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Acupuncture enhances
fatty acid catabolism and
immune modulation in
children with autism
Jinbo Xu1,2 and Chao Bao1*

1The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China, 2Anhui Provincial
Children's Hospital, Hefei, China
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental

condition with limited effective therapies targeting its underlying biological

mechanisms. Acupuncture has shown clinical promise in improving core ASD

symptoms, yet its molecular effects remain poorly understood. This study aimed

to investigate the systemic mechanisms by which acupuncture exerts

therapeutic effects in ASD, using an integrated plasma-based proteomic and

metabolomic approach. Twenty children were enrolled, including 10 diagnosed

with ASD and 10 age- and sex-matched typically developing controls. The ASD

group received a 12-week standardized acupuncture intervention. Plasma

samples were collected before and after treatment, and analyzed using data-

independent acquisition-based LC-MS/MS for proteomics and high-resolution

mass spectrometry for metabolomics. Differentially expressed proteins and

metabolites were identified across healthy controls, pre-treatment, and post-

treatment ASD groups, followed by pathway enrichment and integrated network

analysis. Acupuncture significantly modulated biological pathways related to

immune regulation, mitochondrial oxidative phosphorylation, glycolysis, folate

biosynthesis, lipid metabolism, and fatty acid degradation. Notable differentially

expressed proteins included CD59 and CD5L, ATP5F1A and ALDOC, and HYAL1.

Metabolomic profiling revealed altered levels of lipids, lipid-like molecules,

benzenoids, and folate-related metabolites, implicating changes in

neurochemical balance and detoxification capacity. Fatty acid degradation

pathways were also enhanced, suggesting a systemic metabolic shift toward

an anti-inflammatory state. Integrating proteomic and metabolomic data, the

results support a multi-system mechanism through which acupuncture restores

immune–metabolic homeostasis, consistent with the holistic therapeutic

framework of traditional Chinese medicine. The identification of candidate

biomarkers such as CD59, ATP5F1A, and ALDOC offers potential tools for

therapeutic monitoring and mechanistic insight. This study presents the first

multi-omics evidence for the biological basis of acupuncture in ASD and provides
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a rationale for individualized interventions. These findings support future

research integrating acupuncture with metabolic, nutritional, or immunological

therapies. Larger-scale, controlled trials with functional validation of molecular

targets are warranted to confirm these findings and guide clinical translation.

Clinical Trial Registration: https://itmctr.ccebtcm.org.cn/mgt/project/view/

896756278374891597/, identifier ITMCTR2025000067.
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1 Introduction

Autism spectrum disorder (ASD) encompasses a group of

complex neurodevelopmental conditions characterized by early-

onset impairments in social interaction, communication, and the

presence of restricted, repetitive behaviors and interests (1). The

global prevalence of ASD has been increasing steadily, with recent

epidemiological estimates suggesting that approximately 1 in 36

children are affected (2). Between 2017 and 2020, the United States

reported a 52% rise in ASD diagnoses, reflecting heightened

awareness and diagnostic capacity, but also underscoring the

urgency of effective therapeutic strategies (3). Despite decades of

research, ASD remains a condition with no definitive cure. Early

behavioral interventions have demonstrated some efficacy in

mitigating symptoms and promoting social integration (4, 5).

Nonetheless, outcomes are highly variable and often insufficient

in addressing core impairments such as social cognition, language

development, and adaptive behavior (6). Pharmacological

treatments have largely focused on managing associated

symptoms like irritability or hyperactivity, while providing

minimal benefit for core features of ASD and frequently causing

adverse effects such as sedation, weight gain, and tremors (7, 8).

These limitations, coupled with the substantial emotional and

economic burden on families and healthcare systems, have

intensified the search for adjunctive or alternative treatment

modalities (9).

Among complementary and alternative approaches,

acupuncture has gained prominence in East Asian countries,

particularly China, as an adjunctive therapy for ASD. A survey in

Hong Kong revealed that approximately 40% of children diagnosed

with ASD received acupuncture treatment, making it the most

commonly used non-conventional therapy in this population (10).

Acupuncture is officially recognized in China as an alternative

therapeutic option for neurodevelopmental disorders, including

ASD. However, despite its widespread application, the

neurobiological mechanisms through which acupuncture exerts

therapeutic effects in ASD remain poorly understood. This
02
mechanistic ambiguity limits its acceptance in mainstream clinical

practice and calls for rigorous scientific inquiry.

Emerging evidence suggests that autism spectrum disorder

involves a constellation of complex and systemic biological

processes, including neuroinflammation, oxidative stress, synaptic

dysfunction, and disturbances in gut-brain axis signaling. These

multifactorial characteristics reflect the heterogeneous and dynamic

nature of ASD pathophysiology, posing significant challenges for

conventional single-target therapeutic strategies. Interestingly, such

systemic features resonate with the holistic philosophy of traditional

Chinese medicine, which emphasizes functional balance and system-

level modulation across interconnected physiological networks.

