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Background: Pulmonary arterial hypertension (PAH) and major depressive
disorder (MDD) frequently co-occur, worsening morbidity and mortality. The
shared genetic and molecular substrates of this comorbidity remain unclear. This
study investigated common differentially expressed genes (DEGs), convergent

pathways, and candidate hub genes linking PAH and MDD.
Methods: Gene-expression datasets for PAH (GSE113439, GSE53408) and MDD

(GSE44593, GSE54564) were obtained from GEO. After standardization, DEGs
were identified with Limma, and intersected across diseases while retaining
concordant expression trends. Functional enrichment was performed using
Gene Ontology (GO). A protein—protein interaction (PPI) network was built to
prioritize hub genes (CytoHubba), followed by feature selection with LASSO
regression and additional machine-learning validation. Immune-cell infiltration
was profiled to assess shared immunological alterations. An experimental rat
model of PAH exhibiting anxiety- and depression-like behaviors was established,
and hub-gene expression was validated by gqPCR.

Results: Forty-two common DEGs with consistent directions were identified.
Network analysis and LASSO converged on six candidate hub genes; among
these, CHD8, DDX42, and EIF3D were further supported by machine-learning
validation. Immune-infiltration analysis indicated dysregulated immune
landscapes in both PAH and MDD. In PAH rats, anxiety- and depression-like
behaviors were observed, and gPCR confirmed altered expression of CHDS,
DDX42, and EIF3D consistent with in-silico findings.
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Conclusions: This integrative analysis highlights genetic and molecular links
between PAH and MDD. CHD8, DDX42, and EIF3D emerge as candidate hub
genes associated with the coexistence of these conditions, suggesting
hypotheses for mechanistic follow-up and potential therapeutic targeting.

pulmonary arterial hypertension, major depressive disorder, immune process,
bioinformatics, validation

Introduction

Pulmonary arterial hypertension (PAH) is a rare yet severe
cardiovascular condition affecting about 1% of the global
population (1). Characterized by a progressive increase in
pulmonary vascular resistance and pulmonary artery pressure,
PAH leads to debilitating symptoms like dyspnea, fatigue,
syncope, and ultimately, right-sided heart failure (2). Despite
advancements in targeted therapies, the survival rates at one and
five years post-diagnosis remain modest at 86% and 61%,
respectively (3).

PAH frequently co-occurs with major depressive disorder
(MDD), a condition marked by a depressed mood, a decreased
interest in activities, cognitive impairments, and physical symptoms
such as sleep disturbances and appetite changes (4). Previous
studies have indicated that PAH patients are more prone to
MDD than healthy individuals (5), with prevalence rates of MDD
ranging from 20% to 53% among those with PAH (6). Additionally,
MDD adversely affects the quality of life and can negatively
influence the prognosis of PAH, further reducing survival rates (7).

Both PAH and MDD share similar pathophysiological
mechanisms, including dysregulation of the hypothalamic-
pituitary—adrenal (HPA) axis, which is crucial in stress response
and mood regulation. Chronic stress and cortisol dysregulation
have been implicated in both conditions (4, 8). The HPA axis is
hyperactive in depression, with increased corticotropin-releasing
hormone production contributing significantly to this activity (9).
Experimental findings suggest that angiotensin-converting enzyme
2 overexpression in the hypothalamus may reduce corticotropin-
releasing hormone synthesis, offering protective effects against
chronic hypoxia-induced pulmonary hypertension in mice (8).
Additionally, imaging studies have shown significant gray matter
damage and alterations in brain regions such as the hippocampus,
amygdala, and temporal lobe in PAH patients, providing a
structural basis for the mood disorders observed in these
individuals (10).

Moreover, PAH is associated with elevated peripheral serotonin
levels, implicating serotonin’s role in the pathophysiology of both
PAH and depression. Although selective serotonin reuptake
inhibitors are commonly used to treat depression by enhancing
serotonin receptor activation via blocking its reuptake (11), their
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use in PAH patients has been linked with increased mortality and
clinical worsening (12, 13). Thus, understanding the shared
mechanisms between PAH and MDD as well as identifying novel
therapeutic targets are crucial.

This study aimed to explore the biological underpinnings of
PAH and MDD coexistence by identifying a common genetic
signature through various bioinformatics tools, including
differential gene expression analysis, PPI networks, and
interaction network analyses. We also developed a PAH model to
validate the association between negative emotions and identified
hub genes through behavioral testing and quantitative polymerase
chain reaction (qPCR) assays, providing new insights into the
pathogenesis of both PAH and MDD.

