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Background: Insomnia is a highly prevalent condition, with heterogeneous
clinical presentations and underlying mechanisms. Traditional assessment
methods often fail to capture this complexity, thereby hindering the
development of personalized treatments. This paper details a protocol for a
study that employs a “"deep phenotyping” approach to comprehensively
characterize insomnia.

Methods: This single-center prospective observational study recruited adults
with insomnia and a parallel cohort of normal sleepers as the controls.
Participants undergo a 4-week multimodal assessment. The assessment
framework integrates four key data domains: (1) clinical assessment, involving
self-reported data from a comprehensive battery of clinical and psychological
questionnaires; (2) digital phenotyping, capturing real-world behavioral and
physiological data through a wrist-worn wearable device and a smartphone
application; (3) functional neuroimaging, using a baseline functional near-
infrared spectroscopy (fNIRS) scan to measure prefrontal cortex activity; and
(4) genomic and biomarker collection from blood samples for genomic and
exploratory biomarker analyses. The study was conducted between March 2023
and October 2024, and all recruitment and data collection have been completed.
The core analysis will employ advanced computational methods, including
clustering and machine learning, to identify the distinct subtypes of insomnia.
Discussion: By applying multivariate pattern analysis and machine learning
techniques to this rich, integrated dataset, we aimed to identify distinct
biopsychosocial phenotypes of insomnia. This deep phenotyping approach is
expected to elucidate the heterogeneity of insomnia, paving the way for the
development of targeted and personalized management strategies for
individuals with sleep disorders.

Clinical Trial Registration: Clinical Research Information Service KCTO009175;
https://cris.nih.go.kr/cris/search/detailSearch.do?seq=26133
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1 Introduction

Insomnia is one of the most prevalent and impactful sleep
disorders, affecting approximately 10% of adults chronically and an
additional 30-35% experiencing occasional symptoms (1, 2). It is
characterized by difficulty in initiating or maintaining sleep despite
adequate opportunity and is frequently accompanied by daytime
impairment (3-5).

The etiology of insomnia is complex and multifactorial. The
development and persistence of insomnia are influenced by a
combination of genetic factors (6, 7), psychological stress,
maladaptive sleep habits, and cognitive factors (1, 8, 9). Circadian
rhythm disruption (10), shift work (11), and comorbid medical (12)
and psychiatric disorders (13) are also well-established risk factors.

Moreover, recent neuroimaging studies have suggested that
individuals with insomnia may exhibit structural and functional
alterations (14) in the brain regions associated with arousal,
emotion regulation, and cognitive control, although the findings
remain somewhat inconsistent (15). In parallel, emerging genetic
research has highlighted the dysregulation of circadian clock genes
that contribute to the pathophysiology of insomnia. These
multilayered causes and the inherent heterogeneity of insomnia
suggest that approaching it as a single symptom-based disorder is a
fundamental limitation.

Conventional studies on insomnia in clinical practice have
relied predominantly on patient-reported outcomes, including
sleep questionnaires, sleep diaries, and clinical interviews. While
polysomnography (PSG) and actigraphy offer more objective
measures of sleep, their application is often limited to brief
observation periods or specialized research settings. Consequently,
traditional assessment approaches, which primarily focus on
subjective symptoms or single-night metrics, often fail to capture
the complex multidimensional complex nature of insomnia (16).

Ecological momentary assessment provides valuable real-time
symptom data but remains limited by its reliance on subjective
reports and narrow physiological measures, lacking insight into
brain function and the biological underpinnings of insomnia (17,
18). Recent advances in digital phenotyping have enabled large-
scale, real-time monitoring of sleep. However, such approaches are
limited by the extreme complexity and heterogeneity of datasets and
lack of subjective assessments (19, 20). In conclusion, fragmented
approaches have a fundamental limitation in fully understanding
the complex biopsychosocial characteristics of insomnia and
identifying individual specificities.

Therefore, a multimodal assessment approach, commonly
referred to as “deep phenotyping,” is essential to comprehensively
unravel the complex and heterogeneous nature of insomnia. This
approach seeks to integrate multiple levels of information, including
the patients’ subjective experiences, objective sleep-wake patterns,
neurophysiological activity, and genetic predispositions. Although
recent studies have begun to explore such integrative frameworks,
the field is still in its early stages. To overcome these limitations, this
study outlines a research protocol designed to apply a deep
phenotyping strategy to insomnia. Specifically, it combines data
from standardized clinical questionnaires, continuous digital
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phenotyping using wearable devices and smartphone applications,
functional neuroimaging via portable functional near-infrared
spectroscopy (fNIRS), and genomic and biomarker analyses.
Through this comprehensive, multimodal approach, we aim to
identify the distinct phenotypic subtypes of insomnia. Ultimately,
exploring the underlying biological and neurophysiological
mechanisms of these subtypes may lead to a more refined
understanding of the disorder and inform the development of
personalized mechanism-based treatment strategies.

2 Methods
2.1 Study design

This study employed a single-center prospective observational
design with two parallel cohorts, an insomnia group and a normal
sleeper control group. The study was conducted at the Korea
University Anam Hospital in Seoul, South Korea, and DataMaker
Inc. in Daejeon, South Korea, between March 2023 and October
2024. The observational nature of the study allowed for the careful
assessment and monitoring of participants’ sleep patterns,
behaviors, and relevant physiological and biological parameters
over a 4-week period. This duration was selected to capture a
representative range of day-to-day fluctuations in sleep and daytime
symptoms, while minimizing participant burden. A parallel-cohort
design allows for the comparison of these measures between
individuals with insomnia and those with normal sleep, enabling
the identification of distinguishing features and potential subtypes
of insomnia. The entire study consists of a baseline visit (week 0), a
4-week monitoring period (weeks 1-4), and an endpoint visit (week
4). An overview of this protocol is shown in Figure 1.

2.2 Participants

This study will recruit two parallel cohorts, an insomnia group
and a normal sleeper control group. The inclusion and exclusion
criteria for each cohort will be carefully defined to ensure a
homogeneous sample and minimize confounding factors.

Participants in the insomnia group will be adults aged 19-70
years who report experiencing subjective insomnia symptoms, such
as difficulty initiating sleep, difficulty maintaining sleep, or early
morning awakenings, for at least three nights per week over the
preceding three months. A score of 15 or higher on the Insomnia
Severity Index (ISI) will be required to ensure that participants
experience at least a moderate level of insomnia (21).

The normal sleeper control group will also consist of adults aged
19-70 years. To be included, these individuals must report
experiencing insomnia symptoms less than three times per
month, have an ISI score of less than 8, and report an average
sleep duration of six hours or more per night over the preceding
three months. Controls have no history of chronic insomnia or any
major psychiatric illness and will also be required to comply with all
the study procedures.
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FIGURE 1

Protocol flow chart of the study fNIRS, functional near-infrared spectroscopy; ISI, Insomnia Severity Index; PSQI, Pittsburgh Sleep Quality Index;

SHI, Sleep Health Index; SHPS, Sleep Hygiene and Practices Scale; BQ, Berlin Questionnaire; IRLS, International Restless Legs Syndrome Rating Scale;
DBAS-16, Dysfunctional Beliefs and Attitudes about Sleep-16; MEQ, Morningness—Eveningness Questionnaire; BPS, Bedtime Procrastination Scale;
FIRST, Ford Insomnia Response to Stress Test; STAI, State—Trait Anxiety Inventory; K-MDQ, Korean version of the Mood Disorder Questionnaire;
BSQ, Body Sensations Questionnaire; KRQ-53, Korean Resilience Quotient-53; AUDIT, Alcohol Use Disorders Identification Test; SOS-Q,
Smartphone Overuse Screening Questionnaire; SPAQ, Seasonal Pattern Assessment Questionnaire; BRIAN, Biological Rhythms Interview of
Assessment in Neuropsychiatry; SWBS, Spiritual Well-Being Scale; ESS, Epworth Sleepiness Scale; PHQ-9, Patient Health Questionnaire-9; GAD-7,
Generalized Anxiety Disorder-7; MFS, Multidimensional Fatigue Scale; IPAQ-SF, International Physical Activity Questionnaire—Short Form; WHOQOL-
BREF, World Health Organization Quality of Life—BREF.
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All participants in both groups are required to be willing to
comply with all the study procedures, including the use of wearable
devices and smartphone applications.