In this context, multi-omics technologies offer powerful tools

for decoding the biological underpinnings of acupuncture from a

systems biology perspective. Proteomics allows large-scale profiling

of protein expression and intracellular signaling pathways, shedding

light on potential molecular targets influenced by acupuncture

interventions (11). Meanwhile, metabolomics captures the

dynamic flux of endogenous small-molecule metabolites

associated with neurodevelopment, immune function, and energy

metabolism (12). Notably, the system-level insights enabled by

proteomics and metabolomics align closely with traditional

Chinese medicine theory’s diagnostic and therapeutic principles,

which focus on pattern differentiation and systemic regulation (13).

Despite their theoretical compatibility, integrated multi-omics

approaches have rarely been applied to investigate the mechanistic

basis of acupuncture in ASD. To address this critical gap, the

present study employs a combined analytical strategy using data-

independent acquisition (DIA)-based plasma proteomics and liquid

chromatography–mass spec t romet ry (LC-MS)-based

metabolomics. By simultaneously capturing protein-level and

metabolite-level changes, this integrated approach aims to

construct a comprehensive molecular profile of acupuncture’s

effects in children with ASD. Ultimately, our goal is to elucidate

the potential biological mechanisms through which acupuncture

modulates ASD-related pathophysiology and to contribute

objective evidence for its clinical application.
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2 Materials and methods

2.1 Materials

The reagents and materials used in this study were sourced from

the following suppliers: Dithiothreitol, iodoacetamide, ammonium

bicarbonate, trifluoroacetic acid, tetraethylammonium bromide

buffer, and ammonia were obtained from Sigma-Aldrich

(Shanghai, China). The iRT kit as well as the Bradford protein

quantification kit were purchased from Biognosys (Beijing, China).

Formic acid, ultrapure water, acetonitrile, and the HighSelect™

Top14 Abundant Protein Depletion Mini Spin Columns kit were

acquired from Thermo Fisher Scientific (Massachusetts, USA).

Sodium dodecyl sulfate was supplied by the China National

Pharmaceutical Group (Beijing, China), and mass spectrometry-

grade trypsin was obtained from Promega (Beijing, China). Acetone

was obtained from the Beijing Chemical Reagent Factory (Beijing,

China). Sterile, single-use acupuncture needles measuring 0.30 mm

in diameter and 25 mm in length were provided by the Suzhou

Medical Supplies Factory (Suzhou, China).
2.2 Participants and groups

This study aimed to investigate the proteomic and metabolomic

changes in pediatric children with ASD undergoing a standardized

acupuncture intervention, and to compare these changes with

typically developing controls. A total of 20 participants were

recruited from Anhui Provincial Children’s Hospital (Hefei,

China), including 10 children with ASD who were clinical
Frontiers in Psychiatry 03
patients from the rehabilitation department and 10 typically

developing children matched for age and sex, who were recruited

from the hospital’s health examination center. The ASD group

comprised 8 boys and 2 girls, aged 3 to 7 years (mean ± SD:

4.3 ± 1.1 years). The typically developing group comprised 8 boys

and 2 girls, aged 3 to 7 years (mean ± SD: 4.2± 1.2 years). Inclusion

criteria for ASD children included a confirmed diagnosis using the

Diagnostic and Statistical Manual of Mental Disorders, Fifth

Edition criteria and scoring ≥ 70 on the Childhood Autism

Rating Scale. Exclusion criteria included known genetic

syndromes, recent medication use, or participation in other

clinical trials. The developing children had no known

developmental, neurological, or psychiatric disorders and were

recruited from local preschools. Peripheral venous blood (4 mL)

was drawn from each participant in the morning after overnight

fasting, using ethylenediaminetetraacetic acid-coated anticoagulant

tubes. For ASD patients, samples were collected both before and

after the acupuncture intervention; for typically developing

children, a single sample was collected at baseline. Based on

collection timing and clinical status, blood samples were

categorized into three groups: healthy control (HC), ASD pre-

treatment (ASD), and ASD post-treatment (Tx). Genomic DNA

was isolated from fresh blood using the phenol–chloroform

extraction technique. DNA extracts were dissolved in Tris

(hydroxymethyl)aminomethane–Ethylenediaminetetraacetic acid

buffer containing anhydrous ethanol and standardized to a

concentration of 50 ng/mL for downstream analysis. An overview

of the experimental workflow is illustrated in Figure 1. This study

was approved by the Ethics Committee of Anhui Provincial

Children’s Hospital (No. EYLL-2024-016).
FIGURE 1

Flow diagram of the study.
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2.3 Acupuncture treatment

