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Background: Insomnia is a highly prevalent condition, with heterogeneous

clinical presentations and underlying mechanisms. Traditional assessment

methods often fail to capture this complexity, thereby hindering the

development of personalized treatments. This paper details a protocol for a

study that employs a “deep phenotyping” approach to comprehensively

characterize insomnia.

Methods: This single-center prospective observational study recruited adults

with insomnia and a parallel cohort of normal sleepers as the controls.

Participants undergo a 4-week multimodal assessment. The assessment

framework integrates four key data domains: (1) clinical assessment, involving

self-reported data from a comprehensive battery of clinical and psychological

questionnaires; (2) digital phenotyping, capturing real-world behavioral and

physiological data through a wrist-worn wearable device and a smartphone

application; (3) functional neuroimaging, using a baseline functional near-

infrared spectroscopy (fNIRS) scan to measure prefrontal cortex activity; and

(4) genomic and biomarker collection from blood samples for genomic and

exploratory biomarker analyses. The study was conducted between March 2023

andOctober 2024, and all recruitment and data collection have been completed.

The core analysis will employ advanced computational methods, including

clustering and machine learning, to identify the distinct subtypes of insomnia.

Discussion: By applying multivariate pattern analysis and machine learning

techniques to this rich, integrated dataset, we aimed to identify distinct

biopsychosocial phenotypes of insomnia. This deep phenotyping approach is

expected to elucidate the heterogeneity of insomnia, paving the way for the

development of targeted and personalized management strategies for

individuals with sleep disorders.

Clinical Trial Registration: Clinical Research Information Service KCT0009175;

https://cris.nih.go.kr/cris/search/detailSearch.do?seq=26133
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1 Introduction

Insomnia is one of the most prevalent and impactful sleep

disorders, affecting approximately 10% of adults chronically and an

additional 30-35% experiencing occasional symptoms (1, 2). It is

characterized by difficulty in initiating or maintaining sleep despite

adequate opportunity and is frequently accompanied by daytime

impairment (3–5).

The etiology of insomnia is complex and multifactorial. The

development and persistence of insomnia are influenced by a

combination of genetic factors (6, 7), psychological stress,

maladaptive sleep habits, and cognitive factors (1, 8, 9). Circadian

rhythm disruption (10), shift work (11), and comorbid medical (12)

and psychiatric disorders (13) are also well-established risk factors.

Moreover, recent neuroimaging studies have suggested that

individuals with insomnia may exhibit structural and functional

alterations (14) in the brain regions associated with arousal,

emotion regulation, and cognitive control, although the findings

remain somewhat inconsistent (15). In parallel, emerging genetic

research has highlighted the dysregulation of circadian clock genes

that contribute to the pathophysiology of insomnia. These

multilayered causes and the inherent heterogeneity of insomnia

suggest that approaching it as a single symptom-based disorder is a

fundamental limitation.

Conventional studies on insomnia in clinical practice have

relied predominantly on patient-reported outcomes, including

sleep questionnaires, sleep diaries, and clinical interviews. While

polysomnography (PSG) and actigraphy offer more objective

measures of sleep, their application is often limited to brief

observation periods or specialized research settings. Consequently,

traditional assessment approaches, which primarily focus on

subjective symptoms or single-night metrics, often fail to capture

the complex multidimensional complex nature of insomnia (16).

Ecological momentary assessment provides valuable real-time

symptom data but remains limited by its reliance on subjective

reports and narrow physiological measures, lacking insight into

brain function and the biological underpinnings of insomnia (17,

18). Recent advances in digital phenotyping have enabled large-

scale, real-time monitoring of sleep. However, such approaches are

limited by the extreme complexity and heterogeneity of datasets and

lack of subjective assessments (19, 20). In conclusion, fragmented

approaches have a fundamental limitation in fully understanding

the complex biopsychosocial characteristics of insomnia and

identifying individual specificities.

Therefore, a multimodal assessment approach, commonly

referred to as “deep phenotyping,” is essential to comprehensively

unravel the complex and heterogeneous nature of insomnia. This

approach seeks to integrate multiple levels of information, including

the patients’ subjective experiences, objective sleep-wake patterns,

neurophysiological activity, and genetic predispositions. Although

recent studies have begun to explore such integrative frameworks,

the field is still in its early stages. To overcome these limitations, this

study outlines a research protocol designed to apply a deep

phenotyping strategy to insomnia. Specifically, it combines data

from standardized clinical questionnaires, continuous digital
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phenotyping using wearable devices and smartphone applications,

functional neuroimaging via portable functional near-infrared

spectroscopy (fNIRS), and genomic and biomarker analyses.

Through this comprehensive, multimodal approach, we aim to

identify the distinct phenotypic subtypes of insomnia. Ultimately,

exploring the underlying biological and neurophysiological

mechanisms of these subtypes may lead to a more refined

understanding of the disorder and inform the development of

personalized mechanism-based treatment strategies.
2 Methods

2.1 Study design

This study employed a single-center prospective observational

design with two parallel cohorts, an insomnia group and a normal

sleeper control group. The study was conducted at the Korea

University Anam Hospital in Seoul, South Korea, and DataMaker

Inc. in Daejeon, South Korea, between March 2023 and October

2024. The observational nature of the study allowed for the careful

assessment and monitoring of participants’ sleep patterns,

behaviors, and relevant physiological and biological parameters

over a 4-week period. This duration was selected to capture a

representative range of day-to-day fluctuations in sleep and daytime

symptoms, while minimizing participant burden. A parallel-cohort

design allows for the comparison of these measures between

individuals with insomnia and those with normal sleep, enabling

the identification of distinguishing features and potential subtypes

of insomnia. The entire study consists of a baseline visit (week 0), a

4-week monitoring period (weeks 1-4), and an endpoint visit (week

4). An overview of this protocol is shown in Figure 1.
2.2 Participants

This study will recruit two parallel cohorts, an insomnia group

and a normal sleeper control group. The inclusion and exclusion

criteria for each cohort will be carefully defined to ensure a

homogeneous sample and minimize confounding factors.

Participants in the insomnia group will be adults aged 19–70

years who report experiencing subjective insomnia symptoms, such

as difficulty initiating sleep, difficulty maintaining sleep, or early

morning awakenings, for at least three nights per week over the

preceding three months. A score of 15 or higher on the Insomnia

Severity Index (ISI) will be required to ensure that participants

experience at least a moderate level of insomnia (21).

The normal sleeper control group will also consist of adults aged

19–70 years. To be included, these individuals must report

experiencing insomnia symptoms less than three times per

month, have an ISI score of less than 8, and report an average

sleep duration of six hours or more per night over the preceding

three months. Controls have no history of chronic insomnia or any

major psychiatric illness and will also be required to comply with all

the study procedures.
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FIGURE 1

Protocol flow chart of the study fNIRS, functional near-infrared spectroscopy; ISI, Insomnia Severity Index; PSQI, Pittsburgh Sleep Quality Index;
SHI, Sleep Health Index; SHPS, Sleep Hygiene and Practices Scale; BQ, Berlin Questionnaire; IRLS, International Restless Legs Syndrome Rating Scale;
DBAS-16, Dysfunctional Beliefs and Attitudes about Sleep-16; MEQ, Morningness–Eveningness Questionnaire; BPS, Bedtime Procrastination Scale;
FIRST, Ford Insomnia Response to Stress Test; STAI, State–Trait Anxiety Inventory; K-MDQ, Korean version of the Mood Disorder Questionnaire;
BSQ, Body Sensations Questionnaire; KRQ-53, Korean Resilience Quotient-53; AUDIT, Alcohol Use Disorders Identification Test; SOS-Q,
Smartphone Overuse Screening Questionnaire; SPAQ, Seasonal Pattern Assessment Questionnaire; BRIAN, Biological Rhythms Interview of
Assessment in Neuropsychiatry; SWBS, Spiritual Well-Being Scale; ESS, Epworth Sleepiness Scale; PHQ-9, Patient Health Questionnaire-9; GAD-7,
Generalized Anxiety Disorder-7; MFS, Multidimensional Fatigue Scale; IPAQ-SF, International Physical Activity Questionnaire–Short Form; WHOQOL-
BREF, World Health Organization Quality of Life–BREF.
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All participants in both groups are required to be willing to

comply with all the study procedures, including the use of wearable

devices and smartphone applications.