To minimize the influence of confounding factors, individuals
meeting any of the following criteria were excluded from
participation in either group: evidence of other primary sleep
disorders such as untreated sleep apnea, narcolepsy, or other
sleep-related breathing disorders; a current diagnosis of a major
psychiatric disorder, including major depression, bipolar disorder,
or schizophrenia, or a severe substance use disorder; the presence of
cognitive impairment or a neurological disorder that could preclude
valid self-report or compliance; participation in shift work or
maintenance of an irregular sleep schedule within the past three
months; and lack of access to a compatible smartphone or
unwillingness to use the study’s smartphone application. The
current use of hypnotic medications or supplements that have a
significant effect on sleep was also an exclusion criterion.

2.3 Ethical considerations and informed
consent

This study will be conducted in accordance with the principles
of the Declaration of Helsinki. In accordance with the Bioethics and
Safety Act and the Personal Information Protection Act (PIPA) of
South Korea, all procedures concerning data handling and privacy
protection were reviewed and approved by the IRB of Korea
University Anam Hospital No. 2022AN0587). All participants in
both cohorts will be required to provide written informed consent at
the beginning of the study. The consent process will include a clear
explanation of the study’s purpose, procedures, potential risks and
benefits, data-handling procedures, and the voluntary nature of
participation. Participants spent approximately 2 hours at
enrollment for orientation and device setup, including the fNIRS
assessment and blood sampling, and about 30 minutes for the final
visit after 4 weeks. During the study, app-based daily assessments
took about 1 minute, and weekly questionnaires required less than 5
minutes. All time requirements were explained to participants
before enrollment. To ensure the protection of participants’
privacy, all personally identifiable information will be
anonymized before data storage or analysis. Research data will be
securely stored and accessible only to authorized personnel.
Participants who complete the full study protocol, including the
NIRS session and blood sampling, will receive total compensation
of 150,000 KRW, whereas those who complete all procedures except
the NIRS session and blood sampling will receive 100,000 KRW.

2.4 Clinical assessments

A comprehensive battery of validated clinical assessment
instruments will be employed to characterize participants across
multiple domains relevant to sleep, psychological functioning, and
general health. These instruments are selected based on their
psychometric properties, clinical relevance, and established uses
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in sleep research. Basic demographic information, including age,
sex, work patterns, lifestyle factors, height, and weight are collected
at the baseline. A detailed summary of all instruments, including the
administration schedule and scoring, is provided in Table 1.

2.4.1 Sleep-related assessments

The sleep assessment battery was designed to capture multiple
dimensions of sleep health and related behaviors that contribute to
the pathophysiology of insomnia.

Primary sleep measures: The Insomnia Severity Index (ISI) (21,
22) serves as the primary outcome measure for insomnia severity,
administered at screening for group allocation (=15 for the
insomnia group; <8 for controls) and weekly thereafter via the
SOMDAY application. The Pittsburgh Sleep Quality Index (PSQI)
(23, 24) assesses global sleep quality over the past month, whereas
the Sleep Health Index (SHI) (25) provides a comprehensive
measure of sleep health across multiple domains.

Sleep disorder screening: The Epworth Sleepiness Scale (ESS)
(26, 27) measures daytime sleepiness, the Berlin Questionnaire
(BQ) (28, 29) screens for obstructive sleep apnea risk, and the
International Restless Legs Syndrome Rating Scale (IRLS) (30)
assesses RLS (Restless Legs Syndrome) symptom severity.

Sleep-related behaviors and cognitions: Several instruments
assess factors known to perpetuate insomnia. The Sleep Hygiene
and Practices Scale (SHPS) (31, 32) evaluates sleep hygiene
behaviors, whereas the Dysfunctional Beliefs and Attitudes about
Sleep-16 (DBAS-16) (33) measures maladaptive sleep-related
cognitions. The Morningness-Eveningness Questionnaire (MEQ)
(34, 35) determines chronotype, Bedtime Procrastination Scale
(BPS) (36) assesses bedtime delay behaviors, and Ford Insomnia
Response to Stress Test (FIRST) (37) measures vulnerability to
stress-induced sleep disturbance.

2.4.1.1 Insomnia Severity Index

The ISI is a seven-item self-reported scale rated from 0 to 4 per
item, with a total score ranging from 0 to 28. This scale assesses
difficulty in initiating and maintaining sleep, early morning
awakening, satisfaction with sleep, daytime functional
impairment, impact on quality of life as observed by others, and
worry about sleep problems. Scores of 0-7 indicate no clinically
significant insomnia, 8-14 indicate mild insomnia, 15-21 indicate
moderate clinical insomnia, and 22-28 indicate severe clinical
insomnia. The ISI demonstrates a Cronbach’s oo of 0.83, which
reflects good internal consistency across diverse populations (38).
In this study, the ISI is administered at screening to allocate
participants (ISI > 15 for the insomnia group; ISI < 8 for the
control group), and thereafter, it was administered weekly to
evaluate the subjective insomnia severity.

2.4.1.2 Pittsburgh Sleep Quality Index

The PSQI is a 19-item self-report questionnaire that evaluates
sleep quality across seven domains: subjective quality, latency,
duration, efficiency, disturbances, medication use, and daytime
dysfunction over the past month, yielding a global score ranging
from 0 to 21. Each domain is scored from 0 to 3, with higher scores
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TABLE 1 Clinical assessment instruments.

Domain

Instrument
(Abbreviation)

Administration Schedule

10.3389/fpsyt.2025.1696593

Scoring Range & Interpretation

Sleep-Related Assessments

Psychological and Mental Health

Assessments

General Health and Lifestyle
Assessments

Insomnia Severity Index (ISI)

Baseline, Weekly (via app), Week 4

7 items, 0-4 each (Total: 0-28). 0-7: No significant
insomnia; 8-14: Mild; 15-21: Moderate; 22-28: Severe
insomnia.

Pittsburgh Sleep Quality
Index (PSQI)

Baseline

19 items across 7 components (Total: 0-21). Global score
>5 indicates poor sleep quality. Higher scores = worse
sleep.

Epworth Sleepiness Scale (ESS)

Baseline, Week 4

8 items, 0-3 each (Total: 0-24). >10 indicates excessive
daytime sleepiness. Higher scores = greater sleepiness.

Sleep Health Index (SHI) Baseline 14 items across 3 domains (Total: 0-100). Higher scores
indicate better sleep health. Assesses sleep quality,
duration, and disordered sleep.

Sleep Hygiene and Practices Baseline 30 items, 1-6 Likert scale (Total: 30-180). Higher scores

Scale (SHPS) indicate poorer sleep hygiene practices.

Berlin Questionnaire (BQ) Baseline 10 items across 3 categories. High risk if >2 categories
positive. Screens for obstructive sleep apnea risk.

International Restless Legs Baseline 10 items, 0-4 each (Total: 0-40). 0-10: Mild; 11-20:

Syndrome Rating Scale (IRLS) Moderate; 21-30: Severe; 31-40: Very severe RLS.

Dysfunctional Beliefs and Baseline 16 items, 0-10 Likert scale. Mean score calculated (Range:

Attitudes about Sleep-16 0-10). Higher scores = more dysfunctional sleep beliefs.

(DBAS-16)

Morningness-Eveningness Baseline 19 items (Total: 16-86). Higher scores = morning

Questionnaire (MEQ) preference; lower scores = evening preference. Determines
chronotype.

Bedtime Procrastination Baseline 9 items, 1-5 Likert scale (Total: 9-45). Higher scores

Scale (BPS) indicate greater bedtime procrastination tendency.

Ford Insomnia Response to Baseline 9 items, 1-4 Likert scale (Total: 9-36). Higher scores =

Stress Test (FIRST) greater vulnerability to stress-induced insomnia.

State-Trait Anxiety Baseline 40 items: 20 state + 20 trait items, 1-4 each (Range: 20-80

Inventory (STAI)

Patient Health
Questionnaire-9 (PHQ-9)

Generalized Anxiety Disorder-7
(GAD-7)

Korean version of Mood
Disorder Questionnaire
(K-MDQ)

Body Sensations
Questionnaire (BSQ)

Korean Resilience
Quotient-53 (KRQ-53)

Multidimensional Fatigue
Scale (MES)

Baseline, Week 4

Baseline, Week 4

Baseline

Baseline

Baseline

Baseline, Week 4

per subscale). Higher scores = greater anxiety.

9 items, 0-3 each (Total: 0-27). 5-9: Mild; 10-14:
Moderate; 15-19: Moderately severe; 20-27: Severe
depression.

7 items, 0-3 each (Total: 0-21). 5-9: Mild; 10-14:
Moderate; >15: Severe anxiety.

13 yes/no items. Positive screen if 27 yes responses.
Screens for bipolar spectrum disorders.

