openness, and blink-

related parameters were extracted using MediaPipe. MediaPipe is an

open-source library that provides high-accuracy and accessible

methods for detecting facial and body landmarks in video data (21–

23). In particular, its FaceMesh module enables the estimation of 3D

head pose (pitch, yaw, roll) from 2D video.(Figure 2) Based on these

angles, rapid head movements were defined as frame-to-frame changes
Frontiers in Psychiatry 04
greater than 5° on any axis, while total head movement was calculated

as the cumulative sum of absolute angular changes across all three axes.

Eye openness and blink metrics were quantified using the Eye

Aspect Ratio (EAR) (24). EAR is a geometric index that determines

whether the eye is open or closed by using six landmarks around the

eye (p1–p6), measured with MediaPipe. (Figure 3) It is defined as:

EAR  =  (d(p2, p6)  +  d(p3, p5)=2))=d(p1, p4)

where d(·) represents the Euclidean distance between two

points. A blink was identified when EAR <0.2, a threshold

commonly reported in the literature. For analysis, an EAR value

greater than 0.20 was taken to indicate that the eyes were open. Eye

openness was therefore calculated as the mean EAR value across all

frames exceeding this threshold, representing the average degree of

eye opening. Blink count was defined as the number of discrete

sequences in which the EAR dropped below 0.20 and subsequently

rose above it again, each such cycle being counted as one blink.

Blink duration was defined as the average length of these sequences,

calculated by dividing the total number of frames with EAR < 0.20

by the total number of blinks in the recording.

Eye gaze direction was estimated using L2CS-Net, a deep

convolutional neural network developed for fine-grained gaze
FIGURE 1

Participant flow diagram for inclusion and exclusion across eligibility, enrollment, and analysis.
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estimation in unconstrained environments. L2CS-Net employs a

dual-branch architecture in which yaw and pitch angles are

predicted independently through a combination of classification

and regression. Discretized angle bins are used for classification via

a softmax cross-entropy loss, while continuous estimates are refined

through regression using mean squared error. This hybrid loss

design allows the model to achieve both categorical robustness and

fine-grained precision (25). In our study, gaze direction was
Frontiers in Psychiatry 05
categorized into left, right, and center classes, (Figure 4) with

aggregated measures calculated for each interview segment. Raw

yaw and pitch values are output in radians (−p to +p). In our

recordings, due to the camera/model axis convention, the

horizontal component of gaze aligned with the model’s pitch

(pitch > 0 → right, pitch < 0 → left), whereas yaw reflected

vertical orientation and was not used for class assignment.

Accordingly, frames were classified as right if pitch ≥ +0.17 rad

(≈10°), left if pitch ≤ −0.17 rad, and center if |pitch| < 0.17 rad. To

avoid confounds from extreme vertical gaze, we further restricted

analyses to frames with |yaw| ≤ 0.35 rad (~20°); frames outside this

range were marked invalid and excluded from aggregation.

Emotional expressions were analyzed using the Facial Action

Coding System (FACS) (Ekman & Friesen, 1978), which decomposes

facial expressions into individual muscle movements referred to as

Action Units (AUs) (26). For example, AU12 corresponds to the

contraction of the zygomaticus major muscle, which produces a

smile, while combinations of AUs can represent complex emotions

such as happiness or sadness. Happiness was identified by the co-

activation of AU6 (orbicularis oculi, producing eye constriction) and

AU12, a combination that is commonly used in the literature to index

genuine positive affect (Duchenne smiles). Neutral emotion was

defined as the absence of major expressive AUs, reflecting a

baseline or affectively flat facial configuration. In this study, the Py-

Feat software was used to automatically code AUs from video frames

(27). Smiling was quantified by the presence of AU12, and social

smiling was operationalized as the simultaneous occurrence of AU12

activation and center gaze. This operationalization of social gaze was

adapted from prior POV-based studies in children with autism (28).

Finally, speech features were extracted using Whisper, an open-

source deep learning model for automatic speech recognition

trained on a large-scale multilingual and multitask dataset.

Whisper has demonstrated high performance in Turkish

automatic speech recognition tasks, making it a suitable tool for

analyzing speech features in this study (29). Transcripts were
FIGURE 3

Illustration of the Eye Aspect Ratio (EAR) measurement used for blink detection. Six key landmarks (P1–P6) define the geometric relationships
between the upper and lower eyelids. EAR is computed as the ratio of the vertical to horizontal distances between these points, allowing automated
identification of eye-opening and eye-closing states across video frames.
FIGURE 2

Example frame demonstrating MediaPipe FaceMesh feature
detection used in this study. Green facial landmarks represent
automatically identified key points across the participant’s face,
which were utilized to calculate head pose, eye aspect ratio, and
blink metrics.
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generated with word-level timestamps and aligned to the interview

structure. Question–answer boundaries were defined using the end

of the interviewer’s question (question-end time) as the reference

point. Response latency was computed as the time (ms) from this

question-end to the onset of the participant’s first frame in the

subsequent answer segment. Speech/silence segmentation relied on

voice-activity detection (VAD) with 30-ms frames and 10-ms hops;

non-speech frames were identified by the VAD and very short gaps

(<150 ms) were merged to avoid spurious pauses. The silence ratio

was defined as the proportion of non-speech frames within each

answer segment (leading/trailing silences outside the answer

boundaries were excluded). Word count was computed on

participant speech only. These features (response latency, silence

ratio, word count) were then used in subsequent statistical and

machine-learning analyses. All features were derived automatically.

