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Introduction: Mindfulness-based cognitive therapy (MBCT) is one of the
promising treatments with no known side effects for neuropsychiatric
conditions such as Attention-deficit/hyperactivity disorder (ADHD). However,
the mechanism of action underlying MBCT is not clearly understood. Here, we
applied resting-state EEG microstate analysis and machine learning modeling to
characterize brain network dynamics in adults with ADHD exposed to MBCT.
Methods: Sixty-one participants were randomized to a 12-week MBCT
intervention or waitlist control (WL), with clinical assessments and EEG
recordings collected pre-to-post trial. We analyzed the microstate dynamics of
EEG data in different frequency bands, comparing four microstate classes (A-D),
and the cross-correlation of microstate dynamics with clinical measures.
Furthermore, machine learning computational techniques were applied to
predict which patients can benefit more from the MBCT intervention based on
their brain dynamics pre-treatment.

Results: Microstate analyses revealed significant MBCT-related alterations in
temporal dynamics, including increased coverage and duration of microstates
A and B, as well as changes in individual explained variance in microstate A (theta
band) and microstate D (alpha band). Coverage and explained variance for
microstate B also showed significant changes across the full spectrum. These
changes were strongly correlated with improvements in ADHD symptomatology,
mindfulness skills, quality of life, and executive function across seven clinical
domains. Critically, machine learning models predicted individual treatment
responses with 83% accuracy using microstate dynamics.

Discussion: These findings demonstrate that MBCT systematically reshapes
resting-state neural microstates in ADHD, including microstate classes A, B,
and D, and suggest that computational EEG biomarkers may inform precision
approaches to mindfulness-based interventions.

ADHD, mindfulness-based cognitive therapy, EEG, microstates, machine learning,
precision medicine, computational modeling methods
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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the
most prevalent neuropsychiatric conditions affecting approximately
5% of the adult population. It is defined by levels of inattention,
hyperactivity, and impulsivity that are inappropriate for an individual’s
developmental stage (1). Clinically, individuals with ADHD exhibit
hyperactive and impulsive behaviors, and it is difficult for them to
maintain sustained attention (2). Beyond these core symptoms, the
disorder can also cause a range of cognitive, social, and emotional
impairments (3, 4). Pharmacotherapy for ADHD is one of the most
widely used treatment modalities available, which can be effective for
between 70 and 85 percent of patients (5, 6). However, while these
medications are generally well-tolerated, they are associated with a
spectrum of side effects such as appetite suppression, weight loss,
increased heart rate and blood pressure, irritability, insomnia, anger,
gastrointestinal disturbances (including vomiting and stomach pain),
anxiety, headache, and, in some cases, psychosis. There are even
instances of sudden death reported in patients with pre-existing
cardiac conditions (7). Thus, although medication remains a
relatively safe option when patients are properly evaluated and
monitored, there is a compelling need to explore alternative
treatments, particularly for those patients who do not wish to take
such medications on a long-term basis. One healthcare option may be
mindfulness-based interventions that offer on-par therapeutic benefits
with significantly fewer side effects, if any.

Mindfulness is understood as the deliberate focus on present-
moment experiences with an attitude of acceptance and
nonjudgment (8). During mindfulness practices, such as body
scans, mindful movement, and seated meditation, participants
develop skills to continuously return their focus to the current

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; MBCT,
Mindfulness-Based Cognitive Therapy; EEG, Electroencephalogram; WL,
Waitlist (control group); ERP, Event-Related Potentials; GFP, Global Field
Power; ASR, Artifact Subspace Reconstruction; EOG, Electrooculogram;
CAARS-SV, Conners” Adult ADHD Self-rating Scale, Short Version; DSM-IV-
TR, Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text
Revision; OQ-42.5, Outcome Questionnaire, 42.5 items; KIMS, Kentucky
Inventory of Mindfulness Skills; AWA, Act with Awareness (subscale of
KIMS); AWo], Accept Without Judgment (subscale of KIMS); BRIEF, Behavior
Rating Inventory of Executive Function; BRI, Behavioral Regulation Index
(subscale of BRIEF); INHI, Inhibition (subscale of BRI);SHIFT, Shifting
(subscale of BRI); EMOT, Emotional Regulation (subscale of BRI); MI,
Metacognition Index (subscale of BRIEF); INAT, Initiation (subscale of MI);
WM, Working Memory (subscale of MI); PLAN, Planning/Organization
(subscale of MI); ORGA, Organization of Materials (subscale of MI); SELF,
Self-Monitor (subscale of MI); TASK, Task Monitor (subscale of MI); GEC,
Global Executive Composite (sum of MI and BRI scores); LZC, Lempel-Ziv
Complexity; HB, High-Benefitters (patient group); LB, Low-Benefitters (patient
group); LR, Logistic Regression (machine learning model); SVM, Support Vector
Machine (machine learning model); RF, Random Forest (machine learning
model); TP, True Positive; TN, True Negative; FP, False Positive; FN, False
Negative; MBSR, Mindfulness-Based Stress Reduction; COI, Conflict of Interest;

CMO, Committee on Research Involving Human Subjects (Arnhem-Nijmegen).

Frontiers in Psychiatry

10.3389/fpsyt.2025.1670602

moment. This method is designed to enhance awareness of one’s
thoughts, emotions, physical sensations, and ultimately, behavioral
patterns. Emerging research on mindfulness-based interventions
for adults with ADHD is promising (9, 10). For example, an initial
quantitative review that included three studies on adult ADHD
patients found preliminary support by demonstrating moderate to
large reductions in ADHD symptoms (11). Additionally, a more
recent study, which evaluated clinician-rated ADHD symptoms
alongside improvements in positive mental health over six months,
reported that increases in self-compassion were a key factor
mediating the observed enhancements in positive mental health
attributed to mindfulness-based intervention (12).

