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Introduction: Mindfulness-based cognitive therapy (MBCT) is one of the

promising treatments with no known side effects for neuropsychiatric

conditions such as Attention-deficit/hyperactivity disorder (ADHD). However,

the mechanism of action underlying MBCT is not clearly understood. Here, we

applied resting-state EEG microstate analysis and machine learning modeling to

characterize brain network dynamics in adults with ADHD exposed to MBCT.

Methods: Sixty-one participants were randomized to a 12-week MBCT

intervention or waitlist control (WL), with clinical assessments and EEG

recordings collected pre-to-post trial. We analyzed the microstate dynamics of

EEG data in different frequency bands, comparing four microstate classes (A-D),

and the cross-correlation of microstate dynamics with clinical measures.

Furthermore, machine learning computational techniques were applied to

predict which patients can benefit more from the MBCT intervention based on

their brain dynamics pre-treatment.

Results: Microstate analyses revealed significant MBCT-related alterations in

temporal dynamics, including increased coverage and duration of microstates

A and B, as well as changes in individual explained variance in microstate A (theta

band) and microstate D (alpha band). Coverage and explained variance for

microstate B also showed significant changes across the full spectrum. These

changes were strongly correlated with improvements in ADHD symptomatology,

mindfulness skills, quality of life, and executive function across seven clinical

domains. Critically, machine learning models predicted individual treatment

responses with 83% accuracy using microstate dynamics.

Discussion: These findings demonstrate that MBCT systematically reshapes

resting-state neural microstates in ADHD, including microstate classes A, B,

and D, and suggest that computational EEG biomarkers may inform precision

approaches to mindfulness-based interventions.
KEYWORDS

ADHD, mindfulness-based cognitive therapy, EEG, microstates, machine learning,
precision medicine, computational modeling methods
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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the

most prevalent neuropsychiatric conditions affecting approximately

5% of the adult population. It is defined by levels of inattention,

hyperactivity, and impulsivity that are inappropriate for an individual’s

developmental stage (1). Clinically, individuals with ADHD exhibit

hyperactive and impulsive behaviors, and it is difficult for them to

maintain sustained attention (2). Beyond these core symptoms, the

disorder can also cause a range of cognitive, social, and emotional

impairments (3, 4). Pharmacotherapy for ADHD is one of the most

widely used treatment modalities available, which can be effective for

between 70 and 85 percent of patients (5, 6). However, while these

medications are generally well-tolerated, they are associated with a

spectrum of side effects such as appetite suppression, weight loss,

increased heart rate and blood pressure, irritability, insomnia, anger,

gastrointestinal disturbances (including vomiting and stomach pain),

anxiety, headache, and, in some cases, psychosis. There are even

instances of sudden death reported in patients with pre-existing

cardiac conditions (7). Thus, although medication remains a

relatively safe option when patients are properly evaluated and

monitored, there is a compelling need to explore alternative

treatments, particularly for those patients who do not wish to take

such medications on a long-term basis. One healthcare option may be

mindfulness-based interventions that offer on-par therapeutic benefits

with significantly fewer side effects, if any.

Mindfulness is understood as the deliberate focus on present-

moment experiences with an attitude of acceptance and

nonjudgment (8). During mindfulness practices, such as body

scans, mindful movement, and seated meditation, participants

develop skills to continuously return their focus to the current
Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; MBCT,

Mindfulness-Based Cognitive Therapy; EEG, Electroencephalogram; WL,

Waitlist (control group); ERP, Event-Related Potentials; GFP, Global Field

Power; ASR, Artifact Subspace Reconstruction; EOG, Electrooculogram;

CAARS-SV, Conners’ Adult ADHD Self-rating Scale, Short Version; DSM-IV-

TR, Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text

Revision; OQ-42.5, Outcome Questionnaire, 42.5 items; KIMS, Kentucky

Inventory of Mindfulness Skills; AWA, Act with Awareness (subscale of

KIMS); AWoJ, Accept Without Judgment (subscale of KIMS); BRIEF, Behavior

Rating Inventory of Executive Function; BRI, Behavioral Regulation Index

(subscale of BRIEF); INHI, Inhibition (subscale of BRI);SHIFT, Shifting

(subscale of BRI); EMOT, Emotional Regulation (subscale of BRI); MI,

Metacognition Index (subscale of BRIEF); INAT, Initiation (subscale of MI);

WM, Working Memory (subscale of MI); PLAN, Planning/Organization

(subscale of MI); ORGA, Organization of Materials (subscale of MI); SELF,

Self-Monitor (subscale of MI); TASK, Task Monitor (subscale of MI); GEC,

Global Executive Composite (sum of MI and BRI scores); LZC, Lempel–Ziv

Complexity; HB, High-Benefitters (patient group); LB, Low-Benefitters (patient

group); LR, Logistic Regression (machine learning model); SVM, Support Vector

Machine (machine learning model); RF, Random Forest (machine learning

model); TP, True Positive; TN, True Negative; FP, False Positive; FN, False

Negative; MBSR, Mindfulness-Based Stress Reduction; COI, Conflict of Interest;

CMO, Committee on Research Involving Human Subjects (Arnhem-Nijmegen).

Frontiers in Psychiatry 02
moment. This method is designed to enhance awareness of one’s

thoughts, emotions, physical sensations, and ultimately, behavioral

patterns. Emerging research on mindfulness-based interventions

for adults with ADHD is promising (9, 10). For example, an initial

quantitative review that included three studies on adult ADHD

patients found preliminary support by demonstrating moderate to

large reductions in ADHD symptoms (11). Additionally, a more

recent study, which evaluated clinician-rated ADHD symptoms

alongside improvements in positive mental health over six months,

reported that increases in self-compassion were a key factor

mediating the observed enhancements in positive mental health

attributed to mindfulness-based intervention (12).

Understanding the neural underpinnings of ADHD is essential to

discovering more effective therapies. Recently, atypical resting-state

electroencephalogram (EEG) patterns were emphasized in a review of

the literature for those with ADHD (13). Studies focused mainly on

feature extraction of EEG frequency spectra (14) or event-related

potentials (ERP) (15). Although recent studies have started looking at

different metrics, including the microstate properties calculated in the

resting state (16, 17) and ERP (18–20) data measured in ADHD

groups. Global brain activity representation of multichannel EEG

recordings via microstate analysis was introduced by Lehmann et al.

in 1987 (21). They consist of quasi-stable microstate patterns similar

across all electrodes. This process utilizes data derived from all

electrodes and time points to create a brain activity global map by

calculating the amount of global field power (GFP) reflecting areas of

maximal and minimal activity.

