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Background: Pulmonary arterial hypertension (PAH) and major depressive

disorder (MDD) frequently co-occur, worsening morbidity and mortality. The

shared genetic and molecular substrates of this comorbidity remain unclear. This

study investigated common differentially expressed genes (DEGs), convergent

pathways, and candidate hub genes linking PAH and MDD.
Methods: Gene-expression datasets for PAH (GSE113439, GSE53408) and MDD

(GSE44593, GSE54564) were obtained from GEO. After standardization, DEGs

were identified with Limma, and intersected across diseases while retaining

concordant expression trends. Functional enrichment was performed using

Gene Ontology (GO). A protein–protein interaction (PPI) network was built to

prioritize hub genes (CytoHubba), followed by feature selection with LASSO

regression and additional machine-learning validation. Immune-cell infiltration

was profiled to assess shared immunological alterations. An experimental rat

model of PAH exhibiting anxiety- and depression-like behaviors was established,

and hub-gene expression was validated by qPCR.

Results: Forty-two common DEGs with consistent directions were identified.

Network analysis and LASSO converged on six candidate hub genes; among

these, CHD8, DDX42, and EIF3D were further supported by machine-learning

validation. Immune-infiltration analysis indicated dysregulated immune

landscapes in both PAH and MDD. In PAH rats, anxiety- and depression-like

behaviors were observed, and qPCR confirmed altered expression of CHD8,

DDX42, and EIF3D consistent with in-silico findings.
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Conclusions: This integrative analysis highlights genetic and molecular links

between PAH and MDD. CHD8, DDX42, and EIF3D emerge as candidate hub

genes associated with the coexistence of these conditions, suggesting

hypotheses for mechanistic follow-up and potential therapeutic targeting.
KEYWORDS

pulmonary arterial hypertension, major depressive disorder, immune process,
bioinformatics, validation
Introduction

Pulmonary arterial hypertension (PAH) is a rare yet severe

cardiovascular condition affecting about 1% of the global

population (1). Characterized by a progressive increase in

pulmonary vascular resistance and pulmonary artery pressure,

PAH leads to debilitating symptoms like dyspnea, fatigue,

syncope, and ultimately, right-sided heart failure (2). Despite

advancements in targeted therapies, the survival rates at one and

five years post-diagnosis remain modest at 86% and 61%,

respectively (3).

PAH frequently co-occurs with major depressive disorder

(MDD), a condition marked by a depressed mood, a decreased

interest in activities, cognitive impairments, and physical symptoms

such as sleep disturbances and appetite changes (4). Previous

studies have indicated that PAH patients are more prone to

MDD than healthy individuals (5), with prevalence rates of MDD

ranging from 20% to 53% among those with PAH (6). Additionally,

MDD adversely affects the quality of life and can negatively

influence the prognosis of PAH, further reducing survival rates (7).

Both PAH and MDD share similar pathophysiological

mechanisms, including dysregulation of the hypothalamic–

pituitary–adrenal (HPA) axis, which is crucial in stress response

and mood regulation. Chronic stress and cortisol dysregulation

have been implicated in both conditions (4, 8). The HPA axis is

hyperactive in depression, with increased corticotropin-releasing

hormone production contributing significantly to this activity (9).

Experimental findings suggest that angiotensin-converting enzyme

2 overexpression in the hypothalamus may reduce corticotropin-

releasing hormone synthesis, offering protective effects against

chronic hypoxia-induced pulmonary hypertension in mice (8).

Additionally, imaging studies have shown significant gray matter

damage and alterations in brain regions such as the hippocampus,

amygdala, and temporal lobe in PAH patients, providing a

structural basis for the mood disorders observed in these

individuals (10).

Moreover, PAH is associated with elevated peripheral serotonin

levels, implicating serotonin’s role in the pathophysiology of both

PAH and depression. Although selective serotonin reuptake

inhibitors are commonly used to treat depression by enhancing

serotonin receptor activation via blocking its reuptake (11), their
02
use in PAH patients has been linked with increased mortality and

clinical worsening (12, 13). Thus, understanding the shared

mechanisms between PAH and MDD as well as identifying novel

therapeutic targets are crucial.

This study aimed to explore the biological underpinnings of

PAH and MDD coexistence by identifying a common genetic

signature through various bioinformatics tools, including

differential gene expression analysis, PPI networks, and

interaction network analyses. We also developed a PAH model to

validate the association between negative emotions and identified

hub genes through behavioral testing and quantitative polymerase

chain reaction (qPCR) assays, providing new insights into the

pathogenesis of both PAH and MDD.
Materials and methods

Data collection and preprocessing

The PAH datasets GSE113439 (14) and GSE53408 (15),

together with the MDD datasets GSE44593 and GSE54564 (16),

were obtained from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/). Both PAH datasets consist of

fresh-frozen human lung tissues from PAH patients and non-

diseased controls: GSE113439 (GPL6244) includes 15 PAH and

11 control samples, and GSE53408 (GPL6244) contains 12 PAH

and 11 control samples. Both MDD datasets comprise amygdala

tissues from patients with MDD and matched controls: GSE44593

(GPL570) includes 14 MDD and 14 control samples, and GSE54564

(GPL6947) includes 21 MDD and 21 control samples. All cases and

controls within each dataset were derived from the same tissue type,

with no inclusion of samples from other organs or mixed tissues.

Dataset integration and batch-effect correction were performed

using the “sva” package (17), and cross-study normalization was

carried out with the “Normalize Between Arrays” function in the

“limma” package (18). Data reproducibility and reliability were

assessed by principal component analysis (PCA). Detailed

information on the datasets (platforms, tissue sources, sampling

sites, and clinical characteristics) is provided in Supplementary

Table S1, and a schematic overview of the study design is

presented in Figure 1.
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Identification of differentially expressed
genes

To identify the DEGs between cases and controls in the datasets,

we used the “limma” package in R. The selection criteria for DEGs

included an adjusted p value (from the Benjamini–Hochberg

method) of less than 0.05 and a log2 absolute fold change of

greater than 0.5 (19, 20). These thresholds ensured a robust

identification of genes significantly altered in expression,

minimizing false discoveries.

For visualization of the expression patterns and the significant

changes, heatmaps were generated using the “heatmap” package,

and volcano plots were constructed with the “ggplot2” package.

