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Introduction: The present study provides novel insights into the psychological
mechanisms linking social emotions and eating behaviors by integrating large-
scale social media analysis with individual-level assessments.

Methods: Two complementary approaches were employed: Study 1 analyzed
1,902 Weibo posts containing “diet” and “social” keywords through latent
Dirichlet allocation topic modeling and semantic network analysis to identify
thematic structures and interactional patterns; Study 2 surveyed 1,199
participants (aged 18-33) using the Intuitive Eating Scale and self-reported
social situation texts, applying Linguistic Inquiry and Word Count (LIWC) and
LASSO regression to identify language features of intuitive eating.

Results: Study 1 revealed six psychological themes and a semantic framework
connecting social—dietary interactions, health discourse, emotional states, and
body image concerns, while Study 2 demonstrated that negatively valenced
words (e.g., sensitive, tiring) were associated with lower intuitive eating, whereas
positively valenced words (e.g., relaxed, positive) were associated with healthier
eating patterns; moreover, negative emotion scores in social texts showed
significant correlations with poorer intuitive eating (p < 0.05).
Discussion/Conclusion: These findings illustrate associations between social
emotional expression and eating behaviors, highlighting implications for
emotion-sensitive interventions and the design of healthier online
social environments.
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1 Introduction

Eating is not merely a biological necessity but also a deeply
psychological and social phenomenon. As a fundamental behavior
for survival and adaptation, eating habits exert profound influence on
both physiological and psychological functioning. Physiologically, a
balanced diet sustains bodily homeostasis and promotes immune
resilience, while imbalanced consumption—particularly of high-fat
and high-sugar foods—can disrupt metabolic regulation and increase
the risk of chronic conditions such as obesity and cardiovascular
disease (1, 2). Psychologically, dietary quality plays a crucial role in
mental well-being. Adherence to dietary patterns like the
Mediterranean diet has been associated with lower risks of
depression and anxiety, suggesting that food choices also serve as
pathways to psychological regulation (3). Thus, eating behaviors reflect
not only physical needs but also underlying psychological dynamics.

Notably, as inherently social beings, humans rarely make eating
decisions in isolation. Eating often occurs within interpersonal
contexts, where it functions not only to fulfill nutritional needs
but also as a medium for social communication and emotional
signaling (4, 5). Empirical research has revealed that social
influences shape how much, what, and when people eat. Social
norms, peer modeling, and group dynamics can alter food intake,
particularly in contexts involving impression management or
affiliation needs (6-8). For example, individuals may increase
portion sizes when dining with close friends to express intimacy,
yet restrict intake when eating with strangers to maintain self-
control or social appropriateness (9, 10). Collectively, this evidence
characterizes eating as a socially embedded practice that flexibly
adapts to interpersonal contexts and relational demands.

Beyond these behavioral adjustments, interpersonal interactions
inherently elicit social emotions — defined as emotions whose object
is other human beings and social interaction, such as pride,
embarrassment, guilt, and belonging (11). In other words, social
emotions are feelings that arise within or are directed toward our
relationships with others. They play a pivotal role in guiding social
behavior, including eating decisions. Thus, eating can be
conceptualized not only as a socially embedded practice but also as
an emotionally mediated one, where social emotions serve as the
psychological link between interpersonal dynamics and dietary
choices. In this sense, eating decisions are fundamentally shaped by
emotions arising within social interactions.

From a theoretical standpoint, Social Cognitive Theory offers a
useful framework for understanding how interpersonal
environments influence eating behaviors, not only through direct
behavioral modeling but also through emotional mechanisms.
According to SCT, behavior is shaped by reciprocal interactions
among personal factors, environment, and behavior itself (12).
Within social eating contexts, observational learning (e.g.,
modeling others’ eating), self-efficacy (confidence in regulating
intake), and social feedback (approval or disapproval from others)
operate jointly to shape emotional experiences and subsequent food
choices. For instance, social feedback can evoke emotions such as
embarrassment or pride, which in turn influence self-regulation
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during eating episodes. Emotional states—emerging in or shaped by
interpersonal interactions—can function as internal drivers or
regulators of eating. Negative emotions such as anxiety,
loneliness, or frustration may trigger maladaptive eating patterns,
including emotional eating and binge eating (13, 14), while positive
social emotions can promote adaptive self-regulation and
enjoyment (15, 16). In line with emotion regulation theory (17),
these processes suggest that individuals regulate eating behaviors
partly to modulate affective states induced by social interaction.
Thus, the pathway “social context — motional reaction - eating
behaviors” reflects an integrated socio-emotional regulation loop.