17 items, 1-5 Likert scale. Mean score calculated. Higher
scores = greater fear of autonomic sensations.

53 items, 1-5 Likert scale across 3 domains. Higher scores
indicate greater psychological resilience.

18 items, 1-5 Likert scale (Total: 18-90). Assesses general,
sleep/rest, and cognitive fatigue. Higher scores = greater
fatigue.

Alcohol Use Disorders Baseline 10 items, 0-4 each (Total: 0-40). >8 indicates hazardous
Identification Test (AUDIT) drinking; 220 suggests possible dependence.
Smartphone Overuse Screening  Baseline 28 items, 1-4 point scale (Total: 28-112). Score 249
Questionnaire (SOS-Q) indicates high smartphone addiction risk.

Seasonal Pattern Assessment Baseline 6 behavioral items, 0-4 each + severity rating. Global

Questionnaire (SPAQ)

Seasonality Score >11 with marked problems suggests
SAD.
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TABLE 1 Continued

Instrument Administration Schedule

(Abbreviation)

Domain

Scoring Range & Interpretation

Biological Rhythms Interview Baseline 18 items, 1-4 scale + 3 chronotype items (Total: 18-72).
of Assessment in Higher scores indicate greater circadian rhythm
Neuropsychiatry (BRIAN) disturbance.

Spiritual Well-Being Scale Baseline 20 items, 1-6 Likert scale (Total: 20-120). Comprises

(SWBS) Religious (RWB) and Existential (EWB) subscales. Higher

scores = better well-being.

International Physical Activity Baseline, Week 4
Questionnaire-Short Form

(IPAQ-SF)

7 items assessing walking, moderate, and vigorous activity.
Results expressed as MET-minutes/week. Categorizes
activity level.

WHO Quality of Life-BREF
(WHOQOL-BREF)

Baseline, Week 4 26 items across 4 domains, 1-5 scale. Domain scores
transformed to 0-100 scale. Higher scores = better quality

of life.

ISI, Insomnia Severity Index; PSQI, Pittsburgh Sleep Quality Index; ESS, Epworth Sleepiness Scale; SHI, Sleep Health Index; SHPS, Sleep Hygiene and Practices Scale; BQ, Berlin Questionnaire;
IRLS, International Restless Legs Syndrome Rating Scale; DBAS-16, Dysfunctional Beliefs and Attitudes about Sleep-16; MEQ, Morningness-Eveningness Questionnaire; BPS, Bedtime
Procrastination Scale; FIRST, Ford Insomnia Response to Stress Test; STAI, State-Trait Anxiety Inventory; PHQ-9, Patient Health Questionnaire-9; GAD-7, Generalized Anxiety Disorder-7; K-
MDQ, Korean version of Mood Disorder Questionnaire; BSQ, Body Sensations Questionnaire; KRQ-53, Korean Resilience Quotient-53; MFS, Multidimensional Fatigue Scale; AUDIT-K,
Alcohol Use Disorders Identification Test-Korea; AUDIT-C, Alcohol Use Disorders Identification Test-Consumption; SOS-Q, Smartphone Overuse Screening Questionnaire; SPAQ, Seasonal
Pattern Assessment Questionnaire; K-BRIAN, Korean version of Biological Rhythms Interview of Assessment in Neuropsychiatry; SWBS, Spiritual Well-Being Scale; IPAQ-SF, International
Physical Activity Questionnaire-Short Form; WHOQOL-BREF, World Health Organization Quality of Life-BREF; MET, Metabolic Equivalent of Task; SAD, Seasonal Affective Disorder; RWB,

Religious Well-Being; EWB, Existential Well-Being.

reflecting poorer sleep, and a global PSQI score >5 reliably
distinguishes poor sleepers from good sleepers.

2.4.1.3 Sleep Health Index

The SHI, developed by the National Sleep Foundation, is a
validated self-report instrument designed to assess general sleep
health in adults. It comprises 14 items grouped into three
subdomains: sleep quality, sleep duration, and disordered sleep.
Each subdomain contributes to a composite score ranging from 0 to
100, with higher scores indicating better sleep health.

2.4.1.4 Epworth Sleepiness Scale

The ESS is a self-administered scale designed to measure
average daytime sleepiness. This scale consists of eight items
representing specific situations describing hypothetical situations
such as sitting and reading, watching television, sitting inactive in a
public space, riding as a passenger in a car for an hour without a
break, lying down to rest in the afternoon, sitting and talking to
someone, sitting quietly after a lunch without alcohol, and sitting in
a car while stopped for a few minutes in traffic. Each item is rated on
a0-3 scale (0 = none, 1 = slight, 2 = moderate, 3 = high), resulting in
a total score ranging from to 0-24.

2.4.1.5 Berlin Questionnaire

The BQ is a 10-item self-report tool supplemented by height
and weight data designed to assess obstructive sleep apnea (OSA)
risk across three categories: snoring, witnessed apneas, daytime
sleepiness and fatigue, and obesity/hypertension. A respondent is
classified as high risk for OSA if two or more domains met the
predefined positivity criteria. Categories 1 and 2 are considered
positive if the total score is 2. Category 3 is considered positive if
the participant has hypertension or BMI >25 kg/m>.

Frontiers in Psychiatry

2.4.1.6 Restless Legs Syndrome Rating Scale

The IRLS is a 10-item self-reported scale assessing core RLS
symptoms, intensity and frequency, sleep disturbance, and impact
on mood and daytime functioning. The total score ranges from 0 to
40, with higher scores indicating greater severity. Severity is
classified as mild (0-10), moderate (11-20), severe (21-30), or
very severe (31-40).

2.4.1.7 Sleep Hygiene and Practices Scale

The SHPS is a 30-item self-report scale that captures a wide
range of behaviors and environmental factors that may interfere
with sleep. It is organized into four domains: arousal-related
behaviors, sleep scheduling and timing, eating and drinking
behaviors, and sleep environment. Each item is rated on a six-
point Likert scale from 1 (never) to 6 (always), yielding a total score
between 30 and 180, where higher scores indicate poorer
sleep hygiene.

2.4.1.8 Dysfunctional Beliefs and Attitudes about Sleep-16

The DBAS-16 assesses maladaptive sleep-related cognition
using 16 items rated from 0 to 10 (“strongly disagree” to
“strongly agree”). It evaluates four key domains: perceived
consequences of insomnia, worry and helplessness about sleep,
unrealistic sleep expectations, and beliefs regarding sleep
medication. A global score is computed as the mean of all items
(range 0-10), with higher total scores reflecting more dysfunctional
sleep-related beliefs and greater cognitive contribution to
sleep difficulties.

2.4.1.9 Morningness-Eveningness Questionnaire
The MEQ is a 19-item self-report instrument uses to determine
an individual’s chronotype based on preferred times for sleep/wake
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times, preferred times for activities, and subjective alertness. Items
include a mixture of Likert-type and time-scale questions, each
scored from 1 to 5, yielding a global score ranging from 16 to 86,
with higher scores reflecting stronger morning preferences and
lower scores reflecting stronger evening preferences.

2.4.1.10 Bedtime Procrastination Scale

The BPS is a 9-item self-report measure designed to assess the
tendency to delay bedtime without external justification, capturing a
broad range of behaviors leading to insufficient sleep. Each item is
rated on a five-point Likert scale from 1 (almost never) to 5 (almost
always), resulting in total scores between 9 and 45, with higher
scores indicating greater bedtime procrastination.

2.4.1.11 Ford Insomnia Response to Stress Test

The FIRST is a 9-item self-report tool that assesses sleep
reactivity, that is, the propensity to experience sleep disturbances
in response to common stressful scenarios. Items describe situations
such as work deadlines, social conflicts, or caffeine consumption,
each rated on a four-point scale from 1 (not likely) to 4 (very likely),
yielding a total score between 9 and 36, with higher scores
indicating greater vulnerability to stress-induced insomnia.

2.4.2 Psychological and mental health
assessments

Given the strong bidirectional relationship between sleep and
mental health, comprehensive psychological assessment is essential
for phenotyping.

Current symptom severity is assessed using the Generalized
Anxiety Disorder-7 (GAD-7) (39) and Patient Health
Questionnaire-9 (PHQ-9) (40), both to be administered at the
baseline and endpoint. The State-Trait Anxiety Inventory (STAI)
(41) measures situational and dispositional anxiety. The Body
Sensations Questionnaire (BSQ) (42) assesses anxiety sensitivity,
particularly fear of autonomic sensations. The Korean version of the
Mood Disorder Questionnaire (K-MDQ) (43, 44) screens for
bipolar spectrum disorders using a simplified scoring algorithm
(27 positive responses). The Korean Resilience Quotient-53 (KRQ-
53) (45, 46) measures psychological resilience across emotion
regulation, optimism, and problem-solving domains.