Manual spot-checks on a random subset confirmed alignment

between visual overlays and extracted values across all domains.
Statistical analysis

All statistical analyses were conducted using IBM SPSS Statistics

(Version 27, IBM Corp, Armonk, NY) and Python (Version 3.9)

with the SciPy library. The normality of continuous variables was

assessed using the Shapiro–Wilk test. For normally distributed data,

independent-samples t tests were used to compare group means

between the MDD and control groups. For non-normally

distributed data, Mann–Whitney U tests were applied. Categorical

variables were compared using chi-square tests.

Because multiple, conceptually related outcomes were tested, we

controlled the family-wise error rate within behavioral domains

rather than across all individual variables. Specifically, the 15

features were organized a priori into five domains based on

theoretical and measurement considerations: (i) gaze-related

measures (center/”eye contact”, right, left; m(gaze)=3), (ii) facial

affect measures (smiling duration [AU12], happy faces, neutral

faces, social smiling [AU12 with center gaze]; m(affect)=4), (iii)

ocular physiology (blink count, blink duration, eye openness; m
Frontiers in Psychiatry 06
(ocular)=3), (iv) head movement (total head movements, rapid

head movements; m(head)=2), and (v) speech-derived features

(response latency, silence ratio, word count; m(speech)=3).

Within each domain, a Bonferroni correction was applied as

a_domain = .05/m_domain, yielding the following adjusted

thresholds used for primary inference:

➢ Gaze: a = .05/3 ≈.0167

➢ Facial affect: a = .05/4 = .0125

➢ Ocular physiology: a = .05/3 ≈.0167

➢ Head movement: a = .05/2 = .0250

➢ Speech: a = .05/3 ≈.0167

This domain-wise control limits Type I error where outcomes

are correlated within the same construct, while avoiding the over-

conservatism of correcting across all 15 endpoints simultaneously.

In the Results, we report exact P values; findings surpassing the

domain-specific a thresholds are denoted as significant after

correction, and findings with P <.05 but ≥ a_domain are

described as nominal (uncorrected) and interpreted cautiously.

With a total sample of n=85 (MDD = 44, HC = 41), two-sided

tests at a=.05 provide 80% power to detect a standardized mean

difference of approximately Cohen’s d ≈ 0.61 (≈ r ≈ 0.29, medium).

Under the domain-wise thresholds used in this study, the 80%

power minimum detectable effects are d ≈ 0.67 for a=.025 (head

movement), d ≈ 0.70 for a=.0167 (gaze/ocular/speech), and d ≈ 0.72

for a=.0125 (facial affect) (corresponding r ≈ 0.32–0.34). Thus, the

study is well-powered to detect medium-to-large effects, while

smaller effects (d < ~0.6) may be underpowered.
Machine learning analysis

In addition to group-level comparisons, machine learning

methods were employed to evaluate the classification performance

of behavioral features in distinguishing between patients with MDD

and healthy controls. We implemented a supervised learning

pipeline and evaluated several algorithms (e.g., ExtraTrees,

Random Forests, Gradient Boosting, k-nearest neighbors, and

support vector machines
FIGURE 4

Examples of gaze direction estimation using L2CS-Net. The model predicts yaw and pitch angles from facial landmarks to classify gaze orientation
into right, center, and left directions. The arrows illustrate the estimated gaze vectors, and angle values (pitch, yaw) are displayed for each frame.
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To enhance generalizability while preventing information

leakage, recursive feature elimination (RFE) and all preprocessing

steps were performed within each training fold of the cross-

validation procedure. RFE systematically removed features with

the lowest importance at each iteration until an optimal subset of

predictors was identified.

To ensure robust evaluation with limited data, model

performance was assessed using nested leave-one-out cross-

validation (LOOCV). In the inner loop, RFE and hyperparameter

tuning were conducted using only the training data, while in the

outer loop the held-out participant served exclusively for testing. To

improve calibration and interpretability, probabilistic outputs were

adjusted in a fold-specific manner using either Platt scaling or

isotonic regression on the training fold only. Performance metrics

included accuracy, precision, recall (sensitivity), specificity, F1-

score, and the area under the receiver operating characteristic

curve (ROC-AUC). Feature importance scores were also

examined to identify the most discriminative behavioral markers.
Ethical considerations

The study protocol was reviewed and approved by the Non-

Interventional Clinical Research Ethics Committee of Zonguldak

Bülent Ecevit University (approval number: 2024/21). Written

informed consent was obtained from all participants prior to

enrollment. All data were anonymized, and confidentiality was

strictly maintained throughout the study.
Results

Statistical analysis

The demographic characteristics of the groups were

comparable. The MDD group consisted of 24 women and 20

men, while the control group included 21 women and 20 men,

with no significant difference in sex distribution (c²(1)=0.05, P =

.829). The mean age of patients with MDD was 37.81 years,

compared with 37.17 years in the control group, again showing

no significant difference (t(83)=0.238, P = .813).