Microstates can be described in both resting-state and event-related

contexts, and it has been previously reported that four canonical

topographies can account for more than 70% of resting-state EEG

data, usually referred to as “microstates A, B, C, and D” (22, 23).

Converging evidence suggests that microstate A has been linked to

auditory and language processing, microstate B to visual networks,

microstate C to default mode activity, and microstate D to attentional

control (24–26). These functional associations provide a useful

interpretive framework, although it should be noted that EEG

microstates are not direct measures of localized brain activity but

rather reflect temporally coordinated dynamics of large-scale neural

networks. Microstates do not ramp up smoothly, but abruptly

transition after hanging out for around 80–120 ms (27). The ‘average

microstate duration’, ‘coverage’, the ‘occurrence of the states’, ‘global

field power/GFP’, and ‘transition probabilities between the states’

represent important metrics for microstate analysis. Despite

increasing evidence on the importance of microstate functionalities

in ADHD, the impact of mindfulness-based cognitive therapy/MBCT

on these EEG measures is still largely unexplored. To the best of our

knowledge, this is the first study to investigate the effects of MBCT on

resting-state EEG microstate dynamics data in adults with ADHD.

Methods

Procedure

The data collection for this study was conducted at Radboud

University in the Netherlands and was approved ethically by the
frontiersin.org
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CMO, Arnhem-Nijmegen. The data analyzed here were part of a

larger neurophysiology investigation in which EEG measures were

collected concomitant to baseline (reported here), and various other

cognitive behavioral paradigms (some of which have been

published earlier, see (28)). Informed written consent was

obtained from each patient to participate in a controlled

randomized study at two time points (pre/T1 and post/T2).

Participants engaged in two sessions of data collection, before and

after a 12-week MBCT program for the active mindfulness

treatment group, and a 12-week waiting period for the waitlist

(WL) passive control group. We conducted the randomization

procedure before starting the data collection in the T1 phase. In

each session, participants were required to fill out clinical measures

and complete an EEG recording procedure.
Participants

Initially, 61 adult ADHD patients were included from the

outpatient unit at Radboud University Nijmegen Medical Centre.

The patients were randomly divided into two groups: 32 of them

received MBCT, and 29 individuals were placed on a waitlist

(Figure 1A). Eleven patients (6 in the MBCT group and 5 in the

WL group) did not attend the post-treatment (T2) testing session.

One individual did not complete the full 12-week MBCT program,

and another one engaged in mindfulness training outside of the study

protocol, whereby both were excluded from the study. Nine other

patients dropped out of the study due to scheduling and

organizational constraints. This attrition led to a final sample size

of 50 patients, with n=26 patients in the MBCT group and n=24

patients in the WL group. Inclusion criteria were a primary diagnosis

of ADHD (as confirmed by three psychiatrists following DSM-IV-TR

criteria) and participants’ ages between 18 and 65 years. Furthermore,

key exclusion criteria included a history of substance abuse or

dependence within the past six months, co-morbid conditions,

such as the presence of psychotic, borderline, antisocial, and/or

other behavioral disorders, and learning difficulties. Of these 50

patients, 31 (15 in the MBCT group, and 16 in the WL group)

were currently on pharmacotherapy. Of these, 19 were treated with

methylphenidate-based drugs, 8 with dextroamphetamine-based

drugs, and 4 with antidepressants. The other 19 patients were given

no medication. For participants on stimulant medications, dosages

were stabilized two weeks before the start of the study, while

participants on non-stimulants were stabilized four weeks prior; no

changes were made to medications during the study.
Clinical measures

Clinical measures were conducted pre-and-post randomized

trial: (i) Conners’ Adult ADHD Self-rating Scale (CAARS-SV)

which measures global DSM-IV ADHD symptoms, ‘inattention’,

and ‘hyperactivity– impulsivity’ subdomains (29); (ii) Quality of

Life (OQ-42.5) test which, besides the global score, measures

‘interpersonal relations’, ‘symptom distress’, and ‘social role’
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subdomains (30); (iii) Kentucky Inventory of Mindfulness Skills

(KIMS) which includes four mindfulness skills: ‘observe’, ‘describe’,

‘act with awareness (AWA)’, and ‘accept without judgment (AWoJ)’

(31). It is worth noting that none of the patients had any exposure

or experience of mindfulness/yoga/etc before the study. (iv)

Behavior Rating Inventory of Executive Function (BRIEF), which

is a standardized assessment tool used to evaluate executive

function behaviors (32). It includes 86 items and is categorized

into two main indices. The Behavioral Regulation Index (BRI) has

three subdomains, including inhibition (INHI), shifting (SHIFT),

and emotional regulation (EMOT). The Metacognition Index (MI)

includes initiation (INAT), working memory (WM), planning/

organization (PLAN), organization of materials (ORGA), self-

monitor (SELF), and Task Monitor (TASK). Furthermore, the

scores of MI and BRI were summed to calculate the Global

Executive Composite (GEC). Severe impairments of executive

functions are identified by higher scores on the BRIEF.
MBCT intervention

The MBCT program is a modified version of an established

protocol that was initially designed for depressive disorders. In this

program, participants engage in structured exercises in 12 weekly

sessions, which take three hours in each session (33, 34). We used

Workbooks, including psycho-educative modules designed

specifically for ADHD patients. The program required an average

time of 30–45 minutes of self-practice per day, which was guided by

compact disks (CDs). A trainer was responsible for monitoring the

patient’s maintenance of self-practice. The course was directed by a

specialist psychiatrist in ADHD, with 9 years of experience in

MBCT training at the time of the study.
Electrophysiological recording

During EEG recording periods, participants were instructed to

keep their shoulders and forehead relaxed and avoid doing eye

movements or blinking as much as possible. EEG signals were

collected using Brain Vision Recorder 1.03 software and QuikAmps

72 equipment (http://BrainProducts.com), captured from 30 Ag/

AgCl active electrode sensors featuring built-in noise cancellation

technology (actiCAP: Brain Products) positioned following the 10–

10 electrode placement system (locations: Fp1, Fp2, AFz, F7, F3, Fz,

F4, F8, FC5, FC1, FCz, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1,

CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz, O2). An average online

reference was applied and later adjusted to the right mastoid during

offline processing. The ground electrode was placed on the

forehead. Vertical and horizontal eye movements were measured

using bipolar electrooculogram recordings obtained from Ag/AgCl

cup electrodes positioned above and below the left eye and 1 cm

from the outer corners of each eye, respectively. Impedance levels

were kept below 10 KΩ. The electrical activity was continuously

recorded at a sampling frequency of 500 Hz, with a band-pass filter

set to 0.1–100 Hz (Figure 1B).
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Signal analysis of microstate classification