Additionally, a Venn diagram was employed to identify

common differentially expressed genes (Co-DEGs) between the

PAH and MDD datasets. This approach helps to pinpoint the
Frontiers in Psychiatry 03
genes that are consistently altered in both conditions, suggesting

potential shared molecular pathways or mechanisms.
Protein–protein interaction network
construction

The protein–protein interaction (PPI) network was constructed

using the STRING database (https://string-db.org/) based on the

previously identified Co-DEGs. To maximize coverage of potential

interactions and avoid an overly sparse network, we applied a

combined score threshold of ≥ 0.150. This cutoff allowed

inclusion of interactions with at least moderate confidence,

ensuring sufficient connectivity while retaining biological relevance.

Hub gene analysis was then carried out in Cytoscape using the

CytoHubba plugin, which identifies key nodes that may play critical
FIGURE 1

Flowchart of the study design. PAH, pulmonary arterial hypertension; MDD, major depressive disorder; Co-DEGs, common differentially expressed
genes; PPI, protein–protein interaction; GO, gene ontology; GSEA, gene set enrichment analysis; TF, transcription factor.
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roles in disease biology. The top 10 hub genes were ranked according

tomultiple topological algorithms provided by CytoHubba, including

Maximum Neighborhood Component, Density of Maximum

Neighborhood Component, and Maximal Clique Centrality.
Gene regulatory network analysis

To elucidate the regulatory dynamics of hub genes, we

employed the miRDB database (www.mirdb.org) to construct

mRNA–miRNA regulatory networks. For mRNA–RNA-binding

protein (RBP) interactions, we accessed the ENCORI database.

Additionally, the CHIPBase database (https://rna.sysu.edu.cn/

chipbase/) and the hTFtarget database (https://guolab.wchscu.cn/

hTFtarget/#!/) provided insights into mRNA–transcription factor

(TF) interaction networks. Pharmacological connections involving

hub genes were explored using the Comparative Toxicogenomics

Database (http://ctdbase.org/) to identify potential mRNA–drug

interactions. These networks were visualized using Cytoscape

software to map out the intricate relationships. Functional

correlations among genes were analyzed using Friends analysis,

which is a functional similarity analysis, employing the

“GOSemSim” R package to calculate these relationships and

identify key DEGs.
Gene ontology analysis

To gain insights into the functional roles of the hub genes, we

performed GO enrichment analyses using the “clusterProfiler”

package (version 3.14.3). The analyses evaluated the genes across

three main GO categories: molecular function (MF), cellular

component (CC), and biological process (BP). To determine

significance, we set thresholds for both the adjusted p-value and

q-value at less than 0.05, ensuring the identification of highly

relevant biological attributes associated with the hub genes.
Hub−gene evaluation and ROC analysis

Hub-gene expression was assessed across four GEO datasets

(PAH: GSE113439, GSE53408; MDD: GSE44593, GSE54564). No

additional independent external validation cohort was available.

Case–control differences were visualized with boxplots, and

discriminative performance was evaluated using ROC analysis,

with AUC values and 95% confidence intervals reported. Sample

sizes, array platforms, and tissue sources for each dataset are

provided in Supplementary Table S1.
Gene set enrichment analysis

GSEA is a method used to determine if a predefined set of genes

shows statistically significant, concordant differences between two
Frontiers in Psychiatry
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biological states. For our analysis, we utilized the “c2.cp.all.

v2022.1.Hs.symbols.gmt” gene set from the Molecular Signatures

Database, which is accessible at https://www.gsea-msigdb.org/gsea/

msigdb. We conducted GSEA using the “clusterprofiler” software

package. The analysis was configured to identify gene sets enriched

at a significance level of p<0.05 (21, 22).
Gene set variation analysis

GSVA is an unsupervised method used to convert gene

expression data from multiple samples into matrices of pathway

activation scores. This approach helps to assess the enrichment of

specific biological pathways. For our analysis, we used the

“c2.cp.v2022.1.Hs.symbols” gene set from the Molecular

Signatures Database, available at https://www.gsea-msigdb.org/

gsea/msigdb. The differential pathway activity between disease

and control groups was analyzed using the “limma” package, with

significance determined by an adjusted p-value threshold of <0.01.
Consensus clustering

Consensus clustering, a resampling-based approach, was

utilized to explore cluster formation via the k-means algorithm.

We employed the “Consensus Cluster Plus” package to categorize

disease subtypes. Our evaluation included up to 10 potential

categories, performing 100 iterations for each cluster number (k).

For the clustering process, we selected the Partitioning Around

Medoids algorithm paired with the Euclidean distance metric. To

validate the differential expression of pivotal genes among the

identified clusters, box plots were generated and analyzed.
Immune infiltration and correlation analysis

To estimate immune cell proportions in the PAH and MDD

samples, we applied the single-sample gene set enrichment analysis

(ssGSEA) algorithm, using 28 predefined gene sets (23) that represent

diverse immune cell types, including CD8+ T cells, dendritic cells,

macrophages, and regulatory T cells. The “GSVA” R package was

employed to compute the infiltration levels of these cells in each

sample. Box plots were then used to compare the proportions of

immune cells between the two datasets. Additionally, Spearman’s

rank correlation analysis, facilitated by the “ggplot2” package, was

conducted to assess the correlation between the infiltrating immune

cells. This analysis also included the creation of scatter plots to

visually explore the relationships between immunocytes and hub

genes. As a complementary deconvolution approach, we used

CIBERSORT (http://cibersort.stanford.edu/) to estimate relative

immune cell proportions based on the LM22 signature, which

consists of 547 genes distinguishing 22 human hematopoietic

phenotypes, including seven T-cell subsets, naïve and memory B

cells, plasma cells, NK cells, and various myeloid populations (24).
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Diagnostic model construction

We performed differential expression analysis and GSEA on

samples from a combined dataset to identify genes commonly

associated with PAH and MDD. Following this, we developed

diagnostic models using the Logistic-Least Absolute Shrinkage and

Selection Operator (Logistic-LASSO) technique, utilizing the

“glmnet” package with a seed set to 2020 and the family parameter

set to “binomial.” The predictive accuracy of our model was assessed

through receiver operating characteristic (ROC) curve analysis.
Animals

This study was approved by the Animal Welfare and Ethics

Committee of Fujian Medical University (Approval No.: FJMU

IACUC 2021-0387) and conducted in accordance with the ARRIVE

guidelines. Male Sprague–Dawley rats (8 weeks old) were obtained

from Shanghai SLACCAS Laboratory Animal Co., Ltd. (Certificate

No.: SCXK 2012-0002) and housed under standard laboratory

conditions with free access to food and water. Animals were

randomly assigned (computer-generated sequence) to either the

PAH group or the control group (n = 6 per group). Investigators

responsible for behavioral testing and data analysis were blinded to

group allocation.

