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Acupuncture enhances
fatty acid catabolism and
Immune modulation in
children with autism

Jinbo Xu*? and Chao Bao™

The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China, 2Anhui Provincial
Children's Hospital, Hefei, China

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental
condition with limited effective therapies targeting its underlying biological
mechanisms. Acupuncture has shown clinical promise in improving core ASD
symptoms, yet its molecular effects remain poorly understood. This study aimed
to investigate the systemic mechanisms by which acupuncture exerts
therapeutic effects in ASD, using an integrated plasma-based proteomic and
metabolomic approach. Twenty children were enrolled, including 10 diagnosed
with ASD and 10 age- and sex-matched typically developing controls. The ASD
group received a 12-week standardized acupuncture intervention. Plasma
samples were collected before and after treatment, and analyzed using data-
independent acquisition-based LC-MS/MS for proteomics and high-resolution
mass spectrometry for metabolomics. Differentially expressed proteins and
metabolites were identified across healthy controls, pre-treatment, and post-
treatment ASD groups, followed by pathway enrichment and integrated network
analysis. Acupuncture significantly modulated biological pathways related to
immune regulation, mitochondrial oxidative phosphorylation, glycolysis, folate
biosynthesis, lipid metabolism, and fatty acid degradation. Notable differentially
expressed proteins included CD59 and CD5L, ATP5F1A and ALDOC, and HYALL.
Metabolomic profiling revealed altered levels of lipids, lipid-like molecules,
benzenoids, and folate-related metabolites, implicating changes in
neurochemical balance and detoxification capacity. Fatty acid degradation
pathways were also enhanced, suggesting a systemic metabolic shift toward
an anti-inflammatory state. Integrating proteomic and metabolomic data, the
results support a multi-system mechanism through which acupuncture restores
immune—-metabolic homeostasis, consistent with the holistic therapeutic
framework of traditional Chinese medicine. The identification of candidate
biomarkers such as CD59, ATP5F1A, and ALDOC offers potential tools for
therapeutic monitoring and mechanistic insight. This study presents the first
multi-omics evidence for the biological basis of acupuncture in ASD and provides
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a rationale for individualized interventions. These findings support future
research integrating acupuncture with metabolic, nutritional, or immunological
therapies. Larger-scale, controlled trials with functional validation of molecular
targets are warranted to confirm these findings and guide clinical translation.

Clinical Trial Registration: https://itmctr.ccebtcm.org.cn/mgt/project/view/
896756278374891597/, identifier ITMCTR2025000067.

autism spectrum disorder, metabolomics, proteomics, acupuncture, plasma

1 Introduction

Autism spectrum disorder (ASD) encompasses a group of
complex neurodevelopmental conditions characterized by early-
onset impairments in social interaction, communication, and the
presence of restricted, repetitive behaviors and interests (1). The
global prevalence of ASD has been increasing steadily, with recent
epidemiological estimates suggesting that approximately 1 in 36
children are affected (2). Between 2017 and 2020, the United States
reported a 52% rise in ASD diagnoses, reflecting heightened
awareness and diagnostic capacity, but also underscoring the
urgency of effective therapeutic strategies (3). Despite decades of
research, ASD remains a condition with no definitive cure. Early
behavioral interventions have demonstrated some efficacy in
mitigating symptoms and promoting social integration (4, 5).
Nonetheless, outcomes are highly variable and often insufficient
in addressing core impairments such as social cognition, language
development, and adaptive behavior (6). Pharmacological
treatments have largely focused on managing associated
symptoms like irritability or hyperactivity, while providing
minimal benefit for core features of ASD and frequently causing
adverse effects such as sedation, weight gain, and tremors (7, 8).
These limitations, coupled with the substantial emotional and
economic burden on families and healthcare systems, have
intensified the search for adjunctive or alternative treatment
modalities (9).

Among complementary and alternative approaches,
acupuncture has gained prominence in East Asian countries,
particularly China, as an adjunctive therapy for ASD. A survey in
Hong Kong revealed that approximately 40% of children diagnosed
with ASD received acupuncture treatment, making it the most
commonly used non-conventional therapy in this population (10).
Acupuncture is officially recognized in China as an alternative
therapeutic option for neurodevelopmental disorders, including
ASD. However, despite its widespread application, the
neurobiological mechanisms through which acupuncture exerts
therapeutic effects in ASD remain poorly understood. This
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mechanistic ambiguity limits its acceptance in mainstream clinical
practice and calls for rigorous scientific inquiry.

Emerging evidence suggests that autism spectrum disorder
involves a constellation of complex and systemic biological
processes, including neuroinflammation, oxidative stress, synaptic
dysfunction, and disturbances in gut-brain axis signaling. These
multifactorial characteristics reflect the heterogeneous and dynamic
nature of ASD pathophysiology, posing significant challenges for
conventional single-target therapeutic strategies. Interestingly, such
systemic features resonate with the holistic philosophy of traditional
Chinese medicine, which emphasizes functional balance and system-
level modulation across interconnected physiological networks.