To minimize the influence of confounding factors, individuals

meeting any of the following criteria were excluded from

participation in either group: evidence of other primary sleep

disorders such as untreated sleep apnea, narcolepsy, or other

sleep-related breathing disorders; a current diagnosis of a major

psychiatric disorder, including major depression, bipolar disorder,

or schizophrenia, or a severe substance use disorder; the presence of

cognitive impairment or a neurological disorder that could preclude

valid self-report or compliance; participation in shift work or

maintenance of an irregular sleep schedule within the past three

months; and lack of access to a compatible smartphone or

unwillingness to use the study’s smartphone application. The

current use of hypnotic medications or supplements that have a

significant effect on sleep was also an exclusion criterion.
2.3 Ethical considerations and informed
consent

This study will be conducted in accordance with the principles

of the Declaration of Helsinki. In accordance with the Bioethics and

Safety Act and the Personal Information Protection Act (PIPA) of

South Korea, all procedures concerning data handling and privacy

protection were reviewed and approved by the IRB of Korea

University Anam Hospital No. 2022AN0587). All participants in

both cohorts will be required to provide written informed consent at

the beginning of the study. The consent process will include a clear

explanation of the study’s purpose, procedures, potential risks and

benefits, data-handling procedures, and the voluntary nature of

participation. Participants spent approximately 2 hours at

enrollment for orientation and device setup, including the fNIRS

assessment and blood sampling, and about 30 minutes for the final

visit after 4 weeks. During the study, app-based daily assessments

took about 1 minute, and weekly questionnaires required less than 5

minutes. All time requirements were explained to participants

before enrollment. To ensure the protection of participants’

privacy, all personally identifiable information will be

anonymized before data storage or analysis. Research data will be

securely stored and accessible only to authorized personnel.

Participants who complete the full study protocol, including the

fNIRS session and blood sampling, will receive total compensation

of 150,000 KRW, whereas those who complete all procedures except

the fNIRS session and blood sampling will receive 100,000 KRW.
2.4 Clinical assessments

A comprehensive battery of validated clinical assessment

instruments will be employed to characterize participants across

multiple domains relevant to sleep, psychological functioning, and

general health. These instruments are selected based on their

psychometric properties, clinical relevance, and established uses
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in sleep research. Basic demographic information, including age,

sex, work patterns, lifestyle factors, height, and weight are collected

at the baseline. A detailed summary of all instruments, including the

administration schedule and scoring, is provided in Table 1.

2.4.1 Sleep-related assessments
The sleep assessment battery was designed to capture multiple

dimensions of sleep health and related behaviors that contribute to

the pathophysiology of insomnia.

Primary sleep measures: The Insomnia Severity Index (ISI) (21,

22) serves as the primary outcome measure for insomnia severity,

administered at screening for group allocation (≥15 for the

insomnia group; <8 for controls) and weekly thereafter via the

SOMDAY application. The Pittsburgh Sleep Quality Index (PSQI)

(23, 24) assesses global sleep quality over the past month, whereas

the Sleep Health Index (SHI) (25) provides a comprehensive

measure of sleep health across multiple domains.

Sleep disorder screening: The Epworth Sleepiness Scale (ESS)

(26, 27) measures daytime sleepiness, the Berlin Questionnaire

(BQ) (28, 29) screens for obstructive sleep apnea risk, and the

International Restless Legs Syndrome Rating Scale (IRLS) (30)

assesses RLS (Restless Legs Syndrome) symptom severity.

Sleep-related behaviors and cognitions: Several instruments

assess factors known to perpetuate insomnia. The Sleep Hygiene

and Practices Scale (SHPS) (31, 32) evaluates sleep hygiene

behaviors, whereas the Dysfunctional Beliefs and Attitudes about

Sleep-16 (DBAS-16) (33) measures maladaptive sleep-related

cognitions. The Morningness-Eveningness Questionnaire (MEQ)

(34, 35) determines chronotype, Bedtime Procrastination Scale

(BPS) (36) assesses bedtime delay behaviors, and Ford Insomnia

Response to Stress Test (FIRST) (37) measures vulnerability to

stress-induced sleep disturbance.

2.4.1.1 Insomnia Severity Index

The ISI is a seven-item self-reported scale rated from 0 to 4 per

item, with a total score ranging from 0 to 28. This scale assesses

difficulty in initiating and maintaining sleep, early morning

awakening, satisfaction with sleep, daytime functional

impairment, impact on quality of life as observed by others, and

worry about sleep problems. Scores of 0–7 indicate no clinically

significant insomnia, 8–14 indicate mild insomnia, 15–21 indicate

moderate clinical insomnia, and 22–28 indicate severe clinical

insomnia. The ISI demonstrates a Cronbach’s a of 0.83, which

reflects good internal consistency across diverse populations (38).

In this study, the ISI is administered at screening to allocate

participants (ISI ≥ 15 for the insomnia group; ISI < 8 for the

control group), and thereafter, it was administered weekly to

evaluate the subjective insomnia severity.

2.4.1.2 Pittsburgh Sleep Quality Index

The PSQI is a 19-item self-report questionnaire that evaluates

sleep quality across seven domains: subjective quality, latency,

duration, efficiency, disturbances, medication use, and daytime

dysfunction over the past month, yielding a global score ranging

from 0 to 21. Each domain is scored from 0 to 3, with higher scores
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TABLE 1 Clinical assessment instruments.

Domain Instrument
(Abbreviation)

Administration Schedule Scoring Range & Interpretation

Sleep-Related Assessments Insomnia Severity Index (ISI) Baseline, Weekly (via app), Week 4 7 items, 0–4 each (Total: 0–28). 0-7: No significant
insomnia; 8-14: Mild; 15-21: Moderate; 22-28: Severe
insomnia.

Pittsburgh Sleep Quality
Index (PSQI)

Baseline 19 items across 7 components (Total: 0–21). Global score
>5 indicates poor sleep quality. Higher scores = worse
sleep.

Epworth Sleepiness Scale (ESS) Baseline, Week 4 8 items, 0–3 each (Total: 0–24). >10 indicates excessive
daytime sleepiness. Higher scores = greater sleepiness.

Sleep Health Index (SHI) Baseline 14 items across 3 domains (Total: 0–100). Higher scores
indicate better sleep health. Assesses sleep quality,
duration, and disordered sleep.

Sleep Hygiene and Practices
Scale (SHPS)

Baseline 30 items, 1–6 Likert scale (Total: 30–180). Higher scores
indicate poorer sleep hygiene practices.

Berlin Questionnaire (BQ) Baseline 10 items across 3 categories. High risk if ≥2 categories
positive. Screens for obstructive sleep apnea risk.

International Restless Legs
Syndrome Rating Scale (IRLS)

Baseline 10 items, 0–4 each (Total: 0–40). 0-10: Mild; 11-20:
Moderate; 21-30: Severe; 31-40: Very severe RLS.

Dysfunctional Beliefs and
Attitudes about Sleep-16
(DBAS-16)

Baseline 16 items, 0–10 Likert scale. Mean score calculated (Range:
0–10). Higher scores = more dysfunctional sleep beliefs.

Morningness-Eveningness
Questionnaire (MEQ)

Baseline 19 items (Total: 16–86). Higher scores = morning
preference; lower scores = evening preference. Determines
chronotype.

Bedtime Procrastination
Scale (BPS)

Baseline 9 items, 1–5 Likert scale (Total: 9–45). Higher scores
indicate greater bedtime procrastination tendency.

Ford Insomnia Response to
Stress Test (FIRST)

Baseline 9 items, 1–4 Likert scale (Total: 9–36). Higher scores =
greater vulnerability to stress-induced insomnia.

Psychological and Mental Health
Assessments

State-Trait Anxiety
Inventory (STAI)

Baseline 40 items: 20 state + 20 trait items, 1–4 each (Range: 20–80
per subscale). Higher scores = greater anxiety.

Patient Health
Questionnaire-9 (PHQ-9)

Baseline, Week 4 9 items, 0–3 each (Total: 0–27). 5-9: Mild; 10-14:
Moderate; 15-19: Moderately severe; 20-27: Severe
depression.

Generalized Anxiety Disorder-7
(GAD-7)

Baseline, Week 4 7 items, 0–3 each (Total: 0–21). 5-9: Mild; 10-14:
Moderate; ≥15: Severe anxiety.

Korean version of Mood
Disorder Questionnaire
(K-MDQ)

Baseline 13 yes/no items. Positive screen if ≥7 yes responses.
Screens for bipolar spectrum disorders.

Body Sensations
Questionnaire (BSQ)

Baseline 17 items, 1–5 Likert scale. Mean score calculated. Higher
scores = greater fear of autonomic sensations.

Korean Resilience
Quotient-53 (KRQ-53)

Baseline 53 items, 1–5 Likert scale across 3 domains. Higher scores
indicate greater psychological resilience.