Pulmonary arterial hypertension (PAH) was induced by a single

intraperitoneal injection of monocrotaline (MCT; Sigma Aldrich,

30 mg/kg), while control rats received an equal volume of saline.

Although a 60 mg/kg MCT dose is widely used to generate robust

PAH within 3–4 weeks, it is associated with systemic toxicity, early

right heart failure, and high mortality, which complicate

longitudinal and behavioral assessments. In contrast, previous

studies have shown that a lower dose of 30 mg/kg elevates right

ventricular systolic pressure (RVSP) and the right ventricular

hypertrophy index (RVHI), while producing lower lethality and

allowing stable subchronic observations over 4–8 weeks (25–27).

Based on this evidence, we selected 30 mg/kg to establish a

reproducible, moderately severe PAH phenotype suitable for

subsequent behavioral and molecular analyses.

To avoid the influence of invasive procedures on behavior, all

behavioral tests were conducted during week 4 after injection.

Immediately thereafter, right-heart catheterization was performed

to measure RVSP, and RVHI was calculated as RV/(LV + S) to

confirm model induction (25, 28). Lung tissue (right lower lobe) was

snap-frozen in liquid nitrogen for subsequent qPCR analysis (25).
Anxiety-like and depression-like behaviors

Behavioral testing was performed during week 4 after

monocrotaline or saline injection, following a fixed sequence

designed to minimize cross-test carryover and anxiogenic effects:

Sucrose Preference Test (SPT) on Days 26–28 (48h adaptation with

bottle switching, followed by 24h food/water deprivation and a 1h
Frontiers in Psychiatry 05
test), Open Field Test (OFT) on Day 29 (5min session), and

Elevated Plus Maze (EPM) on Day 30 (5min session). Tests were

spaced by ≥24 h and conducted during the light phase (09:00–

12:00). Animals were habituated to the testing room for 30min

before each assay, and all apparatuses were sanitized with 70%

ethanol between animals. The order was chosen because SPT is

minimally stressful and non-invasive for assessing anhedonia, OFT

induces moderate novelty- and light-related anxiety, and EPM is the

most anxiogenic due to elevation and open arms; therefore, EPM

was performed last (29–32).

Sucrose Preference Test (SPT) — Anhedonia was assessed as

described (33). Rats were habituated to 1% sucrose in two 150-mL

bottles for 24h, followed by 24h with one bottle of water and one of

1% sucrose. After an additional 24-h food and water deprivation,

rats were given 1h access to both bottles, with bottle positions

switched halfway to avoid side bias. Intake (by weight) was

recorded, and sucrose preference was calculated as [sucrose

intake/total intake] × 100%. After SPT, animals were returned to

ad libitum food and water before proceeding to the next assays.

Open Field Test (OFT) — Locomotor activity and anxiety-like

behavior were assessed in a 100cm × 100cm arena with 40-cm walls

(5-min session), recorded using an infrared camera (Model: TA-

758RP) (34). Primary outcomes included total distance traveled, time

spent in the center, and distance traveled in the center. Reduced

center exploration was taken as an indicator of elevated anxiety.

Elevated Plus Maze (EPM)— Anxiety-like behavior was further

evaluated in a 5-min session recorded from above (35). After 30min

of acclimation to the testing room, each rat was placed in the maze

center facing an open arm. A blinded investigator recorded the time

spent in open arms and the number of open-arm entries.

Reduced exploration of open arms was considered a sign of

increased anxiety.

Where applicable, recovery intervals were provided between tests

(SPT→OFT→ EPM) to reduce stress and fatigue. Behavioral scoring

for all tasks was performed by an investigator blinded to treatment.
RNA extraction and qPCR

Total RNA was extracted from the right lung using the FastPure

Cell/Tissue Total RNA Isolation Kit V2 (Vazyme). cDNA was

synthesized with HiScript II Q RT SuperMix for qPCR (+gDNA

wiper) (Vazyme). qPCR was carried out with ChamQ SYBR qPCR

Master Mix on a LightCycler® 96 system (Roche) in 20 μL

reactions. Negative controls (NTC and –RT) were included, and

melt-curve analysis (65–95 °C) confirmed single, specific products.

Primer efficiencies ranged from 90–110% (R² > 0.99).

Gene expression was normalized to b-actin and calculated by the

2−DDCt method, with saline controls as the calibrator. Each group

included six biological replicates, with triplicate technical replicates

per sample. Data are presented as mean ± SEM. Statistical tests

(independent-samples t-test or Mann–Whitney U when assumptions

were violated) are specified in the Results and figure legends.

The primer sequences used for the qPCR:
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1670519
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Yan et al. 10.3389/fpsyt.2025.1670519

Fron
CHD8: forward primer 5′-AGTGACGAGAAGGAAGA-3′
reverse primer 5′-GGGAATCCATCTTGGGA

CATAG-3′
EIF3D: forward primer 5′-CAACAAGCAGGTCATC

CGAGTCTAC-3
tiers in Psychiatry 06
reverse primer 5′-CCTCCTCTTCCTCCTCAT
CCTCTTC-3′

DDX42: forward primer 5′-CCCAAGGAGTCAACAACA
C-3′
reverse primer 5′-ATGACGGCTACTGCTTTCT-3′
FIGURE 2

Identification of Common DEGs between PAH and MDD. (A) Raw expression matrix of the PAH dataset (Before) and Normalized expression matrix of
the PAH dataset (After). (B) Raw expression matrix of the MDD dataset (Before) and Normalized expression matrix of the MDD dataset (After). (C, D).
Volcano plots of DEGs between the disease and control group in the PAH dataset (C) and MDD dataset (D). These plots highlight significant DEGs
with a fold change on the x-axis and the negative logarithm of the p-value on the y-axis, identifying genes significantly upregulated or
downregulated. (E) A Venn diagram illustrating the overlap of DEGs between the PAH and MDD datasets, with DEGs that meet a significance
threshold of a p<0.05. (F, G) Heatmaps of the 42 co-DEGs between the disease and control groups for the PAH dataset (F) and MDD dataset (G).
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Fron
b−actin: forward primer 5′−CGCGAGTACAACCTTCTTG
C−3′,
reverse primer 5′−CCTTCTGACCCATACCC

ACC−3′
Statistical analysis

Bioinformatics analyses were performed in R, while animal

experiment data were analyzed using GraphPad Prism 9.5

(GraphPad Software). Data are expressed as mean ± SEM.