Despite this growing recognition of the emotion-eating link,
much of the existing literature remains constrained by laboratory
paradigms that isolate emotion from real-world social interactions
(18). These studies often induce emotions experimentally and
capture short-term changes in food intake, leaving unanswered
how emotional experiences naturally unfold and are expressed in
authentic interpersonal settings. Recent advances in text mining
and natural language processing have enabled psychologists to infer
emotions, personality traits, and well-being from linguistic data
(19). These computational approaches make it possible to analyze
large-scale, naturally occurring language and to capture subtle
emotional dynamics that are difficult to observe in laboratory
settings. However, few studies have applied such methods to
examine how social emotions expressed in language relate to
behavioral regulation, particularly in the domain of eating. With
the rise of digital communication, social media platforms such as
Weibo provide ecologically valid opportunities to examine how
individuals spontaneously express and regulate social emotions.
Unlike traditional experiments, these platforms capture the
linguistic traces of genuine emotional experience in social life
(20). A growing body of research has examined how social media
use relates to psychological well-being, showing both benefits (social
connection, emotional support) and risks (social comparison, body
dissatisfaction) (21; 22). However, few studies have integrated these
insights to explore how social emotions expressed online relate to
eating behaviors.

Building on these perspectives, the present study investigates how
emotional experiences within social contexts are reflected in language
and how such emotional expression relates to individual differences
in eating behaviors. Specifically, we address two core questions: (1)
What psychological and interpersonal themes emerge in naturally
occurring discussions that link eating behaviors to social experience?
(2) How do emotions expressed in social interactions relate to self-
regulatory patterns in eating? To address these questions, we adopt a
two-study design that integrates large-scale social media text mining
with individual-level survey data, allowing us to link online discourse
with eating behaviors. Study 1 explores the thematic structure and
emotional patterns of social-dietary discussions on social media,
providing a macro-level understanding of how social emotions are
embedded in collective language use. Building upon these insights,
Study 2 further examines, at the individual level, how social emotions
influence intuitive eating behaviors through validated psychometric
assessment and linguistic analysis.
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2 Methods
2.1 Data

The dataset for Study 1 was obtained from Sina Weibo, one of
China’s most influential social media platforms, which hosts large
volumes of user-generated content reflecting daily life interactions
and thus provides ecologically valid naturalistic language data for
examining social behaviors and affective states (23). Using a
customized web crawler, 3028 publicly accessible posts containing
the keywords “dietary behaviors” and “social interactions” were
collected. All retrieved posts were drawn solely from publicly
available content that users had made openly accessible on the
platform. No private messages or restricted-access materials were
included. To ensure privacy protection, only anonymized textual
content and non-identifiable metadata were retained, in accordance
with ethical standards for secondary analysis of public online data
(24). Metadata included user pseudonyms, post texts, geolocation
tags (country/province/city), and device types. To maximize data
coverage, no a priori temporal restrictions were imposed; instead,
posts were continuously collected until June 2024, which served as
the data collection endpoint. After data cleaning procedures
(removal of duplicates, advertisements, and irrelevant content)
and standard text preprocessing (tokenization and stopword
removal), 1902 valid posts were retained for analysis.

Study 2 employed an online questionnaire to collect both
textual data and psychometric assessments. First, participants’
recent social experiences were elicited through open-ended
questions requiring detailed descriptions of interpersonal
interactions. Second, intuitive eating behaviors were assessed
using the validated Chinese version of the Intuitive Eating Scale-
2. A total of 1,314 adult volunteers were recruited via social media
platforms. After rigorous quality control to exclude invalid
responses (e.g., patterned or contradictory answers, completion
time <120 seconds), 1,199 valid responses were retained. The final
sample comprised individuals aged 18-33 years (M = 21.16, SD =
2.14), including 798 females and 401 males. All participants
provided informed consent, and the study was conducted in
accordance with institutional ethical review guidelines.

2.2 Measurement

Textual data were obtained from Weibo using a customized
Python-based web crawler developed by the research team. The
program was designed to systematically capture user-generated
content while minimizing data loss and redundancy. This
approach facilitates reliable and reproducible acquisition of
naturalistic social media texts, which are well-suited for
examining social and affective processes in everyday contexts.

Participants’ eating behaviors were assessed using the validated
Chinese version of the Intuitive Eating Scale-2 (IES-2; 25). The
Chinese adaptation was psychometrically validated in previous
research, showing satisfactory reliability and construct validity
across both college (26) and clinical samples (27), thus supporting
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its applicability in Chinese populations. The 23-item measure
comprises four subscales: Unconditional Permission to Eat (6
.61), Eating for Physical Rather Than Emotional
Reasons (8 items; o = .75), Reliance on Hunger and Satiety Cues

items; o =

(6 items; o. = .78), and Body-Food Choice Congruence (3 items; 0. =
.73). Ttems were rated on a 5-point Likert scale (1 = strongly
disagree, 5 = strongly agree), with higher scores indicating
stronger intuitive eating tendencies (25). The subscales
demonstrated acceptable internal consistency in the present sample.