The analysis of the signal in our study was initiated by a 0.1 Hz high-

pass filter, a 60 Hz low-pass filter, and a 50 Hz notch filter. To remove

ocular artifacts, we used a regression-based procedure that leverages

EOG channels, as described byGratton et al. (35) andCroft & Barry (36)

(a Python tutorial is available at https://mne.tools/stable/auto_tutorials/

preprocessing/35_artifact_correction_regression.html#footcite-

grattonetal1983) (Figure 1C). After eliminating these artifacts, the

artifact subspace reconstruction (ASR) method (37) was employed
Frontiers in Psychiatry 04
via an EEGLAB plugin to identify and remove additional artifacts

and problematic data segments, using default parameters (including

a maximum 0.5-second window standard deviation of

20) (Figure 1D).

Resting-state EEG microstate analysis was subsequently

performed in MATLAB 2024b with EEGLAB plugin version

2024.2 and the MICROSTATELAB plugin, following the

guidelines outlined by Kalburgi et al. (38). We analyzed EEG

microstates separately in delta (0.5 Hz – 4 Hz), theta (4 Hz – 8

Hz), alpha (8 Hz – 12 Hz), beta (13 Hz – 30 Hz), gamma (30 Hz – 60
FIGURE 1

The representation of the process of the study and the conducted analysis. (A) Participants of the study were divided into two groups: MBCT and
WL, and two time points of pre- and post-interventions. (B) Data acquisition of clinical and EEG data. (C) removing ocular artifacts using a
regression-based method. The image below shows changes after the ocular artifacts rejection procedure. (D) removing bad segments using the
artifact subspace reconstruction (ASR) method. The red segment in the image below represents the portion that was removed during this procedure.
(E) segmenting EEG recordings into different frequency bands. (F) conducting microstate analysis. (G) backfitting and extracting microstate dynamics.
(H) conducting post-hoc analysis, including cross-correlation and machine learning (ML) techniques.
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Hz) frequency bands, and also in full spectrum (0.5 Hz – 60

Hz) (Figure 1E).

Microstate dynamics were derived by initially calculating the

Global Field Power (GFP) of the resting-state data for each

participant (Figure 1F). Topographic maps were then constructed

based on the Global Field Power/GFP peaks because scalp

topographies are rather stable around these peaks and show the

highest signal-to-noise ratio. Those maps were clusterized for each

subject with the k-means algorithm. Global Field Power/GFP is the

measure of the spread of potential across all electrodes at a given

instant for a given time, which is defined as follows:

GFP(t) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Vi(t) − Vmean(t))
2

n

s

Where i denotes the electrode, n represents the total number of

electrodes, V corresponds to the measured voltage, and t refers to

the specific time point.

Grandmeanmaps were constructed by averagingmaps within each

group over participants. We chose the four-class microstate solution for

this work as this solution approximated the most commonly reported

microstate maps found in the literature, making it easier to compare our

data to previous research. Maps were then automatically indexed and

graded as microstates A, B, C, and D according to a template from

Koenig et al. (39). The grand mean maps were next back-fitted on the

single datasets to estimate descriptive parameters for each microstate

classification: Individual explained variance, mean Global Field Power/

GFP, occurrence, duration, coverage, and transition probabilities

(Figure 1G). Occurrence is the average number of appearances of a

microstate per second; Duration is the mean time (in milliseconds)

before x microstate switches to another status; Coverage is the

percentage of the total record time occupied by a microstate.

We calculated the complexity of the sequence of microstate

classes in EEG data by the method proposed by Tait et al. (40). This

method implements the Lempel–Ziv complexity (LZC), which is

defined as the number of various subsets in a set of values

(microstate classes). A sequence with a low number of repeated

subsets is considered to have low complexity. To calculate the

Lempel–Ziv complexity/LZC, we first extracted the microstate data

backfitted in each time point for each subject, then we used a

Python code to measure the number of distinct subsets of

microstate classes that repeat in the first 250 microstates.

For analysis of between-groups (MBCT vs. WL) and changes

between pre- and post-assessments, we used a multi-factor

between- and within-subjects repeated measures ANOVA. The

between-subject factor was Group (MBCT compared to WL), and

the within-subject factor was Time (pre compared to post). In all

statistical tests, p< 0.05 was considered to be significant.
Post-hoc analyses: cross-correlation and
machine learning predictions

We were also interested in the relationship between changes in

microstate dynamics and changes in clinical measures after 12
Frontiers in Psychiatry 05
weeks of mindfulness practice. We examined the normal

distribution of each pair in correlation comparison using the

Shapiro-Wilk test. For normally distributed features, we used

Pearson correlation; in another case, we implemented Spearman

correlation comparison (Figure 1H). The number of subjects in

correlation analysis varied between 13 and 19 in the MBCT group

and 20 to 22 in the WL group (due to missing values).

We implemented machine learning techniques to predict which

patients would potentially garner more benefit from the

mindfulness program based on their baseline data (Figure 1H).