Between-group comparisons of MCT-induced PAH indices,

behavioral outcomes, and qPCR results were evaluated using two-

tailed independent-samples t-tests. Statistical significance was

defined as P < 0.05. Assumptions of normality and homogeneity

of variance were tested; when violated, nonparametric alternatives

were applied (Mann–Whitney U for between-group comparisons,

Wilcoxon signed-rank for paired data).
Results

Identification of common DEGs between
PAH and MDD

The expression matrices from the PAH datasets (GSE53408,

GSE113439) and the MDD datasets (GSE44593, GSE54564) were

normalized. The resulting box plots displayed straight lines,

indicating the distribution trends (Figures 2A, B).

Using the Limma R method, the analysis of the GSE53408 and

GSE113439 datasets identified 2416 DEGs in the combined PAH

dataset, with 1663 upregulated and 753 downregulated genes.

Additionally, in the MDD dataset, a total of 326 DEGs were

discovered, consisting of 136 upregulated and 190 downregulated

genes. The volcano plots displaying the DEGs for both PAH and

MDD are presented in Figure 2C and Figure 2D, respectively. The

Venn diagram analysis revealed 42 DEGs common to both

conditions (Figure 2E). Heatmaps showcasing these 42 common

DEGs in both the PAH and MDD datasets are depicted in

Figures 2F, G (Supplementary Table S2).
GSEA and GSVA results of the PAH and
MDD datasets

GSEA and GSVA were performed on both disease patients and

healthy controls within the PAH and MDD datasets to uncover

deeper biological insights into the behavior of DEGs.

For the PAH dataset, GSEA revealed that DEGs in the disease

group (PAH/control) are significantly enriched in several key

pathways. These include the interleukin-12 (IL-12) signaling

pathway, the regulation of tumor protein TP53 activity through

phosphorylation, Notch signaling, TP53-regulated transcription of

DNA repair genes, signaling by NOTCH4, and signaling by
tiers in Psychiatry 07
NOTCH2 (Figure 3, Supplementary Table S3). Furthermore,

GSVA of the PAH/control datasets identified that 10 gene sets,

such as the PID p38 gamma delta pathway, showed statistical

significance (p<0.05) among the PAH/control samples in the

PAH dataset (Supplementary Figure S1, Supplementary Table S5).

For the MDD dataset, significant enrichment of genes was

observed across various biological pathways when comparing

disease groups to controls (MDD/control). Notable pathways that

showed significant enrichment included neuroactive ligand–

receptor interaction, ion channel transport, interferon signaling,

laminin interactions, the gonadotropin-releasing hormone

signaling pathway, and oxidative phosphorylation (Figure 4,

Supplementary Table S4).

Additionally, GSVA was conducted on the MDD dataset to

further compare the disease and control groups (MDD/control).

The analysis identified that seven gene sets, including DNA

mismatch repair, were statistically significant between the MDD

and control groups within the MDD dataset (Supplementary Figure

S2, Supplementary Table S6).
Identification and external validation of
candidate hub genes

The process of identifying and externally validating key genes

that play a significant role in both PAH and MDD involved several

sophisticated bioinformatics tools and databases. The STRING tool

was utilized to analyze the PPI networks of shared DEGs, helping to

clarify how these genes interact within the networks (Figure 5A).

The CytoHubba plugin, using algorithms such as Maximal Clique

Centrality, Maximum Neighborhood Component, and Degree

Network Centrality Measure, was employed to pinpoint and

assess the top 10 hub genes in the PPI network (Figures 5B-E).

From these, six candidate hub genes were identified at the

intersection of these algorithms: CHD8, DCLK1, DDX42, DHX36,

EIF3D, and GFM1 (Supplementary Table S7).

Further analysis using the CHIPBase database (v3.0) allowed for

the visualization of interaction networks between the candidate hub

genes and various TFs. This revealed 61 interactions involving the 6

hub genes and 33 TFs, which were then visualized using Cytoscape,

where mRNAs were represented as blue circles and TFs as red

circles (Figure 5F, Supplementary Table S8). Predictions from the

miRDB database, with a Target Score of ≥95, identified 42 target

miRNAs for the hub genes. A co-expression network comprising

these hub genes and miRNAs was constructed, uncovering 44

mRNA–miRNA pairs (Figure 5G, Supplementary Table S9).

The mRNA–drug interaction network illustrated potential

therapeutic implications by revealing nine potential drugs

associated with four of the hub genes: DCLK1, DHX36, EIF3D,

and GFM1 (Supplementary Figure S3A, Supplementary Table S10).

Additionally, the mRNA–RBP interaction network showcased 31

RBPs interacting with 6 hub genes, with CHD8 specifically targeting

17 RBPs (Supplementary Figure S3B, Supplementary Table S11).

Furthermore, Friends analysis highlighted that DEAH-Box Helicase

36 (DHX36) exhibits the strongest correlation with the other hub
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genes (Supplementary Figure S3C), underscoring its potential

significance in these diseases.
Enrichment analysis of hub genes

We conducted an enrichment analysis of co-DEGs to understand

the biological roles they play in the context of Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways and GO terms. The analysis,
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depicted in Figure 6 (Supplementary Table S12), reveals that the BP

terms identified hub genes predominantly involved in processes such as

the regulation of transcription by RNA polymerase III, changes in

DNA geometry, dendrite morphogenesis, enhancement of translation,

and augmentation of the cellular amide metabolic process. These

findings suggest that mechanisms related to gene regulation, cellular

shape, and metabolism are crucial in the development of PAH

alongside MDD. Concerning CC terms, our findings point to a

significant association of hub genes with structures like the nuclear
FIGURE 3

Results of gene set enrichment analysis (GSEA) of the PAH dataset. (A) Summary of the overall findings from GSEA, indicating which Reactome
pathways were significantly enriched in the PAH dataset. (B) Genes significantly enriched in the “PID IL12 2PATHWAY,” revealing involvement in
immune response modulation. (C) Enrichment in the “REGULATION OF TP53 ACTIVITY THROUGH PHOSPHORYLATION,” highlighting the pathway’s
role in cell cycle control and apoptosis. (D) Enrichment in the “NOTCH SIGNALING” pathway, detailing gene enrichment that affects cell
differentiation processes. (E) Enrichment in the “TP53 REGULATES TRANSCRIPTION OF DNA REPAIR GENES,” emphasizing the pathway’s importance
in genomic stability. (F, G) Enrichment of genes in “SIGNALING BY NOTCH4” and “SIGNALING BY NOTCH2,” respectively, pointing out their specific
roles in cellular development and fate determination.
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speck, eukaryotic 48S and 43S preinitiation complexes, translation

preinitiation complex, and the MLL1/2 complex, highlighting their

nuclear involvement. In the realm of MF, the hub genes showed

enrichment in functions including helicase activity, ATP hydrolysis,
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DNA helicase activity, RNA helicase activity, and catalytic activity