2.4.2.1 State-Trait Anxiety Inventory

The STAI is a 40-item self-report inventory that measures two
types of anxiety: state anxiety (how one feels “right now”) and trait
anxiety (how one generally feels). Each subscale contains 20 items
rated on a 4-point Likert scale from 1 (“almost never”) to 4 (“almost
always”), yielding scores from 20 to 80 per subscale, with higher
scores indicating greater anxiety levels.

2.4.2.2 Generalized Anxiety Disorder-7

The GAD-7 is a brief, 7-item self-report scale designed to screen
for generalized anxiety disorder and assess its severity over the prior
two weeks. Each item is rated on a 4-point scale, ranging from 0
(“not at all”) to 3 (“nearly every day”), resulting in a total score of 0—
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21. The severity cutoffs are 5 (mild), 10 (moderate), and 15 (severe),
with scores > 10 warranting further evaluation.

2.4.2.3 Patient Health Questionnaire-9

The PHQ-9 is a 9-item self-administered measure of depressive
symptoms based directly on the DSM-IV criteria, covering the
frequency of symptoms over the past two weeks. Items are scored
from 0 (“not at all”) to 3 (“nearly every day”), yielding a total score
of 0-27. Standard severity thresholds are 5-9 (mild), 10-14
(moderate), 15-19 (moderately severe), and 20-27 (severe).

2.4.2.4 Body Sensations Questionnaire

The BSQ is a 17-item self-report inventory that assesses the
degree of fear elicited by the common autonomic sensations
associated with anxiety. Each item (e.g., heart palpitations,
dizziness, shortness of breath) is rated on a 5-point Likert scale,
ranging from 1 (“not frightened or worried”) to 5 (“extremely
frightened or worried”), with higher averages reflecting greater
tendencies toward catastrophic misinterpretation.

2.4.2.5 Korean version of Mood Disorder Questionnaire

The Mood Disorder Questionnaire (MDQ) is a 13-item self-
report screening tool for lifetime manic or hypomanic symptoms,
indicative of bipolar spectrum disorders. It comprises three
sections: (i) 13 yes/no items assessing lifetime manic/hypomanic
symptoms; (i) a question asking whether two or more endorsed
symptoms occurred during the same period; and (iii) an item rating
functional impairment on a scale from none to severe. In this study,
we will use the validated Korean version of the Mood Disorder
Questionnaire (K-MDQ), which applies a simplified scoring
algorithm that considers only the section 1 symptom count. A
cutoff of >7 yes responses indicates a positive screen, irrespective of
symptom co-occurrence or impairment ratings.

2.4.2.6 Korean Resilience Quotient-53

The KRQ-53 is a 53-item self-report instrument that measures
psychological resilience across three core domains, emotion
regulation, optimism, and problem-solving capacity, each
represented by 17-18 items. Items use a 5-point Likert scale
ranging from 1 (“strongly disagree”) to 5 (“strongly agree”),
generating total and subscale scores that reflect one’s ability to
adapt to stress and adversity.

2.4.3 General health and lifestyle assessments

Additional instruments capture broader health and lifestyle
factors that influence sleep and can confound study outcomes.

Physical health and functioning: The Multidimensional Fatigue
Scale (MES) (47) assesses fatigue across the general, sleep/rest, and
cognitive domains. The WHO Quality of Life-BREF (WHOQOL-
BREF) (48) measures perceived quality of life across four domains:
physical, psychological, social, and environmental.

Substance use and lifestyle factors: The Alcohol Use Disorders
Identification Test (AUDIT) (49, 50) screens for problematic
alcohol use. The International Physical Activity Questionnaire-
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Short Form (IPAQ-SF) (51, 52) quantifies physical activity levels
across walking, moderate, and vigorous-intensity activities.

Circadian and seasonal factors: The Biological Rhythms
Interview of Assessment in Neuropsychiatry (BRIAN) (53, 54)
assesses disturbances in circadian rhythms across sleep, social,
activity, and eating domains. The Seasonal Pattern Assessment
Questionnaire (SPAQ) (55) screens to assess seasonal
mood variations.

Technology use and spiritual well-being: The Smartphone
Overuse Screening Questionnaire (SOS-Q) (56) assesses
smartphone addiction risk, whereas the Spiritual Well-Being Scale
(SWBS) (57) measures religious and existential well-being.

2.4.3.1 Multidimensional Fatigue Scale

The Multidimensional Fatigue Scale is an 18-item self-report
questionnaire that evaluates three domains of fatigue—general
fatigue, sleep/rest fatigue, and cognitive fatigue—using six items
per domain. Each item is rated on a five-point Likert scale from 1
(“never”) to 5 (“almost always”), yielding subscale scores of 6-30
and a total score of 18-90, with higher scores indicating
greater fatigue.

2.4.3.2 Alcohol Use Disorders Identification Test

The Alcohol Use Disorders Identification Test (AUDIT) is a 10-
item screening instrument that assesses alcohol consumption,
dependence, and alcohol-related problems. Most items are rated
0-4; two items use a 0, 2, and 4 scoring format, with a total score
between 0 and 40. A score of 8 or above suggests hazardous
drinking that warrants further assessment, whereas higher cutoffs
(e.g., = 20) indicate probable alcohol dependence. This study will
also use the Alcohol Use Disorders Identification Test-
Consumption (AUDIT-C), a three-item consumption subscale of
the AUDIT, to screen for hazardous drinking and possible alcohol
use disorder. Each AUDIT-C item is scored 0-4, yielding a total
score of 0-12. Sex-specific cut-offs are applied as follows: >4 for
men and >3 for women.

2.4.3.3 Smartphone Overuse Screening Questionnaire

The SOS-Q is a 28-item self-report screening questionnaire,
with each item rated on a 4-point scale that identifies smartphone
use habits and screens for smartphone addiction risk. The cutoff
score is 49, and scores higher than 49 indicate a high risk of
smartphone addiction.

2.4.3.4 International Physical Activity Questionnaire—
Short Form

The IPAQ-SF is a 7-item self-report measure of physical activity
and sedentary behavior over the previous seven days. Participants
report the number of days and average minutes per day they spent
walking, performing moderate-intensity activities, and vigorous-
intensity activities, as well as total sitting time. Responses are
converted into metabolic equivalents-minutes per week to
quantify the total activity volume.
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2.4.3.5 WHO Quality of Life—BREF

The WHOQOL-BREF is a 26-item self-report instrument
derived from the WHOQOL-100 that assesses perceived quality
of life across four domains: Physical Health, Psychological Health,
Social Relationships, and Environment. Each item is rated on a five-
point Likert scale, and raw domain scores are transformed to a 0-
100 scale, where higher scores denote better quality of life. It
includes two global items on overall quality of life and general
health perception.

2.4.3.6 Seasonal Pattern Assessment Questionnaire

The SPAQ is an 8-item self-report screener for seasonal affective
changes in six behavioral and mood dimensions: sleep length, social
activity, mood, weight, appetite, and energy. Each dimension is
rated from 0 (“no change”) to 4 (“extremely marked change”),
yielding a Global Seasonality Score (GSS) of 0-24. An additional
severity item asks respondents to rate the degree of problems
experienced due to these seasonal changes. A GSS > 11 combined
with moderate or marked problem severity indicates probable
seasonal affective disorder.

2.4.3.7 Biological Rhythms Interview of Assessment in
Neuropsychiatry

BRIAN is an 18-item instrument designed to quantify circadian
rhythm disturbances. It covers four primary domains (sleep
patterns, social rhythms, activity levels, and eating behaviors) and
includes three additional items for classifying an individual’s
predominant rhythm (chronotype). Each item asks how often
respondents experience disruption in maintaining a regular
biological rhythm, rated on a four-point scale from 1 (“not at
all”) to 4 (“very much”), resulting in a total score of 18-72, with
higher scores indicating more severe circadian dysregulation.

2.4.3.8 Spiritual Well-Being Scale

The Spiritual Well-Being Scale is a 20-item self-report measure
of perceived spiritual quality of life, divided into two 10-item
subscales: Religious Well-Being (RWB) and Existential Well-
Being (EWB). Items are rated on a six-point Likert scale from 1
(“strongly disagree”) to 6 (“strongly agree”), yielding subscale scores
of 10-60 and a total score of 20-120, with higher scores indicating
greater spiritual well-being.