Although the internal consistency of the “Unconditional
Permission to Eat” subscale (o0 = .61) was lower than that
reported in previous Chinese validation studies (ot = .888-.919;
27), several contextual factors may account for this difference. First,
our sample consisted of young adults from a non-clinical
population, whose eating behaviors and self-perception of food
restraint may be less stable than those of clinical or patient groups.
Second, the items of this subscale are particularly sensitive to social
and cultural norms around eating restraint, which may lead to
greater within-group variability and reduced internal consistency in
community samples. Given its theoretical relevance in representing
a core aspect of intuitive eating, the subscale was retained for
analysis. Nevertheless, the lower internal consistency may have
introduced greater measurement error and attenuated observed
associations between this dimension and other variables.
Therefore, interpretations involving this subscale should be made
with caution, and future research is encouraged to further refine its
linguistic adaptation for diverse Chinese populations.

2.3 Analytical methods

Topic modeling is an effective method for identifying and
organizing latent themes within large-scale text data (28). Among
these methods, Latent Dirichlet Allocation (LDA) assumes that
each document is composed of multiple latent topics, and each topic
is characterized by a distinct word distribution (29). A key challenge
in applying LDA lies in determining the optimal number of topics
(30). An excessive number of topics may cause overfitting, whereas
too few topics may oversimplify the text and obscure meaningful
distinctions (31)To address this issue, the present study employed a
perplexity-based optimization procedure, where lower perplexity
values indicate a better-fitting model (32-34). The calculation of
perplexity is shown in Equation 1.

it logp(wy) W
SNy

Here: p(w,;) denotes the generative probability of document d.

perplexity(Dy.q) = exp{

N, represents the total number of words in document d.

To further process the text data, we employed semantic network
analysis, a technique that reveals language structure by analyzing
co-occurrence relationships between words (35). This method treats
words or phrases as nodes and their co-occurrence as edges,
constructing a semantic network for visualizing and quantifying
underlying semantic structures. In this study, Pointwise Mutual
Information (PMI; 36) was used as a key metric to measure the
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statistical association between word pairs. PMI effectively reduces
the influence of high-frequency words while highlighting low-
frequency but semantically significant word pairs. A higher PMI
value indicates a stronger co-occurrence relationship. The
definition of PMI is given in Equation 2.

P(xy)
P(x)P(y)

PMI(x,y) = log (2)

Here: P(x,y) is the probability of the two words co-occurring,
while P(x) and P(y) represent the individual probabilities of each
word occurring.

LASSO (Least Absolute Shrinkage and Selection Operator)
regression is a statistical method that performs simultaneous
variable selection and model shrinkage by imposing an L;-norm
penalty on regression coefficients (37). The regularization parameter
A, a critical hyperparameter in LASSO, governs the intensity of the
penalty term and directly modulates the sparsity structure of the
model. Optimal A selection is typically implemented via cross-
validation, which supports a balance between bias and variance and
promotes generalization performance.

2.4 Analysis procedure

Study 1 was designed to identify core discourse themes
surrounding “dietary behaviors” and “social interactions” on
social media platforms and explore their latent associations with
users’ mental health, affective states, and social engagement

10.3389/fpsyt.2025.1701751

patterns. To achieve these objectives, we implemented a five-stage
analytical pipeline (see Figure 1), structured as follows:

1. Corpus Standardization: To ensure data quality, raw textual
data underwent rigorous preprocessing. Posts containing
fewer than 20 characters were excluded to preserve
semantic validity. Remaining texts were tokenized using
Python’s Jieba library, followed by removal of stopwords,
punctuation, whitespace, and duplicate entries, yielding a
structured analytical corpus.

. Latent Thematic Extraction: The LDA model was
constructed using the LatentDirichletAllocation module in
scikit-learn (Python). Model parameters were set as follows:
o = 0.1 for the document-topic distribution and 3 = 0.01 for
the topic-word distribution. The model was trained using a
batch learning approach (learning_method="batch’) for up to
100 iterations (max_iter=100), with a fixed random seed
(random_state=42) to ensure reproducibility. The optimal
number of topics was determined by jointly considering the
lowest perplexity.