To do so, we first labeled patients as “high-benefitters”/HB and

“low-benefitters”/LB using their clinical measures before and after

MBCT. CAARS global and Quality of Life (OQ-42.5) global scores

were used. We calculated increment change [post-pre] values for

each patient and aggregated CAARS values after negation with OQ-

42.5 values. Higher values of CAARS indicate worse ADHD

symptoms, and higher values of QQ-42.5 indicate better quality

of life. So, we negated all values of CAARS before aggregating with

QQ-42.5 values in order to reach a unified approach. Detailed data

for categorization are prepared in Table 1. Patients with scores

lower than the median were categorized as high-benefitters, and

patients with scores higher than the median were categorized as

low-benefitters. Microstate dynamics were used as machine

learning features to train the model. We implemented 6-fold

cross-validation and three machine learning methods, including

binary logistic regression (LR), support vector machine (SVM), and

random forest (RF), for the treatment response prediction. The

clinical measures of some individuals were missing (because they

did not complete the measures or for other reasons), which resulted

in 18 subjects in the machine learning prediction model. We

reported metrics of the confusion matrix for machine learning

models, including accuracy, sensitivity, and specificity. These

metrics were calculated using true positive (TP, truly labeled as

HB), true negative (TN, truly labeled as LB), false positive (FP,

falsely labeled as HB), and false negative (FN, falsely labeled as LB)

values. Accuracy ((TP+TN)/(TP + TN + FP + FN)) tells us what

percent of the data is labeled correctly as LB and HB. Sensitivity

(TP/(TP + FN)) tells us what percent of HB subjects are correctly

labeled as HB. Specificity (TN/(TN + FP)) tells us what percent of

LB subjects are correctly labeled as LB.
Results

Clinical measure

Groups of the study were matched in terms of age, sex, and

medication status. The results of repeated-measure ANOVA

showed a significant change in clinical measures of CAARS-SV

(ADHD symptoms), OQ-42.5 (quality of life), and KIMS

(mindfulness skills) between groups of the study. Discussion of

clinical measures from the broader study cohort, overlapping with

the sample examined here, has been reported previously (41).

The analysis of BRIEF (executive functioning) clinical scores, as

depicted in Figure 2, indicated that there were a significant decrease
frontiersin.org
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in all three cumulative scores of Behavioral Regulation Index (F1, 47
= 14.54, p< 0.001, h² =0.23), MI (F1, 53 = 14.93, p< 0.001, h² =0.22),
and GEC (F1, 47 = 18.72, p< 0.001, h² =0.28), and 9 subscores of

INHI (F1, 53 = 9.09, p = 0.004, h² =0.14), SHIFT (F1, 47 = 6.58, p =

0.014, h² =0.12), EMOT (F1, 53 = 11.66, p = 0.001, h² =0.18), SELF
(F1, 53 = 5.26, p = 0.026, h² =0.09), INAT (F1, 54 = 5.02, p = 0.029, h²
=0.08), WM (F1, 53 = 6.21, p = 0.016, h² =0.1), PLAN (F1, 54 = 6.04, p

= 0.017, h² =0.1), TASK (F1, 53 = 7.92, p = 0.007, h² =0.13), ORGA
(F1, 53 = 16.99, p< 0.001, h² =0.24), MI (F1, 53 = 14.93, p< 0.001, h²
=0.22), GEC (F1, 47 = 18.72, p< 0.001, h² =0.28).
Microstate dynamics

The topographic microstate maps of grand means are shown in

Figure 3 for each frequency band. The results of statistical analysis

showed that there was a significantly group×time effect between

MBCT and WL groups which shows an increase in coverage of

microstate A (F1, 45 = 6.12, p = 0.017, h² =0.12), a decrease in mean

duration of microstate B (F1, 43 = 7.06, p = 0.011, h² =0.14), and an

increase in individual explained variance of microstate A (F1, 46 =

6.73, p = 0.013, h² =0.13) in the theta frequency band (Figures 4A-

C) in the MBCT group compared to WL. We also observed a

significant group×time effect between groups of the study which

shows a decrease in the coverage of microstate B (F1, 43 = 5.95, p =

0.019, h² =0.12) and a decrease in individual explained variance of

microstate B (F1, 48 = 11.7, p = 0.001, h² = 0.19) when considering
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the whole spectrum of frequency bands in the MBCT group

compared to WL (Figures 4E, F). Our results indicated a

significant increase (F1, 43 = 6.53, p= 0.014, h² = 0.13) of the

individual explained variance of microstate D in the MBCT group

compared to WL in the alpha frequency band (Figure 4D).

As represented in Figure 5, the analysis of transition

probabilities between different microstate classes revealed that

there was a significant difference between groups of the study in

transition probabilities of microstate B to microstate D in full

spectrum (F1, 43 = 5.71, p = 0.021, h² =0.11); microstate A to

microstate C in the delta frequency band (F1, 44 = 6.41, p = 0.015, h²
=0.12); microstate A to microstate B (F1, 44 = 6.43, p = 0.015,

h² =0.12) and microstate B to microstate D (F1, 45 = 4.17, p = 0.047,

h² =0.08) in theta frequency band; and microstate C to microstate D

in alpha frequency band (F1, 45 = 5.32, p = 0.026, h² =0.1).
The results of repeated measures ANOVA indicated that there

was no significant within-subjects difference in Lempel–Ziv

complexity/LZC values in any of the frequency bands.
Post-hoc analyses: cross-correlation

The results of the correlation between clinical score increment

change and microstate dynamics increment change (calculated as

post-pre values) in the different frequency bands indicated that

there was no correlation when considering the MBCT and WL

groups together. However, when splitting the dataset by treatment

Group, we found no significant correlations between these values

within theWL group, but there were various strong correlations (r ≥

0.7) between clinical scores and microstate dynamics in the MBCT

group only. Specifically, in seven pairs of measures (1): Mean global

field power/GFP of microstate A in the delta frequency band and

BRIEF shifting scores (r = 0.8463, p = 0.0002) (2); Mean global field

power/GFP of microstate D in the delta frequency band and BRIEF

shifting scores (r = 0.7652, p = 0.0023) (3); Coverage of microstate B

in the theta frequency band and KIMS Act Without Judgement

scores (r = 0.7679, p = 0.0002) (4); Individual Explained Variance of

microstate A in alpha frequency band and BRIEF Global Executive

Composite scores (r = -0.7397, p = 0.0038) (5); Individual Explained

Variance of microstate A in alpha frequency band and BRIEF

Behavioral Regulation Index scores (r = -0.8097, p = 0.0008) (6);

Coverage of microstate B in alpha frequency band and OQ_45.2

Interpersonal Relations score (r = 0.7111, p = 0.0006) (7); Mean

global field power/GFP of microstate B in full spectrum (0.1 to 60

Hz) and BRIEF emotional regulation scores (r = 0.7030, p = 0.0011).