Understanding the neural underpinnings of ADHD is essential to
discovering more effective therapies. Recently, atypical resting-state
electroencephalogram (EEG) patterns were emphasized in a review of
the literature for those with ADHD (13). Studies focused mainly on
feature extraction of EEG frequency spectra (14) or event-related
potentials (ERP) (15). Although recent studies have started looking at
different metrics, including the microstate properties calculated in the
resting state (16, 17) and ERP (18-20) data measured in ADHD
groups. Global brain activity representation of multichannel EEG
recordings via microstate analysis was introduced by Lehmann et al.
in 1987 (21). They consist of quasi-stable microstate patterns similar
across all electrodes. This process utilizes data derived from all
electrodes and time points to create a brain activity global map by
calculating the amount of global field power (GFP) reflecting areas of
maximal and minimal activity.

Microstates can be described in both resting-state and event-related
contexts, and it has been previously reported that four canonical
topographies can account for more than 70% of resting-state EEG
data, usually referred to as “microstates A, B, C, and D” (22, 23).
Converging evidence suggests that microstate A has been linked to
auditory and language processing, microstate B to visual networks,
microstate C to default mode activity, and microstate D to attentional
control (24-26). These functional associations provide a useful
interpretive framework, although it should be noted that EEG
microstates are not direct measures of localized brain activity but
rather reflect temporally coordinated dynamics of large-scale neural
networks. Microstates do not ramp up smoothly, but abruptly
transition after hanging out for around 80-120 ms (27). The ‘average
microstate duration’, ‘coverage’, the ‘occurrence of the states’, ‘global
field power/GFP’, and ‘transition probabilities between the states’
represent important metrics for microstate analysis. Despite
increasing evidence on the importance of microstate functionalities
in ADHD, the impact of mindfulness-based cognitive therapy/MBCT
on these EEG measures is still largely unexplored. To the best of our
knowledge, this is the first study to investigate the effects of MBCT on
resting-state EEG microstate dynamics data in adults with ADHD.

Methods
Procedure

The data collection for this study was conducted at Radboud
University in the Netherlands and was approved ethically by the
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CMO, Arnhem-Nijmegen. The data analyzed here were part of a
larger neurophysiology investigation in which EEG measures were
collected concomitant to baseline (reported here), and various other
cognitive behavioral paradigms (some of which have been
published earlier, see (28)). Informed written consent was
obtained from each patient to participate in a controlled
randomized study at two time points (pre/T1 and post/T2).
Participants engaged in two sessions of data collection, before and
after a 12-week MBCT program for the active mindfulness
treatment group, and a 12-week waiting period for the waitlist
(WL) passive control group. We conducted the randomization
procedure before starting the data collection in the T1 phase. In
each session, participants were required to fill out clinical measures
and complete an EEG recording procedure.

Participants

Initially, 61 adult ADHD patients were included from the
outpatient unit at Radboud University Nijmegen Medical Centre.
The patients were randomly divided into two groups: 32 of them
received MBCT, and 29 individuals were placed on a waitlist
(Figure 1A). Eleven patients (6 in the MBCT group and 5 in the
WL group) did not attend the post-treatment (T2) testing session.
One individual did not complete the full 12-week MBCT program,
and another one engaged in mindfulness training outside of the study
protocol, whereby both were excluded from the study. Nine other
patients dropped out of the study due to scheduling and
organizational constraints. This attrition led to a final sample size
of 50 patients, with n=26 patients in the MBCT group and n=24
patients in the WL group. Inclusion criteria were a primary diagnosis
of ADHD (as confirmed by three psychiatrists following DSM-IV-TR
criteria) and participants’ ages between 18 and 65 years. Furthermore,
key exclusion criteria included a history of substance abuse or
dependence within the past six months, co-morbid conditions,
such as the presence of psychotic, borderline, antisocial, and/or
other behavioral disorders, and learning difficulties. Of these 50
patients, 31 (15 in the MBCT group, and 16 in the WL group)
were currently on pharmacotherapy. Of these, 19 were treated with
methylphenidate-based drugs, 8 with dextroamphetamine-based
drugs, and 4 with antidepressants. The other 19 patients were given
no medication. For participants on stimulant medications, dosages
were stabilized two weeks before the start of the study, while
participants on non-stimulants were stabilized four weeks prior; no
changes were made to medications during the study.

Clinical measures

Clinical measures were conducted pre-and-post randomized
trial: (i) Conners’ Adult ADHD Self-rating Scale (CAARS-SV)
which measures global DSM-IV ADHD symptoms, ‘inattention’,
and ‘hyperactivity— impulsivity’ subdomains (29); (i) Quality of
Life (OQ-42.5) test which, besides the global score, measures
‘interpersonal relations’, ‘symptom distress’, and ‘social role’
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subdomains (30); (iii) Kentucky Inventory of Mindfulness Skills
(KIMS) which includes four mindfulness skills: ‘observe’, ‘describe’,
‘act with awareness (AWA)’, and ‘accept without judgment (AWo]J)’
(31). It is worth noting that none of the patients had any exposure
or experience of mindfulness/yoga/etc before the study. (iv)
Behavior Rating Inventory of Executive Function (BRIEF), which
is a standardized assessment tool used to evaluate executive
function behaviors (32). It includes 86 items and is categorized
into two main indices. The Behavioral Regulation Index (BRI) has
three subdomains, including inhibition (INHI), shifting (SHIFT),
and emotional regulation (EMOT). The Metacognition Index (MI)
includes initiation (INAT), working memory (WM), planning/
organization (PLAN), organization of materials (ORGA), self-
monitor (SELF), and Task Monitor (TASK). Furthermore, the
scores of MI and BRI were summed to calculate the Global
Executive Composite (GEC). Severe impairments of executive
functions are identified by higher scores on the BRIEF.

MBCT intervention

The MBCT program is a modified version of an established
protocol that was initially designed for depressive disorders. In this
program, participants engage in structured exercises in 12 weekly
sessions, which take three hours in each session (33, 34). We used
Workbooks, including psycho-educative modules designed
specifically for ADHD patients. The program required an average
time of 30-45 minutes of self-practice per day, which was guided by
compact disks (CDs). A trainer was responsible for monitoring the
patient’s maintenance of self-practice. The course was directed by a
specialist psychiatrist in ADHD, with 9 years of experience in
MBCT training at the time of the study.