. Dual-Coder Thematic Labeling: Two domain-trained
graduate researchers independently derived theme labels
by analyzing each theme’s top 20 keywords and 20
representative documents. Iterative discussions resolved
coding discrepancies (38), culminating in consensus-
based thematic nomenclature.

. Classification Consistency Validation: Two independent
coders annotated 120 randomly sampled posts (39, 40).

rawler
Corpus

China

Text Preprocessing

AEXRRERFIMRE, BHRE, B
DUTHERERZRMRETAOHEH,

BEK

Sichuan Chengdu iPhone

¥

a. Filter texts with less than 20 characters

c. Remove Stop Words, Punctuation Marks

b. Jieba Word Segmentation

| b. lieba Word Segmentation: &5 RS54 KB X Wi EEEE |

| d .Remove Stop Words: F 1 7 1 ...

d. Delete Blanks and Duplicates

!

Topic 1: {[E77 B &0 JRA ..}
Topic2: {R& F& WA &4 ..}

LDA Topic Modeling
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on Perplexity

Documen
Documen

a. Topic-Word Distribution
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¥

| b. Document-Topic Distribution |

Two people independently read the first 20 words of each topic and 20
representative documents.

¥

Topic Induction

Randomly select 120 documents. Two people classify them, record three

types of contingency tables, and calculate the Kappa coefficient.

Consistency Test

Semantic Network
Analysis
FIGURE 1

Flowchart of the data processing steps in Study 1.
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Cohen’s Kappa coefficient (41) quantified inter-rater
agreement between LDA outputs and manual
annotations, objectively evaluating theme robustness.

. PMI Network Analysis: To complement LDA’s semantic
limitations, a co-occurrence network was constructed using
the Pointwise Mutual Information (PMI) metric. Nodes
were first selected based on word frequency (top 120 terms)
and PMI values above the 75th percentile to ensure
statistical relevance. Edge weights corresponded to PMI
scores, and connections with weights below 0.1 were
excluded to enhance interpretability. Community
detection was conducted using the Louvain modularity
optimization algorithm implemented in Gephi, which
automatically classified nodes into modularity classes
representing distinct semantic communities (42).
Weighted degree was computed for each node to quantify
its centrality within the network. Following this, both
network metrics (e.g., modularity, degree centrality) and
semantic coherence were jointly considered to retain 36
representative nodes and 215 statistically significant edges
for final visualization.

Building upon the emotional and thematic patterns identified in
Study 1—particularly those highlighting the interplay between
social emotions, stress, and dietary behaviors—Study 2 extends
this line of inquiry to an individual behavioral level. Specifically,
Study 2 systematically investigates the mechanistic links between
social emotional states and intuitive eating behaviors, while
identifying semantically salient markers associated with eating
patterns through advanced text feature extraction. The three-stage
analytical protocol (see Figure 2) unfolds as follows:

1. Affective Profiling via LIWC Lexicon: To quantify emotion-
laden expressions in social discourse, we deployed the
Linguistic Inquiry and Word Count (LIWC-22) software
for automated sentiment annotation. This tool calculates
standardized scores for positive affect (e.g., “joy,”
“satisfaction”) and negative affect (e.g., “anxiety,”
“loneliness”) by matching user-generated posts against its

[ 1314 participants ]

10.3389/fpsyt.2025.1701751

empirically validated emotion lexicon, establishing a
quantifiable foundation for linking affective dimensions to
intuitive eating outcomes.

. Multivariate Regression Modeling: A multiple linear
regression model was implemented in SPSS 27 to assess
the predictive validity of emotional variables. Specifically,
LIWC-derived positive and negative affect scores served as
core predictors, with the total score from the Intuitive
Eating Scale-2 (IES-2) as the dependent variable. This
approach disentangled the differential predictive strength
of distinct emotional domains on eating behaviors.

. LASSO Regression for Semantic Marker Identification: To
transcend limitations of conventional regression, machine
learning-enhanced text mining was conducted: Python’s
scikit-learn TfidfVectorizer converted raw texts into Term
Frequency-Inverse Document Frequency (TF-IDF)
matrices, prioritizing high-frequency lexical candidates;
using the glmnet package in R, LASSO regression (43)
was applied with IES-2 scores as the response variable and
TE-IDF features as predictors. Optimal regularization
parameters were selected via 10-fold cross-validation,
retaining non-zero coefficient terms to pinpoint
semantically critical markers of intuitive eating behaviors.