General Health and Lifestyle
Assessments

Multidimensional Fatigue
Scale (MFS)

Baseline, Week 4 18 items, 1–5 Likert scale (Total: 18–90). Assesses general,
sleep/rest, and cognitive fatigue. Higher scores = greater
fatigue.

Alcohol Use Disorders
Identification Test (AUDIT)

Baseline 10 items, 0–4 each (Total: 0–40). ≥8 indicates hazardous
drinking; ≥20 suggests possible dependence.

Smartphone Overuse Screening
Questionnaire (SOS-Q)

Baseline 28 items, 1–4 point scale (Total: 28–112). Score ≥49
indicates high smartphone addiction risk.

Seasonal Pattern Assessment
Questionnaire (SPAQ)

Baseline 6 behavioral items, 0–4 each + severity rating. Global
Seasonality Score ≥11 with marked problems suggests
SAD.

(Continued)
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reflecting poorer sleep, and a global PSQI score >5 reliably

distinguishes poor sleepers from good sleepers.

2.4.1.3 Sleep Health Index

The SHI, developed by the National Sleep Foundation, is a

validated self-report instrument designed to assess general sleep

health in adults. It comprises 14 items grouped into three

subdomains: sleep quality, sleep duration, and disordered sleep.

Each subdomain contributes to a composite score ranging from 0 to

100, with higher scores indicating better sleep health.

2.4.1.4 Epworth Sleepiness Scale

The ESS is a self-administered scale designed to measure

average daytime sleepiness. This scale consists of eight items

representing specific situations describing hypothetical situations

such as sitting and reading, watching television, sitting inactive in a

public space, riding as a passenger in a car for an hour without a

break, lying down to rest in the afternoon, sitting and talking to

someone, sitting quietly after a lunch without alcohol, and sitting in

a car while stopped for a few minutes in traffic. Each item is rated on

a 0–3 scale (0 = none, 1 = slight, 2 = moderate, 3 = high), resulting in

a total score ranging from to 0-24.

2.4.1.5 Berlin Questionnaire

The BQ is a 10-item self-report tool supplemented by height

and weight data designed to assess obstructive sleep apnea (OSA)

risk across three categories: snoring, witnessed apneas, daytime

sleepiness and fatigue, and obesity/hypertension. A respondent is

classified as high risk for OSA if two or more domains met the

predefined positivity criteria. Categories 1 and 2 are considered

positive if the total score is ≥2. Category 3 is considered positive if

the participant has hypertension or BMI ≥25 kg/m2.
Frontiers in Psychiatry 06
2.4.1.6 Restless Legs Syndrome Rating Scale

The IRLS is a 10-item self-reported scale assessing core RLS

symptoms, intensity and frequency, sleep disturbance, and impact

on mood and daytime functioning. The total score ranges from 0 to

40, with higher scores indicating greater severity. Severity is

classified as mild (0–10), moderate (11–20), severe (21–30), or

very severe (31–40).

2.4.1.7 Sleep Hygiene and Practices Scale

The SHPS is a 30-item self-report scale that captures a wide

range of behaviors and environmental factors that may interfere

with sleep. It is organized into four domains: arousal-related

behaviors, sleep scheduling and timing, eating and drinking

behaviors, and sleep environment. Each item is rated on a six-

point Likert scale from 1 (never) to 6 (always), yielding a total score

between 30 and 180, where higher scores indicate poorer

sleep hygiene.

2.4.1.8 Dysfunctional Beliefs and Attitudes about Sleep-16

The DBAS-16 assesses maladaptive sleep-related cognition

using 16 items rated from 0 to 10 (“strongly disagree” to

“strongly agree”). It evaluates four key domains: perceived

consequences of insomnia, worry and helplessness about sleep,

unrealistic sleep expectations, and beliefs regarding sleep

medication. A global score is computed as the mean of all items

(range 0–10), with higher total scores reflecting more dysfunctional

sleep-related beliefs and greater cognitive contribution to

sleep difficulties.

2.4.1.9 Morningness-Eveningness Questionnaire

The MEQ is a 19-item self-report instrument uses to determine

an individual’s chronotype based on preferred times for sleep/wake
TABLE 1 Continued

Domain Instrument
(Abbreviation)

Administration Schedule Scoring Range & Interpretation

Biological Rhythms Interview
of Assessment in
Neuropsychiatry (BRIAN)

Baseline 18 items, 1–4 scale + 3 chronotype items (Total: 18–72).
Higher scores indicate greater circadian rhythm
disturbance.

Spiritual Well-Being Scale
(SWBS)

Baseline 20 items, 1–6 Likert scale (Total: 20–120). Comprises
Religious (RWB) and Existential (EWB) subscales. Higher
scores = better well-being.

International Physical Activity
Questionnaire-Short Form
(IPAQ-SF)

Baseline, Week 4 7 items assessing walking, moderate, and vigorous activity.
Results expressed as MET-minutes/week. Categorizes
activity level.

WHO Quality of Life-BREF
(WHOQOL-BREF)

Baseline, Week 4 26 items across 4 domains, 1–5 scale. Domain scores
transformed to 0–100 scale. Higher scores = better quality
of life.
ISI, Insomnia Severity Index; PSQI, Pittsburgh Sleep Quality Index; ESS, Epworth Sleepiness Scale; SHI, Sleep Health Index; SHPS, Sleep Hygiene and Practices Scale; BQ, Berlin Questionnaire;
IRLS, International Restless Legs Syndrome Rating Scale; DBAS-16, Dysfunctional Beliefs and Attitudes about Sleep-16; MEQ, Morningness-Eveningness Questionnaire; BPS, Bedtime
Procrastination Scale; FIRST, Ford Insomnia Response to Stress Test; STAI, State-Trait Anxiety Inventory; PHQ-9, Patient Health Questionnaire-9; GAD-7, Generalized Anxiety Disorder-7; K-
MDQ, Korean version of Mood Disorder Questionnaire; BSQ, Body Sensations Questionnaire; KRQ-53, Korean Resilience Quotient-53; MFS, Multidimensional Fatigue Scale; AUDIT-K,
Alcohol Use Disorders Identification Test-Korea; AUDIT-C, Alcohol Use Disorders Identification Test-Consumption; SOS-Q, Smartphone Overuse Screening Questionnaire; SPAQ, Seasonal
Pattern Assessment Questionnaire; K-BRIAN, Korean version of Biological Rhythms Interview of Assessment in Neuropsychiatry; SWBS, Spiritual Well-Being Scale; IPAQ-SF, International
Physical Activity Questionnaire-Short Form; WHOQOL-BREF, World Health Organization Quality of Life-BREF; MET, Metabolic Equivalent of Task; SAD, Seasonal Affective Disorder; RWB,
Religious Well-Being; EWB, Existential Well-Being.
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times, preferred times for activities, and subjective alertness. Items

include a mixture of Likert-type and time-scale questions, each

scored from 1 to 5, yielding a global score ranging from 16 to 86,

with higher scores reflecting stronger morning preferences and

lower scores reflecting stronger evening preferences.

2.4.1.10 Bedtime Procrastination Scale

The BPS is a 9-item self-report measure designed to assess the

tendency to delay bedtime without external justification, capturing a

broad range of behaviors leading to insufficient sleep. Each item is

rated on a five-point Likert scale from 1 (almost never) to 5 (almost

always), resulting in total scores between 9 and 45, with higher

scores indicating greater bedtime procrastination.

2.4.1.11 Ford Insomnia Response to Stress Test

The FIRST is a 9-item self-report tool that assesses sleep

reactivity, that is, the propensity to experience sleep disturbances

in response to common stressful scenarios. Items describe situations

such as work deadlines, social conflicts, or caffeine consumption,

each rated on a four-point scale from 1 (not likely) to 4 (very likely),

yielding a total score between 9 and 36, with higher scores

indicating greater vulnerability to stress-induced insomnia.
2.4.2 Psychological and mental health
assessments

Given the strong bidirectional relationship between sleep and

mental health, comprehensive psychological assessment is essential

for phenotyping.

Current symptom severity is assessed using the Generalized

Anxiety Disorder-7 (GAD-7) (39) and Patient Health

Questionnaire-9 (PHQ-9) (40), both to be administered at the

baseline and endpoint. The State-Trait Anxiety Inventory (STAI)

(41) measures situational and dispositional anxiety. The Body

Sensations Questionnaire (BSQ) (42) assesses anxiety sensitivity,

particularly fear of autonomic sensations. The Korean version of the

Mood Disorder Questionnaire (K-MDQ) (43, 44) screens for

bipolar spectrum disorders using a simplified scoring algorithm

(≥7 positive responses). The Korean Resilience Quotient-53 (KRQ-

53) (45, 46) measures psychological resilience across emotion

regulation, optimism, and problem-solving domains.