Electrophysiological recording

During EEG recording periods, participants were instructed to
keep their shoulders and forehead relaxed and avoid doing eye
movements or blinking as much as possible. EEG signals were
collected using Brain Vision Recorder 1.03 software and QuikAmps
72 equipment (http://BrainProducts.com), captured from 30 Ag/
AgCl active electrode sensors featuring built-in noise cancellation
technology (actiCAP: Brain Products) positioned following the 10-
10 electrode placement system (locations: Fp1, Fp2, AFz, F7, F3, Fz,
F4, F8, FC5, FC1, FCz, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1,
CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz, O2). An average online
reference was applied and later adjusted to the right mastoid during
offline processing. The ground electrode was placed on the
forehead. Vertical and horizontal eye movements were measured
using bipolar electrooculogram recordings obtained from Ag/AgCl
cup electrodes positioned above and below the left eye and 1 cm
from the outer corners of each eye, respectively. Impedance levels
were kept below 10 KQ. The electrical activity was continuously
recorded at a sampling frequency of 500 Hz, with a band-pass filter
set to 0.1-100 Hz (Figure 1B).
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(A) Study Design

(B) Data acquisition

(C) Ocular artifact rejection
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Time transition probabilities
v (H) Post-hoc analyses
(a) cross-correlation (b) ML predictions
CAARS i h in clinical ¢
MS QQ-42.5 I. Labeling HB/LB by changes in clinical scores (CAARS and 0Q-42.5) of MBCT group
dynamics Vs KIMS
BRIEF II. Predicting treatment response by machine learning methods using microstate dynamics

FIGURE 1

The representation of the process of the study and the conducted analysis. (A) Participants of the study were divided into two groups: MBCT and
WL, and two time points of pre- and post-interventions. (B) Data acquisition of clinical and EEG data. (C) removing ocular artifacts using a
regression-based method. The image below shows changes after the ocular artifacts rejection procedure. (D) removing bad segments using the
artifact subspace reconstruction (ASR) method. The red segment in the image below represents the portion that was removed during this procedure.
(E) segmenting EEG recordings into different frequency bands. (F) conducting microstate analysis. (G) backfitting and extracting microstate dynamics.
(H) conducting post-hoc analysis, including cross-correlation and machine learning (ML) techniques.

Signal analysis of microstate classification

The analysis of the signal in our study was initiated by a 0.1 Hz high-
pass filter, a 60 Hz low-pass filter, and a 50 Hz notch filter. To remove
ocular artifacts, we used a regression-based procedure that leverages
EOG channels, as described by Gratton et al. (35) and Croft & Barry (36)
(a Python tutorial is available at https://mne.tools/stable/auto_tutorials/
preprocessing/35_artifact_correction_regression.html#footcite-
grattonetal1983) (Figure 1C). After eliminating these artifacts, the
artifact subspace reconstruction (ASR) method (37) was employed

Frontiers in Psychiatry 04

via an EEGLAB plugin to identify and remove additional artifacts
and problematic data segments, using default parameters (including
a maximum 0.5-second window standard deviation of
20) (Figure 1D).

Resting-state EEG microstate analysis was subsequently
performed in MATLAB 2024b with EEGLAB plugin version
2024.2 and the MICROSTATELAB plugin, following the
guidelines outlined by Kalburgi et al. (38). We analyzed EEG
microstates separately in delta (0.5 Hz - 4 Hz), theta (4 Hz - 8
Hz), alpha (8 Hz - 12 Hz), beta (13 Hz - 30 Hz), gamma (30 Hz - 60
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Hz) frequency bands, and also in full spectrum (0.5 Hz - 60
Hz) (Figure 1E).

Microstate dynamics were derived by initially calculating the
Global Field Power (GFP) of the resting-state data for each
participant (Figure 1F). Topographic maps were then constructed
based on the Global Field Power/GFP peaks because scalp
topographies are rather stable around these peaks and show the
highest signal-to-noise ratio. Those maps were clusterized for each
subject with the k-means algorithm. Global Field Power/GFP is the
measure of the spread of potential across all electrodes at a given
instant for a given time, which is defined as follows:

n _ 2
— \/Ei=1(vf(t) )

n

Where i denotes the electrode, n represents the total number of
electrodes, V corresponds to the measured voltage, and t refers to
the specific time point.

Grand mean maps were constructed by averaging maps within each
group over participants. We chose the four-class microstate solution for
this work as this solution approximated the most commonly reported
microstate maps found in the literature, making it easier to compare our
data to previous research. Maps were then automatically indexed and
graded as microstates A, B, C, and D according to a template from
Koenig et al. (39). The grand mean maps were next back-fitted on the
single datasets to estimate descriptive parameters for each microstate
classification: Individual explained variance, mean Global Field Power/
GFP, occurrence, duration, coverage, and transition probabilities
(Figure 1G). Occurrence is the average number of appearances of a
microstate per second; Duration is the mean time (in milliseconds)
before x microstate switches to another status; Coverage is the
percentage of the total record time occupied by a microstate.

We calculated the complexity of the sequence of microstate
classes in EEG data by the method proposed by Tait et al. (40). This
method implements the Lempel-Ziv complexity (LZC), which is
defined as the number of various subsets in a set of values
(microstate classes). A sequence with a low number of repeated
subsets is considered to have low complexity. To calculate the
Lempel-Ziv complexity/LZC, we first extracted the microstate data
backfitted in each time point for each subject, then we used a
Python code to measure the number of distinct subsets of
microstate classes that repeat in the first 250 microstates.

For analysis of between-groups (MBCT vs. WL) and changes
between pre- and post-assessments, we used a multi-factor
between- and within-subjects repeated measures ANOVA. The
between-subject factor was Group (MBCT compared to WL), and
the within-subject factor was Time (pre compared to post). In all
statistical tests, p< 0.05 was considered to be significant.

Post-hoc analyses: cross-correlation and
machine learning predictions

We were also interested in the relationship between changes in
microstate dynamics and changes in clinical measures after 12
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weeks of mindfulness practice. We examined the normal
distribution of each pair in correlation comparison using the
Shapiro-Wilk test. For normally distributed features, we used
Pearson correlation; in another case, we implemented Spearman
correlation comparison (Figure 1H). The number of subjects in
correlation analysis varied between 13 and 19 in the MBCT group
and 20 to 22 in the WL group (due to missing values).