3 Result
3.1 Topic analysis

The optimal number of topics and thematic extraction results
are illustrated in Figure 3 and Table 1. Based on the LDA model, the
lowest perplexity was achieved when the number of topics was set to
6, indicating superior model fit under this configuration (29). The
six extracted topics are as follows: Life Stress and Emotional
Management, Gourmet Experiences and Media Interaction,
Mental Health and Stress, Alumni Gatherings and Socialization,
Social Anxiety and Image Management, Psychological States and
Exercise Regulation. Each theme was labeled not only based on

9 selected words

(B)LASSO regression

Data cleaning

[ Text data ]

LIWC

:>[

Sentiment score
(independent variable)

]

[ 1199 valid subjects ]

(@Sentiment analysis

[

IES-2 score ( dependent

K

(@Regression analysis

variable )
FIGURE 2
Schematic diagram of the data processing flow in Study 2.
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FIGURE 3
Trend of perplexity with varying number of topics.

TABLE 1 Summary of thematic topics with top keywords and document

frequencies from LDA topic modeling.

Number of
documents

The top 20 keywords of

topic

life, work, stress, exercise, food,

Life Stress body, time, way/method, routine,
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1 . e . 501
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Management | human, management, people, daily
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Food . o
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and Media : i
X information, platform, world,
Interaction
software, game, teacher, unable,
experience
stress, problem, influence/impact,
cause, children, research, emotion,
Mental . t ol ial activiti
environment, plan, social activities
3 Healthand | pram s Sines 269
St disease, exercise, patients, disorder,
ress .
goal, aspect, symptoms, nutrition,
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Alumni P P 8 dg ivit
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Gatherings 8 . 7
4 d restaurant, photos, entire group, 140
ang
o dining, high-speed rail, news,
Socialization . .
greasy, go viral, group, internet,
stomach
social anxiety/social phobia,
Social weight, feeling, exercise, friends,
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Psychological Py 8y . f
schedule, reasonable, emotion,
States and K R
6 A mindset, means, constructive, 216
Exercise . .
. school starts, video, mobile phone,
Regulation

inner world, self-discipline,
guideline, skin
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lexical co-occurrence patterns but also with reference to its
underlying psychological meaning—for example, “Life Stress and
Emotional Management” aligns with Lazarus’s stress and coping
framework, while “Social Anxiety and Image Management” reflects
self-presentation and social comparison processes. The top 20
keywords and corresponding document counts for each topic
reflect users’ focal concerns and emerging trends in discussions
related to social interactions and dietary behaviors.

Multidimensional Scaling (MDS) analysis, implemented via the
pyLDAvis package, visually represents the inter-topic relationships
(44). The visualization of topic spatial distributions is depicted in
Figure 4, where bubble labels correspond to topic indices, and
bubble diameter scales proportionally to the document count within
each topic. Taking Topic 1 as an exemplar, the right panel of
Figure 4 displays the 30 most relevant terms for this topic, along
with their proportional representation among all tokens (24.1%).
(Detailed visualizations for other topics are provided in
Supplementary Material 1) Inter-bubble distances reflect semantic
associations between topics: proximate bubbles indicate thematic
overlaps, while distant ones suggest content independence.

The consistency check of topic classification revealed that the
Cohen’s Kappa coefficients between the LDA model and Researcher
A and Researcher B were 0.470 and 0.450, respectively (both
p <.001), while the coefficient between Researcher A and
Researcher B was 0.504 (p <.001). These values fall within the
range of moderate agreement (45) and are comparable to those
typically reported in topic modeling or mixed-method semantic
analyses (39), where x values between 0.40 and 0.60 are generally
considered acceptable given the interpretive nature of theme
labeling (39, 46).This level of consistency may be attributed to the
semantic multiplicity of the texts—for instance, a term like “stress
relief” could be categorized under both Topic 1 (“Life Stress and
Emotional Management”) and Topic 3 (“Mental Health and
Stress”) due to its contextual relevance. Such overlap reflects the
inherent ambiguity of user-generated content, in which emotional
and behavioral expressions often span multiple domains. Future
refinements could involve adopting hierarchical topic models or
incorporating word embeddings (Word2Vec, BERT) to capture
semantic nuances more precisely and reduce coder uncertainty.