The acupuncture intervention employed a standardized

protocol targeting the following specific acupoints: Baihui

(GV20), Sishencong (EX-HN1), Yintang (EX-HN3), Tianshu

(ST25), Zusanli (ST36), and Shangjuxu (ST37). Acupoint

localization was performed in accordance with the World Health

Organization Standard Acupuncture Point Locations, ensuring

anatomical accuracy and consistency (14). After routine

disinfection of the skin, the angle and depth of needle insertion

were adjusted based on the basis of the anatomical characteristics

and therapeutic requirements of each acupoint. Participants

underwent acupuncture three times per week, with each session

lasting 30 minutes, over a 12-week treatment period. Participants in

the ASD group underwent acupuncture three times per week, each

session lasting 30 minutes, over a 12-week treatment period. The

selection of a 12-week duration is supported by previous clinical

studies in pediatric neurodevelopmental disorders, which have

reported significant therapeutic effects within 12 weeks of

acupuncture treatment (15, 16). All procedures were conducted in

compliance with the Standards for Reporting Interventions in

Clinical Trials of Acupuncture guidelines.
2.4 Proteomic analysis of plasma samples

2.4.1 Total protein extraction
To enrich plasma proteins, 500 µg of nanomagnetic bead

material (50 µL suspension volume) was aspirated and subjected

to magnetic separation to discard the supernatant. The beads were

washed once using an appropriate volume of wash buffer.

Subsequently, an equal volume of wash buffer and plasma was

added to the beads and incubated at 37°C with agitation at 1500

rpm for 1 hour. After incubation, magnetic separation was

performed to remove the supernatant. The magnetic beads were

washed three times using three volumes of wash buffer, shaking for

5 minutes per wash cycle. This washing procedure was repeated

three times to ensure optimal removal of non-specifically bound

components. The final product, bound to the surface of the

magnetic beads, contained the enriched plasma proteins.

2.4.2 Protein quantification and quality
assessment

A bovine serum albumin standard curve was constructed

following the Bradford protein assay protocol, using standard

concentrations ranging from 0 to 0.5 g/L. Standard bovine serum

albumin solutions and appropriately diluted sample solutions were

loaded into a 96-well microplate, with a final volume of 20 µL per

well. Each concentration was measured in triplicate. Next, 180 µL of

G250 dye reagent was swiftly added to each well, and the plate was

incubated at room temperature for 5 minutes. Absorbance was

measured at 595 nm, and the standard curve was used to determine

the protein concentrations of the unknown samples. For quality

control, 20 mg of protein per sample was applied to a 12% SDS-

PAGE gel. Electrophoresis was performed at 80 V for 20 minutes
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through the stacking gel, followed by 120 V for 90 minutes through

the resolving gel. After electrophoresis, the protein bands were

visualized using Coomassie Brilliant Blue R-250 staining, followed

by destaining until clear bands were visible.

2.4.3 Trypsin digestion
Each protein sample was adjusted to a final volume of 100 mL

using DB lysis buffer (8 M urea, 100 mM TEAB, pH 8.5). Trypsin

and 100 mM TEAB buffer were then added, and the mixture was

incubated at 37°C for 4 hours, followed by a second digestion step

where additional trypsin was added for overnight digestion. The

digestion was halted by adjusting the pH to below 3 with formic

acid, and the samples were subsequently centrifuged at 12,000 × g

for 5 minutes at room temperature. The supernatant was carefully

applied to a C18 desalting column, washed three times with washing

buffer (0.1% formic acid, 3% acetonitrile), and eluted with elution

buffer (0.1% formic acid, 70% acetonitrile). The eluates were

collected and lyophilized for subsequent analysis (17).

2.4.4 LC-MS/MS analysis based in DIA mode
Mobile phase A was composed of 100% H2O with 0.1% formic

acid, while mobile phase B consisted of 80% acetonitrile and 0.1%

formic acid. Lyophilized peptide samples were reconstituted in 10

mL of mobile phase A and centrifuged at 14,000 × g for 20 minutes

at 4°C, and 200 ng of the resulting supernatant was used for LC-MS/

MS analysis. Chromatographic separation was carried out on a

Vanquish Neo ultrahigh performance liquid chromatography

system, equipped with a C18 trap column (5 mm × 300 mm,

5 mm, Thermo, Cat# 174500), maintained at 50°C in a column

oven. Analytical separation was performed using a C18 analytical

column (PepMap™ Neo ultrahigh performance liquid

chromatography, 150 mm × 15 cm, 2 mm, Thermo, Cat# ES906).

Detection was conducted using a Thermo Orbitrap Astral mass

spectrometer with an easy-spray electrospray ionization source. The

spray voltage was set to 2.0 kV, and the ion transfer tube

temperature was maintained at 290°C. Data acquisition was done

in DIA mode, with the full scan MS1 range set to m/z 380–980, and

the resolution was 240,000 at m/z 200, with an automatic gain

control set to 500%. The precursor ion isolation window was 2 Th,

and 300 DIA windows were applied. Fragmentation was performed

with a normalized collision energy of 25%. MS2 spectra were

acquired in the m/z 150–2000 range with a resolution of 80,000

(Astral) and a maximum injection time of 3 ms. The resulting raw

files were used for downstream mass spectrometry data analysis.