We implemented machine learning techniques to predict which
patients would potentially garner more benefit from the
mindfulness program based on their baseline data (Figure 1H).
To do so, we first labeled patients as “high-benefitters”/HB and
“low-benefitters”/LB using their clinical measures before and after
MBCT. CAARS global and Quality of Life (OQ-42.5) global scores
were used. We calculated increment change [post-pre] values for
each patient and aggregated CAARS values after negation with OQ-
42.5 values. Higher values of CAARS indicate worse ADHD
symptoms, and higher values of QQ-42.5 indicate better quality
of life. So, we negated all values of CAARS before aggregating with
QQ-42.5 values in order to reach a unified approach. Detailed data
for categorization are prepared in Table 1. Patients with scores
lower than the median were categorized as high-benefitters, and
patients with scores higher than the median were categorized as
low-benefitters. Microstate dynamics were used as machine
learning features to train the model. We implemented 6-fold
cross-validation and three machine learning methods, including
binary logistic regression (LR), support vector machine (SVM), and
random forest (RF), for the treatment response prediction. The
clinical measures of some individuals were missing (because they
did not complete the measures or for other reasons), which resulted
in 18 subjects in the machine learning prediction model. We
reported metrics of the confusion matrix for machine learning
models, including accuracy, sensitivity, and specificity. These
metrics were calculated using true positive (TP, truly labeled as
HB), true negative (TN, truly labeled as LB), false positive (FP,
falsely labeled as HB), and false negative (FN, falsely labeled as LB)
values. Accuracy ((TP+TN)/(TP + TN + FP + FN)) tells us what
percent of the data is labeled correctly as LB and HB. Sensitivity
(TP/(TP + FN)) tells us what percent of HB subjects are correctly
labeled as HB. Specificity (TN/(TN + FP)) tells us what percent of
LB subjects are correctly labeled as LB.

Results
Clinical measure

Groups of the study were matched in terms of age, sex, and
medication status. The results of repeated-measure ANOVA
showed a significant change in clinical measures of CAARS-SV
(ADHD symptoms), OQ-42.5 (quality of life), and KIMS
(mindfulness skills) between groups of the study. Discussion of
clinical measures from the broader study cohort, overlapping with
the sample examined here, has been reported previously (41).

The analysis of BRIEF (executive functioning) clinical scores, as
depicted in Figure 2, indicated that there were a significant decrease
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TABLE 1 The values of CAARS and QQ-42.5 were used for categorizing
patients in the MBCT group as high-benefitters and low-benefitters.

Group QQ-42.5 CAARS QQ-425 - CAARS

High-benefitters 10 -4 14
5 -5 10

4 -5 9

5 -13 8

3 -5 8

0 -1 1

3 2 1

1 0 1

4 -2 2

Low-benefitters 0 3 -3
12 9 -3

-16 -12 -4

1 4 5

-17 -10 -7

-13 -5 -8
-18 6 -12
-13 1 -14
22 2 -20

in all three cumulative scores of Behavioral Regulation Index (F; 4,
=14.54, p< 0.001, > =0.23), MI (F;, 53 = 14.93, p< 0.001, n* =0.22),
and GEC (F,, 4; = 18.72, p< 0.001, n*> =0.28), and 9 subscores of
INHI (F,, 53 = 9.09, p = 0.004, )2 =0.14), SHIFT (F, 4, = 6.58, p =
0.014, * =0.12), EMOT (F; 55 = 11.66, p = 0.001, 1> =0.18), SELF
(Fy. 53 = 5.26, p = 0.026,1> =0.09), INAT (F;_ 5, = 5.02, p = 0.029,
=0.08), WM (Fy, 53 = 6.21, p = 0.016,11> =0.1), PLAN (F; 54 = 6.04, p
=0.017,1? =0.1), TASK (F;, 53 = 7.92, p = 0.007, > =0.13), ORGA
(Fy. 53 = 16.99, p< 0.001, * =0.24), MI (F; 55 = 14.93, p< 0.001, 1?
=0.22), GEC (F, 4 = 18.72, p< 0.001, > =0.28).

Microstate dynamics

The topographic microstate maps of grand means are shown in
Figure 3 for each frequency band. The results of statistical analysis
showed that there was a significantly groupxtime effect between
MBCT and WL groups which shows an increase in coverage of
microstate A (F;, 45 =6.12, p=0.017, > =0.12), a decrease in mean
duration of microstate B (F;, 43 = 7.06, p = 0.011, n* =0.14), and an
increase in individual explained variance of microstate A (F; 46 =
6.73, p = 0.013, > =0.13) in the theta frequency band (Figures 4A-
C) in the MBCT group compared to WL. We also observed a
significant groupxtime effect between groups of the study which
shows a decrease in the coverage of microstate B (F;, 43 =5.95,p =
0.019, > =0.12) and a decrease in individual explained variance of
microstate B (F;, 43 = 11.7, p = 0.001, )* = 0.19) when considering
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the whole spectrum of frequency bands in the MBCT group
compared to WL (Figures 4E, F). Our results indicated a
significant increase (F; 43 = 6.53, p= 0.014, 1> = 0.13) of the
individual explained variance of microstate D in the MBCT group
compared to WL in the alpha frequency band (Figure 4D).

As represented in Figure 5, the analysis of transition
probabilities between different microstate classes revealed that
there was a significant difference between groups of the study in
transition probabilities of microstate B to microstate D in full
spectrum (F, 4 = 5.71, p = 0.021, M*> =0.11); microstate A to
microstate C in the delta frequency band (F; 4 = 6.41, p =0.015, 1’
=0.12); microstate A to microstate B (F; 44 = 6.43, p = 0.015,
1? =0.12) and microstate B to microstate D (F; 45 =4.17, p = 0.047,
1? =0.08) in theta frequency band; and microstate C to microstate D
in alpha frequency band (F,, 45 = 5.32, p = 0.026, > =0.1).

The results of repeated measures ANOVA indicated that there
was no significant within-subjects difference in Lempel-Ziv
complexity/LZC values in any of the frequency bands.