Prior to group comparisons, the distribution of variables was

examined using both Kolmogorov–Smirnov and Shapiro–Wilk

tests. Only center gaze and word count met the criteria for

normal distribution across both groups, and these were analyzed

using independent-samples t-tests. All other behavioral features

deviated significantly from normality and were therefore examined

using Mann–Whitney U tests. This analytical approach ensured

that the most appropriate statistical methods were applied based on

the distributional characteristics of each variable.

Happy facial expressions were markedly reduced in patients

with MDD (mean rank=34.53) relative to controls (mean

rank=52.09), Mann–Whitney U = 529.5, Z=–3.29, P = .001.

This difference survived Bonferroni correction (a=.0125) and

thus represents a robust group-level effect.
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Clear between-group differences were found in multiple facial

affect parameters, with some effects surviving Bonferroni correction

and others reaching only nominal significance. Smiling duration

was significantly shorter in the MDD group (mean rank=35.75)

compared with controls (mean rank=50.78), Mann–Whitney U =

583.0, Z=–2.82, P = .005. This effect reached significance at the

corrected threshold (corrected a=.0125).
Social smiling, defined as the simultaneous occurrence of

smiling and center gaze, was also lower in the MDD group (mean

rank=37.09) compared with controls (mean rank=49.34), Mann–

Whitney U = 642.0, Z=–2.33, P = .020. This result achieved nominal

significance but did not survive the corrected threshold.

Clear group differences emerged in gaze directed toward the

interviewer, whereas lateral gaze parameters showed weaker or

nonsignificant effects. Patients with MDD spent significantly less

time fixating on the interviewer’s face compared with healthy

controls (M = 13.51, SD = 5.75 vs M = 19.22, SD = 3.78). This

difference was highly robust, Welch’s t(74.87) = –5.44, P <.001, 95%

CI [–7.80, –3.62], Cohen’s d ≈ –1.16, and survived Bonferroni

correction for the gaze domain (corrected a = .0167).

For rightward gaze, patients with MDD displayed longer gaze

durations (mean rank=48.89) relative to controls (mean rank=36.68),

Mann–Whitney U = 643.0, Z=–2.28, P = .023. Although this

difference reached nominal significance at the uncorrected

threshold (P <.05), it did not survive the domain-specific

Bonferroni adjustment. Leftward gaze duration did not differ

between groups (mean rank=46.83 vs 38.89; U = 733.5, P = .138).

Finally, neutral facial expressions were more prevalent in the

MDD group (mean rank=49.27) than in controls (mean

rank=37.09), Mann–Whitney U = 626.0, Z=–2.42, P = .015. This

effect was nominally significant but did not remain after

Bonferroni correction.

Group comparisons of ocular features revealed differences in

blink-related parameters, whereas eye openness did not vary

between groups. For blink count, patients with MDD (mean

rank=46.42) did not differ significantly from controls (mean

rank=39.33), Mann–Whitney U = 751.5, Z=–1.32, P = .185. Blink

duration was longer in the MDD group (mean rank=48.73)

compared with controls (mean rank=36.85), Mann–Whitney U =

650.0, Z=–2.22, P = .026. This effect reached nominal significance (P

<.05) but did not survive Bonferroni correction for the ocular

domain (corrected a=.0167). Eye openness did not differ

significantly between groups (mean rank=44.57 vs 41.32), Mann–

Whitney U = 833.0, Z=–0.61, P = .543.

No significant between-group differences were found for head

movement parameters. For total head movements, the MDD group

(mean rank=45.09) and controls (mean rank=40.76) did not differ

significantly, Mann–Whitney U = 810.0, Z=–0.81, P = .418.

Similarly, rapid head movements were comparable across groups

(mean rank=42.49 vs 43.55), Mann–Whitney U = 879.5, Z=–0.20,

P = .843. Both effects were far from significance and did not

approach the corrected a threshold for the head movement

domain (a=.025).
No significant group differences were observed for speech-

derived features. For word count, patients with MDD (M = 43.02,
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SD = 10.40) and controls (M = 45.89, SD = 9.29) did not differ

significantly, t(83)=–1.34, P = .183, 95% CI [–7.13, 1.38]. Response

latency (time to first word) was comparable between groups (mean

rank=44.50 vs 41.39), Mann–Whitney U = 836.0, Z=–0.58, P = .561.