2.4.5 Database search and bioinformatics analysis
Protein identification and quantification were performed using

ProteinPilot software version 5.0 (AB Sciex), with the following

parameters: enzyme specificity was set to trypsin; minimum peptide

length was set to 7 amino acids; fixed modification was

carbamidomethylation of cysteine residues; variable modification

included methionine oxidation; and the false discovery rate

threshold was controlled at 1%. The UniProtKB/Swiss-Prot

human protein database was used as the reference for database

searching. The quantitative data were uploaded to the
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OMICSBEAN platform for subsequent statistical and functional

analysis. Data normalization was carried out, followed by two-tailed

t-tests to identify differentially expressed proteins (DEPs). A fold

change threshold of >1.2 for upregulation and <0.83 for

downregulation was applied, with statistical significance defined

as FDR-adjusted p < 0.05. Principal component analysis (PCA) was

conducted using MetaboAnalyst 5.0, and partial least squares

discriminant analysis (PLS-DA) was performed via SIMCA-P

version 14.1 (Sartorius Stedim Data Analytics AB, Umea,

Sweden). The PLS-DA model was validated through 7-fold cross-

validation and tested with 200 random permutation cycles.

Identified DEPs were further analyzed through volcano plot

visualization, hierarchical cluster heatmaps (18), and functional

enrichment using Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses (19).
2.5 Metabolomics analysis of plasma
samples

2.5.1 Plasma pretreatment and mass
spectrometry analysis

To prepare the metabolite extraction solution, the internal

standard L-2-chlorophenylalanine (0.3 mg/mL in methanol) was

first mixed with a prechilled solvent consisting of methanol and

acetonitrile (2:1, v/v) at −20 °C. Each plasma sample (100 mL) was
then combined with 300 mL of the prepared extraction solvent,

followed by sonication in an ice-cooled water bath for 10 minutes.

The mixture was subsequently incubated at −20 °C for 30 minutes

and centrifuged at 13,000 × g for 15 minutes at 4 °C. From the

resulting supernatant, 100 mL was transferred into a clean

autosampler vial, and 10 mL from each sample was pooled to

create a quality control mixture. Metabolic profiling was

performed using a Waters ACQUITY UPLC system coupled with

a high-resolution Q-TOF Synapt G2 mass spectrometer (Waters,

USA). Chromatographic separation was achieved on an ACQUITY

UPLC BEH C18 column (2.1 × 100 mm, 1.7 mm particle size)

maintained at 45 °C. The mobile phases were composed of 0.1%

formic acid in water (mobile phase A) and 0.1% formic acid in

acetonitrile (mobile phase B), delivered at a flow rate of 0.4 mL/min.

The sample injection volume was 2 mL. Mass spectrometric

detection was performed using an electrospray ionization source,

with data collected in both positive and negative ionization modes.

2.5.2 Processing of the results of metabolomics
mass spectrometry

Raw spectral data were processed using Progenesis QI 2.0

(Nonlinear Dynamics, Newcastle, UK) for peak detection,

alignment, and normalization. Compound annotation employed

publicly available spectral libraries including MassBank, HMDB,

LipidBlast and METLIN; redundant identifications were removed

based on scoring criteria and retention time consistency.

Subsequent statistical analyses were performed in R using the

metaX package (v2.x).
Frontiers in Psychiatry 05
2.5.3 Metabolomics data analysis
The metabolomics data profile was analyzed using multivariate

statistical methods. PCA and PLS-DA were conducted. The variable

importance (VIP) score from PLS-DA was obtained. Metabolites

with VIP scores ≥ 1, fold change ≥ 1.5 or ≤ 0.83, and p < 0.05 were

identified as differentially expressed metabolites (DEMs). Pathway

analysis was performed using MetaboAnalyst 5.0.
3 Results

3.1 DIA proteomics analysis

To identify significant DEPs among the HC, ASD and Tx

groups, DIA proteomics was employed to quantify protein

expression levels across all samples. The PCA of protein

quantification results is presented in Figure 2A, where a higher

degree of clustering among replicate samples indicates better

reproducibility of the quantification data. DEPs were defined

based on the criteria of fold change ≥ 1.2 and p-value < 0.05.

Differential expression between the ASD vs. HC and Tx vs. ASD

groups was visualized through heatmaps (Figure 2B) and volcano

plots (Figures 2C, D). Compared with the HCs, the ASD group

presented 256 upregulated and 84 downregulated DEPs.

Furthermore, in comparison to the ASD group, the Tx group

showed 8 upregulated and 38 downregulated DEPs. Specifically,

the expression levels of ALDOA, RPLP2, ALDOC, UBB, SGRN,

RNH1, HSPA6, TFF3, HYAL1, COL19A1, and PRAM1 were

elevated in the ASD group relative to those in the HC group,

whereas the expression of these proteins was reduced following

treatment in the Tx group. Conversely, LDHC levels were lower in

ASD subjects than in HCs, but increased following acupuncture

treatment in the Tx group (Supplementary Table 1).