The scatter plots of the correlation comparisons can be found in

Figure 6. Four of these pairs (Figures 6D-G) had a normal

distribution and were analyzed by Pearson correlation, and three

other pairs (Figures 6A-C) were calculated by Spearman

correlation. The p-value for all these calculations was lower than

0.01. It is worth noticing that the Coverage of microstate B and

individual explained variance of microstate A each appeared in two

correlations (Figures 6D-G), and the most observed clinical

measure that correlated with microstate dynamics was the BRIEF

indexing executive functioning.
TABLE 1 The values of CAARS and QQ-42.5 were used for categorizing
patients in the MBCT group as high-benefitters and low-benefitters.

Group QQ-42.5 CAARS QQ-42.5 - CAARS

High-benefitters 10 -4 14

5 -5 10

4 -5 9

-5 -13 8

3 -5 8

0 -1 1

3 2 1

-1 0 -1

-4 -2 -2

Low-benefitters 0 3 -3

-12 -9 -3

-16 -12 -4

-1 4 -5

-17 -10 -7

-13 -5 -8

-18 -6 -12

-13 1 -14

-22 -2 -20
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Machine learning predictions

The results of the t-test between those patients classed as high-

benefitters and low-benefitters indicated that there were significant

differences in nine microstate dynamics between these classifications.

Seven of these microstate dynamics were in full spectrum band

including the occurrence of microstate A (p = 0.0029, Figure 7A),

duration of microstate C (p = 0.0069, Figure 7B), the occurrence of all

microstates (p = 0.0075, Figure 7C), the occurrence of microstate D (p

= 0.0077, Figure 7D), the duration of microstate B (p = 0.0155,

Figure 7E), duration of all microstates (p = 0.199, Figure 7F), the

occurrence of microstate C (p = 0.0404, Figure 7G) and two of them

were in alpha frequency band including the duration of microstate D (p

= 0.0231, Figure 7H) and the occurrence of microstate C (p = 0.0375,

Figure 7I). These are our machine learning microstate features.

The results of the LR, SVM, and RF machine learning models

indicated an accuracy of 0.83, 0.72, and 0.61, respectively, when

implementing machine learning microstate features. In order to

visualize and evaluate the performance of the classification model
Frontiers in Psychiatry 07
we used, the confusion matrix of the machine learning models

implemented in this study is shown in Figure 8. We also

summarized the output metrics of machine learning methods,

including accuracy, sensitivity, and specificity, in Table 2.
Discussion

We investigated the neural and clinical effects of mindfulness-

based cognitive therapy (MBCT) in adults with ADHD, integrating

resting-state EEG microstate analysis and machine learning prediction

models. Participants were randomly assigned to the MBCT or waitlist

(WL) control groups, with EEG and clinical assessments collected pre-

and post-intervention. We conducted additional post hoc analyses (1):

exploring correlations between microstate dynamics and clinical

outcomes, and (2) applying machine learning techniques to predict

individual treatment responsiveness based on baseline data. The results

of our study show that microstate patterns of brain activity, reflecting

moment-to-moment brain dynamics, can be modified by MBCT, a
FIGURE 2

The results of MBCT on the Behavior Rating Inventory of Executive Function (BRIEF) measure. The y axes in each figure represent the raw data of
each measure. (A) inhibition (INHI). (B) shifting (SHIFT). (C) emotional regulation (EMOT). (D) self monitor (SELF). (E) organization of materials (ORGA).
(F) initiation (INAT). (G) working memory (WM). (H) planning/organization (PLAN). (I) Task Monitor (TASK). (J) Behavioral Regulation Index (BRI).
(K) Metacognition Index (MI). (L) Global Executive Composite (GEC). Blue lines are related to the MBCT group, and red lines are related to the WL
group. Bar lines represent the standard error of the mean (SEM). *P < 0.05, **p < 0.01, ***p < 0.001.
FIGURE 3

Microstate topographical maps of the grand mean of all subjects in two groups and two time points in different frequency bands.
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non-pharmacological treatment with no known side effects, in adults

with ADHD. Interestingly, these pattern modifications are linked with

clinical measures and highlight their role in cognitive performance,

such as better executive functioning and greater emotional control.

These findings suggest that MBCT improves ADHD symptoms,

perhaps by reshaping large-scale brain network dynamics, as

captured by EEG microstates, providing support for the use of
Frontiers in Psychiatry 08
neuromodulatory interventions such as mindfulness and

neurofeedback. We also used microstate patterns to predict if

patients can benefit from MBCT before going through the treatment,

reducing financial burden and unnecessary engagement in an extra

treatment process.

To our knowledge, this is the first study to assess changes in EEG

microstates following MBCT in ADHD patients, and the first to
FIGURE 4

The results of MBCT on microstate temporal dynamics of ADHD patients. (A) The individual explained the variance of microstate A in the theta
frequency band. (B) Mean duration of microstate B in the theta frequency band. (C) Coverage of microstate A in theta frequency band. (D) The
individual explained variance of microstate D in the alpha frequency band. (E) Coverage of microstate B in the full spectrum. (F) The individual
explained variance of microstate B in the full spectrum. Each bar represents the mean value of the data, and bar lines represent the standard error of
the mean (SEM). *P < 0.05, **p < 0.01.
FIGURE 5

The results of MBCT on transition probabilities of microstates in ADHD patients in (A) full spectrum, (B) delta frequency band, (C) theta frequency
band, and (D) alpha frequency band. Arrows with bold colors represent a meaningful transition probability. *P < 0.05.
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FIGURE 7

Representation of features used in machine learning (ML) model training, including microstate dynamics. Values compared between high-benefitters
(HB) and low-benefitters (LB) in pre-intervention data of the MBCT group. (A) occurrence of microstate A in full spectrum, (B) duration of microstate
C in full spectrum, (C) occurrence of all microstates in full spectrum, (D) occurrence of microstate D in full spectrum, (E) duration of microstate B in
full spectrum, (F) duration of all microstates in full spectrum, (G) occurrence of microstate C in full spectrum, (H) duration of microstate D in alpha
frequency band, (I) occurrence of microstate C in alpha frequency band.
FIGURE 6