Similarly, silence ratio did not differ significantly between patients

(mean rank=43.25) and controls (mean rank=42.73), Mann–

Whitney U = 891.0, Z=–0.10, P = .923. None of these measures

approached significance under the uncorrected threshold, and

therefore no effects survived Bonferroni adjustment for the speech

domain (a=.0167). Statistically significant and nominally

significant features are provided in Table 1. The comprehensive

version of this table (which includes non-significant features) can be

found in Table 2.
Machine learning classification results

To complement the group-level comparisons, machine learning

analyses were conducted to evaluate the predictive value of

multimodal behavioral features for distinguishing individuals with

MDD from healthy controls. Several supervised learning methods

were initially tested, including tree-based algorithms (random

forests, gradient boosting), nearest neighbor classifiers, and

support vector machines. Among these, the ExtraTrees algorithm

demonstrated superior and more stable performance across

evaluation metrics and was therefore selected as the primary

model (30).

Prior to model training, the feature importance values were

calculated. This was achieved through obtaining importance values

for each supervised learning method described above. The Gini

impurity-based feature importances are automatically calculated

through each fitting procedure, as part of most supervised learning

models’ supported programming libraries. Once feature

importances were calculated, they were averaged across each

supervised learning model, yielding a robust perspective of

importance for each feature. Importance results are provided in

the figure below. (Figure 5) Recursive feature elimination (RFE) was

applied to iteratively remove features with the lowest importance

scores, yielding a reduced subset of predictors with higher

generalizability. This procedure aimed to minimize overfitting,

particularly given the relatively modest sample size.
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Model validation was performed using the leave-one-out cross-

validation (LOOCV) strategy, which maximizes data utilization by

iteratively training on all participants except one and testing on the

held-out individual. This approach provides a robust estimate of

model performance in small-sample studies.

The ExtraTrees classifier demonstrated strong performance,

achieving an AUC of 0.89, accuracy of 84.7%, precision of 81.6%,

sensitivity (recall) of 90.9%, specificity of 78.0%, and an F1 score of

86%. The model also achieved an AUC score of 0.89, indicating a

high overall ability to distinguish between the two classes.

Performance with confidence intervals. Using pooled outer-fold

test predictions from LOOCV, proportion metrics were reported

with Wilson 95% CIs: accuracy 84.7% (75.5–90.8), precision 81.6%

(72.1–88.4), sensitivity 90.9% (82.9–95.4), and specificity 78.0%

(68.1–85.5) (n=85). The F1-score was 86.0% (77.1–91.8),

estimated via stratified bootstrap. The ROC–AUC was 0.89 (95%

CI 0.82–0.96), with the interval computed using the Hanley &

McNeil (1982) normal approximation based on the pooled outer-

fold predictions (positives N1=44 MDD, negatives N2=41 HC) (31).

These intervals quantify uncertainty using held-out (outer-fold) test

outputs only.

Figure 6 presents the Receiver Operating Characteristic (ROC)

curve for the classification task addressed in this study. The curve

illustrates the relationship between the true positive rate and the

false positive rate across varying classification thresholds, thereby

providing an overall view of the model’s discriminative

performance. The area under the curve (AUC) is used as a

quantitative indicator of performance, where higher values denote

stronger separation between the positive and negative classes. As

shown, multiple ROC curves have been obtained, each by a different

supervised learning model. The Extra Trees algorithm (curves

labeled ‘xtr’ and ‘xtr/2’, green and brown, respectively) can be

observed to be outperforming the remaining models in effectively

distinguishing between the two classes, confirming its reliability in

the context of the problem. The support vector machines and

nearest neighbor methods were excluded from this specific

analysis as they were already eliminated from the pool of

potential models. Extra Trees introduces more randomization by

selecting split thresholds at random, which helped reduce

overfitting and improved generalization, especially on noisy data.

Additionally, the increased randomness led to greater model
TABLE 1 Summary of statistically significant and nominally significant features across domains.

Measure Test Statistic P-value Bonferroni (domain)
Group difference
(MDD vs. HC)

Center gaze Welch’s t-test t(74.87) = –5.44 <.001 Significant after correction MDD < HC

Right gaze Mann–Whitney U U = 643.0, Z = –2.28 .023 Nominally significant only MDD > HC

Smiling duration Mann–Whitney U U = 583.0, Z = –2.82 .005 Significant after correction MDD < HC

Happy face Mann–Whitney U U = 529.5 Z = –3.29 .001 Significant after correction MDD < HC

Social smiling Mann–Whitney U U = 642.0, Z = –2.33 .020 Nominally significant only MDD < HC

Neutral face Mann–Whitney U U = 626.0, Z = –2.42 .015 Nominally significant only MDD > HC