2.4.4 Assessment schedule and administration

Clinical assessments are strategically scheduled to minimize the
participant burden while capturing baseline characteristics and
changes over the study period. Baseline assessments encompass a
comprehensive battery of evaluations to establish a complete
phenotype. Weekly assessments via the SOMDAY application
focus on dynamic measures (e.g., ISI) to monitor symptom
trajectories. Endpoint assessments (week 4) repeat the key
measures (ESS, PHQ-9, GAD-7, MFS, IPAQ-SF, and WHOQOL-
BREF) to evaluate changes in mental health, fatigue, physical
activity, and quality of life.
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2.5 Digital phenotyping

Digital phenotyping serves as a core methodological component
of this study, using a wearable device and smartphone application
for continuous monitoring of participants’ behavioral and
physiological parameters. A custom-designed smartphone
application, named “SOMDAY” (Lumanlab Inc., Seoul, Republic
of Korea), is installed on the participants’ personal smartphones.
The name combines “SOM” (from ‘somnus, the Latin word for
sleep) and “DAY,” reflecting the key principle of circadian rhythms
that optimizing daytime activities is crucial for improving nighttime
sleep. The application is compatible with both the Android OS and
iOS platforms.

Participants are provided with a wrist-worn wearable device
(Fitbit Inspire 3, Fitbit Inc., USA) and are instructed to wear it
throughout the 4-week study period, except for charging or if it
causes significant discomfort. This integrated platform, consisting
of a Fitbit device and a SOMDAY application, enables both
passive and active data collection. The digital data to be collected
for this study is categorized into four main domains: (1) sleep
metrics, (2) activity data, (3) heart rate data, and (4) application-
derived data.

The first three domains of data, which include sleep metrics,
activity data, and heart rate data, are obtained passively from
wearable devices and constitute the passive digital phenotyping
component. The fourth domain, application data, is collected using
a smartphone application and will represent the active digital
phenotyping component. These data are processed to derive a
comprehensive set of digital phenotypes for subsequent analyses.

2.5.1 Passive digital phenotyping data collection

Fitbit devices continuously and passively collect objective data.
Sleep metrics, including total sleep time, total awake time, sleep
onset latency, sleep efficiency, and duration of sleep stage (light,
deep, and REM sleep), are generated daily. Sleep stages are
estimated using the Fitbit algorithm, based on a combination of
movement and heart rate variability (HRV) patterns. Inactivity for
approximately one hour is assumed to indicate sleep, while
significant movements is interpreted as wakefulness. Total sleep
time is calculated by subtracting the total awake time from the total
inactive time.

The devices also collect physiological data, including
continuous heart rate data (sampled at 5-minute intervals) and
activity data, such as step counts and walking distance. Raw heart
rate data will be utilized for cosinor analysis to derive circadian
rhythm parameters. Step counts and walking distance, which are
recorded as cumulative values, will be used to characterize circadian
activity patterns. The data is automatically and wirelessly
transmitted from the wearable device to the smartphone
application and securely uploaded to a cloud-based research server.

2.5.2 Active digital phenotyping data collection
The SOMDAY application will be used to actively collect self-

reported data through a series of ecological momentary assessments

(EMAs). To capture daily habits and experiences in a timely
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manner, participants will be prompted to log their daily entries
every night at 9 PM. A daily sleep diary collects subjective
information, including self-reported sleep duration, perceived
sleep quality, and the number of awakenings. Additionally,
participants receive daily ratings for their mood and stress levels.
Moods are rated on a 7-point scale ranging from -3 (very bad) to +3
(very good), and stress levels are measured on a 4-point scale
(0O=none, 1=mild, 2=moderate, and 3=severe). The ratings for
alcohol and caffeine consumption are collected daily, noting both
the amount and the time of intake (morning, afternoon, or night).
Detailed information on the time of day is crucial for applying a
weighted scoring system during data processing to reflect the
differential impact of these substances on the circadian rhythm.
Information on smoking is collected as a daily log. Finally, brief
questionnaires, such as the ISI, are administered weekly via the
application to track longitudinal changes in insomnia severity and
other related symptoms throughout the study period.

The SOMDAY application was used to actively collect self-
reported data through a series of ecological momentary assessments
(EMAs). The daily sleep diary was designed to be completed
immediately after awakening, capturing self-reported sleep
duration, perceived sleep quality, and the number of nocturnal
awakenings. In addition, participants were prompted at 9:00 PM
each day to report daily mood and stress levels, as well as alcohol
and caffeine consumption.

Mood was rated on a 7-point scale ranging from —3 (very bad)
to +3 (very good), and stress levels were rated on a 4-point scale (0 =
none, 1 = mild, 2 = moderate, 3 = severe). Daily records of alcohol
and caffeine intake included both the amount and the time of
consumption (morning, afternoon, or night), allowing for weighted
scoring to account for their differential effects on the circadian
rhythm. Smoking behavior was also recorded as a daily log.
Insomnia Severity Index (ISI) was administered weekly via the
application to monitor longitudinal changes in insomnia severity
and related symptoms throughout the study period.

2.5.3 Data processing and feature generation

The raw digital data from the wearable devices and the
SOMDAY smartphone application undergo a rigorous processing
pipeline to generate a comprehensive set of digital phenotypes. This
approach is not limited to a single analytical plan, and the processed
data can be used for various advanced statistical and computational
analyses, such as machine learning, to explore the complex
relationships between different data modalities and identify
meaningful patterns. The processing strategies for each data
modality are meticulously designed to provide a rich dataset for
subsequent analyses aimed at elucidating biopsychosocial
phenotypes of sleep.

The periodic nature of sleep and activity is the key focus of our
analysis. Raw data from wearable devices, including continuous
heart rate and step counts, will be processed to extract a range of
clinically relevant features. For continuous variables such as heart
rate and step counts, cosinor analysis (58, 59) will be performed to
characterize circadian rhythms. This will involve processing the
data within 72-hour intervals to derive key circadian rhythm
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parameters, including midline estimating statistic of rhythm
(MESOR), amplitude, and acrophase. MESOR represents the
rhythm-adjusted mean and provides a robust measure of the
average parameter level over time. Amplitude quantifies the
extent of predictable variation within the circadian cycle,
reflecting the strength of the rhythm. The acrophase indicates the
timing of the peak value, which offers insight into circadian
alignment or misalignment.

In addition, a range of other activity-related metrics will be
calculated to provide a more detailed view of daily patterns. These
will include the least active 5-hour period (L5), the most active 10-
hour period (M10), interdaily stability (IS), and intradaily
variability (IV) (60). L5 and M10 will be calculated using the
moving average method to identify minimum and
maximum activity periods, respectively. IS quantifies the day-to-
day regularity of a rhythm, whereas IV measures rhythm
fragmentation within a day. These features will be segregated by
weekdays and weekends to capture distinct lifestyle patterns.

The raw, continuous heart rate data collected at 5-minute
intervals will be a critical component for understanding circadian
rhythmicity and autonomic function. We will apply cosinor analysis
to these data, similar to the method used for step counts, to extract
key rhythm parameters. Specifically, we will derive the MESOR,
amplitude, and acrophase of the heart rate rhythm over a 72-hour
window. The MESOR of the heart rate rhythm reflects the average
heart rate, whereas the amplitude provides a measure of the
magnitude of diurnal heart rate fluctuation, which can be an
indicator of autonomic nervous system activity. The acrophase of
the heart rate rhythm indicates the time of day when the heart rate
is at its peak and is a key metric for assessing the phase of the
circadian clock. These features will also be calculated separately for
weekdays and weekends to account for differences in daily routines
and their impact on physiological rhythms. Additionally, heart rate
data collected during sleep will be used to derive the resting heart
rate (RHR) as a proxy for autonomic nervous system activity, a
measure known to be associated with arousal and stress. Heart rate
data collected every 5 minutes from the Fitbit Inspire 3 were used to
evaluate circadian rhythmicity and autonomic function. Because the
device provides pulse rate variability derived from
photoplethysmography(PPG) rather than true ECG based HRYV,
short term beat to beat analyses were not performed. Instead,
resting heart rate during sleep and cosinor rhythm parameters
were used to indirectly assess long term autonomic patterns. This
approach allows for the characterization of autonomic rhythms in
real world conditions.