impacting DNA. This indicates their key role in DNA and RNA

processing. Notably, the KEGG pathway analysis did not reveal any

statistically significant enrichment.
FIGURE 4

Results of gene set variation analysis of the MDD dataset. (A) Overview of the enriched Reactome pathways discovered in the MDD dataset through
GSEA, setting the stage for detailed explorations. (B) Genes significantly enriched in the “NEUROACTIVE LIGAND-RECEPTOR INTERACTION” pathway,
suggesting a major role in neurotransmitter dynamics, which are crucial for brain function and mood regulation. (C) Enrichment in “ION CHANNEL
TRANSPORT,” highlighting its importance in neuronal excitability and signaling, factors that can influence depressive behaviors. (D) Significant gene
involvement in “INTERFERON SIGNALING,” indicating potential links between immune response and psychiatric conditions like depression. (E) Genes
enriched in “LAMININ INTERACTIONS,” which are essential for cell adhesion and integrity, impacting brain structural and synaptic functions. (F) Details of
the “GNRH SIGNALING PATHWAY,” which is associated with the regulation of reproductive hormones that may also influence mood and emotional
states. (G) Enrichment in “OXIDATIVE PHOSPHORYLATION,” a pathway crucial for energy metabolism, which has been implicated in the pathophysiology
of depression due to energy dysregulation in brain cells.
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Internal cross-dataset validation of hub
genes

We evaluated the differential expression of six pivotal hub

genes (CHD8, DCLK1, DDX42, DHX36, EIF3D, and GFM1) within
Frontiers in Psychiatry 10
the PAH (GSE113439, GSE53408) and MDD (GSE44593,

GSE54564) datasets, as shown in Figure 7. Our analysis revealed

notable upregulation of all six genes in the PAH cohort compared

to the controls (Figure 7A). For the MDD cohort, the expression

levels of CHD8, DDX42, and EIF3D were elevated, among which,
FIGURE 5

A comprehensive view of the interaction network of common differentially expressed genes (Co-DEGs) in the study of PAH and MDD. (A) The
protein–protein interaction (PPI) network of Co-DEGs. This network illustrates how proteins encoded by these genes might interact with each other,
suggesting potential functional collaborations or signaling cascades that are perturbed in both conditions. (B–D) The identification of hub genes
within the PPI network using three different computational models. (B) Hub genes identified using the Matthews correlation coefficient (MCC)
metric, which considers the correlation between gene pairs within the network. (C) Hub genes pinpointed by the maximal neighborhood
component (MNC), focusing on genes with the largest and most significant local network connections. (D) Hub genes derived through differential
metabolic network construction (DMNC), which identifies key genes based on their metabolic network roles. (E) The Venn diagram used to pinpoint
the six hub genes common to both the PAH and MDD datasets, illustrating the overlap and suggesting genes of significant interest due to their
potential shared roles in the pathophysiology of both diseases. (F) The mRNA–transcription factor (TF) regulatory network, maps out the interactions
between target genes and their regulating TFs, providing insights into the gene regulation mechanisms altered in the diseases. (G) The mRNA-
microRNA (miRNA) regulatory network. This network details the interactions between target genes and miRNAs, offering a look into how gene
expression is post-transcriptionally regulated in the context of PAH and MDD.
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GFM1 expression decreased, while no significant changes in

DCLK1 and DHX36 (Figure 7B). Further analysis identified that

CHD8, DDX42, EIF3D, and GFM1 are differentially expressed

across both datasets. We then conducted ROC analysis for these

genes. EIF3D demonstrated the highest diagnostic accuracy for

PAH, with an AUC of 0.932 (Figure 7E). CHD8 and GFM1

displayed moderate diagnostic performance, with AUCs of 0.754

(Figure 7C) and 0.864 (Figure 7F), respectively, whereas

DDX42 showed relatively lower accuracy with an AUC of 0.673

(Figure 7D). In the MDD cohorts, the predictive values of these

genes were more limited: CHD8 (AUC=0.640; Figure 7G), DDX42

(AUC=0.660; Figure 7H), EIF3D (AUC=0.649; Figure 7I), and

GFM1 (AUC=0.669; Figure 7J).

Following this, we performed Pearson correlation analysis to

compute the correlation coefficients among the key genes. Heatmaps

visualizing these correlations are displayed in Supplementary Figures

S4A, C. Of all of the pairwise correlations evaluated, DDX42 and

CHD8 showed the strongest positive correlation. To better illustrate

their relationship, scatter plots were created. These analyses revealed

that in the PAH dataset, the correlation coefficient between DDX42

and CHD8 was significant, with R=0.754 (Supplementary Figure S4B).

In contrast, within the MDD dataset, the correlation was somewhat
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lower, with R=0.636(Supplementary Figure S4D). These findings

underscore a robust inter-gene connection, particularly in the PAH

context, suggesting potential pathways for further investigation.
Subtype construction

To delineate disease subtypes within the PAH and MDD datasets,

we applied consistency clustering analysis. Analysis of the cumulative

distribution function curves of the consensus score matrix and the

proportion of ambiguous clustering statistic indicated that the ideal

cluster number is two (k=2), as shown in Supplementary Figures S5B,

C, F, G. Specifically, in the PAH dataset, cluster 1 included 27 samples,

and cluster 2 comprised 22 samples, as detailed in Supplementary

Figures S5A–C. In the MDD dataset, cluster 1 contained 30 samples,

while cluster 2 had 40 samples, as illustrated in Supplementary Figures

S5E–G. Additionally, box plots revealed statistically significant

differences in the expression of hub genes between the clusters in the

PAH dataset (p<0.05), signifying distinct subtypes with potentially

varying pathological characteristics. However, in the MDD dataset, the

differences in hub gene expression between clusters were not

statistically significant, as depicted in Supplementary Figures S5D, H.
FIGURE 6

Functional enrichment analysis of hub genes. (A) The enrichment in biological process (BP) categories. (B) The cellular component (CC) category,
illustrating the parts of the cell or extracellular environment where these hub genes are predominantly involved. (C) Enrichment in molecular
function (MF) categories. (D) A histogram of the gene ontology (GO) enrichment analysis, visually representing the number of hub genes associated
with various GO terms.
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Immune cell infiltration analysis

In our study, the microenvironment, comprising immune cells,

the extracellular matrix, inflammatory mediators, and growth

factors, was analyzed for its impact on therapeutic sensitivity and

diagnostic accuracy. Using the ssGSEA algorithm, we quantified the

abundance of 28 immune cell types and identified statistically

significant differences in 18 immune cell populations within the

PAH dataset (Figure 8A), whereas only plasmacytoid dendritic cells

showed significant variation in the MDD dataset (Figure 9A).