Blink duration Mann–Whitney U U = 650.0 Z = –2.22 .026 Nominally significant only MDD > HC
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Kayış et al. 10.3389/fpsyt.2025.1720990
diversity, resulting in slightly better predictive performance

compared to methods like Random Forests and Gradient Boosting.
Discussion

Principal findings

This study demonstrated that behavioral features extracted from

point-of-view (POV) video recordings during clinical interviews can

reliably distinguish patients with major depressive disorder (MDD)

from healthy controls. To our knowledge, this is the first study to use

clinician-worn point-of-view (POV) video to capture multimodal

behavioral signals during real clinical interviews with patients

diagnosed with MDD. In our results, although the two groups were

comparable in age and sex, significant differences emerged in gaze and

affective expression. Specifically, patients with MDD exhibited shorter

durations of smiling duration, center gaze and happy facial expressions

compared to controls. These three parameters remained significant

even after Bonferroni correction for multiple comparisons, highlighting

their robustness as potential behavioral markers of depression.

Additional group-level differences were observed at nominal

significance levels, including reduced social smiling (simultaneous

smiling and center gaze), and prolonged neutral facial expressions

among patients with MDD. Right gaze and blink duration were also
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higher in the MDD group, though these findings did not survive

correction for multiple testing. Together, these results suggest that

both gaze-related and affective cues may reflect disruptions in social

engagement and emotional expressivity characteristic of depression.

In contrast, head movement parameters (total and rapid head

movements) and speech-derived features (response latency, silence

ratio, and word count) did not differ significantly between groups.

Beyond group-level comparisons, the application of machine

learning further supported the diagnostic value of these multimodal

features. The ExtraTrees classifier—optimized using recursive

feature elimination and validated through leave-one-out cross-

validation—demonstrated strong overall performance (accuracy =

84.7%, AUC = 0.89, F1-score = 86%). These results suggest that

multimodal behavioral data, collected through a low-burden point-

of-view (POV) methodology, provide a meaningful contribution to

the objective and scalable assessment of depression.
Comparison with prior work

Our findings align with prior research indicating that patients

with MDD exhibit reduced gaze toward social partners and

diminished positive affective expressions. Previous eye-tracking

studies in laboratory settings have consistently reported shorter

fixation durations and reduced eye contact in individuals with
TABLE 2 Group comparisons of behavioral features between MDD and control groups.

Domain Measure Test Statistic P-value
Bonferroni
(domain)

Group
difference
(MDD vs. HC)

Gaze

Center gaze Welch’s t-test t(74.87) = –5.44 <.001
Significant after
correction

MDD < HC

Right gaze Mann–Whitney U U = 643.0, Z = –2.28 .023
Nominally
significant only

MDD > HC

Left gaze Mann–Whitney U U = 733.5, Z = –1.48 .138 Not significant No difference

Facial affect

Smiling duration Mann–Whitney U U = 583.0, Z = –2.82 .005
Significant after
correction

MDD < HC

Happy face Mann–Whitney U U = 529.5 Z = –3.29 .001
Significant after
correction

MDD < HC

Social smiling Mann–Whitney U U = 642.0, Z = –2.33 .020
Nominally
significant only

MDD < HC

Neutral face Mann–Whitney U U = 626.0, Z = –2.42 .015
Nominally
significant only

MDD > HC

Ocular physiology

Blink count Mann–Whitney U U = 751.5, Z = –1.32 .185 Not significant No difference

Blink duration Mann–Whitney U U = 650.0 Z = –2.22 .026
Nominally
significant only

MDD > HC

Eye openness Mann–Whitney U U = 833.0, Z = –0.61 .543 Not significant No difference

Head movement
Total head movement Mann–Whitney U U = 810.0, Z = –0.81 .418 Not significant No difference

Rapid head movement Mann–Whitney U U = 879.5, Z = –0.20 .843 Not significant No difference

Speech

Word count Independent t-test t(83) = –1.34 .183 Not significant No difference

Time to first word Mann–Whitney U U = 836.0, Z = –0.58 .561 Not significant No difference

Silence ratio Mann–Whitney U U = 891.0, Z = –0.10 .923 Not significant No difference
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FIGURE 6

Receiver operating characteristic (ROC) curves for multiple supervised machine learning models used to classify major depressive disorder (MDD)
and healthy controls. The ExtraTrees classifier achieved the highest performance (AUC = 0.89), followed by AdaBoost (AUC = 0.83) and Random
Forest (AUC = 0.81). The diagonal dashed line represents chance-level performance.
FIGURE 5

Model-averaged feature importances; higher values indicate greater contribution to classification.
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depression, which have been interpreted as behavioral markers of

social withdrawal and negative self-referential bias (32–34). Eye

contact, broadly defined as the mutual exchange of gaze between

two individuals, is a cornerstone of social communication. It

facilitates conversation initiation, turn-taking, and the regulation

of arousal during interpersonal interactions, while also allowing

individuals to track the attentional and emotional states of their

partners (35–38). Developmental research further underscores its

importance, showing that infants preferentially orient to direct gaze

and that mutual gaze plays a key role in attachment and bonding

(39, 40).