Post-hoc analyses: cross-correlation

The results of the correlation between clinical score increment
change and microstate dynamics increment change (calculated as
post-pre values) in the different frequency bands indicated that
there was no correlation when considering the MBCT and WL
groups together. However, when splitting the dataset by treatment
Group, we found no significant correlations between these values
within the WL group, but there were various strong correlations (r >
0.7) between clinical scores and microstate dynamics in the MBCT
group only. Specifically, in seven pairs of measures (1): Mean global
field power/GFP of microstate A in the delta frequency band and
BRIEF shifting scores (r = 0.8463, p = 0.0002) (2); Mean global field
power/GFP of microstate D in the delta frequency band and BRIEF
shifting scores (r = 0.7652, p = 0.0023) (3); Coverage of microstate B
in the theta frequency band and KIMS Act Without Judgement
scores (r = 0.7679, p = 0.0002) (4); Individual Explained Variance of
microstate A in alpha frequency band and BRIEF Global Executive
Composite scores (r = -0.7397, p = 0.0038) (5); Individual Explained
Variance of microstate A in alpha frequency band and BRIEF
Behavioral Regulation Index scores (r = -0.8097, p = 0.0008) (6);
Coverage of microstate B in alpha frequency band and OQ_45.2
Interpersonal Relations score (r = 0.7111, p = 0.0006) (7); Mean
global field power/GFP of microstate B in full spectrum (0.1 to 60
Hz) and BRIEF emotional regulation scores (r = 0.7030, p = 0.0011).
The scatter plots of the correlation comparisons can be found in
Figure 6. Four of these pairs (Figures 6D-G) had a normal
distribution and were analyzed by Pearson correlation, and three
other pairs (Figures 6A-C) were calculated by Spearman
correlation. The p-value for all these calculations was lower than
0.01. It is worth noticing that the Coverage of microstate B and
individual explained variance of microstate A each appeared in two
correlations (Figures 6D-G), and the most observed clinical
measure that correlated with microstate dynamics was the BRIEF
indexing executive functioning.
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FIGURE 2

The results of MBCT on the Behavior Rating Inventory of Executive Function (BRIEF) measure. The y axes in each figure represent the raw data of
each measure. (A) inhibition (INHI). (B) shifting (SHIFT). (C) emotional regulation (EMOT). (D) self monitor (SELF). (E) organization of materials (ORGA).
(F) initiation (INAT). (G) working memory (WM). (H) planning/organization (PLAN). (I) Task Monitor (TASK). (J) Behavioral Regulation Index (BRI).

(K) Metacognition Index (MI). (L) Global Executive Composite (GEC). Blue lines are related to the MBCT group, and red lines are related to the WL
group. Bar lines represent the standard error of the mean (SEM). *P < 0.05, **p < 0.01, ***p < 0.001.

Machine learning predictions

The results of the t-test between those patients classed as high-
benefitters and low-benefitters indicated that there were significant
differences in nine microstate dynamics between these classifications.
Seven of these microstate dynamics were in full spectrum band
including the occurrence of microstate A (p = 0.0029, Figure 7A),
duration of microstate C (p = 0.0069, Figure 7B), the occurrence of all
microstates (p = 0.0075, Figure 7C), the occurrence of microstate D (p
= 0.0077, Figure 7D), the duration of microstate B (p = 0.0155,
Figure 7E), duration of all microstates (p = 0.199, Figure 7F), the
occurrence of microstate C (p = 0.0404, Figure 7G) and two of them
were in alpha frequency band including the duration of microstate D (p
= 0.0231, Figure 7H) and the occurrence of microstate C (p = 0.0375,
Figure 7I). These are our machine learning microstate features.

The results of the LR, SVM, and RF machine learning models
indicated an accuracy of 0.83, 0.72, and 0.61, respectively, when
implementing machine learning microstate features. In order to
visualize and evaluate the performance of the classification model

we used, the confusion matrix of the machine learning models
implemented in this study is shown in Figure 8. We also
summarized the output metrics of machine learning methods,
including accuracy, sensitivity, and specificity, in Table 2.

Discussion

We investigated the neural and clinical effects of mindfulness-
based cognitive therapy (MBCT) in adults with ADHD, integrating
resting-state EEG microstate analysis and machine learning prediction
models. Participants were randomly assigned to the MBCT or waitlist
(WL) control groups, with EEG and clinical assessments collected pre-
and post-intervention. We conducted additional post hoc analyses (1):
exploring correlations between microstate dynamics and clinical
outcomes, and (2) applying machine learning techniques to predict
individual treatment responsiveness based on baseline data. The results
of our study show that microstate patterns of brain activity, reflecting
moment-to-moment brain dynamics, can be modified by MBCT, a

alpha

FIGURE 3

beta

gamma

Microstate topographical maps of the grand mean of all subjects in two groups and two time points in different frequency bands.
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FIGURE 4

The results of MBCT on microstate temporal dynamics of ADHD patients. (A) The individual explained the variance of microstate A in the theta
frequency band. (B) Mean duration of microstate B in the theta frequency band. (C) Coverage of microstate A in theta frequency band. (D) The
individual explained variance of microstate D in the alpha frequency band. (E) Coverage of microstate B in the full spectrum. (F) The individual
explained variance of microstate B in the full spectrum. Each bar represents the mean value of the data, and bar lines represent the standard error of

the mean (SEM). *P < 0.05, **p < 0.01.

non-pharmacological treatment with no known side effects, in adults
with ADHD. Interestingly, these pattern modifications are linked with
clinical measures and highlight their role in cognitive performance,
such as better executive functioning and greater emotional control.
These findings suggest that MBCT improves ADHD symptoms,
perhaps by reshaping large-scale brain network dynamics, as
captured by EEG microstates, providing support for the use of

neuromodulatory interventions such as mindfulness and
neurofeedback. We also used microstate patterns to predict if
patients can benefit from MBCT before going through the treatment,
reducing financial burden and unnecessary engagement in an extra
treatment process.