3.2 Semantic network analysis

The network, comprising 36 key nodes and 215 edges, exhibited
an average degree of 41.87 and a mean weighted degree of 49.19,
indicating a relatively dense interconnection among high-frequency
terms (network density = 0.341). The modularity coefficient (Q =
0.28) suggested a moderately clustered semantic structure, reflecting
that while distinct communities emerged, substantial overlaps
existed across social and dietary themes—a pattern typical of
psychologically intertwined discourse. It was divided into four
primary categories using modular processing, with each category
visually distinguished by color, as shown in Figure 5. The blue nodes
represent social-dietary interactions, highlighting the connection
between food choices and social contexts, such as gatherings with
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Intertopic Distance Map (via multidimensional scaling)
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Topic modeling visualizations generated with pyLDAvis in Python, showing the relationship between the number of topics and perplexity, inter-topic
distances, marginal topic distribution, and the top 30 relevant terms (using Topic 3 as an example).

friends and festive celebrations. The red nodes focus on health-
related discussions, reflecting the role of social media in facilitating
the exchange of health information, including topics on diseases,
lifestyle habits, and dietary recommendations. The yellow nodes
illustrate emotion-physiology linkages, emphasizing the interplay
among diet, emotional regulation, physical activity, and weight
management, encompassing aspects like stress relief, mood
regulation, and healthy living practices. Lastly, the purple nodes
center on body image-social anxiety, examining the relationship
between social media use, self-perception, and the interplay
between social anxiety and eating behaviors.

3.3 Key predictive word analysis based on
LASSO regression

Building upon the thematic and semantic findings in Study 1,
Study 2 further explored how social-emotional expressions in
interpersonal contexts relate to individual eating behaviors. Based
on social text data from 1,199 valid participants, the study first
quantified emotional indicators through sentiment analysis and
conducted multiple linear regression analyses using the LIWC
emotion scores and the total score of the Intuitive Eating Scale-2
(IES-2). As shown in Table 2, the negative emotion score in social
texts was significantly negatively associated with intuitive eating
behaviors (8 = -0.103, p = 0.023), indicating that individuals who
express stronger negative emotions in social interactions are more
likely to experience impaired intuitive eating abilities.

To further identify key semantic markers related to eating
behaviors, the study employed LASSO regression analysis using
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the glmnet package in R. LASSO regression introduces an L;-norm
penalty, which gradually shrinks the coefficients of less important
variables to zero. The LASSO regression model yielded a cross-
validated mean squared error (MSE) of 62.87 with an R* of 0.08.
While the explained variance is modest, this level of performance is
expected given the high-dimensional nature of linguistic data. In
this context, the primary objective of LASSO regression was not to
maximize predictive accuracy, but to identify linguistic features
most strongly associated with intuitive eating scores. This feature
selection approach aligns with established practices in psychological
text-mining research, where interpretability and parsimony take
precedence over raw prediction performance (47, 48). As the
penalty parameter A increases, most coefficients converge toward
zero (as shown in Figure 6). The optimal regularization parameter A
was determined through cross-validation, ultimately retaining nine
non-zero coefficient terms (as presented in Table 3). Among them,
“sensitive,” “tiring,” “frustrated,” and “lonely” were negatively
associated with intuitive eating scores, suggesting that expressions
of these emotions may impair individuals” self-regulation of eating.
In contrast, “bored,” “anxious,” “shy,” “positive,” and “relaxed”
demonstrated positively associated with intuitive eating scores,
implying that moderate anxiety and a positive mindset may
enhance cognitive control and promote healthier dietary
behaviors. Notably, the unexpected positive associations of
traditionally negative words like “bored”, “anxious” and “shy”
may reflect individuals’ adaptive strategies of using dietary
management to cope with social stress.

Across the three analytical approaches, a convergent pattern
emerged linking emotional experiences in social contexts with
dietary behaviors. The topic modeling results revealed that users
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FIGURE 5

Semantic network analysis of Weibo discussions related to social and dietary themes. The nodes in the picture are as follows: 1 - Food, 2 - Media, 3 -
Photo, 4 - Body figure, 5 - Self - discipline, 6 - Gym, 7 - Social phobia, 8 - Consumption, 9 - Female, 10 - Delicacy, 11 - Emotion, 12 - Gathering, 13 -
Social interaction, 14 - Make friends, 15 - Dine, 16 - Dinner party, 17 - Platform, 18 - Game, 19 - Obstacle, 20 - Life, 21 - Disease, 22 - Doctor, 23 -
Nutrition, 24 - Patient, 25 - Social activity, 26 - Mood, 27 - Stress, 28 - Body, 29 - Exercise, 30 - Work and rest schedule, 31 - Diet, 32 - Mentality, 33 -
Emotion, 34 - Regularity, 35 - Drink alcohol, 36 - Weight.

frequently discussed stress, emotional regulation, and body image  Extending these findings to individual-level data, the linguistic
concerns in relation to food and social interaction. The semantic  analysis identified emotion-related expressions that covaried with
network analysis further confirmed these interconnections, intuitive eating tendencies. Taken together, these results provide
demonstrating that emotional, social, and dietary terms were  multi-level evidence that social-emotional dynamics play a central
densely intertwined and clustered around shared psychological role in shaping both the discourse and behavioral dimensions
constructs such as stress management and self-presentation.  of eating.