The results of cross-correlation between EEG microstate dynamics and clinical measures. (A) Coverage of microstate B in the alpha frequency band
and OQ-42.5 interpersonal relations (IR) scores. (B) The individual explained variance of microstate A in the alpha frequency band and the BRIEF
Behavioral Regulation Index (BRI) scores. (C) The individual explained variance of microstate A in the alpha frequency band and BRIEF Global
Executive Composite (GEC) scores. (D) Mean GFP of microstate A in the delta frequency band and BRIEF shifting (SHIFT) scores. (E) Mean GFP of MS
D in the delta frequency band and BRIEF SHIFT scores. (F) Mean GFP of microstate B in full spectrum and BRIEF emotional regulation (EMOT) scores.
(G) Coverage of microstate B in the theta frequency band and KIMS accept-without-judgement (AWoJ) scores.
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incorporate machine learning models for predicting therapeutic benefit

from MBCT using microstate and clinical features. The 12-week

interval between baseline and post-treatment recordings allowed us

to assess longitudinal changes. Crucially, the inclusion of a WL control

group enabled us to distinguish treatment effects from temporal

changes, with repeated measures ANOVA confirming significant

group-by-time interactions in microstate dynamics. Importantly,

prior research supports the test–retest reliability of core microstate

parameters, encompassing duration, occurrence, and coverage metrics

(42); enhancing confidence in the observed intervention-related effects.

However, lower reliability has been reported for microstate transition

metrics, which were not central to our findings.

We used a regression-based ocular artifacts removal method

and implemented another Artifact Subspace Reconstruction/ASR

artifact reduction method before analyzing EEG microstate

dynamics. Other studies that have measured EEG microstates of

ADHD patients have implemented other methods of preprocessing,

such as independent component analysis/ICA (16, 17, 43) or

manual artifact rejection (43, 44), which can affect the results and

interpretations of findings. Studies have shown that there is some

differentiation with regard to analytical outcomes using different

preprocessing approaches, especially in low-frequency spectral

features (45). However, a recent study indicated that microstate

dynamics are robust to artifacts, regardless of how the data is

preprocessed (46). This indicates that we can compare the results of

our study with other published studies, even where they have used

different preprocessing approaches.

The results of our analysis showed a modification in the clinical

measures of ADHD post-MBCT. As depicted in Figure 2, BRIEF

scores decreased, indicating improvements in the domains of
Frontiers in Psychiatry 10
inhibition, shifting, emotional regulation, initiation, working

memory, planning/organization, organization of materials, self-

monitor, and task monitor following exposure to the MBCT.

Previous studies report similar findings with regards to improved

executive functioning after mindfulness intervention. For example,

Virone reported symptom amelioration after a mindfulness

intervention for ADHD patients using the BRIEF test (47). In

another study, MBCT was associated with significantly lower

ADHD symptoms compared to treatment as usual. In the same

study, interestingly statistically significant improvements were not

observed in executive functions immediately after MBCT exposure,

but were observed after a 6-month follow-up (48).

There has been interest in recent years about examining

microstate dynamics of resting state EEG in patients with

psychiatric disorders, of which there are a few studies in ADHD

patients. Previous work suggests that resting-state EEG microstates

are significantly affected by ADHD. A recent review article

summarized studies that evaluated resting-state and event-related

microstates of ADHD patients (49). They have reported 13 studies,

including three in resting-state, in their review.

By conducting a microstate analysis on the resting-state EEG

recordings of patients with ADHD, Férat et al. discovered five

microstate classes. They conducted their analysis on two datasets,

both between ADHD and healthy control subjects. According to their

results, ADHD participants showed longer durations of microstate D

and decreased duration and coverage of microstate A, which had an

inverse correlation with inattention scores. Importantly, the results

for microstate D were robust as they were replicated in another

dataset (17). In another study by Luo et al., four microstate maps were

compared between groups of children with ADHD and healthy

controls. The authors reported that the coverage of microstate C

was lower in the ADHD group, and the duration and contribution of

microstate D were also higher in the ADHD group compared to the

healthy control group (44). Adding to these outcomes, Wu et al.

compared healthy participants with ADHD persistent (ADHD-P)

and ADHD remission (ADHD-R). They identified four microstates

across the dataset and found that both ADHD groups had higher

durations of microstate C compared with the healthy control group.

Furthermore, the ADHD-R group had higher coverage of microstate

C, increased transition probabilities from microstate C to D, and
TABLE 2 The results of machine learning methods used for predicting
the treatment response of patients in the MBCT program.

Classification Accuracy Sensitivity Specificity

LR 0.83 0.88 0.77

SVM 0.72 0.66 0.77

RF 0.61 0.55 0.66
LR, binary logistic regression; SVM, support vector machine; RF , random forest.
FIGURE 8

The confusion matrix resulted from training the (A) logistic regression (LR), (B) support vector machine (SVM), and (C) random forest (RF) models
using microstate features represented in Figure 7.
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decreased transition probabilities from microstate D to C (16).

Comparing the prior finding with the current study shows the

possible role of microstate A in ADHD symptoms. Our findings

show an increase in the coverage of microstate A after MBCT, which

was shown to be reduced in ADHD patients by Férat et al. (17).

Moreover, research carried out by Leon et al., examining EEG

microstates in ADHD patients, has recognized four primary maps

common to all participants in their investigation (43). In children with

ADHD, microstate B exhibited a significant reduction in coverage

relative to the healthy control group. Additionally, the analysis of

transition probability between groups revealed a higher transition from

state C to state D. In another study, Piao et al. used resting-state

microstate analysis to assess neurobiological markers in three groups of

study, including healthy controls, ADHD patients with sleep problems

(ADHD-SP), and ADHD patients without sleep problems (ADHD-

NSP) (50). Their results indicated that both clinical ADHD groups had

significantly lower occurrence of microstate D and reduced transition

probability from microstate C to D compared with healthy controls.

Furthermore, the ADHDwithout sleep problems group (ADHD-NSP)

showed a lower duration of microstate A and reduced transition

probabilities from microstate D to C.