In this context, multi-omics technologies offer powerful tools
for decoding the biological underpinnings of acupuncture from a
systems biology perspective. Proteomics allows large-scale profiling
of protein expression and intracellular signaling pathways, shedding
light on potential molecular targets influenced by acupuncture
interventions (11). Meanwhile, metabolomics captures the
dynamic flux of endogenous small-molecule metabolites
associated with neurodevelopment, immune function, and energy
metabolism (12). Notably, the system-level insights enabled by
proteomics and metabolomics align closely with traditional
Chinese medicine theory’s diagnostic and therapeutic principles,
which focus on pattern differentiation and systemic regulation (13).

Despite their theoretical compatibility, integrated multi-omics
approaches have rarely been applied to investigate the mechanistic
basis of acupuncture in ASD. To address this critical gap, the
present study employs a combined analytical strategy using data-
independent acquisition (DIA)-based plasma proteomics and liquid
chromatography-mass spectrometry (LC-MS)-based
metabolomics. By simultaneously capturing protein-level and
metabolite-level changes, this integrated approach aims to
construct a comprehensive molecular profile of acupuncture’s
effects in children with ASD. Ultimately, our goal is to elucidate
the potential biological mechanisms through which acupuncture
modulates ASD-related pathophysiology and to contribute
objective evidence for its clinical application.
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2 Materials and methods

2.1 Materials

The reagents and materials used in this study were sourced from
the following suppliers: Dithiothreitol, iodoacetamide, ammonium
bicarbonate, trifluoroacetic acid, tetraethylammonium bromide
buffer, and ammonia were obtained from Sigma-Aldrich
(Shanghai, China). The iRT kit as well as the Bradford protein
quantification kit were purchased from Biognosys (Beijing, China).
Formic acid, ultrapure water, acetonitrile, and the HighSelectTM
Topl4 Abundant Protein Depletion Mini Spin Columns kit were
acquired from Thermo Fisher Scientific (Massachusetts, USA).
Sodium dodecyl sulfate was supplied by the China National
Pharmaceutical Group (Beijing, China), and mass spectrometry-
grade trypsin was obtained from Promega (Beijing, China). Acetone
was obtained from the Beijing Chemical Reagent Factory (Beijing,
China). Sterile, single-use acupuncture needles measuring 0.30 mm
in diameter and 25 mm in length were provided by the Suzhou
Medical Supplies Factory (Suzhou, China).

2.2 Participants and groups

This study aimed to investigate the proteomic and metabolomic
changes in pediatric children with ASD undergoing a standardized
acupuncture intervention, and to compare these changes with
typically developing controls. A total of 20 participants were
recruited from Anhui Provincial Children’s Hospital (Hefei,
China), including 10 children with ASD who were clinical
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patients from the rehabilitation department and 10 typically
developing children matched for age and sex, who were recruited
from the hospital’s health examination center. The ASD group
comprised 8 boys and 2 girls, aged 3 to 7 years (mean * SD:
4.3 £ 1.1 years). The typically developing group comprised 8 boys
and 2 girls, aged 3 to 7 years (mean * SD: 4.2+ 1.2 years). Inclusion
criteria for ASD children included a confirmed diagnosis using the
Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition criteria and scoring > 70 on the Childhood Autism
Rating Scale. Exclusion criteria included known genetic
syndromes, recent medication use, or participation in other
clinical trials. The developing children had no known
developmental, neurological, or psychiatric disorders and were
recruited from local preschools. Peripheral venous blood (4 mL)
was drawn from each participant in the morning after overnight
fasting, using ethylenediaminetetraacetic acid-coated anticoagulant
tubes. For ASD patients, samples were collected both before and
after the acupuncture intervention; for typically developing
children, a single sample was collected at baseline. Based on
collection timing and clinical status, blood samples were
categorized into three groups: healthy control (HC), ASD pre-
treatment (ASD), and ASD post-treatment (Tx). Genomic DNA
was isolated from fresh blood using the phenol-chloroform
extraction technique. DNA extracts were dissolved in Tris
(hydroxymethyl)aminomethane-Ethylenediaminetetraacetic acid
buffer containing anhydrous ethanol and standardized to a
concentration of 50 ng/uL for downstream analysis. An overview
of the experimental workflow is illustrated in Figure 1. This study

was approved by the Ethics Committee of Anhui Provincial
Children’s Hospital (No. EYLL-2024-016).
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FIGURE 1
Flow diagram of the study.
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2.3 Acupuncture treatment