We focused our analysis on the DEPs between the Tx and ASD

groups, and subsequently performed functional enrichment

analyses. GO enrichment revealed that “regulation of hydrolase

activity” was the most significantly enriched term in the biological

process (BP), “intermediate filament” under cellular component

(CC), and “fructose-bisphosphate aldolase activity” under

molecular function (MF) categories (Figure 3A). Additionally,

KEGG pathway analysis showed that DEPs were significantly

enriched in the “cell adhesion molecules (CAMs)”, “Prion

diseases”, “Toll-like receptor signaling pathway”, “NF-kappa B

signaling pathway”, and “Malaria” pathways (Figure 3B). We

further employed WoLF PSORT software to predict the

subcellular localization of these DEPs, followed by categorical

statistical analysis. Among the DEPs between the ASD and Tx

groups, 32% were localized to the cytoplasm, 26% to the

extracellular region, 12% to the mitochondrion, 9% to the plasma

membrane, 6% to the nucleus, 6% to the centrosome, and 3% each

to the lysosome, Golgi apparatus, and cytoskeleton (Figure 3C). To

explore the molecular mechanism underlying acupuncture

intervention, we extracted protein interaction data for the

potential target proteins and constructed a protein-protein
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interaction (PPI) network (Figure 3D). Within this network, the

hub proteins with the highest degree of connectivity included EEF2

(P13639), ATP5F1A (P25705), ALDOA (P04075), and TAGLN2

(P37802). These findings suggest that these central proteins may

serve as key molecular targets of acupuncture therapy in ASD.
3.2 LC-MS of metabolic profiles

Ultra-performance liquid chromatography coupled with

quadrupole time-of-flight mass spectrometry was utilized to

compare plasma metabolic profiles across the three groups.

Initially, PCA was conducted to provide an overview of the global

metabolic landscape in both positive-ion and negative-ion modes.

Distinct separation of the HC, ASD, and Tx groups was observed in
Frontiers in Psychiatry 06
both modes (Figures 4A, B), indicating substantial differences in

endogenous plasma metabolites. To further explore metabolic

alterations between groups, PLS-DA was applied. As illustrated in

Figures 4C, D, the metabolic trajectories of the HC and ASD groups

were well separated with minimal overlap, suggesting pronounced

biological alterations associated with ASD. These findings

demonstrate that metabolomics is capable of effectively

distinguishing physiological and pathological states. Moreover,

the ASD group displayed tight clustering, reflecting low

intragroup variability. After acupuncture treatment, significant

differences were observed in the metabolic trajectories between

the ASD and Tx groups, indicating that acupuncture treatment

can affect the plasma metabolic profile of children with ASD

(Figures 4G, H). The predictive performance and robustness of

the PLS-DA models were evaluated through cross-validation. The
FIGURE 2

Statistical analysis of plasma proteins detected by proteomics. (A) PCA analysis of plasma proteins among HC, ASD, Tx groups; (B) Cluster map of the
differentially expressed proteins among HC, ASD, Tx groups; (C) Volcano plots of the differentially expressed proteins between HC and ASD groups;
(D) Volcano plots of the differentially expressed proteins between ASD and Tx groups.
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FIGURE 4

Statistical analysis of plasma metabolites detected by metabolomics
in positive and negative-ion modes. (A, B) PCA analysis of plasma
metabolites among HC, ASD, and Tx groups in positive and
negative-ion modes; (C, D) PLS-DA score plots between HC and
ASD groups in positive and negative-ion modes; (E, F) PLS-DA
validate plots between HC and ASD groups in positive and negative-
ion modes; (G, H) PLS-DA score plots between ASD and Tx groups
in positive and negative-ion modes; (I, J) PLS-DA validate plots
between ASD and Tx groups in positive and negative-ion modes.
FIGURE 3

Comparison of differentially expressed proteins of plasma. (A) GO
enrichment analysis of differentially expressed proteins between
ASD and Tx groups; (B) KEGG pathway analysis of differentially
expressed proteins between ASD and Tx groups; (C) Subcellular
localization analysis of differentially expressed proteins between
ASD and Tx groups; (D) Protein-protein interaction network
analysis of differentially expressed proteins between ASD and
Tx groups.
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results indicate that the PLS-DA models exhibit strong predictive

ability and minimal risk of overfitting in both positive-ion mode

(Figures 4E, I) and negative-ion mode (Figures 4F, J).

Heatmaps generated using R software (v. 3.4.1) were employed

to compare the average normalized abundance of differentially

expressed metabolites among the three groups, demonstrating

marked variations in metabolite profiles across groups

(Figures 4A, B). Each color block in the heatmap reflects the

relative abundance of a specific metabolite based on

normalization, with rows representing individual metabolites and

columns corresponding to the HC, ASD, or Tx group. Color

intensity indicates the relative metabolite level, thereby allowing

intuitive visualization of expression patterns. The metabolite

content in the HC and ASD groups exhibited clearly differed, and

the levels of several potential biomarkers were also distinctly

different between the Tx and ASD groups. Importantly,

metabolite levels in the Tx group tended to approximate those in

the HC group, suggesting a partial reversal of ASD-related

metabolic alterations. To identify discriminatory metabolites,

variable importance in VIP values from PLS-DA were used.