Looking at meditation studies more broadly, such as the effects

of different kinds of meditation, including mindfulness practice,

shows compelling modulation of EEG microstate dynamics. For

example, Zarka et al. evaluated changes in microstate dynamics in

resting-state EEG in individuals after mindfulness-based stress

reduction (MBSR) training versus those in a waitlist control

group. They reported that the MBSR group displayed lower

duration, coverage, and occurrence of microstate C compared

with controls (51). Below we synthesize the aforementioned

evidence base with how it connects to our study findings (Table 3).

No published study has examined microstates of EEG

recordings in ADHD patients following MBCT exposure.

However, we might be able to discuss the results of studies that

compared EEG microstates of ADHD and healthy controls, or the

effects of mindfulness-based interventions on healthy subjects.

There are a few studies that fit into these categories. One might

expect that if a variable (eg, microstate dynamics) increases in

ADHD patients compared to healthy subjects, a treatment should

reverse those effects by decreasing the values of that variable.

However, no such pattern was observed in our results compared

to others. There is an inconsistency with the results of previous

studies that compared ADHD with healthy subjects, which is

summarized in Table 3. Based on this summary, the most

obvious change in microstate dynamics between ADHD and

healthy controls is the transition probabilities between microstate

classes C and D. There are a few variations between previous studies

and also with the current study that might explain the inconsistency

between these results. The studies summarized in Table 3 differ in a

few aspects, such as the status of their eye (open or closed), the

frequency bands, and the age and gender of participants. As the

current study shows, there can be a large difference between

microstate dynamics in different frequency bands, and this,

together with other variations, might explain some of these

inconsistent results.
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After conducting the microstate analysis on resting-state EEG

recordings, we implemented additional analysis on our data to

reveal more useful information. At first, we examined the cross-

correlation between microstate temporal dynamics and clinical

measures. The results indicated a strong correlation within seven

pairs of data. Four pairs had positive correlation (Figures 6A-D) and

three of them had a negative correlation (Figures 6E-G). Two strong

positive correlations were observed between BRIEF shifting scores

and mean GFP in the delta frequency band, one in microstate A and

another in microstate D (Figures 6B, C). A strong negative

correlation between individual explained variance of microstate A

in the alpha frequency band was also observed with two clinical

measures, the BRIEF behavioral regulation index and global

executive composite (Figures 6E, F).

Microstates A and B seem to play an important role in the

neurophysiological aspects of ADHD patients. The Coverage of

microstate B and individual explained variance of microstate A each

appeared in two correlations (Figures 6D-G). We also observed a

significant group×time effect in the temporal dynamics of

microstates A and B between groups of study. The individual

explained variance and coverage of microstate A increased after

MBCT; and the Individual explained variance, duration, and

coverage of microstate B decreased after MBCT in our study. The

results of other studies also suggest the importance of microstates A

and B temporal dynamics in ADHD patients. Férat et al. reported a

decrease in duration and coverage of microstate A (17), and Leon

et al. reported a decrease in coverage of microstate B (43) in ADHD

patients compared to healthy subjects.

The significance of microstates A and B in ADHD patients can

also be observed by investigating the relationship between these

microstates and brain neural networks. The involvement of the

visual cortex in both microstate A and B was detected by previous

studies. The association of microstate B with visual regions (among

other areas) was reported similarly in a few other studies (52–54).

Milz et al. compared the temporal dynamics of EEG microstates

during spatial visualization, object visualization, verbalization, and

no-task conditions. Their study indicated that microstate A had an

increased occurrence, duration, and explained variance during the

spatial and object visualization tasks compared to no task and

verbalization conditions (55), which can relate microstate A to

visual processing. Antonova et al. observed similar results in which

the temporal presence of microstate A increased during both

visualization and verbalization tasks (56). Finally, the results of an

MRI study indicated that the volume of gray matter reduced

significantly in the early visual cortex in ADHD patients (57).

This shows the importance of the visual cortex as a potential area

of dysfunction in ADHD patients.

Some studies have focused on the activation of the temporal

cortex and auditory network regarding the underlying neuronal

sources of microstate A (52–54, 58). Their similar results indicated

that the activity of the auditory network and phonological

processing are associated with microstate A. The auditory cortex

is connected to a variety of brain structures, such as attentional

networks that communicate with auditory processing networks by

providing information and receiving precise feedback. This
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evidence supports the interconnection between attentional and

auditory functions (59, 60). There is also evidence of overlap

between ADHD and Auditory Processing Disorder (61). In a

recent study, Blomberg et al. showed that aberrant interactions

between the auditory systems, default mode network, and ventral

attention/salience network are linked to inattentiveness in ADHD

(62). Serrallach et al. found that adult ADHD patients have a

different structural and functional auditory cortex compared to

controls (63).

The relationship between the level of participants’ arousal and

microstate A has been shown to be a consistent finding. A negative

correlation between the subjective scores of sleepiness and coverage

and occurrence of microstate A was reported by Ke et al. (64). These

results were supported by another study that demonstrated a

positive correlation between subjective examination of alertness

and the duration of microstate A (56). Several models have been

proposed about the origin of ADHD. The hypoarousal theory by

Satterfield and Dawson states that an underaroused nervous system

is the main cause of ADHD symptoms of hyperactivity, impulsivity,

and inattention (65). Reports of other studies also show that low

levels of arousal correlate with more severe symptoms of ADHD in

adults and children (66–68).
Frontiers in Psychiatry 12
Several studies have investigated the potential associations

between cognitive domains and microstate B. Studies with resting-

state EEG have reported that microstate dynamics can predict the

cognitive performance of individuals. The occurrence of microstate B,

for example, is associated with crystallized intelligence (69),

potentially reflecting the recruitment of cortical networks involved

in semantic memory retrieval, visual conceptual processing, and the

consolidation of long-term, acquired knowledge. Du et al. observed a

positive correlation between cognitive flexibility inventory scores and

the duration of microstate B (70). It is well documented that adults

with ADHD, compared to healthy subjects, may show cognitive

deficits identified by dysfunctions across all attention modalities,

verbal memory, processing speed, reading skills, executive function,

arithmetic abilities, and social cognition (71).