Notably, significant positive correlations were found between the

hub genes CHD8, DDX42, and EIF3D and plasmacytoid dendritic

cells in the PAH dataset (Figures 8B, C), suggesting a vital role for

these cells in the pathogenesis of PAH in the context of MDD. In the
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MDD dataset, CHD8 and DDX42 also demonstrated positive

correlations with plasmacytoid dendritic cells (Figures 9B–F),

reinforcing the potential importance of these cells.

Additionally, the CIBERSORT algorithm was employed to

estimate the proportions of 22 different immune cells in both PAH

and MDD (Supplementary Figures S6A, S7A). In the PAH dataset,

immune cell correlations among the 22 immune cell types showed that

M2macrophages, CD8+ T cells, resting dendritic cells, and restingmast

cells were predominantly positively correlated, while negative

correlations with activated natural killer cells, M0 macrophages,

eosinophils, activated dendritic cells, plasma cells, and regulatory T

cells were observed (Supplementary Figures S6B, C). Notably, resting

dendritic cells and CD8+ T cells were significantly negatively correlated

with the four key genes CHD8, DDX42, EIF3D, and GFM1
FIGURE 7

A comprehensive validation of six hub genes within the context of PAH and MDD. (A, B) The expression levels of the six hub genes in the PAH
(A) and MDD (B) datasets. The graphical representations highlight differences in gene expression between the disease and control groups, with
statistical significance marked by various symbols (ns = not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001), indicating p-values
from nonsignificant to highly significant differences. (C–F) Receiver operating characteristic (ROC) analysis of the four hub genes (CHD8, DDX42,
EIF3D, and GFM1) in the PAH dataset. Each panel depicts the ROC curve for one gene, providing the area under the curve (AUC) values: (C) ROC
curve for CHD8. (D) ROC curve for DDX42. (E) ROC curve for EIF3D. (F) ROC curve for GFM1. These curves evaluate the diagnostic effectiveness of
each gene, with AUC values assessing their performance as biomarkers. A higher AUC value (closer to 1) indicates a more effective diagnostic
outcome. (G–J) Similar to panels (C–F) but for the MDD dataset, showing the ROC analysis for the same hub genes. (G) ROC curve for CHD8.
(H) ROC curve for DDX42. (I) ROC curve for EIF3D. (J) ROC curve for GFM1. Each panel details the AUC value, reflecting the diagnostic accuracy for
MDD, with the same significance markers used to indicate statistical relevance.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1670519
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Yan et al. 10.3389/fpsyt.2025.1670519
(Supplementary Figure S6D). Conversely, in the MDD dataset,

immune cells generally displayed negative correlations with one

another (Supplementary Figure S7B). However, EIF3D exhibited a

significant positive correlation with the abundance of resting memory

CD4+ T cells, and DDX42 and CHD8 correlated positively with the

abundance of resting natural killer cells (Supplementary Figure S7C).
Diagnostic model construction

For assessing the diagnostic potential of hub genes, we utilized

LASSO logistic regression within our study (Figures 10A, E).

Furthermore, we visualized the results of the LASSO regression

and generated the corresponding LASSO variable coefficient path

plots (Figures 10B, F). In the PAH dataset, three genes were

identified as potential biomarkers: CHD8, EIF3D, and GFM1. The

evaluation of these genes showed promising results, with AUC
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values of 0.754 for CHD8, 0.932 for EIF3D, and 0.864 for GFM1,

indicating their significant diagnostic value (Figures 10C, D).

In contrast, within the MDD dataset, four genes were highlighted

as potential biomarkers: CHD8, DDX42, EIF3D, and GFM1. Their

diagnostic effectiveness was assessed, revealing AUC values of 0.640

for CHD8, 0.660 forDDX42, 0.649 for EIF3D, and 0.669 forGFM1, as

illustrated in Figures 10G, H. These values suggest the moderate

diagnostic utility of these biomarkers for MDD, highlighting the need

for further validation and potentially the exploration of additional

markers to improve diagnostic accuracy.
In-vivo model and further validation of the
hub genes

In line with prior research, our in-vivo model utilizing

monocrotaline to induce PAH in rats revealed typical symptoms
FIGURE 8

Differences in immune characteristics between the disease and control groups in the PAH dataset through single-sample gene-set enrichment analysis
(ssGSEA). (A) Subgroup comparison plot of ssGSEA immune infiltration analysis results for PAH versus control in the PAH dataset. (B) Correlation analysis
of immune cell infiltration abundance differences between the PAH and control groups in the PAH dataset. (C) Point plots showing correlations between
the infiltration abundances of different immune cells and four key genes in the PAH dataset. Statistical significance indicators (ns = not significant,
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001) are used throughout the figure to denote the reliability of the observed differences and
correlations, ensuring that readers can quickly discern the most scientifically relevant findings.
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such as increased right ventricular systolic pressure and right

ventricular hypertrophy index, as depicted in Figures 11A–C. For

the first time, our study also identified negative emotional behaviors

in PAH rats, as evidenced by their performance in behavioral tests.

In the open field test, the PAH rats showed a reduced distance and

time spent in the center compared to the control rats, indicating

increased anxiety (Figures 11D, F, G), while the overall distance

traveled remained unchanged (Figure 11E). Similarly, in the

elevated-plus-maze test, the PAH rats exhibited a decrease in
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retention time and fewer entries into the open arms relative to

the controls, further supporting signs of anxiety and depression

(Figures 11H–J). The sucrose preference test underscored these

findings, with the PAH rats showing a decreased preference for

the sucrose solution, suggesting anxiety- and depressive-like

behaviors (Figure 11K).