Metabolites with VIP > 1.0 and p < 0.05 were designated as

potential biomarkers. In positive-ion mode, 137 metabolites (54

upregulated, 83 downregulated) were identified between ASD and

HC group, and 54 metabolites (25 upregulated, 29 downregulated)

between Tx and ASD group. Similarly, in negative-ion mode, 74 (48

upregulated, 26 downregulated) and 28 (15 upregulated, 13

downregulated) differential metabolites were identified,

respectively. Details of these metabolites are provided in

Supplementary Table 2. VIP plots (Figures 5C–F) illustrate that

ion fragments located closer to the extremes of the V-shaped

distribution contributed more significantly to the observed

metabolic shifts, whereas those near the center have lesser influence.

In positive-ion mode, the ASD group exhibited elevated levels of

(R)-isomucronulatol, oleamide, morusimic acid D, linoleic acid

amide, osthole, cassipourol, cis-11,14-eicosadienoic acid, cohibin

C, 2-amino-1,3,4-tetradecanetriol, toyocamycin, Arg-Phe-Ala, 3-

hydroxyundecanoic acid, denticulatin B, and phytosphingosine

compared to HC. Notably, these metabolites were reduced in the

Tx group, indicating a trend toward normalization. Conversely,

3,7,8,15-Scirpenetetrol, garcinone C, metesind, myxopyronin B,

eplerenone, (Ethoxymethyl)benzene, dehydrocarvacrol, angelitriol,

magnoshinin, hymenoflorin, (S)-(E)-2’-(3,6-Dimethyl-2-heptenyl)-

3’,4’,7-trihydroxyflavanone, ethyl 6,7-dimethoxy-4-oxo-2,3-

dihydro-1H-naphthalene-2-carboxylate, praeruptorin E,

dibenzylamine, nicotine-cis-N-oxide, biotin-XX hydrazide, and

didesmethylisoproturon were reduced in ASD patients relative to

HCs but increased following acupuncture intervention. In negative-

ion mode, metabolites such as perfluoroheptanoic acid,

palifosfamide, heptafluorobutyric acid, perfluorohexanoic acid,

and dibutylone were elevated in ASD, while bellidifolin,

betulalbuside A, and lumpidin were diminished. Acupuncture

appeared to reverse these trends, aligning the Tx group’s

metabolite levels more closely with the HC group.

In total, 82 differentially expressed metabolites were identified

between the Tx and ASD groups. According to KEGG annotations,
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these metabolites were predominantly associated with lipid

metabolism, amino acid metabolism, and global metabolic

pathways (Figure 6A). Further analysis using MetaboAnalyst 5.0

was conducted to elucidate potential mechanisms underlying the

effect of acupuncture on ASD. Pathways with an impact score > 0.10

were selected as candidate targets. As shown in Figure 6B, key

pathways potentially modulated by acupuncture included folate

biosynthesis, cytochrome P450-mediated drug metabolism,

sphingolipid metabolism, biosynthesis of unsaturated fatty acids,

and alanine, aspartate, and glutamate metabolism.
3.3 Combined analysis of proteomics and
metabolomics

To further elucidate the mechanism of acupuncture in treating

ASD, we constructed an integrated interaction network combining

proteomics and metabolomics. A total of 46 DEPs and 82 DEMs

identified from the above analyses were imported into KEGG

Mapper for network correlation analysis. The resulting protein-

metabolite interaction network, built with high-confidence

associations. Among the key metabolites identified were osthole,

MG(0:0/20:1(11Z)/0:0), heptanoylcarnitine, linoleic acid amide,

and palifosfamide. These metabolites were enriched in pathways

such as fatty acid degradation, butanoate metabolism, fatty acid

elongation, fructose and mannose metabolism, and propanoate

metabolism, all of which are significantly modulated by

acupuncture. These metabolic pathways are closely associated

with several core regulatory proteins, including CD59, CD5L,

SH3BGRL3, and PSMD2, which may serve as potential

therapeutic targets in acupuncture-mediated ASD intervention

(Figures 7A, B).
4 Discussion

ASD presents a multifaceted clinical and biological challenge,

with its pathogenesis involving immune dysregulation,

mitochondrial dysfunction, synaptic abnormalities, and

environmental influences. Despite the widespread use of

acupuncture in clinical practice for ASD in East Asia, the

molecular mechanisms underlying its therapeutic effects have

remained poorly understood (20). This study represents the first

attempt to systematically integrate proteomic and metabolomic

approaches to elucidate the systemic impact of acupuncture in

children with ASD. By analyzing paired pre- and post-treatment

samples, and including age- and sex-matched typically developing

controls, our findings shed light on key molecular networks

modulated by acupuncture and reveal potential biomarkers and

therapeutic targets.