TABLE 2 Regression coefficients of social emotional scores predicting intuitive eating.

Unstandardized Standardized
coefficient B coefficient Beta
constant 77.903 158.378 0.000
Social- positive 0.018 0.020 0.665 0.506
Social- negative -0.103 -0.067 -2.271 0.023

*Bold values indicate statistical significance (p < 0.05).
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Visualization of the effects of log(A) on LASSO regression. (A) LASSO regression coefficients. (B) Mean squared error (MSE) across different A values.

4 Discussion

The present study provides novel insights into the psychological
mechanisms linking social emotions and eating behaviors by
integrating large-scale social media analysis with individual-level
assessments. The findings reveal associative patterns between
emotional expression in social contexts and self-regulatory aspects
of eating. By combining topic modeling, semantic network analysis,
and behavioral validation of emotion-related language, this research
advances a multi-method framework for understanding how social-
emotional processes are reflected in dietary discourse and behavior.

The structured analysis of six thematic categories indicated that
emotional states frequently co-occur with eating-related
discussions. The clustering of psychological themes—”Mental
Health and Stress,”
“Psychological States and Exercise Regulation”—illustrates that

Life Stress and Emotion Management,” and

stress and emotion regulation are recurrent themes in public
discourse surrounding diet. These findings are consistent with
prior evidence that stress correlates with reduced healthy food
intake and greater consumption of high-calorie foods (49, 50).
Extending this evidence base, the present results suggest that
such emotional dynamics are traceable within naturally occurring

TABLE 3 Key emotional words predicting intuitive eating scores.

Number Word Cofficient

constant term 77.809
1 Sensitive -14.078
2 Tiring -11.078
3 Frustrated -4.078
4 Lonely -1.493
5 Bored 8.460
6 Anxious 7.953
7 Shy 3.460
8 Positive 2.005
9 Relaxed 1.693
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online language, highlighting the value of digital data for
psychological inquiry.

Study 2 further supported this mechanism by showing that
negative emotions expressed in social texts were significantly
associated with lower intuitive eating. Words such as “tiring,”
“frustrated,” and “lonely” were associated with weaker dietary self-
regulation, echoing prior work linking negative affect and maladaptive
eating behaviors (51-53). This convergence of online linguistic signals
and offline self-reports underscores the reliability of emotion-diet
associations across methodological contexts. Conversely, positive
expressions such as “relaxed” and “positive” were linked to healthier
eating behaviors, suggesting that supportive emotional climates can
buffer against maladaptive eating patterns. Interestingly, certain words

» «

often coded as negative (“bored,” “anxious,” “shy”) showed positive
associations with intuitive eating, highlighting the complexity of
emotional regulation. This pattern may reflect a higher level of
emotional awareness, in which individuals recognize and articulate
their transient discomfort rather than avoiding it (54). From the
perspective of reflective self-regulation, acknowledging mild social
unease (e.g., boredom or anxiety) can prompt individuals to monitor
internal states more deliberately, thereby engaging in more conscious
food-related decisions (55). In this sense, such emotions may function
as regulatory cues rather than risk factors, signaling opportunities for
self-reflection and adaptive adjustment to eating behaviors. These
results suggest that not all negative emotions are uniformly
maladaptive, some may heighten self-awareness and promote more
deliberate food choices.

Beyond individual emotional states, the results emphasize the
role of social environments and body image concerns in shaping
eating regulation. The themes “Food Experiences and Media
Interaction” and “Alumni Gatherings and Socialization” illustrate
that both online sharing and offline social gatherings are associated
with eating choices. While the mechanisms cannot be directly
inferred from the topic modeling, prior research suggests that self-
presentation, peer influence, and normative expectations are likely
drivers of these associations (6, 8, 56). In particular, the relative
isolation of the “Social Anxiety and Image Management” theme
points to a distinct pathway, which may reflect a tendency toward
restrictive eating as a coping strategy to manage social evaluation
risks. This interpretation aligns with Social Identity Theory (57),
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which posits that individuals regulate their behaviors to maintain a
favorable social identity and group acceptance, and with the Social
Media Internalization Model (58), which highlights how internalized
appearance norms derived from digital comparison processes shape
body-related attitudes and eating behaviors. Taken together, these
findings suggest that dietary regulation in social contexts is not only
an outcome of individual emotional control but also reflects collective
identity dynamics and social conformity pressures within both online
and offline environments.