Another finding in our study related to the significance of

microstates A and B in ADHD patients is the cross-correlation of

clinical measures with microstate dynamics. The results of our

study, as depicted in Figure 6, indicate that almost all correlations

happened in microstates A and B. Mean GPF and individual

explained variance of microstate A and mean GPF and coverage

of microstate B had a strong correlation with clinical measures in

our study.
TABLE 3 Summary of the results of EEG microstate dynamics in other germane studies compared to the current study.
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Férat et al.
(2022)

Dataset 1: eyes open, 1–100 Hz, 31F/35M,
mean age = 34
Dataset 2: eyes open, 1–100 Hz, 12F/10M,
mean age = 32

ADHD; HC 5 D↑
A↓

A↓ (17)

Luo et al.
(2023)

eyes closed; 1–45 Hz; 38F/123M; 8–15 years ADHD; HC 4 D↑ C↓ (A&C)↓
(B&D)↑

(44)

Wu et al.
(2024)

eyes closed; 0.5–45 Hz; 7F/21M; 18–27 years ADHD-P; ADHD-R;
HC

4 C↑ C↑* (C→D)↑*
(D→C)↓*

(16)

Leon et al.
(2024)

eyes open; 1–40 Hz; 5F/33M; mean age = 12.1 ADHD; HC 4 B↓ (C→D)↑ (43)

Piao et al.
(2025)

eyes-closed; 0.5–45 Hz; 5F/29M;
mean age = 9.1

ADHD-SP; ADHD-
NSP; HC

4 D↓ A↓** (C→D)↓
(D→C)↓**

(50)

Zarka et al.
(2024)

eyes-closed; 1–40 Hz; 10F/10M; mean age:
41.68;

MBSR; WL 4 C↓ C↓ C↓ (51)

Current study delta MBCT ADHD; WL
ADHD

4 (A→C)↓

theta 4 A↑ B↓ A↑ (A→B)↑
(B→D)↓

alpha 4 D↑ (C→D)↑

Full spectrum 4 B↓ B↓ (B→D)↓
frontiers
Some details of each study were mentioned, such as eyes open/closed during EEG recording, the frequency band of analyzed data, gender, and age of participants. The gender and age of the
ADHD group of each study are presented in this table. *only observed in the ADHD remission (ADHD-R) group **only in the ADHD without sleep problems (ADHD-NSP) group.
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We used machine learning methods, including logistic

regression/LR, support vector machine/SVM, and random forest/

RF models to predict the treatment response of the MBCT program

using microstate dynamics. Our purpose was to see if the models

could distinguish high-benefitters from low-benefitters, which were

initially categorized by increment change in clinical measures

(CAARS and OQ-42.5) across the randomized trial period.

Notably, the logistic regression/LR model was able to perform

better than other models in reaching a high accuracy (83%),

which was also higher than other studies that used machine

learning techniques to predict the outcome of mindfulness-based

interventions. Myers et al. have implemented a random forest/RF

model to predict the response of MBCT for suicide prevention and

reached an accuracy of 0.7 utilizing clinical and neurocognitive task

data (72). In another study, Dethoor et al. used the support vector

machine/SVM model to predict treatment response of MBCT in

patients with depressive symptoms. They constructed a support

vector machine/SVM model with two clinical measures (Beck

Depressive Inventory and Five-Facet Mindfulness Questionnaire),

which had a sensitivity of 0.79 and a specificity of 0.71 (73). Their

results are comparable with our results of using the support vector

machine/SVM method with 0.66 sensitivity and 0.77 specificity.

Our study includes limitations to be addressed. First, our

sample could benefit with a larger number for machine learning

applications, that generally require a high sample size to ensure high

generalizability. However, our sample size is comparable with other

studies such as Férat et al. (61 healthy, 61 ADHD in dataset 1 and 22

healthy and 22 ADHD in dataset 2) (17), Luo et al. (54 healthy, 54

ADHD-I, and 53 ADHD-C) (44), and Wu et al. (28 healthy, 50

ADHD) (16). Second, we compared the effects of MBCT with a

passive wait-list, opposed to active, control group that did not

participate in any focused activity. This is not inherently

problematic for initial mechanistic exploration, since passive

controls allow for a clear comparison of intervention versus no

intervention when prior mechanistic models/data are limited.

Passive control designs are not necessarily weaker, for example, in

cognitive training research, a recent meta-analysis (from 1, 524

studies) reported no consistent differences in outcomes between

active and passive controls (74), and that passive groups may offer a

more reliable baseline for retest effects across studies. Nevertheless,

future studies could increase mechanistic specificity by including

active control groups, such as cognitive training (e.g. CBT), health

enhancement programs, or psychoeducation, to further clarify the

specific working pathways involved in MBCT for ADHD. Third, the

overlap of ADHD with other conditions that may produce similar

neurophysiological patterns needs to be addressed in future studies.

For example, a relatively recent study showed that patients

diagnosed with ADHD share common neural deficits with

spontaneous mind wandering in neurotypical individuals (75).

Furthermore, although the value of feature extraction using

resting-state EEG data has shown to be important, it would be

beneficial to examine these features using neurophysiological

markers (e.g. ERP, ERSP, ITC). Previous studies report a

relationship between these neural outcomes and brain generators

associated with adult ADHD (76, 77). Examination of event-related
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microstates is currently underway within our group to further

elucidate these neurophysiological dynamics, which we anticipate

will extend and refine the resting-state findings presented here.
Conclusion

This study is the first to demonstrate that mindfulness-based

cognitive therapy (MBCT) produces measurable changes in resting-

state EEG microstate dynamics in adults with ADHD. MBCT led to

significant improvements in clinical outcomes and modulated the

temporal dynamics of specific microstate classes across multiple

frequency bands, suggesting neurophysiological mechanisms

underlying therapeutic gains. The results of our research highlight

the significance of microstates A and B in individuals with ADHD,

which have also been shown to be modulated in other

neuropsychiatric disorders and are associated with aberrations in

visual and auditory processing. Furthermore, our machine learning

model successfully predicted the treatment response of the MBCT

program, pointing to the potential of personalized, data-driven

approaches in ADHD treatment. Future research may explore

microstate dynamics across ADHD subtypes and age groups to

deepen mechanistic insights and guide targeted mindfulness-

based interventions.
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