Against this background, the reduced center gaze duration

observed in our study supports the notion that depression

disrupts core mechanisms of social engagement. Interestingly,

patients with MDD in our sample also showed a tendency toward

prolonged rightward gaze. Alghowinem et al. similarly reported that

depressed individuals spent more time directing their head and gaze

to the right side during stationary camera recordings, which was

interpreted as a behavioral manifestation of gaze aversion and

reduced willingness to engage in social interaction (41). Although

this lateralization effect did not remain significant after correction

in our data, the pattern may nonetheless reflect a subtle form of

social disengagement or avoidance of direct interpersonal contact.

Eye blinking is not merely a reflexive behavior but is also

regulated by the central nervous system and influenced by

neurotransmitters such as dopamine (42). Blink rate has been

proposed as an indirect marker of dopaminergic activity and is

known to vary with attentional demands, emotional state, and

mental tension (43). However, findings regarding the association

between blink rate and depression remain inconsistent across

studies. Mackintosh et al. reported that patients with depression

exhibited higher blink rates in video-based assessments, which

subsequently decreased following treatment (44). Similarly, Lee

et al. observed increased blink frequency particularly in late-life

depression (45). Another study employing OpenCV and

convolutional neural networks (CNNs) to detect blinking found a

weak but positive correlation between blink rate and depression

severity (R²≈0.035) (46). In our study, patients with MDD also

showed numerically higher blink counts compared with controls,

although this difference did not reach statistical significance.

Beyond blink frequency, additional ocular parameters such as

blink duration and eye openness provide complementary

information about oculomotor control and affective state. Prior

studies have used webcam recordings during the presentation of

emotionally valenced stimuli (e.g., happy or sad videos) and applied

the Eye Aspect Ratio (EAR) to categorize eye states as open,

partially closed, or closed (47). These works suggested that

reduced eye openness and a “partially closed eye” appearance

may be more frequently observed in individuals with depression,

potentially serving as behavioral markers of affective blunting.

Furthermore, it has been proposed that combining blink

dynamics with other ocular signals, such as gaze direction or

pupil diameter, could improve the reliability of depression-related

biomarkers. Ramalho et al. reported that patients with depression
Frontiers in Psychiatry 11
showed decreased eye openness and prolonged blink duration when

measured via EAR-based analysis from webcam recordings (47).

In line with these findings, our study revealed that eye openness

did not differ between groups, but blink duration was significantly

prolonged in the MDD group. One possible explanation for this

pattern is that extended eyelid closure may reflect psychomotor

retardation, a common clinical feature of depression, manifesting as

slowed or prolonged motor acts. Alternatively, longer blinks could

represent subtle disengagement from social interaction, consistent

with broader withdrawal tendencies observed in depression.

However, given the mixed results in the literature, further studies

incorporating multimodal ocular measures will be necessary to

clarify the mechanisms underlying these differences.

Reduced smiling and diminished happy facial expressions are

well-documented features of depression, repeatedly confirmed

across behavioral and observational studies (48, 49). In depressed

individuals, the frequency, intensity, and duration of smiling and

happy facial expressions are consistently lower compared with

healthy controls (50, 51), with spontaneous (nonvolitional) smiles

being particularly reduced (52, 53). By contrast, research on neutral

facial expressions in depression remains relatively scarce and lacks a

clear consensus. For instance, Lee et al. reported reduced neutral

expressions in a simulation paradigm; however, participants in that

study deliberately exaggerated sadness-related expressions, which

may confound interpretation (54). Similarly, Wang et al. using

stationary cameras and instructed emotion tasks, found a general

reduction in facial variability among depressed individuals,

suggesting less flexibility in affective expression (55).

In our study, both smiling and happy expressions were attenuated

in the MDD group, while neutral expressions were increased. These

findings are consistent with previous evidence identifying anhedonia

and affective blunting as core behavioral manifestations of depression.

These results suggest that reduced positive affect—captured through

multimodal visual markers such as smiling and gaze engagement—

may reflect diminished reward sensitivity and social motivation. In

parallel, the clinical management of treatment-resistant depression

(TRD) remains an active area of debate and development (56), and

recent studies report pharmacological avenues targeting anhedonia and

affective functioning (57) as well as related cross-diagnostic evidence

(58). These trends underscore that, beyond treating TRD, objective

markers are needed to identify, monitor, and compare treatment

response across settings.

Our POV-based markers quantify state-level expressions of

positive affect and social engagement that dovetail with trait-level

affective temperaments described in contemporary spectrum models.

Temperament research indicates that these genetically influenced

dispositions underlie mood, substance-use, and risk-taking disorders;

shape clinical presentation, course, and treatment response

(especially in bipolar disorder and MDD); and relate to insight and

role functioning across phases (59, 60). Within this framework, our

results align with temperamental liabilities linked to anhedonia/

affective blunting (e.g., depressive/cyclothymic poles), while also

suggesting that hyperthymia—often discussed as protective—may

correspond to greater smiling and sustained gaze engagement. Taken
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together, integrating objective, POV-derived behavioral biomarkers

with pharmacological evidence and temperament assessments

strengthens the translational potential of digital phenotyping.