The acupuncture intervention employed a standardized
protocol targeting the following specific acupoints: Baihui
(GV20), Sishencong (EX-HN1), Yintang (EX-HN3), Tianshu
(ST25), Zusanli (ST36), and Shangjuxu (ST37). Acupoint
localization was performed in accordance with the World Health
Organization Standard Acupuncture Point Locations, ensuring
anatomical accuracy and consistency (14). After routine
disinfection of the skin, the angle and depth of needle insertion
were adjusted based on the basis of the anatomical characteristics
and therapeutic requirements of each acupoint. Participants
underwent acupuncture three times per week, with each session
lasting 30 minutes, over a 12-week treatment period. Participants in
the ASD group underwent acupuncture three times per week, each
session lasting 30 minutes, over a 12-week treatment period. The
selection of a 12-week duration is supported by previous clinical
studies in pediatric neurodevelopmental disorders, which have
reported significant therapeutic effects within 12 weeks of
acupuncture treatment (15, 16). All procedures were conducted in
compliance with the Standards for Reporting Interventions in
Clinical Trials of Acupuncture guidelines.

2.4 Proteomic analysis of plasma samples

2.4.1 Total protein extraction

To enrich plasma proteins, 500 pg of nanomagnetic bead
material (50 uL suspension volume) was aspirated and subjected
to magnetic separation to discard the supernatant. The beads were
washed once using an appropriate volume of wash buffer.
Subsequently, an equal volume of wash buffer and plasma was
added to the beads and incubated at 37°C with agitation at 1500
rpm for 1 hour. After incubation, magnetic separation was
performed to remove the supernatant. The magnetic beads were
washed three times using three volumes of wash buffer, shaking for
5 minutes per wash cycle. This washing procedure was repeated
three times to ensure optimal removal of non-specifically bound
components. The final product, bound to the surface of the
magnetic beads, contained the enriched plasma proteins.

2.4.2 Protein quantification and quality
assessment

A bovine serum albumin standard curve was constructed
following the Bradford protein assay protocol, using standard
concentrations ranging from 0 to 0.5 g/L. Standard bovine serum
albumin solutions and appropriately diluted sample solutions were
loaded into a 96-well microplate, with a final volume of 20 uL per
well. Each concentration was measured in triplicate. Next, 180 pL of
G250 dye reagent was swiftly added to each well, and the plate was
incubated at room temperature for 5 minutes. Absorbance was
measured at 595 nm, and the standard curve was used to determine
the protein concentrations of the unknown samples. For quality
control, 20 g of protein per sample was applied to a 12% SDS-
PAGE gel. Electrophoresis was performed at 80 V for 20 minutes
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through the stacking gel, followed by 120 V for 90 minutes through
the resolving gel. After electrophoresis, the protein bands were
visualized using Coomassie Brilliant Blue R-250 staining, followed
by destaining until clear bands were visible.

2.4.3 Trypsin digestion

Each protein sample was adjusted to a final volume of 100 pL
using DB lysis buffer (8 M urea, 100 mM TEAB, pH 8.5). Trypsin
and 100 mM TEAB buffer were then added, and the mixture was
incubated at 37°C for 4 hours, followed by a second digestion step
where additional trypsin was added for overnight digestion. The
digestion was halted by adjusting the pH to below 3 with formic
acid, and the samples were subsequently centrifuged at 12,000 x g
for 5 minutes at room temperature. The supernatant was carefully
applied to a C18 desalting column, washed three times with washing
buffer (0.1% formic acid, 3% acetonitrile), and eluted with elution
buffer (0.1% formic acid, 70% acetonitrile). The eluates were
collected and lyophilized for subsequent analysis (17).

2.4.4 LC-MS/MS analysis based in DIA mode
Mobile phase A was composed of 100% H,O with 0.1% formic
acid, while mobile phase B consisted of 80% acetonitrile and 0.1%
formic acid. Lyophilized peptide samples were reconstituted in 10
UL of mobile phase A and centrifuged at 14,000 x g for 20 minutes
at 4°C, and 200 ng of the resulting supernatant was used for LC-MS/
MS analysis. Chromatographic separation was carried out on a
Vanquish Neo ultrahigh performance liquid chromatography
system, equipped with a C18 trap column (5 mm X 300 pwm,
5 um, Thermo, Cat# 174500), maintained at 50°C in a column
oven. Analytical separation was performed using a C18 analytical
column (PepMapTM
chromatography, 150 pm x 15 cm, 2 um, Thermo, Cat# ES906).
Detection was conducted using a Thermo Orbitrap Astral mass

Neo ultrahigh performance liquid

spectrometer with an easy-spray electrospray ionization source. The
spray voltage was set to 2.0 kV, and the ion transfer tube
temperature was maintained at 290°C. Data acquisition was done
in DIA mode, with the full scan MS1 range set to m/z 380-980, and
the resolution was 240,000 at m/z 200, with an automatic gain
control set to 500%. The precursor ion isolation window was 2 Th,
and 300 DIA windows were applied. Fragmentation was performed
with a normalized collision energy of 25%. MS2 spectra were
acquired in the m/z 150-2000 range with a resolution of 80,000
(Astral) and a maximum injection time of 3 ms. The resulting raw
files were used for downstream mass spectrometry data analysis.