2.4.2.1 State-Trait Anxiety Inventory

The STAI is a 40-item self-report inventory that measures two

types of anxiety: state anxiety (how one feels “right now”) and trait

anxiety (how one generally feels). Each subscale contains 20 items

rated on a 4-point Likert scale from 1 (“almost never”) to 4 (“almost

always”), yielding scores from 20 to 80 per subscale, with higher

scores indicating greater anxiety levels.

2.4.2.2 Generalized Anxiety Disorder-7

The GAD-7 is a brief, 7-item self-report scale designed to screen

for generalized anxiety disorder and assess its severity over the prior

two weeks. Each item is rated on a 4-point scale, ranging from 0

(“not at all”) to 3 (“nearly every day”), resulting in a total score of 0–
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21. The severity cutoffs are 5 (mild), 10 (moderate), and 15 (severe),

with scores ≥ 10 warranting further evaluation.

2.4.2.3 Patient Health Questionnaire-9

The PHQ-9 is a 9-item self-administered measure of depressive

symptoms based directly on the DSM-IV criteria, covering the

frequency of symptoms over the past two weeks. Items are scored

from 0 (“not at all”) to 3 (“nearly every day”), yielding a total score

of 0–27. Standard severity thresholds are 5–9 (mild), 10–14

(moderate), 15–19 (moderately severe), and 20–27 (severe).

2.4.2.4 Body Sensations Questionnaire

The BSQ is a 17-item self-report inventory that assesses the

degree of fear elicited by the common autonomic sensations

associated with anxiety. Each item (e.g., heart palpitations,

dizziness, shortness of breath) is rated on a 5-point Likert scale,

ranging from 1 (“not frightened or worried”) to 5 (“extremely

frightened or worried”), with higher averages reflecting greater

tendencies toward catastrophic misinterpretation.

2.4.2.5 Korean version of Mood Disorder Questionnaire

The Mood Disorder Questionnaire (MDQ) is a 13-item self-

report screening tool for lifetime manic or hypomanic symptoms,

indicative of bipolar spectrum disorders. It comprises three

sections: (i) 13 yes/no items assessing lifetime manic/hypomanic

symptoms; (ii) a question asking whether two or more endorsed

symptoms occurred during the same period; and (iii) an item rating

functional impairment on a scale from none to severe. In this study,

we will use the validated Korean version of the Mood Disorder

Questionnaire (K-MDQ), which applies a simplified scoring

algorithm that considers only the section 1 symptom count. A

cutoff of ≥7 yes responses indicates a positive screen, irrespective of

symptom co-occurrence or impairment ratings.

2.4.2.6 Korean Resilience Quotient-53

The KRQ-53 is a 53-item self-report instrument that measures

psychological resilience across three core domains, emotion

regulation, optimism, and problem-solving capacity, each

represented by 17–18 items. Items use a 5-point Likert scale

ranging from 1 (“strongly disagree”) to 5 (“strongly agree”),

generating total and subscale scores that reflect one’s ability to

adapt to stress and adversity.

2.4.3 General health and lifestyle assessments
Additional instruments capture broader health and lifestyle

factors that influence sleep and can confound study outcomes.

Physical health and functioning: The Multidimensional Fatigue

Scale (MFS) (47) assesses fatigue across the general, sleep/rest, and

cognitive domains. The WHO Quality of Life-BREF (WHOQOL-

BREF) (48) measures perceived quality of life across four domains:

physical, psychological, social, and environmental.

Substance use and lifestyle factors: The Alcohol Use Disorders

Identification Test (AUDIT) (49, 50) screens for problematic

alcohol use. The International Physical Activity Questionnaire-
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Short Form (IPAQ-SF) (51, 52) quantifies physical activity levels

across walking, moderate, and vigorous-intensity activities.

Circadian and seasonal factors: The Biological Rhythms

Interview of Assessment in Neuropsychiatry (BRIAN) (53, 54)

assesses disturbances in circadian rhythms across sleep, social,

activity, and eating domains. The Seasonal Pattern Assessment

Questionnaire (SPAQ) (55) screens to assess seasonal

mood variations.

Technology use and spiritual well-being: The Smartphone

Overuse Screening Questionnaire (SOS-Q) (56) assesses

smartphone addiction risk, whereas the Spiritual Well-Being Scale

(SWBS) (57) measures religious and existential well-being.

2.4.3.1 Multidimensional Fatigue Scale

The Multidimensional Fatigue Scale is an 18-item self-report

questionnaire that evaluates three domains of fatigue—general

fatigue, sleep/rest fatigue, and cognitive fatigue—using six items

per domain. Each item is rated on a five-point Likert scale from 1

(“never”) to 5 (“almost always”), yielding subscale scores of 6–30

and a total score of 18–90, with higher scores indicating

greater fatigue.

2.4.3.2 Alcohol Use Disorders Identification Test

The Alcohol Use Disorders Identification Test (AUDIT) is a 10-

item screening instrument that assesses alcohol consumption,

dependence, and alcohol-related problems. Most items are rated

0–4; two items use a 0, 2, and 4 scoring format, with a total score

between 0 and 40. A score of 8 or above suggests hazardous

drinking that warrants further assessment, whereas higher cutoffs

(e.g., ≥ 20) indicate probable alcohol dependence. This study will

also use the Alcohol Use Disorders Identification Test-

Consumption (AUDIT-C), a three-item consumption subscale of

the AUDIT, to screen for hazardous drinking and possible alcohol

use disorder. Each AUDIT-C item is scored 0–4, yielding a total

score of 0–12. Sex-specific cut-offs are applied as follows: ≥4 for

men and ≥3 for women.

2.4.3.3 Smartphone Overuse Screening Questionnaire

The SOS-Q is a 28-item self-report screening questionnaire,

with each item rated on a 4-point scale that identifies smartphone

use habits and screens for smartphone addiction risk. The cutoff

score is 49, and scores higher than 49 indicate a high risk of

smartphone addiction.

2.4.3.4 International Physical Activity Questionnaire–
Short Form

The IPAQ-SF is a 7-item self-report measure of physical activity

and sedentary behavior over the previous seven days. Participants

report the number of days and average minutes per day they spent

walking, performing moderate-intensity activities, and vigorous-

intensity activities, as well as total sitting time. Responses are

converted into metabolic equivalents-minutes per week to

quantify the total activity volume.
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2.4.3.5 WHO Quality of Life–BREF

The WHOQOL-BREF is a 26-item self-report instrument

derived from the WHOQOL-100 that assesses perceived quality

of life across four domains: Physical Health, Psychological Health,

Social Relationships, and Environment. Each item is rated on a five-

point Likert scale, and raw domain scores are transformed to a 0–

100 scale, where higher scores denote better quality of life. It

includes two global items on overall quality of life and general

health perception.

2.4.3.6 Seasonal Pattern Assessment Questionnaire

The SPAQ is an 8-item self-report screener for seasonal affective

changes in six behavioral and mood dimensions: sleep length, social

activity, mood, weight, appetite, and energy. Each dimension is

rated from 0 (“no change”) to 4 (“extremely marked change”),

yielding a Global Seasonality Score (GSS) of 0–24. An additional

severity item asks respondents to rate the degree of problems

experienced due to these seasonal changes. A GSS ≥ 11 combined

with moderate or marked problem severity indicates probable

seasonal affective disorder.

2.4.3.7 Biological Rhythms Interview of Assessment in
Neuropsychiatry

BRIAN is an 18-item instrument designed to quantify circadian

rhythm disturbances. It covers four primary domains (sleep

patterns, social rhythms, activity levels, and eating behaviors) and

includes three additional items for classifying an individual’s

predominant rhythm (chronotype). Each item asks how often

respondents experience disruption in maintaining a regular

biological rhythm, rated on a four-point scale from 1 (“not at

all”) to 4 (“very much”), resulting in a total score of 18–72, with

higher scores indicating more severe circadian dysregulation.

2.4.3.8 Spiritual Well-Being Scale

The Spiritual Well-Being Scale is a 20-item self-report measure

of perceived spiritual quality of life, divided into two 10-item

subscales: Religious Well-Being (RWB) and Existential Well-

Being (EWB). Items are rated on a six-point Likert scale from 1

(“strongly disagree”) to 6 (“strongly agree”), yielding subscale scores

of 10–60 and a total score of 20–120, with higher scores indicating

greater spiritual well-being.