While the psychological findings resonate with existing health
behavior research (59-61), While the psychological findings resonate
with existing health behavior research (59-61), this study makes a
distinctive contribution by situating these mechanisms within the
context of digital platforms. The semantic network analysis showed
that health-related nodes (“Doctor,” “Disease,” “Patient”) coexist with

» «

social nodes (“Dining,” “Gathering”) and emotional nodes (“Stress,”
“Body”), reflecting how health communication on social media is
deeply interwoven with social bonding and emotional states. This
hybrid structure can be better understood through the lens of social
cognitive theory (62) and the social sharing of emotion framework
(63). From a social cognitive perspective, online environments
provide both observational learning cues and social reinforcement
that shape individuals’ health-related behaviors. Users not only
receive information about diet or exercise but also observe
emotional expressions and social feedback that reinforce certain
attitudes or practices. Meanwhile, the social sharing of emotion
framework suggests that emotional disclosure—such as expressing
stress or body concerns—serves to regulate affect and strengthen
social bonds. The co-occurrence of emotional and health-related
terms in the network thus reflects a collective coping mechanism,
where individuals use social media to negotiate both personal well-
being and social belonging.

From a platform perspective, the identification of emotion-laden
linguistic patterns related to eating behaviors suggests possible
directions rather than direct interventions for supporting users’
emotional and dietary well-being. For example, digital health
applications could be informed by digital behavior change
intervention (DBCI) principles to help users recognize emotional
stress and adopt healthier coping strategies. At the design level,
platforms might explore ways to reduce content that reinforces
body anxiety and to promote balanced, positive discussions about
food and well-being. These directions fit within broader digital
mental health frameworks, which emphasize supportive online
environments and self-awareness rather than behavioral control (64).

Beyond its practical relevance for digital health design, the
present findings also carry theoretical significance. First, it applies
and refines Social Cognitive Theory (12) within digital contexts,
demonstrating that observational learning and social reinforcement
mechanisms are not limited to offline interactions but are also salient
in online environments, where peer influence, self-presentation, and
social comparison processes are intensified (65, 66). This extension
underscores how digital platforms serve as social learning
environments that both mirror and magnify everyday behavioral
modeling. Second, the study provides evidence that natural language
on social media can serve as an observable marker of underlying
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psychological and emotional states. This aligns with emerging
perspectives in emotional awareness (67) and reflective self-
regulation frameworks, which posit that individuals’ capacity to
articulate emotions linguistically reflects deeper levels of self-
monitoring and behavioral control. By linking online emotional
expression to offline eating behaviors, this work advances the
integration of affective and behavioral dimensions in health
psychology. Third, the research offers a methodological
demonstration of integrating big data analytics (LDA topic
modeling and semantic network analysis) with behavioral
assessment. This framework highlights how computational
methods can complement psychological theory to capture complex
emotion-behavior dynamics in naturalistic digital environments.

Despite these contributions, several limitations must be
acknowledged. First, the data from Study 1 were collected solely
from Weibo, a Chinese platform, which may limit the generalizability
of findings to other contexts. Cultural norms around emotional
expression and eating behavior may differ substantially across
societies, particularly between collectivist and individualist cultures.
Future research should examine cross-cultural comparisons across
platforms such as Twitter, Instagram, or TikTok. Second, although
LDA and LASSO offer powerful tools for identifying consistent
associations between emotional expression and eating behaviors,
these methods do not imply causality. The observed relationships
should therefore be understood as correlational patterns rather than
causal effects. To determine whether changes in emotional expression
directly influence eating regulation, more rigorous longitudinal
designs will be necessary. Third, the reliance on text data overlooks
multimodal expressions—images and videos of food, exercise, and
body image are highly salient in social media contexts and likely
shape eating behaviors in ways not captured by textual analysis.
Future studies should incorporate multimodal approaches using
computer vision and multimodal deep learning models. Finally,
although this study applied dictionary-based approaches for
emotion detection, more advanced natural language processing
models (e.g., BERT) could capture contextual nuances in emotion
expression, improving cross-cultural applicability.

5 Conclusion

This study provides evidence that emotional expression in
social contexts—both online and offline—is associated with young
adults’ eating behaviors. By integrating large-scale social media
analyses with individual-level assessments, the research highlights
potential pathways through which social emotions may relate to
eating regulation. The topic modeling and semantic network results
shed light on the thematic structures linking diet, emotion, and
social interaction, while linguistic patterns identified through
LASSO regression suggest specific emotional expressions
associated with intuitive eating. Collectively, these findings enrich
theoretical understanding of the psychosocial processes connecting
emotion, social interaction, and eating, and offer practical
implications for fostering healthier digital environments. While
these findings highlight meaningful associations between social
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emotion and eating behaviors, future research is needed to clarify
the causal mechanisms underlying these links.
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