2.4.5 Database search and bioinformatics analysis

Protein identification and quantification were performed using
ProteinPilot software version 5.0 (AB Sciex), with the following
parameters: enzyme specificity was set to trypsin; minimum peptide
length was set to 7 amino acids; fixed modification was
carbamidomethylation of cysteine residues; variable modification
included methionine oxidation; and the false discovery rate
threshold was controlled at 1%. The UniProtKB/Swiss-Prot
human protein database was used as the reference for database
searching. The quantitative data were uploaded to the
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OMICSBEAN platform for subsequent statistical and functional
analysis. Data normalization was carried out, followed by two-tailed
t-tests to identify differentially expressed proteins (DEPs). A fold
change threshold of >1.2 for upregulation and <0.83 for
downregulation was applied, with statistical significance defined
as FDR-adjusted p < 0.05. Principal component analysis (PCA) was
conducted using MetaboAnalyst 5.0, and partial least squares
discriminant analysis (PLS-DA) was performed via SIMCA-P
version 14.1 (Sartorius Stedim Data Analytics AB, Umea,
Sweden). The PLS-DA model was validated through 7-fold cross-
validation and tested with 200 random permutation cycles.
Identified DEPs were further analyzed through volcano plot
visualization, hierarchical cluster heatmaps (18), and functional
enrichment using Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses (19).

2.5 Metabolomics analysis of plasma
samples

2.5.1 Plasma pretreatment and mass
spectrometry analysis

To prepare the metabolite extraction solution, the internal
standard L-2-chlorophenylalanine (0.3 mg/mL in methanol) was
first mixed with a prechilled solvent consisting of methanol and
acetonitrile (2:1, v/v) at =20 °C. Each plasma sample (100 puL) was
then combined with 300 UL of the prepared extraction solvent,
followed by sonication in an ice-cooled water bath for 10 minutes.
The mixture was subsequently incubated at —20 °C for 30 minutes
and centrifuged at 13,000 x g for 15 minutes at 4 °C. From the
resulting supernatant, 100 UL was transferred into a clean
autosampler vial, and 10 UL from each sample was pooled to
create a quality control mixture. Metabolic profiling was
performed using a Waters ACQUITY UPLC system coupled with
a high-resolution Q-TOF Synapt G2 mass spectrometer (Waters,
USA). Chromatographic separation was achieved on an ACQUITY
UPLC BEH C18 column (2.1 x 100 mm, 1.7 um particle size)
maintained at 45 °C. The mobile phases were composed of 0.1%
formic acid in water (mobile phase A) and 0.1% formic acid in
acetonitrile (mobile phase B), delivered at a flow rate of 0.4 mL/min.
The sample injection volume was 2 pL. Mass spectrometric
detection was performed using an electrospray ionization source,
with data collected in both positive and negative ionization modes.

2.5.2 Processing of the results of metabolomics
mass spectrometry

Raw spectral data were processed using Progenesis QI 2.0
(Nonlinear Dynamics, Newcastle, UK) for peak detection,
alignment, and normalization. Compound annotation employed
publicly available spectral libraries including MassBank, HMDB,
LipidBlast and METLIN; redundant identifications were removed
based on scoring criteria and retention time consistency.
Subsequent statistical analyses were performed in R using the
metaX package (v2.x).
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2.5.3 Metabolomics data analysis

The metabolomics data profile was analyzed using multivariate
statistical methods. PCA and PLS-DA were conducted. The variable
importance (VIP) score from PLS-DA was obtained. Metabolites
with VIP scores > 1, fold change > 1.5 or < 0.83, and p < 0.05 were
identified as differentially expressed metabolites (DEMs). Pathway
analysis was performed using MetaboAnalyst 5.0.

3 Results
3.1 DIA proteomics analysis

To identify significant DEPs among the HC, ASD and Tx
groups, DIA proteomics was employed to quantify protein
expression levels across all samples. The PCA of protein
quantification results is presented in Figure 2A, where a higher
degree of clustering among replicate samples indicates better
reproducibility of the quantification data. DEPs were defined
based on the criteria of fold change > 1.2 and p-value < 0.05.
Differential expression between the ASD vs. HC and Tx vs. ASD
groups was visualized through heatmaps (Figure 2B) and volcano
plots (Figures 2C, D). Compared with the HCs, the ASD group
presented 256 upregulated and 84 downregulated DEPs.
Furthermore, in comparison to the ASD group, the Tx group
showed 8 upregulated and 38 downregulated DEPs. Specifically,
the expression levels of ALDOA, RPLP2, ALDOC, UBB, SGRN,
RNHI1, HSPA6, TFF3, HYALI, COL19A1, and PRAMI1 were
elevated in the ASD group relative to those in the HC group,
whereas the expression of these proteins was reduced following
treatment in the Tx group. Conversely, LDHC levels were lower in
ASD subjects than in HCs, but increased following acupuncture
treatment in the Tx group (Supplementary Table 1).