One of the most prominent findings of this study was the

restoration of several immune-related proteins following

acupuncture, notably CD59, CD5L, HSPA6, and EEF2. These

proteins converge on pathways involved in innate immunity,

complement regulation, and neuroinflammation, which are
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increasingly recognized as central to ASD pathophysiology (21–25).

Our results support previous observations that complement system

disruption impairs synaptic pruning during neurodevelopment,

leading to cortical hyperconnectivity, a hallmark of ASD (26, 27).

More importantly, we propose that acupuncture may exert its
Frontiers in Psychiatry 09
therapeutic effects through targeted modulation of the

complement cascade and associated inflammatory mediators, thus

promoting immunological homeostasis. This immune-modulatory

role of acupuncture aligns with accumulating evidence linking

systemic inflammation and neuroimmune signaling in ASD (28,
FIGURE 5

Comparison of differentially expressed metabolites of plasma. (A, B) Cluster analysis of differentially expressed metabolites among HC, ASD, and Tx
groups in positive and negative-ion modes; (C, D) Volcano plots of differentially expressed metabolites between HC and ASD groups in positive and
negative-ion modes; (E, F) Volcano plots of differentially expressed metabolites between ASD and Tx groups in positive and negative-ion modes.
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29). Notably, CD59 and CD5L are key regulators of complement-

mediated cytotoxicity, and their upregulation post-treatment may

reflect a shift toward resolving chronic immune activation. These

findings offer a potential mechanistic explanation for the clinical

improvements observed with acupuncture and highlight the

immune system as a viable intervention target in ASD.

In parallel with immune changes, proteomic profiling revealed

significant alterations in mitochondrial and glycolytic enzymes

following acupuncture. These included ATP5F1A, ALDOA,

ALDOC, LDHC, and HYAL1. These differentially expressed

proteins play key roles in energy metabolism: ATP5F1A is
Frontiers in Psychiatry 10
involved in mitochondrial oxidative phosphorylation; ALDOA

and ALDOC function in glycolysis; LDHC catalyzes the

conversion of lactate to pyruvate during anaerobic glycolysis; and

HYAL1 mediates the degradation of hyaluronan, contributing to

extracellular matrix and glycosaminoglycan metabolism (30–33).

Mitochondrial dysfunction is a consistent feature in ASD, and its

impact on neuronal function, synaptic transmission, and

neurodevelopment is well-documented (34–37). Our findings

suggest that acupuncture may contribute to restoring

mitochondrial homeostasis and energy supply in the autistic

brain. Interestingly, ALDOC, a brain-specific isoform expressed
FIGURE 6

The biological analysis of differentially expressed metabolites of plasma. (A) KEGG classification of differentially expressed metabolites; (B) KEGG
pathway analysis of differentially expressed metabolites.
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in hippocampal and cerebellar regions, was among the most

responsive proteins to treatment, supporting a regionally selective

effect. The observed upregulation of ATP5F1A further implies

enhanced oxidative phosphorylation capacity post-treatment.

These data collectively suggest that acupuncture may rebalance

central energy metabolism, offering both neuroprotective and

functional support in ASD-affected neural circuits.

Metabolomic analysis revealed that plasma metabolites

regulated by acupuncture treatment in children with ASD were
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primarily involved in lipids and lipid-like molecules (such as

betulalbuside A, lumpidin, and eplerenone) and benzenoids (such

as dibutylone, dibenzylamine, and didesmethylisoproturon). The

brain’s high lipid content and dependency make it especially

sensitive to lipid imbalances, which are closely linked to synaptic

function and myelin integrity (38). Our results suggest that

acupuncture may help restore lipid homeostasis, potentially

benefiting neurodevelopmental processes affected in ASD (39–41).

Meanwhile, acupuncture also modulated plasma levels of benzenoid
FIGURE 7

Combined analysis of proteomics and metabolomics. (A) Network diagram of the association analysis of proteins and metabolites; (B) Joint pathway
analysis diagram of proteomics and metabolomics.
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compounds, a class of environmental neurotoxicants. Benzene

derivatives have been shown to induce structural and functional

brain damage, including myelin abnormalities and axonal loss (42).

Their reduction following treatment may reflect enhanced

detoxification or metabolic clearance. Considering the established

association between early-life benzene exposure and ASD risk (43),

as well as links to ADHD-like symptoms (44), this suggests

acupuncture may play a dual role in regulating both endogenous

lipid metabolism and exogenous toxin burden, thereby supporting

neurobiological function in ASD.

Another salient pathway enriched in our analysis was folate

biosynthesis. Folate is a key cofactor in one-carbon metabolism,

which governs essential biological processes such as DNA

methylation, nucleotide synthesis, and redox balance (45–49).

Dysregulation or deficiency of folate has been implicated in ASD,

particularly through epigenetic mechanisms like hypomethylation.