To further validate the involvement of hub genes, we conducted

quantitative qPCR analysis on lung tissues from both the PAH and

control groups. Our results confirmed significant upregulation of
FIGURE 9

Differential analysis of immune characteristics by single-sample gene-set enrichment analysis (ssGSEA) between the MDD and control groups.
(A) Subgroup comparative graphical presentation of the ssGSEA immune infiltration analysis results between the MDD and control groups. It visually
summarizes the differences in immune cell infiltration, highlighting which types of immune cells are more or less abundant in MDD patients
compared to healthy controls. (B) Lollipop plot linking the infiltration abundance of plasmacytoid dendritic cells with the expression of four key
genes in the MDD dataset. (C–F) Scatter plots illustrating the correlation between the expression of each of the four key genes: CHD8 (C), DDX42
(D), EIF3D (E), and GFM1 (F) in the MDD dataset and the infiltration abundance of plasmacytoid dendritic cells. Each scatter plot explores the nature
of these correlations, providing insights into how the activity of specific genes may be influenced by or influence the presence of particular immune
cells in the context of MDD. Statistical significance indicators (ns = not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001) are used
across all panels to denote the levels of statistical significance of the findings.
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FIGURE 10

Development and validation of diagnostic models based on immune-related differentially expressed genes (ILRDEGs) for PAH and MDD using LASSO
regression analysis. (A) The results of ten-fold cross-validation for tuning parameter (l) selection in the LASSO regression model for PAH. This plot
helps to determine the optimal l value that minimizes prediction error, which is crucial for enhancing the model’s accuracy. (B) The coefficient
profiles of variables in the LASSO regression model for PAH. This graph traces the paths of coefficients as l changes, illustrating how the inclusion of
each variable in the model is affected by regularization, which helps to select the most significant predictors. (C) Receiver operating characteristic
(ROC) curves of hub genes in PAH. This panel assesses the diagnostic performance of individual genes, providing a clear comparison of their ability
to discriminate between disease and control states. (D) The ROC curve of the risk score in PAH, computed based on the LASSO model. This curve
evaluates the overall diagnostic accuracy of the combined model, showing the effectiveness of the risk score in predicting PAH. (E) Ten-fold cross-
validation for l selection in the LASSO model for the MDD dataset. This panel aids in identifying the best regularization parameter to prevent
overfitting while maintaining model performance. (F) The coefficient profiles of variables in the LASSO regression model for MDD. This panel
highlights how variables are selected and their coefficients shrink as l increases, focusing on the most impactful predictors. (G) ROC curves for hub
genes in MDD, which can be used to analyze each gene’s diagnostic power and its utility as a biomarker for detecting MDD. (H) The ROC curve of
the risk score in MDD, generated by the LASSO model. This panel assesses the predictive performance of the risk score, indicating its potential as a
diagnostic tool for MDD.
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CHD8 and EIF3D in the PAH group compared to the controls

(Figures 11L, M).DDX42 also showed an elevation in the expression

levels in the PAH group, although the difference did not reach

statistical significance (Figure 11N). These transcriptional changes

align with our earlier bioinformatics findings, reinforcing the role of

these genes in the pathogenesis of PAH and its associated

emotional disturbances.
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Discussion

To identify common differentially expressed genes (Co-DEGs)

associated with both pulmonary arterial hypertension (PAH) and

major depressive disorder (MDD), a comprehensive analysis of

multiple datasets was performed in this research, using the

combination of bioinformatics tools. The overlapping pathogenic
FIGURE 11

Effects of monocrotaline (MCT)-induced PAH on physiological parameters, behavioral outcomes, and hub gene expression in the rat model.
(A–C). Characterization of PAH, showing elevated right ventricular systolic pressure (RVSP) (A, B) and right ventricular hypertrophy index (RVHI)
(C). These parameters indicate the severity of PAH in the model (n = 6 per group; independent-samples t-test). (D–G) Open field test (OFT) for
anxiety-like behavior. (D) Representative movement traces; (E) total distance traveled; (F) distance traveled in the central area; (G) time spent in the
central area (reduced values indicate higher anxiety). (n = 6; independent-samples t-test for (E, F), Mann–Whitney U test for G). (H–J) Elevated plus
maze (EPM) for anxiety-like behavior. (H) Representative movement traces; (I) time spent in open arms; (J) number of open-arm entries (greater
exploration indicates lower anxiety). (n = 6; independent-samples t-test). (K) Sucrose preference test (SPT) for depression-like behavior, with
reduced sucrose preference indicating a depressive-like state (n = 6; independent-samples t-test). (L–N) Expression of hub genes in the PAH model:
relative mRNA levels of CHD8 (L), EIF3D (M), and DDX42 (N). (n = 6; independent-samples t-test). Data are shown as mean ± SEM. Statistical
significance was assessed using independent-samples t-tests or Mann–Whitney U tests, as indicated.
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genes between these conditions are identified for the first time.

Through analyses such as protein-protein interaction, pathway

enrichment, and immune infiltration studies, the potential

pathogenic mechanisms underlying PAH-associated MDD were

explored, which are related to inflammatory and immune

processes. These include the IL-12 signaling pathway, the Notch

signaling pathway, the interferon signaling pathway, the neuroactive

ligand-receptor interaction pathway, and plasmacytoid dendritic cell

immune infiltration. Moreover, three pivotal co-hub genes (CHD8,

DDX42, and EIF3D) were identified by using machine learning

techniques, which were later validated in a PAH rat model. This

study is the first to report that PAH rats, which exhibit elevated

expression of these genes, display anxiety and depression-

like behaviors.

Depression is a common complication associated with PAH.

The impact of depression on the health and quality of life has been

reported in literatures (36–38). However, except for reports

on its prevalence, there is rare publication of the large-scale,

high-quality, prospective population-based cohort studies, with

the focus on defining the diagnostic criteria and specific

mechanisms underlying PAH-related major depressive disorder

(MDD). Investigating objective predictive biomarkers from a

biological perspective could facilitate earlier and more effective

interventions or preventive measures in these patients.

It has been reported that compared to the general population,

patients with pulmonary hypertension (PH) have a higher incidence

of depression (39, 40), but the MDD incidence is different across

different PH subgroups. Up to 53% of PAH patients experienced

depression (41). Although it is a comorbidity for the PH patients,

their treatment efficacy is also affected by depression, which could

cause worse clinical outcomes, such as a reduced exercise capacity

measured by the 6-minute walk distance (6MWD), an important

prognostic indicator in PH. Additionally, the PAH patients with

depression may have poorer hemodynamic profiles and higher

hospitalization rates (40, 42). Therefore, it is essential to develop

novel associative findings for the PAH patients with depression,

offering a more potential measure of their disease status.

PAH is marked by increased pulmonary vascular resistance due

to lung remodeling or vasoconstriction, leading to severe

cardiopulmonary issues and premature mortality (43, 44). Either

depression, or MDD is associated with neurotransmitter imbalance,

neuroendocrine dysregulation, and immune inflammation (42).

CHD8 is pivotal in neural development and is implicated in

both MDD and PAH. As an ATP-dependent chromatin remodeling

factor, CHD8 influences neuronal differentiation, cell cycle

progression, and proliferation, which are critical for brain

development and function (45–48). It is also linked to autism and

intellectual disability (49), with research showing that CHD8

mutations in mice lead to anxiety and depression-like symptoms.