We focused our analysis on the DEPs between the Tx and ASD
groups, and subsequently performed functional enrichment
analyses. GO enrichment revealed that “regulation of hydrolase
activity” was the most significantly enriched term in the biological
process (BP), “intermediate filament” under cellular component
(CC), and “fructose-bisphosphate aldolase activity” under
molecular function (MF) categories (Figure 3A). Additionally,
KEGG pathway analysis showed that DEPs were significantly
enriched in the “cell adhesion molecules (CAMs)”, “Prion

» o«

diseases”, “Toll-like receptor signaling pathway”, “NF-kappa B
signaling pathway”, and “Malaria” pathways (Figure 3B). We
further employed WoLF PSORT software to predict the
subcellular localization of these DEPs, followed by categorical
statistical analysis. Among the DEPs between the ASD and Tx
groups, 32% were localized to the cytoplasm, 26% to the
extracellular region, 12% to the mitochondrion, 9% to the plasma
membrane, 6% to the nucleus, 6% to the centrosome, and 3% each
to the lysosome, Golgi apparatus, and cytoskeleton (Figure 3C). To
explore the molecular mechanism underlying acupuncture
intervention, we extracted protein interaction data for the
potential target proteins and constructed a protein-protein
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interaction (PPI) network (Figure 3D). Within this network, the
hub proteins with the highest degree of connectivity included EEF2
(P13639), ATP5F1A (P25705), ALDOA (P04075), and TAGLN2
(P37802). These findings suggest that these central proteins may
serve as key molecular targets of acupuncture therapy in ASD.

3.2 LC-MS of metabolic profiles

Ultra-performance liquid chromatography coupled with
quadrupole time-of-flight mass spectrometry was utilized to
compare plasma metabolic profiles across the three groups.
Initially, PCA was conducted to provide an overview of the global
metabolic landscape in both positive-ion and negative-ion modes.
Distinct separation of the HC, ASD, and Tx groups was observed in
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both modes (Figures 4A, B), indicating substantial differences in
endogenous plasma metabolites. To further explore metabolic
alterations between groups, PLS-DA was applied. As illustrated in
Figures 4C, D, the metabolic trajectories of the HC and ASD groups
were well separated with minimal overlap, suggesting pronounced
biological alterations associated with ASD. These findings
demonstrate that metabolomics is capable of effectively
distinguishing physiological and pathological states. Moreover,
the ASD group displayed tight clustering, reflecting low
intragroup variability. After acupuncture treatment, significant
differences were observed in the metabolic trajectories between
the ASD and Tx groups, indicating that acupuncture treatment
can affect the plasma metabolic profile of children with ASD
(Figures 4G, H). The predictive performance and robustness of
the PLS-DA models were evaluated through cross-validation. The
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validate plots between HC and ASD groups in positive and negative-
ion modes; (G, H) PLS-DA score plots between ASD and Tx groups
in positive and negative-ion modes; (I, J) PLS-DA validate plots
between ASD and Tx groups in positive and negative-ion modes.
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results indicate that the PLS-DA models exhibit strong predictive
ability and minimal risk of overfitting in both positive-ion mode
(Figures 4E, I) and negative-ion mode (Figures 4F, J).

Heatmaps generated using R software (v. 3.4.1) were employed
to compare the average normalized abundance of differentially
expressed metabolites among the three groups, demonstrating
marked variations in metabolite profiles across groups
(Figures 4A, B). Each color block in the heatmap reflects the
relative abundance of a specific metabolite based on
normalization, with rows representing individual metabolites and
columns corresponding to the HC, ASD, or Tx group. Color
intensity indicates the relative metabolite level, thereby allowing
intuitive visualization of expression patterns. The metabolite
content in the HC and ASD groups exhibited clearly differed, and
the levels of several potential biomarkers were also distinctly
different between the Tx and ASD groups. Importantly,
metabolite levels in the Tx group tended to approximate those in
the HC group, suggesting a partial reversal of ASD-related
metabolic alterations. To identify discriminatory metabolites,
variable importance in VIP values from PLS-DA were used.
Metabolites with VIP > 1.0 and p < 0.05 were designated as
potential biomarkers. In positive-ion mode, 137 metabolites (54
upregulated, 83 downregulated) were identified between ASD and
HC group, and 54 metabolites (25 upregulated, 29 downregulated)
between Tx and ASD group. Similarly, in negative-ion mode, 74 (48
upregulated, 26 downregulated) and 28 (15 upregulated, 13
downregulated) differential metabolites were identified,
respectively. Details of these metabolites are provided in
Supplementary Table 2. VIP plots (Figures 5C-F) illustrate that
ion fragments located closer to the extremes of the V-shaped
distribution contributed more significantly to the observed
metabolic shifts, whereas those near the center have lesser influence.