2.4.4 Assessment schedule and administration
Clinical assessments are strategically scheduled to minimize the

participant burden while capturing baseline characteristics and

changes over the study period. Baseline assessments encompass a

comprehensive battery of evaluations to establish a complete

phenotype. Weekly assessments via the SOMDAY application

focus on dynamic measures (e.g., ISI) to monitor symptom

trajectories. Endpoint assessments (week 4) repeat the key

measures (ESS, PHQ-9, GAD-7, MFS, IPAQ-SF, and WHOQOL-

BREF) to evaluate changes in mental health, fatigue, physical

activity, and quality of life.
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2.5 Digital phenotyping

Digital phenotyping serves as a core methodological component

of this study, using a wearable device and smartphone application

for continuous monitoring of participants’ behavioral and

physiological parameters. A custom-designed smartphone

application, named “SOMDAY” (Lumanlab Inc., Seoul, Republic

of Korea), is installed on the participants’ personal smartphones.

The name combines “SOM” (from ‘somnus,’ the Latin word for

sleep) and “DAY,” reflecting the key principle of circadian rhythms

that optimizing daytime activities is crucial for improving nighttime

sleep. The application is compatible with both the Android OS and

iOS platforms.

Participants are provided with a wrist-worn wearable device

(Fitbit Inspire 3, Fitbit Inc., USA) and are instructed to wear it

throughout the 4-week study period, except for charging or if it

causes significant discomfort. This integrated platform, consisting

of a Fitbit device and a SOMDAY application, enables both

passive and active data collection. The digital data to be collected

for this study is categorized into four main domains: (1) sleep

metrics, (2) activity data, (3) heart rate data, and (4) application-

derived data.

The first three domains of data, which include sleep metrics,

activity data, and heart rate data, are obtained passively from

wearable devices and constitute the passive digital phenotyping

component. The fourth domain, application data, is collected using

a smartphone application and will represent the active digital

phenotyping component. These data are processed to derive a

comprehensive set of digital phenotypes for subsequent analyses.

2.5.1 Passive digital phenotyping data collection
Fitbit devices continuously and passively collect objective data.

Sleep metrics, including total sleep time, total awake time, sleep

onset latency, sleep efficiency, and duration of sleep stage (light,

deep, and REM sleep), are generated daily. Sleep stages are

estimated using the Fitbit algorithm, based on a combination of

movement and heart rate variability (HRV) patterns. Inactivity for

approximately one hour is assumed to indicate sleep, while

significant movements is interpreted as wakefulness. Total sleep

time is calculated by subtracting the total awake time from the total

inactive time.

The devices also collect physiological data, including

continuous heart rate data (sampled at 5-minute intervals) and

activity data, such as step counts and walking distance. Raw heart

rate data will be utilized for cosinor analysis to derive circadian

rhythm parameters. Step counts and walking distance, which are

recorded as cumulative values, will be used to characterize circadian

activity patterns. The data is automatically and wirelessly

transmitted from the wearable device to the smartphone

application and securely uploaded to a cloud-based research server.

2.5.2 Active digital phenotyping data collection
The SOMDAY application will be used to actively collect self-

reported data through a series of ecological momentary assessments

(EMAs). To capture daily habits and experiences in a timely
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manner, participants will be prompted to log their daily entries

every night at 9 PM. A daily sleep diary collects subjective

information, including self-reported sleep duration, perceived

sleep quality, and the number of awakenings. Additionally,

participants receive daily ratings for their mood and stress levels.

Moods are rated on a 7-point scale ranging from -3 (very bad) to +3

(very good), and stress levels are measured on a 4-point scale

(0=none, 1=mild, 2=moderate, and 3=severe). The ratings for

alcohol and caffeine consumption are collected daily, noting both

the amount and the time of intake (morning, afternoon, or night).

Detailed information on the time of day is crucial for applying a

weighted scoring system during data processing to reflect the

differential impact of these substances on the circadian rhythm.

Information on smoking is collected as a daily log. Finally, brief

questionnaires, such as the ISI, are administered weekly via the

application to track longitudinal changes in insomnia severity and

other related symptoms throughout the study period.

The SOMDAY application was used to actively collect self-

reported data through a series of ecological momentary assessments

(EMAs). The daily sleep diary was designed to be completed

immediately after awakening, capturing self-reported sleep

duration, perceived sleep quality, and the number of nocturnal

awakenings. In addition, participants were prompted at 9:00 PM

each day to report daily mood and stress levels, as well as alcohol

and caffeine consumption.

Mood was rated on a 7-point scale ranging from −3 (very bad)

to +3 (very good), and stress levels were rated on a 4-point scale (0 =

none, 1 = mild, 2 = moderate, 3 = severe). Daily records of alcohol

and caffeine intake included both the amount and the time of

consumption (morning, afternoon, or night), allowing for weighted

scoring to account for their differential effects on the circadian

rhythm. Smoking behavior was also recorded as a daily log.

Insomnia Severity Index (ISI) was administered weekly via the

application to monitor longitudinal changes in insomnia severity

and related symptoms throughout the study period.
2.5.3 Data processing and feature generation
The raw digital data from the wearable devices and the

SOMDAY smartphone application undergo a rigorous processing

pipeline to generate a comprehensive set of digital phenotypes. This

approach is not limited to a single analytical plan, and the processed

data can be used for various advanced statistical and computational

analyses, such as machine learning, to explore the complex

relationships between different data modalities and identify

meaningful patterns. The processing strategies for each data

modality are meticulously designed to provide a rich dataset for

subsequent analyses aimed at elucidating biopsychosocial

phenotypes of sleep.

The periodic nature of sleep and activity is the key focus of our

analysis. Raw data from wearable devices, including continuous

heart rate and step counts, will be processed to extract a range of

clinically relevant features. For continuous variables such as heart

rate and step counts, cosinor analysis (58, 59) will be performed to

characterize circadian rhythms. This will involve processing the

data within 72-hour intervals to derive key circadian rhythm
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parameters, including midline estimating statistic of rhythm

(MESOR), amplitude, and acrophase. MESOR represents the

rhythm-adjusted mean and provides a robust measure of the

average parameter level over time. Amplitude quantifies the

extent of predictable variation within the circadian cycle,

reflecting the strength of the rhythm. The acrophase indicates the

timing of the peak value, which offers insight into circadian

alignment or misalignment.

In addition, a range of other activity-related metrics will be

calculated to provide a more detailed view of daily patterns. These

will include the least active 5-hour period (L5), the most active 10-

hour period (M10), interdaily stability (IS), and intradaily

variability (IV) (60). L5 and M10 will be calculated using the

mov ing ave rage method to iden t i f y min imum and

maximum activity periods, respectively. IS quantifies the day-to-

day regularity of a rhythm, whereas IV measures rhythm

fragmentation within a day. These features will be segregated by

weekdays and weekends to capture distinct lifestyle patterns.

The raw, continuous heart rate data collected at 5-minute

intervals will be a critical component for understanding circadian

rhythmicity and autonomic function. We will apply cosinor analysis

to these data, similar to the method used for step counts, to extract

key rhythm parameters. Specifically, we will derive the MESOR,

amplitude, and acrophase of the heart rate rhythm over a 72-hour

window. The MESOR of the heart rate rhythm reflects the average

heart rate, whereas the amplitude provides a measure of the

magnitude of diurnal heart rate fluctuation, which can be an

indicator of autonomic nervous system activity. The acrophase of

the heart rate rhythm indicates the time of day when the heart rate

is at its peak and is a key metric for assessing the phase of the

circadian clock. These features will also be calculated separately for

weekdays and weekends to account for differences in daily routines

and their impact on physiological rhythms. Additionally, heart rate

data collected during sleep will be used to derive the resting heart

rate (RHR) as a proxy for autonomic nervous system activity, a

measure known to be associated with arousal and stress. Heart rate

data collected every 5 minutes from the Fitbit Inspire 3 were used to

evaluate circadian rhythmicity and autonomic function. Because the

dev ice prov ides pulse ra te var iabi l i ty der ived from

photoplethysmography(PPG) rather than true ECG based HRV,

short term beat to beat analyses were not performed. Instead,

resting heart rate during sleep and cosinor rhythm parameters

were used to indirectly assess long term autonomic patterns. This

approach allows for the characterization of autonomic rhythms in

real world conditions.