To our knowledge, this is the first study to assess changes in EEG
microstates following MBCT in ADHD patients, and the first to

A B C D

l*
MS C

Full spectrum Delta

FIGURE 5

l*

Theta Alpha

The results of MBCT on transition probabilities of microstates in ADHD patients in (A) full spectrum, (B) delta frequency band, (C) theta frequency
band, and (D) alpha frequency band. Arrows with bold colors represent a meaningful transition probability. *P < 0.05.
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The results of cross-correlation between EEG microstate dynamics and clinical measures. (A) Coverage of microstate B in the alpha frequency band
and OQ-42.5 interpersonal relations (IR) scores. (B) The individual explained variance of microstate A in the alpha frequency band and the BRIEF
Behavioral Regulation Index (BRI) scores. (C) The individual explained variance of microstate A in the alpha frequency band and BRIEF Global
Executive Composite (GEC) scores. (D) Mean GFP of microstate A in the delta frequency band and BRIEF shifting (SHIFT) scores. (E) Mean GFP of MS
D in the delta frequency band and BRIEF SHIFT scores. (F) Mean GFP of microstate B in full spectrum and BRIEF emotional regulation (EMOT) scores.
(G) Coverage of microstate B in the theta frequency band and KIMS accept-without-judgement (AWoJ) scores.
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FIGURE 7

Representation of features used in machine learning (ML) model training, including microstate dynamics. Values compared between high-benefitters
(HB) and low-benefitters (LB) in pre-intervention data of the MBCT group. (A) occurrence of microstate A in full spectrum, (B) duration of microstate
C in full spectrum, (C) occurrence of all microstates in full spectrum, (D) occurrence of microstate D in full spectrum, (E) duration of microstate B in
full spectrum, (F) duration of all microstates in full spectrum, (G) occurrence of microstate C in full spectrum, (H) duration of microstate D in alpha
frequency band, (I) occurrence of microstate C in alpha frequency band.
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The confusion matrix resulted from training the (A) logistic regression (LR), (B) support vector machine (SVM), and (C) random forest (RF) models

using microstate features represented in Figure 7.

incorporate machine learning models for predicting therapeutic benefit
from MBCT using microstate and clinical features. The 12-week
interval between baseline and post-treatment recordings allowed us
to assess longitudinal changes. Crucially, the inclusion of a WL control
group enabled us to distinguish treatment effects from temporal
changes, with repeated measures ANOVA confirming significant
group-by-time interactions in microstate dynamics. Importantly,
prior research supports the test-retest reliability of core microstate
parameters, encompassing duration, occurrence, and coverage metrics
(42); enhancing confidence in the observed intervention-related effects.
However, lower reliability has been reported for microstate transition
metrics, which were not central to our findings.

We used a regression-based ocular artifacts removal method
and implemented another Artifact Subspace Reconstruction/ASR
artifact reduction method before analyzing EEG microstate
dynamics. Other studies that have measured EEG microstates of
ADHD patients have implemented other methods of preprocessing,
such as independent component analysis/ICA (16, 17, 43) or
manual artifact rejection (43, 44), which can affect the results and
interpretations of findings. Studies have shown that there is some
differentiation with regard to analytical outcomes using different
preprocessing approaches, especially in low-frequency spectral
features (45). However, a recent study indicated that microstate
dynamics are robust to artifacts, regardless of how the data is
preprocessed (46). This indicates that we can compare the results of
our study with other published studies, even where they have used
different preprocessing approaches.

The results of our analysis showed a modification in the clinical
measures of ADHD post-MBCT. As depicted in Figure 2, BRIEF
scores decreased, indicating improvements in the domains of

TABLE 2 The results of machine learning methods used for predicting
the treatment response of patients in the MBCT program.

Classification = Accuracy Sensitivity  Specificity
LR 0.83 0.88 0.77
SVM 0.72 0.66 0.77
RF 0.61 0.55 0.66

LR, binary logistic regression; SVM, support vector machine; RF , random forest.
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inhibition, shifting, emotional regulation, initiation, working
memory, planning/organization, organization of materials, self-
monitor, and task monitor following exposure to the MBCT.
Previous studies report similar findings with regards to improved
executive functioning after mindfulness intervention. For example,
Virone reported symptom amelioration after a mindfulness
intervention for ADHD patients using the BRIEF test (47). In
another study, MBCT was associated with significantly lower
ADHD symptoms compared to treatment as usual. In the same
study, interestingly statistically significant improvements were not
observed in executive functions immediately after MBCT exposure,
but were observed after a 6-month follow-up (48).

There has been interest in recent years about examining
microstate dynamics of resting state EEG in patients with
psychiatric disorders, of which there are a few studies in ADHD
patients. Previous work suggests that resting-state EEG microstates
are significantly affected by ADHD. A recent review article
summarized studies that evaluated resting-state and event-related
microstates of ADHD patients (49). They have reported 13 studies,
including three in resting-state, in their review.

By conducting a microstate analysis on the resting-state EEG
recordings of patients with ADHD, Férat et al. discovered five
microstate classes. They conducted their analysis on two datasets,
both between ADHD and healthy control subjects. According to their
results, ADHD participants showed longer durations of microstate D
and decreased duration and coverage of microstate A, which had an
inverse correlation with inattention scores. Importantly, the results
for microstate D were robust as they were replicated in another
dataset (17). In another study by Luo et al., four microstate maps were
compared between groups of children with ADHD and healthy
controls. The authors reported that the coverage of microstate C
was lower in the ADHD group, and the duration and contribution of
microstate D were also higher in the ADHD group compared to the
healthy control group (44). Adding to these outcomes, Wu et al.
compared healthy participants with ADHD persistent (ADHD-P)
and ADHD remission (ADHD-R). They identified four microstates
across the dataset and found that both ADHD groups had higher
durations of microstate C compared with the healthy control group.
Furthermore, the ADHD-R group had higher coverage of microstate
C, increased transition probabilities from microstate C to D, and
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decreased transition probabilities from microstate D to C (16).
Comparing the prior finding with the current study shows the
possible role of microstate A in ADHD symptoms. Our findings
show an increase in the coverage of microstate A after MBCT, which
was shown to be reduced in ADHD patients by Ferat et al. (17).

Moreover, research carried out by Leon et al, examining EEG
microstates in ADHD patients, has recognized four primary maps
common to all participants in their investigation (43). In children with
ADHD, microstate B exhibited a significant reduction in coverage
relative to the healthy control group. Additionally, the analysis of
transition probability between groups revealed a higher transition from
state C to state D. In another study, Piao et al. used resting-state
microstate analysis to assess neurobiological markers in three groups of
study, including healthy controls, ADHD patients with sleep problems
(ADHD-SP), and ADHD patients without sleep problems (ADHD-
NSP) (50). Their results indicated that both clinical ADHD groups had
significantly lower occurrence of microstate D and reduced transition
probability from microstate C to D compared with healthy controls.
Furthermore, the ADHD without sleep problems group (ADHD-NSP)
showed a lower duration of microstate A and reduced transition
probabilities from microstate D to C.