In positive-ion mode, the ASD group exhibited elevated levels of
(R)-isomucronulatol, oleamide, morusimic acid D, linoleic acid
amide, osthole, cassipourol, cis-11,14-eicosadienoic acid, cohibin
C, 2-amino-1,3,4-tetradecanetriol, toyocamycin, Arg-Phe-Ala, 3-
hydroxyundecanoic acid, denticulatin B, and phytosphingosine
compared to HC. Notably, these metabolites were reduced in the
Tx group, indicating a trend toward normalization. Conversely,
3,7,8,15-Scirpenetetrol, garcinone C, metesind, myxopyronin B,
eplerenone, (Ethoxymethyl)benzene, dehydrocarvacrol, angelitriol,
magnoshinin, hymenoflorin, (S)-(E)-2’-(3,6-Dimethyl-2-heptenyl)-
3’,4’,7-trihydroxyflavanone, ethyl 6,7-dimethoxy-4-o0x0-2,3-
dihydro-1H-naphthalene-2-carboxylate, praeruptorin E,
dibenzylamine, nicotine-cis-N-oxide, biotin-XX hydrazide, and
didesmethylisoproturon were reduced in ASD patients relative to
HCs but increased following acupuncture intervention. In negative-
ion mode, metabolites such as perfluoroheptanoic acid,
palifosfamide, heptafluorobutyric acid, perfluorohexanoic acid,
and dibutylone were elevated in ASD, while bellidifolin,
betulalbuside A, and lumpidin were diminished. Acupuncture
appeared to reverse these trends, aligning the Tx group’s
metabolite levels more closely with the HC group.

In total, 82 differentially expressed metabolites were identified
between the Tx and ASD groups. According to KEGG annotations,
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these metabolites were predominantly associated with lipid
metabolism, amino acid metabolism, and global metabolic
pathways (Figure 6A). Further analysis using MetaboAnalyst 5.0
was conducted to elucidate potential mechanisms underlying the
effect of acupuncture on ASD. Pathways with an impact score > 0.10
were selected as candidate targets. As shown in Figure 6B, key
pathways potentially modulated by acupuncture included folate
biosynthesis, cytochrome P450-mediated drug metabolism,
sphingolipid metabolism, biosynthesis of unsaturated fatty acids,
and alanine, aspartate, and glutamate metabolism.

3.3 Combined analysis of proteomics and
metabolomics

To further elucidate the mechanism of acupuncture in treating
ASD, we constructed an integrated interaction network combining
proteomics and metabolomics. A total of 46 DEPs and 82 DEMs
identified from the above analyses were imported into KEGG
Mapper for network correlation analysis. The resulting protein-
metabolite interaction network, built with high-confidence
associations. Among the key metabolites identified were osthole,
MG(0:0/20:1(11Z)/0:0), heptanoylcarnitine, linoleic acid amide,
and palifosfamide. These metabolites were enriched in pathways
such as fatty acid degradation, butanoate metabolism, fatty acid
elongation, fructose and mannose metabolism, and propanoate
metabolism, all of which are significantly modulated by
acupuncture. These metabolic pathways are closely associated
with several core regulatory proteins, including CD59, CD5L,
SH3BGRL3, and PSMD2, which may serve as potential
therapeutic targets in acupuncture-mediated ASD intervention
(Figures 7A, B).

4 Discussion

ASD presents a multifaceted clinical and biological challenge,
with its pathogenesis involving immune dysregulation,
mitochondrial dysfunction, synaptic abnormalities, and
environmental influences. Despite the widespread use of
acupuncture in clinical practice for ASD in East Asia, the
molecular mechanisms underlying its therapeutic effects have
remained poorly understood (20). This study represents the first
attempt to systematically integrate proteomic and metabolomic
approaches to elucidate the systemic impact of acupuncture in
children with ASD. By analyzing paired pre- and post-treatment
samples, and including age- and sex-matched typically developing
controls, our findings shed light on key molecular networks
modulated by acupuncture and reveal potential biomarkers and
therapeutic targets.