Our findings suggest that acupuncture may support folate

metabolism (50–53), potentially enhancing one-carbon cycle

activity and contributing to improved neurodevelopmental

outcomes (54, 55). This is especially relevant given the

consistently reported low serum folate levels in individuals with

ASD and the well-established benefits of maternal folate

supplementation in reducing ASD risk (56–60). Acupuncture may

thus serve as a non-pharmacological approach to improve

methylation capacity and mitigate neurodevelopmental

vulnerability in at-risk populations.
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Our study also revealed significant modulation of fatty acid

degradation pathways, suggesting that acupuncture may promote a

shift toward anti-inflammatory lipid mediator profiles.

Polyunsaturated fatty acids, particularly arachidonic acid

derivatives, play key roles in immune regulation (61). In ASD, an

elevated omega-6 to omega-3 fatty acid ratio is commonly observed

and is associated with a heightened proinflammatory state (62).

Notably, increased levels of arachidonic acid-derived diols have

been linked to more severe ASD symptoms and impaired adaptive

functioning (63–65). These diols are produced from anti-

inflammatory epoxy fatty acids via soluble epoxide hydrolase, a

conversion that diminishes anti-inflammatory potential (66, 67).

Our results suggest that acupuncture may inhibit this enzymatic

conversion, thereby preserving epoxy fatty acids, which are known

to suppress NF-kB activation and proinflammatory cytokine

transcription (66). This shift may also enhance IL-10 production

in microglia, a key anti-inflammatory and neuroprotective

mechanism within the central nervous system (68). Taken

together, these findings offer a novel perspective on acupuncture’s

immuno-lipid effects, highlighting a potentially synergistic

mechanism that bridges energy metabolism, lipid signaling, and

immune modulation in ASD.

Collectively, our results suggest that acupuncture exerts

therapeutic effects in ASD by restoring system-level homeostasis

through a multi-pathway mechanism. These mechanisms include

immune modulation, mitochondrial support, synaptic regulation,
FIGURE 8

The mechanisms and potential biomarkers can be obtained in children with ASD with acupuncture treatment. Bold letters indicate that these
pathways are related to the DEPs and DEMs in this study.
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epigenetic enhancement, and detoxification—representing a holistic

correction of biological imbalances consistent with traditional

Chinese medicine theory. This multi-omics study also identifies

novel biomarker candidates (such as CD59, ATP5F1A, ALDOC,

LDHC, HYAL1) for tracking acupuncture response and provides a

biological basis for individualized treatment approaches.

Furthermore, our findings open avenues for integrating

acupuncture with dietary or metabolic therapies to enhance

clinical efficacy.

However, several limitations should be acknowledged. First, the

small sample size may reduce statistical power and generalizability.

Recruitment was challenging due to the vulnerable nature of

children with ASD and parental hesitancy toward invasive

procedures such as blood sampling. In addition, the high costs

and technical demands associated with proteomic and metabolomic

analyses further constrained sample size. Second, the absence of a

sham acupuncture control group limits the ability to isolate the

specific physiological effects of acupuncture. It is ethically

controversial to expose pediatric participants to invasive

procedures that offer no direct therapeutic benefit, and many

caregivers were understandably reluctant to consent to non-

therapeutic interventions. Furthermore, true and sham

acupuncture differ in tactile perception, which may be easily

detected by children with heightened sensory sensitivity, thus

complicating blinding procedures. Future research should aim to

overcome these challenges by recruiting larger and more diverse

populations, and by developing ethically appropriate and

methodologically feasible control conditions to improve the rigor

and interpretability of the findings.

Although several key DEPs and DEMs were identified in this

study, their biological functions remain to be experimentally

verified. Future investigations integrating targeted assays such as

enzyme-linked immunosorbent assays and western blotting will be

essential to validate these candidate biomarkers and to strengthen

the mechanistic interpretation of the omics results. Furthermore, to

enhance the translational impact of our study, future research

should aim to correlate these molecular changes with clinically

relevant behavioral outcomes in children with ASD. This could be

achieved through the inclusion of standardized behavioral

assessments, such as the ABC or CARS, before and after

treatment. By examining the relationship between specific

molecular alterations and improvements in ASD symptoms, we

can provide a more comprehensive understanding of the

therapeutic mechanisms of acupuncture. Such studies will help

bridge the gap between molecular findings and clinical outcomes,

ultimately informing more personalized and effective treatments for

children with ASD.
5 Conclusion

This study provides the first multi-omics evidence that

acupuncture exerts therapeutic effects in children with ASD by
Frontiers in Psychiatry 13
modulating immune, metabolic, neurochemical, and detoxification

pathways (Figure 8). Key proteomic changes included the

regulation of immune markers, mitochondrial and glycolytic

proteins, and synaptic-related molecules. Metabolomic profiling

revealed disruptions in lipids, benzenoids, and folate biosynthesis.

Importantly, acupuncture appeared to enhance fatty acid

degradation, suggesting a shift toward anti-inflammatory lipid

signaling. These findings support a systems-level mechanism

through which acupuncture restores physiological balance,

aligning with Traditional Chinese Medicine principles. Candidate

biomarkers identified in this study may inform therapeutic

monitoring and individualized interventions. Further studies with

larger samples and functional validation are needed to confirm

these mechanisms and support clinical translation.
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