Looking at meditation studies more broadly, such as the effects
of different kinds of meditation, including mindfulness practice,
shows compelling modulation of EEG microstate dynamics. For
example, Zarka et al. evaluated changes in microstate dynamics in
resting-state EEG in individuals after mindfulness-based stress
reduction (MBSR) training versus those in a waitlist control
group. They reported that the MBSR group displayed lower
duration, coverage, and occurrence of microstate C compared
with controls (51). Below we synthesize the aforementioned
evidence base with how it connects to our study findings (Table 3).

No published study has examined microstates of EEG
recordings in ADHD patients following MBCT exposure.
However, we might be able to discuss the results of studies that
compared EEG microstates of ADHD and healthy controls, or the
effects of mindfulness-based interventions on healthy subjects.
There are a few studies that fit into these categories. One might
expect that if a variable (eg, microstate dynamics) increases in
ADHD patients compared to healthy subjects, a treatment should
reverse those effects by decreasing the values of that variable.
However, no such pattern was observed in our results compared
to others. There is an inconsistency with the results of previous
studies that compared ADHD with healthy subjects, which is
summarized in Table 3. Based on this summary, the most
obvious change in microstate dynamics between ADHD and
healthy controls is the transition probabilities between microstate
classes C and D. There are a few variations between previous studies
and also with the current study that might explain the inconsistency
between these results. The studies summarized in Table 3 differ in a
few aspects, such as the status of their eye (open or closed), the
frequency bands, and the age and gender of participants. As the
current study shows, there can be a large difference between
microstate dynamics in different frequency bands, and this,
together with other variations, might explain some of these
inconsistent results.

Frontiers in Psychiatry

11

10.3389/fpsyt.2025.1670602

After conducting the microstate analysis on resting-state EEG
recordings, we implemented additional analysis on our data to
reveal more useful information. At first, we examined the cross-
correlation between microstate temporal dynamics and clinical
measures. The results indicated a strong correlation within seven
pairs of data. Four pairs had positive correlation (Figures 6A-D) and
three of them had a negative correlation (Figures 6E-G). Two strong
positive correlations were observed between BRIEF shifting scores
and mean GFP in the delta frequency band, one in microstate A and
another in microstate D (Figures 6B, C). A strong negative
correlation between individual explained variance of microstate A
in the alpha frequency band was also observed with two clinical
measures, the BRIEF behavioral regulation index and global
executive composite (Figures 6E, F).

Microstates A and B seem to play an important role in the
neurophysiological aspects of ADHD patients. The Coverage of
microstate B and individual explained variance of microstate A each
appeared in two correlations (Figures 6D-G). We also observed a
significant groupxtime effect in the temporal dynamics of
microstates A and B between groups of study. The individual
explained variance and coverage of microstate A increased after
MBCT; and the Individual explained variance, duration, and
coverage of microstate B decreased after MBCT in our study. The
results of other studies also suggest the importance of microstates A
and B temporal dynamics in ADHD patients. Ferat et al. reported a
decrease in duration and coverage of microstate A (17), and Leon
et al. reported a decrease in coverage of microstate B (43) in ADHD
patients compared to healthy subjects.

The significance of microstates A and B in ADHD patients can
also be observed by investigating the relationship between these
microstates and brain neural networks. The involvement of the
visual cortex in both microstate A and B was detected by previous
studies. The association of microstate B with visual regions (among
other areas) was reported similarly in a few other studies (52-54).
Milz et al. compared the temporal dynamics of EEG microstates
during spatial visualization, object visualization, verbalization, and
no-task conditions. Their study indicated that microstate A had an
increased occurrence, duration, and explained variance during the
spatial and object visualization tasks compared to no task and
verbalization conditions (55), which can relate microstate A to
visual processing. Antonova et al. observed similar results in which
the temporal presence of microstate A increased during both
visualization and verbalization tasks (56). Finally, the results of an
MRI study indicated that the volume of gray matter reduced
significantly in the early visual cortex in ADHD patients (57).
This shows the importance of the visual cortex as a potential area
of dysfunction in ADHD patients.

Some studies have focused on the activation of the temporal
cortex and auditory network regarding the underlying neuronal
sources of microstate A (52-54, 58). Their similar results indicated
that the activity of the auditory network and phonological
processing are associated with microstate A. The auditory cortex
is connected to a variety of brain structures, such as attentional
networks that communicate with auditory processing networks by
providing information and receiving precise feedback. This
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TABLE 3 Summary of the results of EEG microstate dynamics in other germane studies compared to the current study.
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Ferat et al. Dataset 1: eyes open, 1-100 Hz, 31F/35M, ADHD; HC 5 DT Al (17)
(2022) mean age = 34 Al
Dataset 2: eyes open, 1-100 Hz, 12F/10M,
mean age = 32
Luo et al. eyes closed; 1-45 Hz; 38F/123M; 8-15 years ADHD; HC 4 D1 Cl (A&C)| (44)
(2023) (B&D)?1
Wu et al. eyes closed; 0.5-45 Hz; 7F/21M; 18-27 years ADHD-P; ADHD-R; 4 Cr cr (C-D)t* | (16)
(2024) HC (D—C)I*
Leon et al. eyes open; 1-40 Hz; 5F/33M; mean age = 12.1 ADHD; HC 4 Bl (C—D)t (43)
(2024)
Piao et al. eyes-closed; 0.5-45 Hz; 5F/29M; ADHD-SP; ADHD- 4 Dl Al (C—-D)| (50)
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(2024) 41.68;
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Some details of each study were mentioned, such as eyes open/closed during EEG recording, the frequency band of analyzed data, gender, and age of participants. The gender and age of the
ADHD group of each study are presented in this table. *only observed in the ADHD remission (ADHD-R) group **only in the ADHD without sleep problems (ADHD-NSP) group.

evidence supports the interconnection between attentional and
auditory functions (59, 60). There is also evidence of overlap
between ADHD and Auditory Processing Disorder (61). In a
recent study, Blomberg et al. showed that aberrant interactions
between the auditory systems, default mode network, and ventral
attention/salience network are linked to inattentiveness in ADHD
(62). Serrallach et al. found that adult ADHD patients have a
different structural and functional auditory cortex compared to
controls (63).