Additionally, the proliferation of vascular smooth muscle cells is

recognized as a pathological hallmark of pulmonary hypertension

(50, 51). Furthermore, disruption of a single copy of CHD8 in

human neural precursor cells has been shown to alter the cell cycle,
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potentially impacting cell proliferation—a key factor in PAH

pathology (52, 53).

EIF3D is crucial for initiating protein synthesis and affects the

translation of specific mRNA molecules, influencing cellular

phenotype transitions from proliferation to migration (54). This

action facilitated through the modulation of EIF3D-mediated

mRNA translation, is vital in the vascular proliferation found in

PAH (55). Additionally, EIF3D plays a significant role in the cellular

response to sustained endoplasmic reticulum stress, a known

pathogenic factor in depression, by regulating the expression of

the m6A demethylase ALKBH5 (56, 57).

DDX42 participates in key RNA processes such as translation

initiation, splicing, and ribosome biogenesis (58). Its role in

modulating mRNA splice isoforms and vascular smooth muscle

cell function could be instrumental in PAH. DDX42 is also crucial

for the regulation of neurotransmitter mRNA splicing and

translation, affecting neurotransmitter dynamics and potentially

providing a therapeutic target for MDD, given its role in

neurotransmitter balance.

In the literature, the lung-brain axis refers to a two-way

communication channel between the lungs and the brain,

including the complex interactions between the nervous,

endocrine, and immune systems (59–61). Within this pathway,

the vagus nerve, the immune and neuroendocrine systems and

various neurotransmitters act as essential links, each with distinct

functions (61, 62). Neuroinflammation and altered autonomic

functions have been found to be associated with the systemic

manifestation of PAH, supporting extension of the disease

beyond the pulmonary vasculature (63) and existence of the lung-

brain axis, where immune dysregulation and inflammation are key

factors (64).

Immune and inflammatory processes are important in both PAH

and MDD, raising the possibility that patients with both conditions

may show overlapping immune changes. In our analysis, plasmacytoid

dendritic cells (pDCs) stood out, as their infiltration correlated with

the hub genes we identified. pDCs produce large amounts of type I

interferons and act as regulators of immune activity. In PAH, pDCs

have been reported to accumulate around pulmonary vessels, where

they release interferon-induced chemokines such as CXCL10 and

contribute to vascular remodeling (65). The correlation we observed

between pDC infiltration and hub gene expression suggests that these

genes may be involved in pDC recruitment or activation. This fits with

clinical observations: patients receiving long-term interferon-a
treatment, which reproduces a high interferon state, often develop

depressive symptoms orMDD (66), and altered pDC function has also

been described in depression (67).

There is also evidence that neuronal pathways can influence

pDCs. For example, intestinal neurons can regulate their activity

through serotonin–HTR7 signaling (68). Serotonin plays a

recognized role in both pulmonary hypertension and depression:

signaling through receptors such as 5-HT1B promotes vascular

remodeling in PAH (69), while changes in serotonin binding and

metabolism are linked to mood disturbances in MDD (70). Taken
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together, these findings suggest that pDCs may act as a connecting

element within the lung–brain axis, linking immune activation,

vascular remodeling, and neurotransmitter pathways in PAH

with depression.
Limitations and outlook of the study

This study has several limitations. The bioinformatics analysis was

based on GEO datasets rather than direct sequencing, which may

influence the reliability of the results. For molecular validation, qPCR

was carried out only on lung tissue from MCT-induced PAH rats.

These findings mainly reflect pulmonary changes in PAH and do not

establish a direct role in MDD. Thus, we cannot confirm their causal

involvement in the comorbidity mechanism of PAH–MDD.

Extrapolation from lung tissue to central nervous system pathology

should therefore be cautious. In addition, evidence at the protein level

and functional confirmation of hub genes is still lacking. To clarify

causality, future work will need in vitro and in vivo experiments in

which these genes are silenced or overexpressed in relevant cells and

animal models, with effects measured on vascular remodeling and

behavior. Validation at the protein level, such as Western blotting,

ELISA, and immunohistochemistry in both rat and patient samples,

will also be required. Candidate biomarkers including CHD8, DDX42,

and EIF3D should be assessed in larger, independent cohorts of

patients with PAH, with and without depression, as well as in MDD

cohorts, to determine their diagnostic or prognostic potential.

The immune infiltration analysis was performed using ssGSEA

(Bindea 28-cell signatures) and CIBERSORT (LM22). These tools

were originally developed for blood samples, and their accuracy in

solid tissues such as lung and brain may be limited. Tissue

heterogeneity, sampling variation, and the local microenvironment

can all influence the estimates, meaning the results reflect local rather

than systemic immune activity. Future studies combining blood

profiling with single-cell or spatial transcriptomic approaches will

help to resolve these issues and provide more reliable cell-type–

specific information.

In conclusion, the present results are based on transcriptomic

correlations and cannot be taken as evidence of causality or immediate

diagnostic utility. Additional functional experiments, protein-level

studies, and validation in clinical cohorts are necessary to confirm

the biological and clinical relevance of the identified genes.
Conclusion

This research highlights the genetic and molecular links

between PAH and MDD by examining gene expression data. It

identified 42 DEGs common to both conditions. Through PPI

network analysis and LASSO regression modeling, crucial genes

such as CHD8, DDX42, EIF3D, and GFM1 were pinpointed.

Notably, CHD8, DDX42, and EIF3D emerged as predictive
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markers to the overlapping pathophysiological processes of both

diseases. These findings provide novel insights into potential

therapeutic targets and suggest directions for future investigations.
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AUC area under the curve
Frontiers in Psychiatr
BP biological process
CC cellular component
CHD8 chromatin helicase DNA-binding protein 8
Co-DEGs common differentially expressed genes
DDX42 DEAD-box helicase 42
DEGs differentially expressed genes
DHX36 DEAH-Box Helicase 36
EIF3D eukaryotic translation initiation factor 3, subunit D
GEO Gene Expression Omnibus
GO Gene Ontology
GSEA Gene Set Enrichment Analysis
GSVA Gene Set Variation analysis
HPA hypothalamic–pituitary–adrenal
IL interleukin
y 21
KEGG Kyoto Encyclopedia of Genes and Genomes
Logistic-LASSO Logistic-Least Absolute Shrinkage and Selection Operator
MDD major depressive disorder
MF molecular function
PAH Pulmonary arterial hypertension
PPI protein–protein interaction
PID primary immunodeficiency
PPI Protein–Protein Interaction
qPCR quantitative polymerase chain reaction
RBP RNA-binding protein
ROC receiver operating characteristic
RVHI right ventricular hypertrophy index
ssGSEA s ing le- sample gene- se t enr ichment ana lys i s ;TF ,

transcription factor
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