One of the most prominent findings of this study was the
restoration of several immune-related proteins following
acupuncture, notably CD59, CD5L, HSPA6, and EEF2. These
proteins converge on pathways involved in innate immunity,
complement regulation, and neuroinflammation, which are
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increasingly recognized as central to ASD pathophysiology (21-25).
Our results support previous observations that complement system
disruption impairs synaptic pruning during neurodevelopment,
leading to cortical hyperconnectivity, a hallmark of ASD (26, 27).
More importantly, we propose that acupuncture may exert its
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Comparison of differentially expressed metabolites of plasma. (A, B) Cluster analysis of differentially expressed metabolites among HC, ASD, and Tx
groups in positive and negative-ion modes; (C, D) Volcano plots of differentially expressed metabolites between HC and ASD groups in positive and
negative-ion modes; (E, F) Volcano plots of differentially expressed metabolites between ASD and Tx groups in positive and negative-ion modes.
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therapeutic effects through targeted modulation of the
complement cascade and associated inflammatory mediators, thus
promoting immunological homeostasis. This immune-modulatory
role of acupuncture aligns with accumulating evidence linking
systemic inflammation and neuroimmune signaling in ASD (28,
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The biological analysis of differentially expressed metabolites of plasma. (A) KEGG classification of differentially expressed metabolites; (B) KEGG

pathway analysis of differentially expressed metabolites.

29). Notably, CD59 and CD5L are key regulators of complement-
mediated cytotoxicity, and their upregulation post-treatment may
reflect a shift toward resolving chronic immune activation. These
findings offer a potential mechanistic explanation for the clinical
improvements observed with acupuncture and highlight the
immune system as a viable intervention target in ASD.

In parallel with immune changes, proteomic profiling revealed
significant alterations in mitochondrial and glycolytic enzymes
following acupuncture. These included ATP5F1A, ALDOA,
ALDOC, LDHC, and HYALI. These differentially expressed
proteins play key roles in energy metabolism: ATP5F1A is

Frontiers in Psychiatry

involved in mitochondrial oxidative phosphorylation; ALDOA
and ALDOC function in glycolysis; LDHC catalyzes the
conversion of lactate to pyruvate during anaerobic glycolysis; and
HYAL1] mediates the degradation of hyaluronan, contributing to
extracellular matrix and glycosaminoglycan metabolism (30-33).
Mitochondrial dysfunction is a consistent feature in ASD, and its
impact on neuronal function, synaptic transmission, and
neurodevelopment is well-documented (34-37). Our findings
suggest that acupuncture may contribute to restoring
mitochondrial homeostasis and energy supply in the autistic
brain. Interestingly, ALDOC, a brain-specific isoform expressed
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analysis diagram of proteomics and metabolomics.

in hippocampal and cerebellar regions, was among the most
responsive proteins to treatment, supporting a regionally selective
effect. The observed upregulation of ATP5F1A further implies
enhanced oxidative phosphorylation capacity post-treatment.
These data collectively suggest that acupuncture may rebalance
central energy metabolism, offering both neuroprotective and
functional support in ASD-affected neural circuits.

Metabolomic analysis revealed that plasma metabolites
regulated by acupuncture treatment in children with ASD were

Frontiers in Psychiatry

primarily involved in lipids and lipid-like molecules (such as
betulalbuside A, lumpidin, and eplerenone) and benzenoids (such
as dibutylone, dibenzylamine, and didesmethylisoproturon). The
brain’s high lipid content and dependency make it especially
sensitive to lipid imbalances, which are closely linked to synaptic
function and myelin integrity (38). Our results suggest that
acupuncture may help restore lipid homeostasis, potentially
benefiting neurodevelopmental processes affected in ASD (39-41).
Meanwhile, acupuncture also modulated plasma levels of benzenoid
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compounds, a class of environmental neurotoxicants. Benzene
derivatives have been shown to induce structural and functional
brain damage, including myelin abnormalities and axonal loss (42).
Their reduction following treatment may reflect enhanced
detoxification or metabolic clearance. Considering the established
association between early-life benzene exposure and ASD risk (43),
as well as links to ADHD-like symptoms (44), this suggests
acupuncture may play a dual role in regulating both endogenous
lipid metabolism and exogenous toxin burden, thereby supporting
neurobiological function in ASD.