Self-reported data collected via the SOMDAY application will
undergo specific processing to reflect the differential impact of
behavior on circadian regulation. A time-of-day weighted scoring
system will be applied to substances such as alcohol and caffeine,
based on their intake time (morning, afternoon, or night). For
example, the disruptive potential of caffeine on sleep will be
weighted more heavily for intake closer to bedtime. Similarly,
stress levels and nap durations will be processed with weights to
reflect their influence on circadian rhythms, a key focus of
this study.
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2.5.4 Data adherence and privacy

The integration of the SOMDAY application with the Fitbit
platform enables automatic synchronization of both active and
passive data, allowing the research team to monitor participant
compliance in real time. This system also allows participants to view
their daily summaries, such as sleep and activity data, directly
within the SOMDAY interface, thereby increasing self-awareness
and motivation to adhere to the study protocol. In addition, an
automated notification system sends encouragement messages
when adherence for either data type falls below 50% within a
given week, which further helps reduce participant fatigue and
dropout. To ensure data security, all information collected through
the SOMDAY application and Fitbit platform was encrypted during
transmission and stored on an independent, access-restricted server
maintained by the research team. Database encryption key
management was implemented to prevent key leakage and
unauthorized access. User access rights and activity logs were
continuously monitored, and sensitive data were encrypted to
prevent the exposure of personal identifiers.

2.6 Functional near-infrared spectroscopy
neuroimaging

Prefrontal cortex activity is assessed using functional near-
infrared spectroscopy (fNIRS), a non-invasive neuroimaging
technique that measures hemodynamic responses associated with
neural activation. fNIRS was selected because of its advantages in
studying sleep disorders, including tolerance to head movement,
silent operation, and suitability for participants who may have
difficulty with traditional neuroimaging modalities.

2.6.1 fNIRS system and setup

A portable multichannel fNIRS device (NIRSIT, OBELAB Inc.,
Seoul, Republic of Korea) is used to record the prefrontal
hemodynamic responses. The system employs near-infrared light
at dual wavelengths (760 and 850 nm) to measure the changes in
oxygenated (HbO,) and deoxygenated (HbR) hemoglobin
concentrations. The device features a flexible probe configuration
optimized for prefrontal cortex coverage with source-detector
separations of 30 mm to ensure adequate cortical sensitivity.

All fNIRS assessments are conducted at the Korea University
Anam Hospital by trained research personnel, following
standardized protocols. The session room maintained at a
comfortable temperature and lighting conditions to minimize
environmental confounding factors. The participants are seated
comfortably with the fNIRS cap positioned according to the
international 10-20 system, ensuring consistent probe placement
across participants.

2.6.2 Experimental protocol

The fNIRS assessment protocol consist of approximately 25
minutes of recording and structured as follows.

Pre-task resting state (5 minutes): Participants maintain a
relaxed state with their eyes open, fixating on a neutral stimulus
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(white cross on black background) to establish baseline prefrontal
activity and functional connectivity patterns.

Cognitive task battery (15 minutes): Two validated cognitive
tasks are administered to probe distinct aspects of prefrontal
function:

» Visuospatial N-back task (8 minutes): This task assessed
spatial working memory capacity, a cognitive domain
frequently impaired in insomnia. Participants view a
sequence of visual stimuli (stars) appearing at different
locations in an 8-grid layout. They are required to
respond when the current stimulus position matched the
position from one, two, or three trials back (1-back, 2-back,
3-back conditions). Each difficulty level is presented in
separate blocks (2 min each), with 1-minute rest periods
between blocks. The performance metrics included
accuracy, reaction time, and the d-prime sensitivity index.

* Stroop color-word task (7 minutes): This task evaluated
cognitive inhibition and attentional control. Participants
view color words (red, blue, green, and yellow) displayed in
either congruent or incongruent colors and are instructed to
respond to the ink color while ignoring the word meaning.
The task included three conditions: neutral (colored
symbols), congruent (word and color matches), and
incongruent (word and color mismatch). Each condition
is presented for 2 min, with brief interblock intervals.

Post-task resting state (5 minutes): A final resting-state period
with eyes closed is recorded to assess post-task recovery and
compare with pre-task connectivity patterns.

2.6.3 Data acquisition parameters

The system monitor the signal quality in real time with
automatic adjustments for probe contact optimization. The
source-detector channel configurations cover bilateral prefrontal
regions, including the dorsolateral prefrontal cortex (dIPFC),
ventrolateral prefrontal cortex (VIPFC), and anterior prefrontal
cortex (aPFC) regions.

Behavioral data from cognitive tasks is recorded synchronously
with fNIRS signals, including response accuracy, reaction times, and
response patterns. Task timing and event markers are automatically
integrated with the fNIRS data stream to enable precise
hemodynamic response analysis.

2.6.4 Outcome measures and analysis framework

The primary fNIRS outcome measures were designed to capture
task-related activation and intrinsic functional connectivity.

Task-evoked activation: Hemodynamic responses during
cognitive tasks will be quantified as changes in the HbO,
concentration relative to the pre-task baseline. Task-specific
activation patterns will be calculated for each cognitive domain
(working memory and cognitive inhibition) and will be compared
between insomnia and control groups.

Resting-state functional connectivity: Functional connectivity
will be assessed by calculating Pearson correlations between
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HbO, time series from different prefrontal regions during both
pre- and post-task resting periods. Network topology measures,
including node strength and clustering coefficients, will be derived
to characterize the prefrontal network organization.

Hemispheric asymmetry indices: Lateralization of prefrontal
function will be quantified using asymmetry indices by
comparing left- and right-hemisphere activation and connectivity
patterns. These measures provide insight into the potential
hemispheric imbalance associated with insomnia.

Cognitive performance-brain activity relationships: Correlations
between behavioral performance measures (accuracy, reaction
time) and concurrent brain activation will be calculated to
examine brain-behavior relationships and identify potential
compensatory mechanisms in insomnia.

The fNIRS protocol will be specifically designed to be integrated
with a broader deep phenotyping framework, with derived neural
metrics to serve as features in computational analyses alongside
clinical, digital, and genomic data to identify neurophysiological
correlates of insomnia phenotypes.

2.7 Biological sample collection

Biological sample collection and genomic analysis are integral
components of the deep phenotyping approach, providing insights
into the genetic predisposition and molecular mechanisms
underlying insomnia heterogeneity.

2.7.1 Sample collection and processing

Venous blood samples (10 mL) are collected from all
participants at the baseline visit using EDTA tubes to preserve
nucleic acids. The blood samples are processed within 2 h of
collection. The samples are centrifuged at 2000xg for 10 min at
4°C to separate the plasma from the cellular components. The buffy
coat layer, which contains leukocytes rich in DNA and RNA, will be
carefully extracted and aliquoted into cryovials. Plasma will be
similarly aliquoted for potential biomarker analysis. All samples are
labeled with unique study identification codes and stored at -80°C
until analysis.

2.7.2 DNA extraction and genotyping

High-quality genomic DNA will be extracted from buffy coat
samples using the QIAamp DNA Blood Mini Kit (Qiagen,
Germany) following the manufacturer’s protocol. DNA
concentration and purity will be assessed using NanoDrop
spectrophotometry, with samples meeting the quality criteria
(260/280 ratio 1.8-2.0, DNA concentration =50 ng/uL) to proceed
to genotyping.

Genome-wide genotyping will be performed using the Axiom
PangenomiX Array (Thermo Fisher Scientific, USA), a high-density
array capable of interrogating over 600,000 genetic variants,
including single nucleotide polymorphisms (SNPs) and copy
number variants. This array provides a comprehensive coverage
of common and rare variants across the genome, including
enhanced coverage of pharmacogenomic and clinically relevant loci.
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2.7.3 Polygenic risk score calculation

Primary genomic analysis will focus on calculating insomnia-
specific Polygenic Risk Scores (PRS) rather than novel gene
discovery. The PRS calculation will utilize summary statistics
from the most recent and largest genome-wide association
study (GWAS) of insomnia, leveraging data from over 1.3
million individuals.

PRS computation will follow established protocols:

* Quality control of genotype data including removal of
variants with call rate <95%, minor allele frequency <1%,
and Hardy-Weinberg equilibrium p-value <1x10~°

* Linkage disequilibrium clumping using European reference
panels from the 1000 Genomes Project

*  PRS calculation across multiple p-value thresholds (5x107%,
0.001, 0.01, 0.05, 0.1, 0.5, and 1.0) to optimize
predictive performance.

e Standardization of PRS values (mean=0, SD

for interpretability

1)

The resulting continuous PRS variable will quantify each
participant’s genetic liability for insomnia, with higher scores
indicating a greater genetic predisposition.