The operationalization of “social smiling” as the temporal overlap

of forward gaze and smiling provides an ecologically meaningful

index of socially contingent affective responses. While this construct

has been primarily studied in POV-based research on children with

autism (28), it has not, to our knowledge, been systematically

investigated in adult psychiatric populations, highlighting the

novelty of the present study. In our sample, the duration of social

smiling was numerically reduced in patients with MDD and reached

nominal significance at the uncorrected level. However, this effect did

not survive Bonferroni correction, indicating that the finding should

be interpreted with caution. Nevertheless, the trend toward

diminished social smiling is consistent with the broader literature

on depression, which emphasizes reductions in both eye contact and

positive affective displays.

Prior research has consistently associated depression with

reduced or slowed head movement dynamics. Alghowinem et al.

examined 30 patients with severe depression and 30 healthy

controls using stationary camera recordings, extracting head pose

changes at 10-frame intervals. Their results indicated markedly

slower head movements, characterized by lower pitch and yaw

velocities, and fewer directional changes overall, reflecting

generalized motor slowing (41). Similarly, Kacem et al. employed

the ZFace toolkit to identify 49 facial landmarks and reported

decreased head motion amplitude in participants with more

severe depressive symptoms (61).

In contrast to these findings, our study did not observe

significant group differences in total or rapid head movements.

Several methodological factors may account for this discrepancy.

First, our sample comprised individuals meeting diagnostic criteria

for MDD but not necessarily exhibiting severe symptomatology,

and depression severity was not modeled continuously. Second,

unlike prior studies that relied on stationary laboratory cameras,

our recordings were collected from naturalistic clinical interviews

using a POV setup worn by the interviewer. This configuration

captures ecologically valid interpersonal exchanges but may

introduce variability related to interactive dynamics. For instance,

participants in the control group tended to maintain a more

sustained center gaze toward the interviewer, potentially reducing

the need for larger head movements. Conversely, subtle nods or

posture adjustments during conversation might have been more

frequent but less pronounced in depressed participants, making

quantitative differences harder to detect.

Taken together, these findings suggest that head movement

patterns may be sensitive to both methodological context and

depression severity. Future research integrating continuous severity

measures and multimodal motion tracking could help clarify whether

diminished head movement represents a stable biomarker or a

context-dependent behavioral correlate of depression.

Alterations in speech patterns have long been recognized as

characteristic features of depressive states. Prior studies have

demonstrated that individuals with depression tend to speak

more slowly, with lower vocal intensity, reduced prosodic
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variation, and longer pauses compared with healthy controls. For

example, Cummins et al. reported that pause duration was

significantly prolonged among English-speaking participants with

depression, although this effect was not consistently replicated

across other languages, suggesting potential linguistic or cultural

modulation of speech-related markers (62). Similarly, Yamamoto

et al. analyzed unstructured interview recordings and found that

patients with depression exhibited slower speech rate, longer

response latencies, and extended pauses relative to nondepressed

participants (63).

In our study, although the MDD group produced fewer words

on average than healthy controls, this difference did not reach

statistical significance. This finding may indicate that while verbal

productivity shows a downward trend in depression, the magnitude

of the effect can vary depending on contextual factors such as task

structure, language, or interview dynamics. Given that our data

were collected during naturalistic clinical interviews rather than

constrained reading or speech tasks, subtle alterations in temporal

features of speech may have been less pronounced.

With the rapid advancement of artificial intelligence, machine

learning (ML) has become an increasingly valuable tool for

identifying complex behavioral and biological markers of

psychiatric disorders. Traditional diagnostic methods in

psychiatry rely heavily on clinician-administered interviews and

self-reported questionnaires, which can be subjective and prone to

bias. In contrast, ML-based approaches enable the extraction of

objective, high-dimensional features from multimodal data such as

facial expressions, speech, physiological signals, and self-reports,

offering new pathways for early detection and personalized

treatment of depression. Recent work introduced Clinical 15, a

machine learning model trained on multimodal data from primary

care settings, which achieved a balanced accuracy of 88.2% and

demonstrated the feasibility of integrating biological, physiological,

and self-reported information for differential diagnosis (64).

Similarly, a deep learning framework was proposed that combines

facial video and audio modalities using spatiotemporal attention

and graph convolutional networks to enhance multimodal feature

fusion, achieving robust performance in automatic depression

detection (65). Complementing these findings, it has been

emphasized that incorporating behavioral and physiological

signals into ML-based frameworks can outperform traditional

rating scales in predicting depressive states, underscoring the

importance of multimodal integration for improving clinical

validity (66). In this context, our study adds novel evidence by

demonstrating that a wearable, first-person (POV) system can

achieve a high classification accuracy (84.7%) and AUC of 0.89,

comparable to or exceeding performance metrics reported in prior

multimodal ML studies. Importantly, by using a low-burden and

ecologically valid setup, our approach bridges the gap between

controlled laboratory research and real-world clinical application,

underscoring the potential of wearable ML-assisted systems for

scalable, objective assessment of depression in everyday contexts.