Self-reported data collected via the SOMDAY application will

undergo specific processing to reflect the differential impact of

behavior on circadian regulation. A time-of-day weighted scoring

system will be applied to substances such as alcohol and caffeine,

based on their intake time (morning, afternoon, or night). For

example, the disruptive potential of caffeine on sleep will be

weighted more heavily for intake closer to bedtime. Similarly,

stress levels and nap durations will be processed with weights to

reflect their influence on circadian rhythms, a key focus of

this study.
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2.5.4 Data adherence and privacy
The integration of the SOMDAY application with the Fitbit

platform enables automatic synchronization of both active and

passive data, allowing the research team to monitor participant

compliance in real time. This system also allows participants to view

their daily summaries, such as sleep and activity data, directly

within the SOMDAY interface, thereby increasing self-awareness

and motivation to adhere to the study protocol. In addition, an

automated notification system sends encouragement messages

when adherence for either data type falls below 50% within a

given week, which further helps reduce participant fatigue and

dropout. To ensure data security, all information collected through

the SOMDAY application and Fitbit platform was encrypted during

transmission and stored on an independent, access-restricted server

maintained by the research team. Database encryption key

management was implemented to prevent key leakage and

unauthorized access. User access rights and activity logs were

continuously monitored, and sensitive data were encrypted to

prevent the exposure of personal identifiers.
2.6 Functional near-infrared spectroscopy
neuroimaging

Prefrontal cortex activity is assessed using functional near-

infrared spectroscopy (fNIRS), a non-invasive neuroimaging

technique that measures hemodynamic responses associated with

neural activation. fNIRS was selected because of its advantages in

studying sleep disorders, including tolerance to head movement,

silent operation, and suitability for participants who may have

difficulty with traditional neuroimaging modalities.

2.6.1 fNIRS system and setup
A portable multichannel fNIRS device (NIRSIT, OBELAB Inc.,

Seoul, Republic of Korea) is used to record the prefrontal

hemodynamic responses. The system employs near-infrared light

at dual wavelengths (760 and 850 nm) to measure the changes in

oxygenated (HbO2) and deoxygenated (HbR) hemoglobin

concentrations. The device features a flexible probe configuration

optimized for prefrontal cortex coverage with source-detector

separations of 30 mm to ensure adequate cortical sensitivity.

All fNIRS assessments are conducted at the Korea University

Anam Hospital by trained research personnel, following

standardized protocols. The session room maintained at a

comfortable temperature and lighting conditions to minimize

environmental confounding factors. The participants are seated

comfortably with the fNIRS cap positioned according to the

international 10–20 system, ensuring consistent probe placement

across participants.

2.6.2 Experimental protocol
The fNIRS assessment protocol consist of approximately 25

minutes of recording and structured as follows.

Pre-task resting state (5 minutes): Participants maintain a

relaxed state with their eyes open, fixating on a neutral stimulus
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(white cross on black background) to establish baseline prefrontal

activity and functional connectivity patterns.

Cognitive task battery (15 minutes): Two validated cognitive

tasks are administered to probe distinct aspects of prefrontal

function:
Fron
• Visuospatial N-back task (8 minutes): This task assessed

spatial working memory capacity, a cognitive domain

frequently impaired in insomnia. Participants view a

sequence of visual stimuli (stars) appearing at different

locations in an 8-grid layout. They are required to

respond when the current stimulus position matched the

position from one, two, or three trials back (1-back, 2-back,

3-back conditions). Each difficulty level is presented in

separate blocks (2 min each), with 1-minute rest periods

between blocks. The performance metrics included

accuracy, reaction time, and the d-prime sensitivity index.

• Stroop color-word task (7 minutes): This task evaluated

cognitive inhibition and attentional control. Participants

view color words (red, blue, green, and yellow) displayed in

either congruent or incongruent colors and are instructed to

respond to the ink color while ignoring the word meaning.

The task included three conditions: neutral (colored

symbols), congruent (word and color matches), and

incongruent (word and color mismatch). Each condition

is presented for 2 min, with brief interblock intervals.
Post-task resting state (5 minutes): A final resting-state period

with eyes closed is recorded to assess post-task recovery and

compare with pre-task connectivity patterns.

2.6.3 Data acquisition parameters
The system monitor the signal quality in real time with

automatic adjustments for probe contact optimization. The

source-detector channel configurations cover bilateral prefrontal

regions, including the dorsolateral prefrontal cortex (dlPFC),

ventrolateral prefrontal cortex (vlPFC), and anterior prefrontal

cortex (aPFC) regions.

Behavioral data from cognitive tasks is recorded synchronously

with fNIRS signals, including response accuracy, reaction times, and

response patterns. Task timing and event markers are automatically

integrated with the fNIRS data stream to enable precise

hemodynamic response analysis.

2.6.4 Outcome measures and analysis framework
The primary fNIRS outcome measures were designed to capture

task-related activation and intrinsic functional connectivity.

Task-evoked activation: Hemodynamic responses during

cognitive tasks will be quantified as changes in the HbO2

concentration relative to the pre-task baseline. Task-specific

activation patterns will be calculated for each cognitive domain

(working memory and cognitive inhibition) and will be compared

between insomnia and control groups.

Resting-state functional connectivity: Functional connectivity

will be assessed by calculating Pearson correlations between
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HbO2 time series from different prefrontal regions during both

pre- and post-task resting periods. Network topology measures,

including node strength and clustering coefficients, will be derived

to characterize the prefrontal network organization.

Hemispheric asymmetry indices: Lateralization of prefrontal

function will be quantified using asymmetry indices by

comparing left- and right-hemisphere activation and connectivity

patterns. These measures provide insight into the potential

hemispheric imbalance associated with insomnia.

Cognitive performance-brain activity relationships: Correlations

between behavioral performance measures (accuracy, reaction

time) and concurrent brain activation will be calculated to

examine brain-behavior relationships and identify potential

compensatory mechanisms in insomnia.

The fNIRS protocol will be specifically designed to be integrated

with a broader deep phenotyping framework, with derived neural

metrics to serve as features in computational analyses alongside

clinical, digital, and genomic data to identify neurophysiological

correlates of insomnia phenotypes.
2.7 Biological sample collection

Biological sample collection and genomic analysis are integral

components of the deep phenotyping approach, providing insights

into the genetic predisposition and molecular mechanisms

underlying insomnia heterogeneity.

2.7.1 Sample collection and processing
Venous blood samples (10 mL) are collected from all

participants at the baseline visit using EDTA tubes to preserve

nucleic acids. The blood samples are processed within 2 h of

collection. The samples are centrifuged at 2000×g for 10 min at

4°C to separate the plasma from the cellular components. The buffy

coat layer, which contains leukocytes rich in DNA and RNA, will be

carefully extracted and aliquoted into cryovials. Plasma will be

similarly aliquoted for potential biomarker analysis. All samples are

labeled with unique study identification codes and stored at -80°C

until analysis.

2.7.2 DNA extraction and genotyping
High-quality genomic DNA will be extracted from buffy coat

samples using the QIAamp DNA Blood Mini Kit (Qiagen,

Germany) following the manufacturer ’s protocol. DNA

concentration and purity will be assessed using NanoDrop

spectrophotometry, with samples meeting the quality criteria

(260/280 ratio 1.8-2.0, DNA concentration ≥50 ng/mL) to proceed

to genotyping.

Genome-wide genotyping will be performed using the Axiom

PangenomiX Array (Thermo Fisher Scientific, USA), a high-density

array capable of interrogating over 600,000 genetic variants,

including single nucleotide polymorphisms (SNPs) and copy

number variants. This array provides a comprehensive coverage

of common and rare variants across the genome, including

enhanced coverage of pharmacogenomic and clinically relevant loci.
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2.7.3 Polygenic risk score calculation
Primary genomic analysis will focus on calculating insomnia-

specific Polygenic Risk Scores (PRS) rather than novel gene

discovery. The PRS calculation will utilize summary statistics

from the most recent and largest genome-wide association

study (GWAS) of insomnia, leveraging data from over 1.3

million individuals.

PRS computation will follow established protocols:
Fron
• Quality control of genotype data including removal of

variants with call rate <95%, minor allele frequency <1%,

and Hardy-Weinberg equilibrium p-value <1×10−6

• Linkage disequilibrium clumping using European reference

panels from the 1000 Genomes Project

• PRS calculation across multiple p-value thresholds (5×10−8,

0.001, 0.01, 0.05, 0.1, 0.5, and 1.0) to optimize

predictive performance.

• Standardization of PRS values (mean=0, SD = 1)

for interpretability
The resulting continuous PRS variable will quantify each

participant’s genetic liability for insomnia, with higher scores

indicating a greater genetic predisposition.