The relationship between the level of participants” arousal and
microstate A has been shown to be a consistent finding. A negative
correlation between the subjective scores of sleepiness and coverage
and occurrence of microstate A was reported by Ke et al. (64). These
results were supported by another study that demonstrated a
positive correlation between subjective examination of alertness
and the duration of microstate A (56). Several models have been
proposed about the origin of ADHD. The hypoarousal theory by
Satterfield and Dawson states that an underaroused nervous system
is the main cause of ADHD symptoms of hyperactivity, impulsivity,
and inattention (65). Reports of other studies also show that low
levels of arousal correlate with more severe symptoms of ADHD in
adults and children (66-68).
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Several studies have investigated the potential associations
between cognitive domains and microstate B. Studies with resting-
state EEG have reported that microstate dynamics can predict the
cognitive performance of individuals. The occurrence of microstate B,
for example, is associated with crystallized intelligence (69),
potentially reflecting the recruitment of cortical networks involved
in semantic memory retrieval, visual conceptual processing, and the
consolidation of long-term, acquired knowledge. Du et al. observed a
positive correlation between cognitive flexibility inventory scores and
the duration of microstate B (70). It is well documented that adults
with ADHD, compared to healthy subjects, may show cognitive
deficits identified by dysfunctions across all attention modalities,
verbal memory, processing speed, reading skills, executive function,
arithmetic abilities, and social cognition (71).

Another finding in our study related to the significance of
microstates A and B in ADHD patients is the cross-correlation of
clinical measures with microstate dynamics. The results of our
study, as depicted in Figure 6, indicate that almost all correlations
happened in microstates A and B. Mean GPF and individual
explained variance of microstate A and mean GPF and coverage
of microstate B had a strong correlation with clinical measures in
our study.

frontiersin.org


https://doi.org/10.3389/fpsyt.2025.1670602
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

Meynaghizadeh Zargar et al.

We used machine learning methods, including logistic
regression/LR, support vector machine/SVM, and random forest/
RF models to predict the treatment response of the MBCT program
using microstate dynamics. Our purpose was to see if the models
could distinguish high-benefitters from low-benefitters, which were
initially categorized by increment change in clinical measures
(CAARS and OQ-42.5) across the randomized trial period.
Notably, the logistic regression/LR model was able to perform
better than other models in reaching a high accuracy (83%),
which was also higher than other studies that used machine
learning techniques to predict the outcome of mindfulness-based
interventions. Myers et al. have implemented a random forest/RF
model to predict the response of MBCT for suicide prevention and
reached an accuracy of 0.7 utilizing clinical and neurocognitive task
data (72). In another study, Dethoor et al. used the support vector
machine/SVM model to predict treatment response of MBCT in
patients with depressive symptoms. They constructed a support
vector machine/SVM model with two clinical measures (Beck
Depressive Inventory and Five-Facet Mindfulness Questionnaire),
which had a sensitivity of 0.79 and a specificity of 0.71 (73). Their
results are comparable with our results of using the support vector
machine/SVM method with 0.66 sensitivity and 0.77 specificity.

Our study includes limitations to be addressed. First, our
sample could benefit with a larger number for machine learning
applications, that generally require a high sample size to ensure high
generalizability. However, our sample size is comparable with other
studies such as Ferat et al. (61 healthy, 61 ADHD in dataset 1 and 22
healthy and 22 ADHD in dataset 2) (17), Luo et al. (54 healthy, 54
ADHD-], and 53 ADHD-C) (44), and Wu et al. (28 healthy, 50
ADHD) (16). Second, we compared the effects of MBCT with a
passive wait-list, opposed to active, control group that did not
participate in any focused activity. This is not inherently
problematic for initial mechanistic exploration, since passive
controls allow for a clear comparison of intervention versus no
intervention when prior mechanistic models/data are limited.
Passive control designs are not necessarily weaker, for example, in
cognitive training research, a recent meta-analysis (from 1, 524
studies) reported no consistent differences in outcomes between
active and passive controls (74), and that passive groups may offer a
more reliable baseline for retest effects across studies. Nevertheless,
future studies could increase mechanistic specificity by including
active control groups, such as cognitive training (e.g. CBT), health
enhancement programs, or psychoeducation, to further clarify the
specific working pathways involved in MBCT for ADHD. Third, the
overlap of ADHD with other conditions that may produce similar
neurophysiological patterns needs to be addressed in future studies.
For example, a relatively recent study showed that patients
diagnosed with ADHD share common neural deficits with
spontaneous mind wandering in neurotypical individuals (75).
Furthermore, although the value of feature extraction using
resting-state EEG data has shown to be important, it would be
beneficial to examine these features using neurophysiological
markers (e.g. ERP, ERSP, ITC). Previous studies report a
relationship between these neural outcomes and brain generators
associated with adult ADHD (76, 77). Examination of event-related
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microstates is currently underway within our group to further
elucidate these neurophysiological dynamics, which we anticipate
will extend and refine the resting-state findings presented here.

Conclusion

This study is the first to demonstrate that mindfulness-based
cognitive therapy (MBCT) produces measurable changes in resting-
state EEG microstate dynamics in adults with ADHD. MBCT led to
significant improvements in clinical outcomes and modulated the
temporal dynamics of specific microstate classes across multiple
frequency bands, suggesting neurophysiological mechanisms
underlying therapeutic gains. The results of our research highlight
the significance of microstates A and B in individuals with ADHD,
which have also been shown to be modulated in other
neuropsychiatric disorders and are associated with aberrations in
visual and auditory processing. Furthermore, our machine learning
model successfully predicted the treatment response of the MBCT
program, pointing to the potential of personalized, data-driven
approaches in ADHD treatment. Future research may explore
microstate dynamics across ADHD subtypes and age groups to
deepen mechanistic insights and guide targeted mindfulness-
based interventions.
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