Beyond its technical contribution, this study also introduces a novel

methodological framework by integrating multiple behavioral

domains—facial affect, gaze behavior, head movement, and
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speech—captured during authentic clinician–patient interactions.

Unlike webcam-based or stationary laboratory recordings, our

approach collects data from real clinical interviews without

disrupting their natural flow, providing a more genuine

representation of social and affective behavior in depression. This

integration of ecological validity with multimodal computational

analysis represents an important step toward objective, clinically

applicable assessment methods for depressive disorders.

Finally, responsible deployment of POV-based capture in clinical

settings requires explicit attention to ethics and data protection.

Because POV capture can incidentally record bystanders and

sensitive contexts, its use should follow privacy-by-design: clear

consent and user control; purpose-limited collection; data

minimization with on-device or ephemeral processing and

retention of derived features rather than raw video when feasible;

de-identification/pseudonymization, encrypted storage and role-

based access; time-bound retention and deletion; and site-level

governance and transparency. These safeguards, aligned with

contemporary frameworks are essential for any clinical deployment.

If these privacy conditions can be met in practice, POV capture may

be a feasible option for clinical research and—subject to context, clear

opt-out pathways, and human oversight—could potentially be

considered for clinician use at the point of care. These practices

align with recent calls in the affective computing literature to ground

deployments in privacy-by-design and societal value (67).
Limitations

Several limitations should be acknowledged. First, although the

sample encompassed participants across a spectrum of depressive

severity—including some severe cases—the recruitment was not

restricted solely to severe MDD. Diagnostic classification was based

on SCID-5 interviews combined with Beck Depression Inventory

(BDI) scores above 20, leading to a binary grouping (MDD vs.

control). Consequently, we did not model depression severity as a

continuous variable or examine stratified performance across

severity levels. Future studies should incorporate continuous BDI

scores as predictive features to explore whether accounting for

symptom intensity enhances model discrimination. While

restricting the sample to more severe cases may yield higher

classification accuracy, prior work indicates that machine learning

models often exhibit lower accuracy when trained on

heterogeneous, real-world clinical populations, highlighting the

trade-off between performance and ecological generalizability.

Second, this single-site study enrolled 85 participants—a sample

size comparable to prior depression-recognition work yet still

modest for high-dimensional multimodal analyses. To establish

robustness and transportability, external validation in independent,

demographically diverse cohorts is essential; multi-center external

validation studies are planned.

Third, our speech features were restricted to basic linguistic and

timing measures (e.g., word count, response latency, silence ratio),

which may overlook relevant acoustic–prosodic cues. Future studies

could incorporate F0/pitch, intensity, jitter–shimmer, MFCCs,
Frontiers in Psychiatry 13
spectral/temporal prosody, and turn-taking dynamics to

potentially enhance sensitivity and interpretability.

In addition, the wearable POV setup—central to the study’s

ecological validity—introduces variability related to participant

motion, lighting conditions, and camera alignment, which may

have introduced minor measurement noise despite averaging

across four 30-second conversational segments. Finally, some

automatically extracted features (e.g., gaze and facial action units)

depend on computer vision pipelines that are inherently susceptible

to tracking errors. Implementing confidence-weighted smoothing,

temporal filtering, or hybrid sensing methods in future studies

could improve reliability.

For real-world scalability, future work could (a) pilot a mobile-

health workflow that ships a lightweight POV device to participants

(with consented upload via a secure app) to replicate our features in

natural home settings, and (b) develop a telepsychiatry-compatible

variant using a brief left–center–right gaze and affect calibration plus

domain adaptation to handle off-axis views and lighting. Such studies

would help ensure generalizability and calibration across settings,

while accelerating privacy-preserving, real-world deployment.
Conclusions

This study demonstrates that multimodal behavioral features—

captured through wearable point-of-view (POV) glasses during

clinical interviews—can reliably differentiate individuals with major

depressive disorder (MDD) from healthy controls. Visual markers,

particularly reduced center gaze and diminished positive affect,

emerged as robust indicators of depression, aligning with

established theories of social withdrawal and affective blunting.

Importantly, a machine learning classifier trained on features

derived from naturalistic audiovisual recordings achieved high

diagnostic accuracy (84.7%) and strong discriminative performance

(AUC = 0.89).

These findings underscore the potential of wearable, low-

burden technologies to facilitate objective, scalable, and

ecologically valid assessments of depression in real-world clinical

settings. By capturing authentic clinician–patient interactions, the

proposed framework advances the integration of behavioral signal

processing and machine learning in psychiatric evaluation.
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