2.7.4 Candidate gene expression analysis
Targeted gene expression analysis will be performed to examine

the functional relevance of the key circadian and sleep-related

genes. RNA will be extracted from buffy coat samples using the

PAXgene Blood RNA Kit (PreAnalytiX, Switzerland), which

preserved the in vivo gene expression profile at the time of

blood collection.

Quantitative real-time PCR (qRT-PCR) will be performed using

a focused panel of candidate genes.

Core circadian clock genes: CLOCK, ARNTL/BMAL1, PER1,

PER2, PER3, CRY1, CRY2, NPAS2

Clock-regulated genes: SIK1, SIK2, GSK3B (Glycogen Synthase

Kinase 3 beta)

Neurotransmit ter-re lated genes : COMT (Catechol-

O-Methyltransferase)

Gene expression levels will be normalized to housekeeping

genes (GAPDH and ACTB) and will be expressed as fold-changes

relative to a pooled reference sample.

2.7.5 Data integration strategy
Genomic and biomarker data is designed for integration with

clinical, digital phenotyping, and neuroimaging measures. The

analytical framework conceptualized PRS as representing “genetic

vulnerability,” gene expression patterns as “molecular state,” and

biomarker levels as “physiological output” in the context of

environmental and behavioral modulating factors captured

through digital phenotyping.

This multi-omics integration approach will enable the

investigation of gene-environment interactions, identification of

molecular subtypes, and development of personalized risk

prediction models. Specific analytical plans will include
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correlating PRS with digital phenotypes, examining gene

expression patterns in relation to fNIRS findings, and testing

whether genomic profiles modify the relationship between

environmental factors and sleep outcome
2.8 Data analysis plan

The analytical strategy was designed as a multitiered approach,

progressing from traditional statistical methods to advanced

computational techniques to fully leverage the rich multimodal

dataset. The analysis plan addressed three primary objectives: (1)

characterizing the differences between insomnia and control

groups, (2) identifying data-driven insomnia subtypes, and (3)

developing predictive models for personalized sleep medicine.

2.8.1 Preliminary data analysis and quality control
Data preprocessing: All datasets will undergo comprehensive

quality-control procedures. Digital phenotyping data will be

screened for outliers using interquartile ranges and temporal

consistency checks. The clinical assessment data will be examined

for completeness and consistency. fNIRS data undergo standard

preprocessing, including motion artifact correction and signal

quality assessment. Genomic data quality control will follow the

established GWAS protocols.

Missing data strategy: Clinical and self-report variables will be

handled using multiple imputation by chained equations (MICE)

under the Missing at Random (MAR) assumption. For digital

phenotyping data with systematic missingness (e.g., device non-wear

periods), short-term gaps will be interpolated using Kalman smoothing

to preserve temporal continuity, whereas longer missing periods will be

excluded from time-series analyses. Sensitivity analyses will assess the

impact of missing data assumptions on the primary findings.

Descriptive statistics: Comprehensive descriptive analyses will

characterize both cohorts across all measurement domains.

Continuous variables will be summarized using mean, standard

deviation, median, and interquartile ranges. Categorical variables

will be presented as frequencies and proportions. Data distributions

will be assessed using histograms, Q-Q plots, and normality tests to

inform subsequent analytical choices.

2.8.2 Group comparison analyses
Primary group comparisons: Between-group differences

(insomnia vs. controls) will be assessed using appropriate

statistical tests based on the data distribution and measurement

level. Independent samples t-tests (or Mann-Whitney U tests for

non-normal distributions) will be used to compare continuous

variables. Chi-square tests will evaluate categorical variables.

Secondary analyses: Subgroup comparisons will examine

differences based on sleep disorder risk (e.g., RLS symptoms,

sleep apnea risk) and demographic factors. Analysis of covariance

(ANCOVA) will control for potential confounders, including age,

sex, and comorbid conditions.

Multiple comparisons: Given the large number of variables, false

discovery rate (FDR) correction using the Benjamini-Hochberg
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procedure will be applied to control for multiple testing. Both

uncorrected and FDR-corrected p-values will be reported to

balance the discovery and rigor.

2.8.3 Correlation and regression analyses
Bivariate associations: Pearson correlations (or Spearman rank

correlations for non-normal data) will be used to examine the

relationships between subjective clinical measures (e.g., ISI scores)

and objective digital phenotypes (e.g., sleep efficiency and circadian

rhythm parameters). Correlation matrices will be visualized using

heatmaps to identify patterns of association.

Multivariate regression modeling: Multiple linear and logistic

regression models will be used to identify key predictors of sleep

outcomes from the comprehensive digital phenotype set.

Regularization techniques (LASSO, Ridge, and Elastic Net) will be

employed to handle high-dimensional data and prevent overfitting.

Model selection will utilize cross-validation procedures to optimize

predictive performance while maintaining interpretability.

Time-series analysis: Longitudinal patterns in daily digital

phenotypes will be analyzed using mixed-effects models to

account for within-participant clustering. Time-varying covariates

and random effects will capture individual trajectories and

response heterogeneities.

2.8.4 Unsupervised learning for phenotype
discovery

Clustering analysis: Data-driven identification of insomnia

subtypes will utilize multiple clustering algorithms, including k-

means, hierarchical clustering, and Gaussian mixture models.

Clustering will be performed using standardized digital

phenotyping features, and the optimal cluster number to be

determined using silhouette analysis, gap statistics, and

clinical interpretability.

Dimensionality reduction: Principal component analysis (PCA)

and t-distributed stochastic neighbor embedding (t-SNE) will reduce

data dimensionality while preserving important patterns. Uniform

manifold approximation and projection (UMAP) will provide an

additional visualization of high-dimensional relationships.

Cluster validation: Discovered clusters will be validated using

internal measures (silhouette width and Dunn index) and external

validation through clinical outcomes and biomarker profiles.

Stability analysis using bootstrap resampling will assess cluster

robustness across different sample compositions.

2.8.5 Supervised learning for prediction
Model development: Various machine learning algorithms will

be employed for classification and regression tasks, including

Random Forest, Extreme Gradient Boosting (XGBoost), Support

Vector Machines, and neural networks. Tree-based models will be

prioritized for their interpretability and robust performance using

tabular healthcare data.

Feature engineering: Advanced feature engineering will create

interaction terms, polynomial features, and domain-specific

composite scores. Automated feature selection using recursive
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feature elimination and importance ranking will identify the

optimal predictor sets.

Model evaluation: Predictive performance will be assessed using

nested cross-validation to provide unbiased estimates. The

classification tasks will use accuracy, sensitivity, specificity, area

under the ROC curve (AUC), and precision-recall metrics. The

regression tasks will employ mean absolute error, root mean square

error, and R-squared values.

Model interpretability: Explainable AI techniques, particularly

Shapley Additive explanation (SHAP) values, will quantify

individual feature contributions to predictions. Partial

dependence plots visualize feature effects, whereas permutation

importance assesses global feature relevance.

2.8.6 Multimodal data integration
Data fusion strategies: Multiple fusion approaches will be

implemented, including early fusion (feature concatenation),

late fusion (prediction averaging), and intermediate fusion (learned

representations). Ensemble methods combine the predictions from

domain-specific models to leverage complementary information.

Deep learning approaches: Neural network architectures

designed for multimodal data will include autoencoders for

dimensionality reduction and transformer models for integrating

sequential data. These approaches will be applied judiciously, with

sample size considerations and interpretability requirements

guiding the implementation.

2.8.7 Specialized analyses
fNIRS data analysis: Neuroimaging data analysis will follow

established protocols using HOMER2/3 software. Statistical

parametric mapping identifies task-related activation patterns,

whereas functional connectivity analysis utilizes correlation and

coherence measures. Group comparisons will be performed using

general linear models with multiple comparison correction.

Genomic data analysis: Polygenic risk scores will be analyzed

using linear models and population stratification controls. Gene

expression data will employ differential expression analysis with

multiple testing corrections. Pathway analysis using Gene Set

Enrichment Analysis (GSEA) will identify biological mechanisms.

Circadian analysis: Cosinor analysis of physiological time series

will employ nonlinear least-squares fitting to extract rhythm

parameters. Population-mean cosinor analysis will test group-

level rhythm differences, whereas individual cosinor analysis will

characterize personal circadian profiles.

2.8.8 Statistical software and reproducibility
All analyses will be conducted using R (version 4.3.0 or later)

and Python (version 3.8 or later) with specific packages

documented for reproducibility. Version control using Git will

track all analysis codes. Computational notebooks (R Markdown

and Jupyter) will provide transparent documentation of analytical

decisions and results.