2.7.4 Candidate gene expression analysis

Targeted gene expression analysis will be performed to examine
the functional relevance of the key circadian and sleep-related
genes. RNA will be extracted from buffy coat samples using the
PAXgene Blood RNA Kit (PreAnalytiX, Switzerland), which
preserved the in vivo gene expression profile at the time of
blood collection.

Quantitative real-time PCR (qQRT-PCR) will be performed using
a focused panel of candidate genes.

Core circadian clock genes: CLOCK, ARNTL/BMALI, PERI,
PER2, PER3, CRY1, CRY2, NPAS2

Clock-regulated genes: SIK1, SIK2, GSK3B (Glycogen Synthase
Kinase 3 beta)

Neurotransmitter-related genes: COMT (Catechol-
O-Methyltransferase)

Gene expression levels will be normalized to housekeeping
genes (GAPDH and ACTB) and will be expressed as fold-changes
relative to a pooled reference sample.

2.7.5 Data integration strategy

Genomic and biomarker data is designed for integration with
clinical, digital phenotyping, and neuroimaging measures. The
analytical framework conceptualized PRS as representing “genetic
vulnerability,” gene expression patterns as “molecular state,” and
biomarker levels as “physiological output” in the context of
environmental and behavioral modulating factors captured
through digital phenotyping.

This multi-omics integration approach will enable the
investigation of gene-environment interactions, identification of
molecular subtypes, and development of personalized risk
prediction models. Specific analytical plans will include
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correlating PRS with digital phenotypes, examining gene
expression patterns in relation to fNIRS findings, and testing
whether genomic profiles modify the relationship between
environmental factors and sleep outcome

2.8 Data analysis plan

The analytical strategy was designed as a multitiered approach,
progressing from traditional statistical methods to advanced
computational techniques to fully leverage the rich multimodal
dataset. The analysis plan addressed three primary objectives: (1)
characterizing the differences between insomnia and control
groups, (2) identifying data-driven insomnia subtypes, and (3)
developing predictive models for personalized sleep medicine.

2.8.1 Preliminary data analysis and quality control

Data preprocessing: All datasets will undergo comprehensive
quality-control procedures. Digital phenotyping data will be
screened for outliers using interquartile ranges and temporal
consistency checks. The clinical assessment data will be examined
for completeness and consistency. NIRS data undergo standard
preprocessing, including motion artifact correction and signal
quality assessment. Genomic data quality control will follow the
established GWAS protocols.

Missing data strategy: Clinical and self-report variables will be
handled using multiple imputation by chained equations (MICE)
under the Missing at Random (MAR) assumption. For digital
phenotyping data with systematic missingness (e.g., device non-wear
periods), short-term gaps will be interpolated using Kalman smoothing
to preserve temporal continuity, whereas longer missing periods will be
excluded from time-series analyses. Sensitivity analyses will assess the
impact of missing data assumptions on the primary findings.

Descriptive statistics: Comprehensive descriptive analyses will
characterize both cohorts across all measurement domains.
Continuous variables will be summarized using mean, standard
deviation, median, and interquartile ranges. Categorical variables
will be presented as frequencies and proportions. Data distributions
will be assessed using histograms, Q-Q plots, and normality tests to
inform subsequent analytical choices.

2.8.2 Group comparison analyses

Primary group comparisons: Between-group differences
(insomnia vs. controls) will be assessed using appropriate
statistical tests based on the data distribution and measurement
level. Independent samples t-tests (or Mann-Whitney U tests for
non-normal distributions) will be used to compare continuous
variables. Chi-square tests will evaluate categorical variables.

Secondary analyses: Subgroup comparisons will examine
differences based on sleep disorder risk (e.g., RLS symptoms,
sleep apnea risk) and demographic factors. Analysis of covariance
(ANCOVA) will control for potential confounders, including age,
sex, and comorbid conditions.

Multiple comparisons: Given the large number of variables, false
discovery rate (FDR) correction using the Benjamini-Hochberg
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procedure will be applied to control for multiple testing. Both
uncorrected and FDR-corrected p-values will be reported to
balance the discovery and rigor.

2.8.3 Correlation and regression analyses

Bivariate associations: Pearson correlations (or Spearman rank
correlations for non-normal data) will be used to examine the
relationships between subjective clinical measures (e.g., ISI scores)
and objective digital phenotypes (e.g., sleep efficiency and circadian
rhythm parameters). Correlation matrices will be visualized using
heatmaps to identify patterns of association.

Multivariate regression modeling: Multiple linear and logistic
regression models will be used to identify key predictors of sleep
outcomes from the comprehensive digital phenotype set.
Regularization techniques (LASSO, Ridge, and Elastic Net) will be
employed to handle high-dimensional data and prevent overfitting.
Model selection will utilize cross-validation procedures to optimize
predictive performance while maintaining interpretability.

Time-series analysis: Longitudinal patterns in daily digital
phenotypes will be analyzed using mixed-effects models to
account for within-participant clustering. Time-varying covariates
and random effects will capture individual trajectories and
response heterogeneities.

2.8.4 Unsupervised learning for phenotype
discovery

Clustering analysis: Data-driven identification of insomnia
subtypes will utilize multiple clustering algorithms, including k-
means, hierarchical clustering, and Gaussian mixture models.
Clustering will be performed using standardized digital
phenotyping features, and the optimal cluster number to be
determined using silhouette analysis, gap statistics, and
clinical interpretability.

Dimensionality reduction: Principal component analysis (PCA)
and t-distributed stochastic neighbor embedding (t-SNE) will reduce
data dimensionality while preserving important patterns. Uniform
manifold approximation and projection (UMAP) will provide an
additional visualization of high-dimensional relationships.

Cluster validation: Discovered clusters will be validated using
internal measures (silhouette width and Dunn index) and external
validation through clinical outcomes and biomarker profiles.
Stability analysis using bootstrap resampling will assess cluster
robustness across different sample compositions.

2.8.5 Supervised learning for prediction

Model development: Various machine learning algorithms will
be employed for classification and regression tasks, including
Random Forest, Extreme Gradient Boosting (XGBoost), Support
Vector Machines, and neural networks. Tree-based models will be
prioritized for their interpretability and robust performance using
tabular healthcare data.

Feature engineering: Advanced feature engineering will create
interaction terms, polynomial features, and domain-specific
composite scores. Automated feature selection using recursive
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feature elimination and importance ranking will identify the
optimal predictor sets.

Model evaluation: Predictive performance will be assessed using
nested cross-validation to provide unbiased estimates. The
classification tasks will use accuracy, sensitivity, specificity, area
under the ROC curve (AUC), and precision-recall metrics. The
regression tasks will employ mean absolute error, root mean square
error, and R-squared values.

Model interpretability: Explainable AI techniques, particularly
Shapley Additive explanation (SHAP) values, will quantify
individual feature contributions to predictions. Partial
dependence plots visualize feature effects, whereas permutation
importance assesses global feature relevance.

2.8.6 Multimodal data integration

Data fusion strategies: Multiple fusion approaches will be
implemented, including early fusion (feature concatenation),
late fusion (prediction averaging), and intermediate fusion (learned
representations). Ensemble methods combine the predictions from
domain-specific models to leverage complementary information.

Deep learning approaches: Neural network architectures
designed for multimodal data will include autoencoders for
dimensionality reduction and transformer models for integrating
sequential data. These approaches will be applied judiciously, with
sample size considerations and interpretability requirements
guiding the implementation.

2.8.7 Specialized analyses

fNIRS data analysis: Neuroimaging data analysis will follow
established protocols using HOMER2/3 software. Statistical
parametric mapping identifies task-related activation patterns,
whereas functional connectivity analysis utilizes correlation and
coherence measures. Group comparisons will be performed using
general linear models with multiple comparison correction.

Genomic data analysis: Polygenic risk scores will be analyzed
using linear models and population stratification controls. Gene
expression data will employ differential expression analysis with
multiple testing corrections. Pathway analysis using Gene Set
Enrichment Analysis (GSEA) will identify biological mechanisms.

Circadian analysis: Cosinor analysis of physiological time series
will employ nonlinear least-squares fitting to extract rhythm
parameters. Population-mean cosinor analysis will test group-
level rhythm differences, whereas individual cosinor analysis will
characterize personal circadian profiles.

2.8.8 Statistical software and reproducibility

All analyses will be conducted using R (version 4.3.0 or later)
and Python (version 3.8 or later) with specific packages
documented for reproducibility. Version control using Git will
track all analysis codes. Computational notebooks (R Markdown
and Jupyter) will provide transparent documentation of analytical
decisions and results.