Another salient pathway enriched in our analysis was folate
biosynthesis. Folate is a key cofactor in one-carbon metabolism,
which governs essential biological processes such as DNA
methylation, nucleotide synthesis, and redox balance (45-49).
Dysregulation or deficiency of folate has been implicated in ASD,
particularly through epigenetic mechanisms like hypomethylation.
Our findings suggest that acupuncture may support folate
metabolism (50-53), potentially enhancing one-carbon cycle
activity and contributing to improved neurodevelopmental
outcomes (54, 55). This is especially relevant given the
consistently reported low serum folate levels in individuals with
ASD and the well-established benefits of maternal folate
supplementation in reducing ASD risk (56-60). Acupuncture may
thus serve as a non-pharmacological approach to improve
methylation capacity and mitigate neurodevelopmental
vulnerability in at-risk populations.
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Our study also revealed significant modulation of fatty acid
degradation pathways, suggesting that acupuncture may promote a
shift toward anti-inflammatory lipid mediator profiles.
Polyunsaturated fatty acids, particularly arachidonic acid
derivatives, play key roles in immune regulation (61). In ASD, an
elevated omega-6 to omega-3 fatty acid ratio is commonly observed
and is associated with a heightened proinflammatory state (62).
Notably, increased levels of arachidonic acid-derived diols have
been linked to more severe ASD symptoms and impaired adaptive
functioning (63-65). These diols are produced from anti-
inflammatory epoxy fatty acids via soluble epoxide hydrolase, a
conversion that diminishes anti-inflammatory potential (66, 67).
Our results suggest that acupuncture may inhibit this enzymatic
conversion, thereby preserving epoxy fatty acids, which are known
to suppress NF-kB activation and proinflammatory cytokine
transcription (66). This shift may also enhance IL-10 production
in microglia, a key anti-inflammatory and neuroprotective
mechanism within the central nervous system (68). Taken
together, these findings offer a novel perspective on acupuncture’s
immuno-lipid effects, highlighting a potentially synergistic
mechanism that bridges energy metabolism, lipid signaling, and
immune modulation in ASD.

Collectively, our results suggest that acupuncture exerts
therapeutic effects in ASD by restoring system-level homeostasis
through a multi-pathway mechanism. These mechanisms include
immune modulation, mitochondrial support, synaptic regulation,
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epigenetic enhancement, and detoxification—representing a holistic
correction of biological imbalances consistent with traditional
Chinese medicine theory. This multi-omics study also identifies
novel biomarker candidates (such as CD59, ATP5F1A, ALDOC,
LDHC, HYALL) for tracking acupuncture response and provides a
biological basis for individualized treatment approaches.
Furthermore, our findings open avenues for integrating
acupuncture with dietary or metabolic therapies to enhance
clinical efficacy.

However, several limitations should be acknowledged. First, the
small sample size may reduce statistical power and generalizability.
Recruitment was challenging due to the vulnerable nature of
children with ASD and parental hesitancy toward invasive
procedures such as blood sampling. In addition, the high costs
and technical demands associated with proteomic and metabolomic
analyses further constrained sample size. Second, the absence of a
sham acupuncture control group limits the ability to isolate the
specific physiological effects of acupuncture. It is ethically
controversial to expose pediatric participants to invasive
procedures that offer no direct therapeutic benefit, and many
caregivers were understandably reluctant to consent to non-
therapeutic interventions. Furthermore, true and sham
acupuncture differ in tactile perception, which may be easily
detected by children with heightened sensory sensitivity, thus
complicating blinding procedures. Future research should aim to
overcome these challenges by recruiting larger and more diverse
populations, and by developing ethically appropriate and
methodologically feasible control conditions to improve the rigor
and interpretability of the findings.

Although several key DEPs and DEMs were identified in this
study, their biological functions remain to be experimentally
verified. Future investigations integrating targeted assays such as
enzyme-linked immunosorbent assays and western blotting will be
essential to validate these candidate biomarkers and to strengthen
the mechanistic interpretation of the omics results. Furthermore, to
enhance the translational impact of our study, future research
should aim to correlate these molecular changes with clinically
relevant behavioral outcomes in children with ASD. This could be
achieved through the inclusion of standardized behavioral
assessments, such as the ABC or CARS, before and after
treatment. By examining the relationship between specific
molecular alterations and improvements in ASD symptoms, we
can provide a more comprehensive understanding of the
therapeutic mechanisms of acupuncture. Such studies will help
bridge the gap between molecular findings and clinical outcomes,
ultimately informing more personalized and effective treatments for
children with ASD.

5 Conclusion

This study provides the first multi-omics evidence that
acupuncture exerts therapeutic effects in children with ASD by
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modulating immune, metabolic, neurochemical, and detoxification
pathways (Figure 8). Key proteomic changes included the
regulation of immune markers, mitochondrial and glycolytic
proteins, and synaptic-related molecules. Metabolomic profiling
revealed disruptions in lipids, benzenoids, and folate biosynthesis.
Importantly, acupuncture appeared to enhance fatty acid
degradation, suggesting a shift toward anti-inflammatory lipid
signaling. These findings support a systems-level mechanism
through which acupuncture restores physiological balance,
aligning with Traditional Chinese Medicine principles. Candidate
biomarkers identified in this study may inform therapeutic
monitoring and individualized interventions. Further studies with
larger samples and functional validation are needed to confirm
these mechanisms and support clinical translation.
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