Statistical significance will be set at a = 0.05 for primary

analyses, with appropriate corrections for multiple testing.
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Confidence intervals (95%) will be reported along with p-values to

provide the effect size context. Sample size considerations were

based on effect sizes from published insomnia studies and power

analyses of machine-learning applications.
2.9 Sample size and power considerations

Participant recruitment for this deep phenotyping study has been

completed in accordance with the original protocol design. The study

employed a rolling, observational recruitment framework, with the

goal of achieving a sample size sufficient for robust multimodal

analyses across clinical, behavioral, physiological, and digital

domains. Based on feasibility and methodological considerations,

the protocol specifiedminimum recruitment targets of approximately

330 participants in total, including at least 240 individuals with

insomnia and at least 80 good-sleeper controls.

These targets were established to ensure statistical adequacy for the

key analytic aims while maintaining the feasibility of comprehensive

multimodal data collection. Power estimations at the design stage

indicated that, under this allocation (unequal groups, a = 0.05), the

study would achieve about 80% power to detect standardized mean

differences of Cohen’s d ≈ 0.36, which represents a small-to-moderate

and clinically meaningful effect commonly observed in sleep research.

For correlational analyses involving continuous variables, a total

sample of this magnitude provides approximately 80% power to

detect correlations of r ≈ 0.15–0.16, assuming complete data pairs.

For predictive analyses, a balanced-class equivalent sample of this scale

would permit area under the curve (AUC) estimates around 0.70 with a

standard error of approximately 0.03, corresponding to a 95%

confidence interval of roughly ±0.06. These calculations reflect the

expected precision and effect sizes typical of multimodal insomnia

research rather than formal hypothesis testing for a single endpoint.

In practice, 338 participants were enrolled, comprising 249

individuals with insomnia and 89 good-sleeper controls, consistent

with the predefined recruitment objectives. Within the insomnia

group, severity distribution according to the Insomnia Severity Index

(ISI) was mild = 130, moderate = 101, severe = 18. Analyses involving

ISI will therefore treat severity as a continuous variable or use pooled

strata where appropriate, given limited sample sizes in the extreme

categories. The analytic plan includes standard measures to ensure

that statistical modeling remains commensurate with the available

data, including internal cross-validation and regularization to reduce

overfitting in multivariate and machine-learning models.

Overall, the final achieved sample meets and slightly exceeds the

planned minimum targets, providing adequate statistical precision

and methodological robustness for the multimodal analyses

described in this protocol.
3 Discussion

This protocol presents a comprehensive and multimodal

approach to the deep phenotyping of insomnia, a condition
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widely recognized for its clinical and etiological heterogeneity.

Conventional assessment methods, often relying on demographic

data analysis (61), self-reported subjective reports (62, 63), or

single-night objective metrics, have shown limited reliability and

poor concordance with perceived sleep quality (64, 65).

Demographic data analyses and self-reported assessments (61–63)

make it difficult to capture the complexity of insomnia. Therefore,

our study aims to overcome these limitations by integrating data

from clinical questionnaires, continuous digital phenotyping,

functional neuroimaging, and genomics to comprehensively

characterize the individual experiences of insomnia.

The primary strength and novelty of this protocol are its

methodological integration. By combining continuous real-world

data from wearables and smartphones with laboratory

neurophysiological and biological measures, we can create a

dataset of unprecedented depth and breadth. This approach

intentionally bridges the gap between subjective, symptom-

focused, and objective sleep measurement studies. Compared to

single-night laboratory polysomnography, our wearable-based

monitoring provides less detail on sleep architecture but offers far

greater ecological validity by sampling multiple nights in the

participant’s natural environment. This design enables the capture

of the dynamic and fluctuating nature of insomnia, which static,

single-time-point assessments often fail to do. However, this

approach is not without its limitations. The sheer volume and

complexity of multimodal data require sophisticated analytical

techniques and careful management to avoid false discoveries.

The intensive protocol may also impose a burden on participants,

and the single-center design may limit the generalizability of

the findings.

Implications of this deep phenotyping approach in sleep

medicine are substantial. The primary object is to support a

paradigm shift from undifferentiated care to personalized

management. Tailoring insomnia treatments, such as cognitive

behavioral therapy for insomnia (CBT-I) or pharmacotherapy,

requires recognizing biologically distinct subtypes, including those

characterized by physiological hyperarousal or circadian rhythm

disruption (66–68).

More profoundly, the implications of this research approach

extend beyond subtype discovery to both measurement and

understanding of mental and sleep-related disorders. Continuous

digital phenotyping replaces cross-sectional assessments with

longitudinal measurements, enabling the development of

predictive models that can forecast periods of heightened risk or

detect early warning signs of relapse. Such models serve as the

foundation for developing just-in-time adaptive interventions,

where a digital platform can provide precise support when

needed. Ultimately, this methodology aims to identify and

validate novel digital biomarkers—objective, quantifiable

indicators of the disease state derived from personal devices—

which could substantially improve both clinical trials and routine

patient monitoring, thereby contributing to precision sleep

medicine. In conclusion, this protocol outlines a feasible and

comprehensive strategy to characterize the complex phenotype of
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insomnia, with the potential to yield insights and tools that

unidimensional approaches cannot provide.

Several limitations may affect the interpretation and

generalizability of the findings of this deep phenotyping protocol.

This study has limitations related to its single-center setting and

sample composition. While a single-site setting allows for rigorous

standardization of data collection, instrumentation, and participant

monitoring—crucial for integrating multimodal measures such as

digital phenotyping, neuroimaging, and genomics—it inherently

limits representativeness. Convenience sampling and hospital-

based recruitment may introduce selection bias, potentially

overrepresenting individuals with more severe insomnia

symptoms. Future multicenter and cross-cultural studies

including more heterogeneous clinical populations will be

necessary to validate and extend the generalizability of these

findings. This observational design precludes causal inferences

regarding the relationships between the identified phenotypes and

clinical outcomes. The 4-week monitoring period may not capture

the long-term trajectories or seasonal variations relevant to

comprehensive phenotyping. Consumer-grade wearable devices

have inherent accuracy limitations compared with PSG,

particularly in the classification of sleep stages. Despite these

constraints, wearable-based monitoring offers important

advantages in terms of ecological validity, enabling the assessment

of habitual sleep patterns and minimizing the first-night effect

commonly observed in laboratory sleep studies. To address this

limitation, future studies would benefit from incorporating a

validation sub-study directly comparing Fitbit-derived sleep

measures with simultaneous PSG recordings.

The wearable data in this study were sampled at 5-minute

intervals and derived from photoplethysmography rather than

ECG, which limits the temporal resolution and accuracy of short

term autonomic measurements. Nevertheless, this approach

provides valuable insight into long term physiological patterns in

real world settings, and future studies using research grade devices

with raw PPG or ECG signals could further improve

measurement precision.

The genomic analyses in this study focused primarily on

polygenic risk scores and candidate gene expression to establish a

foundational molecular framework. However, the exclusion of

epigenomic and proteomic biomarkers may limit the ability to

capture dynamic molecular mechanisms underlying insomnia.

Future studies incorporating multi-omics approaches, including

DNA methylation and cytokine profiling, could enhance the

b io log i ca l dep th and robus tness o f the phenotyp ic

characterization. The fNIRS approach has limited spatial

resolution compared to fMRI and focuses only on prefrontal

cortex function. Although this configuration provides practical

advantages in terms of ecological validity and participant comfort,

it restricts the assessment of deeper or posterior brain regions, such

as the thalamocortical circuits, that are relevant to the

pathophysiology of insomnia. Future studies should consider

applying complementary neuroimaging techniques, such as fMRI,

to overcome these spatial constraints and achieve a more

comprehensive understanding of the neurophysiological
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mechanisms underlying insomnia. The intensive digital

phenotyping protocol may impose a significant participant

burden, potentially affecting them over time, whereas technology

literacy requirements may exclude certain demographic groups.

The high-dimensional nature of multimodal data may increase the

risk of overfitting in machine learning analyses. Although robust

internal validation using nested cross-validation was implemented,

the absence of independent external validation remains a limitation

that should be addressed in future studies. Furthermore such high-

dimensional, multimodal dataset increases the risk of multiple

testing problems despite statistical corrections, and the sample

size may limit the detection of rare phenotypic subtypes. The

study setting differs from typical clinical environments, which

may limit the direct translation to routine practice. The exclusion

of major psychiatric disorders and restrictions to ages 19–70 years

limit their applicability to key clinical populations.

Despite these limitations, this comprehensive deep phenotyping

approach represents a significant methodological advancement that

will inform future research and establish a foundational knowledge

base regarding precision sleep medicine.
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