Statistical significance will be set at o = 0.05 for primary

analyses, with appropriate corrections for multiple testing.
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Confidence intervals (95%) will be reported along with p-values to
provide the effect size context. Sample size considerations were
based on effect sizes from published insomnia studies and power
analyses of machine-learning applications.

2.9 Sample size and power considerations

Participant recruitment for this deep phenotyping study has been
completed in accordance with the original protocol design. The study
employed a rolling, observational recruitment framework, with the
goal of achieving a sample size sufficient for robust multimodal
analyses across clinical, behavioral, physiological, and digital
domains. Based on feasibility and methodological considerations,
the protocol specified minimum recruitment targets of approximately
330 participants in total, including at least 240 individuals with
insomnia and at least 80 good-sleeper controls.

These targets were established to ensure statistical adequacy for the
key analytic aims while maintaining the feasibility of comprehensive
multimodal data collection. Power estimations at the design stage
indicated that, under this allocation (unequal groups, o = 0.05), the
study would achieve about 80% power to detect standardized mean
differences of Cohen’s d =~ 0.36, which represents a small-to-moderate
and clinically meaningful effect commonly observed in sleep research.
For correlational analyses involving continuous variables, a total
sample of this magnitude provides approximately 80% power to
detect correlations of r =~ 0.15-0.16, assuming complete data pairs.
For predictive analyses, a balanced-class equivalent sample of this scale
would permit area under the curve (AUC) estimates around 0.70 with a
standard error of approximately 0.03, corresponding to a 95%
confidence interval of roughly +0.06. These calculations reflect the
expected precision and effect sizes typical of multimodal insomnia
research rather than formal hypothesis testing for a single endpoint.

In practice, 338 participants were enrolled, comprising 249
individuals with insomnia and 89 good-sleeper controls, consistent
with the predefined recruitment objectives. Within the insomnia
group, severity distribution according to the Insomnia Severity Index
(ISI) was mild = 130, moderate = 101, severe = 18. Analyses involving
ISI will therefore treat severity as a continuous variable or use pooled
strata where appropriate, given limited sample sizes in the extreme
categories. The analytic plan includes standard measures to ensure
that statistical modeling remains commensurate with the available
data, including internal cross-validation and regularization to reduce
overfitting in multivariate and machine-learning models.

Overall, the final achieved sample meets and slightly exceeds the
planned minimum targets, providing adequate statistical precision
and methodological robustness for the multimodal analyses
described in this protocol.

3 Discussion

This protocol presents a comprehensive and multimodal
approach to the deep phenotyping of insomnia, a condition
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widely recognized for its clinical and etiological heterogeneity.
Conventional assessment methods, often relying on demographic
data analysis (61), self-reported subjective reports (62, 63), or
single-night objective metrics, have shown limited reliability and
poor concordance with perceived sleep quality (64, 65).
Demographic data analyses and self-reported assessments (61-63)
make it difficult to capture the complexity of insomnia. Therefore,
our study aims to overcome these limitations by integrating data
from clinical questionnaires, continuous digital phenotyping,
functional neuroimaging, and genomics to comprehensively
characterize the individual experiences of insomnia.

The primary strength and novelty of this protocol are its
methodological integration. By combining continuous real-world
data from wearables and smartphones with laboratory
neurophysiological and biological measures, we can create a
dataset of unprecedented depth and breadth. This approach
intentionally bridges the gap between subjective, symptom-
focused, and objective sleep measurement studies. Compared to
single-night laboratory polysomnography, our wearable-based
monitoring provides less detail on sleep architecture but offers far
greater ecological validity by sampling multiple nights in the
participant’s natural environment. This design enables the capture
of the dynamic and fluctuating nature of insomnia, which static,
single-time-point assessments often fail to do. However, this
approach is not without its limitations. The sheer volume and
complexity of multimodal data require sophisticated analytical
techniques and careful management to avoid false discoveries.
The intensive protocol may also impose a burden on participants,
and the single-center design may limit the generalizability of
the findings.

Implications of this deep phenotyping approach in sleep
medicine are substantial. The primary object is to support a
paradigm shift from undifferentiated care to personalized
management. Tailoring insomnia treatments, such as cognitive
behavioral therapy for insomnia (CBT-I) or pharmacotherapy,
requires recognizing biologically distinct subtypes, including those
characterized by physiological hyperarousal or circadian rhythm
disruption (66-68).

More profoundly, the implications of this research approach
extend beyond subtype discovery to both measurement and
understanding of mental and sleep-related disorders. Continuous
digital phenotyping replaces cross-sectional assessments with
longitudinal measurements, enabling the development of
predictive models that can forecast periods of heightened risk or
detect early warning signs of relapse. Such models serve as the
foundation for developing just-in-time adaptive interventions,
where a digital platform can provide precise support when
needed. Ultimately, this methodology aims to identify and
validate novel digital biomarkers—objective, quantifiable
indicators of the disease state derived from personal devices—
which could substantially improve both clinical trials and routine
patient monitoring, thereby contributing to precision sleep
medicine. In conclusion, this protocol outlines a feasible and
comprehensive strategy to characterize the complex phenotype of
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insomnia, with the potential to yield insights and tools that
unidimensional approaches cannot provide.

Several limitations may affect the interpretation and
generalizability of the findings of this deep phenotyping protocol.
This study has limitations related to its single-center setting and
sample composition. While a single-site setting allows for rigorous
standardization of data collection, instrumentation, and participant
monitoring—crucial for integrating multimodal measures such as
digital phenotyping, neuroimaging, and genomics—it inherently
limits representativeness. Convenience sampling and hospital-
based recruitment may introduce selection bias, potentially
overrepresenting individuals with more severe insomnia
symptoms. Future multicenter and cross-cultural studies
including more heterogeneous clinical populations will be
necessary to validate and extend the generalizability of these
findings. This observational design precludes causal inferences
regarding the relationships between the identified phenotypes and
clinical outcomes. The 4-week monitoring period may not capture
the long-term trajectories or seasonal variations relevant to
comprehensive phenotyping. Consumer-grade wearable devices
have inherent accuracy limitations compared with PSG,
particularly in the classification of sleep stages. Despite these
constraints, wearable-based monitoring offers important
advantages in terms of ecological validity, enabling the assessment
of habitual sleep patterns and minimizing the first-night effect
commonly observed in laboratory sleep studies. To address this
limitation, future studies would benefit from incorporating a
validation sub-study directly comparing Fitbit-derived sleep
measures with simultaneous PSG recordings.

The wearable data in this study were sampled at 5-minute
intervals and derived from photoplethysmography rather than
ECG, which limits the temporal resolution and accuracy of short
term autonomic measurements. Nevertheless, this approach
provides valuable insight into long term physiological patterns in
real world settings, and future studies using research grade devices
with raw PPG or ECG signals could further improve
measurement precision.

The genomic analyses in this study focused primarily on
polygenic risk scores and candidate gene expression to establish a
foundational molecular framework. However, the exclusion of
epigenomic and proteomic biomarkers may limit the ability to
capture dynamic molecular mechanisms underlying insomnia.
Future studies incorporating multi-omics approaches, including
DNA methylation and cytokine profiling, could enhance the
biological depth and robustness of the phenotypic
characterization. The fNIRS approach has limited spatial
resolution compared to fMRI and focuses only on prefrontal
cortex function. Although this configuration provides practical
advantages in terms of ecological validity and participant comfort,
it restricts the assessment of deeper or posterior brain regions, such
as the thalamocortical circuits, that are relevant to the
pathophysiology of insomnia. Future studies should consider
applying complementary neuroimaging techniques, such as fMRI,
to overcome these spatial constraints and achieve a more
comprehensive understanding of the neurophysiological
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mechanisms underlying insomnia. The intensive digital
phenotyping protocol may impose a significant participant
burden, potentially affecting them over time, whereas technology
literacy requirements may exclude certain demographic groups.
The high-dimensional nature of multimodal data may increase the
risk of overfitting in machine learning analyses. Although robust
internal validation using nested cross-validation was implemented,
the absence of independent external validation remains a limitation
that should be addressed in future studies. Furthermore such high-
dimensional, multimodal dataset increases the risk of multiple
testing problems despite statistical corrections, and the sample
size may limit the detection of rare phenotypic subtypes. The
study setting differs from typical clinical environments, which
may limit the direct translation to routine practice. The exclusion
of major psychiatric disorders and restrictions to ages 19-70 years
limit their applicability to key clinical populations.

Despite these limitations, this comprehensive deep phenotyping
approach represents a significant methodological advancement that
will inform future research and establish a foundational knowledge
base regarding precision sleep medicine.
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