Materials and methods
Data collection and preprocessing

The PAH datasets GSE113439 (14) and GSE53408 (15),
together with the MDD datasets GSE44593 and GSE54564 (16),
were obtained from the Gene Expression Omnibus (GEO) database
(https://www.ncbinlm.nih.gov/geo/). Both PAH datasets consist of
fresh-frozen human lung tissues from PAH patients and non-
diseased controls: GSE113439 (GPL6244) includes 15 PAH and
11 control samples, and GSE53408 (GPL6244) contains 12 PAH
and 11 control samples. Both MDD datasets comprise amygdala
tissues from patients with MDD and matched controls: GSE44593
(GPL570) includes 14 MDD and 14 control samples, and GSE54564
(GPL6947) includes 21 MDD and 21 control samples. All cases and
controls within each dataset were derived from the same tissue type,
with no inclusion of samples from other organs or mixed tissues.
Dataset integration and batch-effect correction were performed
using the “sva” package (17), and cross-study normalization was
carried out with the “Normalize Between Arrays” function in the
“limma” package (18). Data reproducibility and reliability were
assessed by principal component analysis (PCA). Detailed
information on the datasets (platforms, tissue sources, sampling
sites, and clinical characteristics) is provided in Supplementary
Table SI, and a schematic overview of the study design is
presented in Figure 1.
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FIGURE 1

Flowchart of the study design. PAH, pulmonary arterial hypertension; MDD, major depressive disorder; Co-DEGs, common differentially expressed
genes; PP, protein—protein interaction; GO, gene ontology; GSEA, gene set enrichment analysis; TF, transcription factor.

Identification of differentially expressed
genes

To identify the DEGs between cases and controls in the datasets,
we used the “limma” package in R. The selection criteria for DEGs
included an adjusted p value (from the Benjamini-Hochberg
method) of less than 0.05 and a log2 absolute fold change of
greater than 0.5 (19, 20). These thresholds ensured a robust
identification of genes significantly altered in expression,
minimizing false discoveries.

For visualization of the expression patterns and the significant
changes, heatmaps were generated using the “heatmap” package,
and volcano plots were constructed with the “ggplot2” package.

Additionally, a Venn diagram was employed to identify
common differentially expressed genes (Co-DEGs) between the
PAH and MDD datasets. This approach helps to pinpoint the
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genes that are consistently altered in both conditions, suggesting
potential shared molecular pathways or mechanisms.

Protein—protein interaction network
construction

The protein-protein interaction (PPI) network was constructed
using the STRING database (https://string-db.org/) based on the
previously identified Co-DEGs. To maximize coverage of potential
interactions and avoid an overly sparse network, we applied a
combined score threshold of > 0.150. This cutoff allowed
inclusion of interactions with at least moderate confidence,
ensuring sufficient connectivity while retaining biological relevance.

Hub gene analysis was then carried out in Cytoscape using the
CytoHubba plugin, which identifies key nodes that may play critical

frontiersin.org


https://string-db.org/
https://doi.org/10.3389/fpsyt.2025.1670519
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

Yan et al.

roles in disease biology. The top 10 hub genes were ranked according
to multiple topological algorithms provided by CytoHubba, including
Maximum Neighborhood Component, Density of Maximum
Neighborhood Component, and Maximal Clique Centrality.

Gene regulatory network analysis

To elucidate the regulatory dynamics of hub genes, we
employed the miRDB database (www.mirdb.org) to construct
mRNA-miRNA regulatory networks. For mRNA-RNA-binding
protein (RBP) interactions, we accessed the ENCORI database.
Additionally, the CHIPBase database (https://rna.sysu.edu.cn/
chipbase/) and the hTFtarget database (https://guolab.wchscu.cn/
hTFtarget/#!/) provided insights into mRNA-transcription factor
(TF) interaction networks. Pharmacological connections involving
hub genes were explored using the Comparative Toxicogenomics
Database (http://ctdbase.org/) to identify potential mRNA-drug
interactions. These networks were visualized using Cytoscape
software to map out the intricate relationships. Functional
correlations among genes were analyzed using Friends analysis,
which is a functional similarity analysis, employing the
“GOSemSim” R package to calculate these relationships and
identify key DEGs.

Gene ontology analysis

To gain insights into the functional roles of the hub genes, we
performed GO enrichment analyses using the “clusterProfiler”
package (version 3.14.3). The analyses evaluated the genes across
three main GO categories: molecular function (MF), cellular
component (CC), and biological process (BP). To determine
significance, we set thresholds for both the adjusted p-value and
q-value at less than 0.05, ensuring the identification of highly
relevant biological attributes associated with the hub genes.

Hub—-gene evaluation and ROC analysis

Hub-gene expression was assessed across four GEO datasets
(PAH: GSE113439, GSE53408; MDD: GSE44593, GSE54564). No
additional independent external validation cohort was available.
Case-control differences were visualized with boxplots, and
discriminative performance was evaluated using ROC analysis,
with AUC values and 95% confidence intervals reported. Sample
sizes, array platforms, and tissue sources for each dataset are
provided in Supplementary Table SI.

Gene set enrichment analysis

GSEA is a method used to determine if a predefined set of genes
shows statistically significant, concordant differences between two
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biological states. For our analysis, we utilized the “c2.cp.all.
v2022.1.Hs.symbols.gmt” gene set from the Molecular Signatures
Database, which is accessible at https://www.gsea-msigdb.org/gsea/
msigdb. We conducted GSEA using the “clusterprofiler” software
package. The analysis was configured to identify gene sets enriched
at a significance level of p<0.05 (21, 22).

Gene set variation analysis

GSVA is an unsupervised method used to convert gene
expression data from multiple samples into matrices of pathway
activation scores. This approach helps to assess the enrichment of
specific biological pathways. For our analysis, we used the
“c2.cp.v2022.1.Hs.symbols” gene set from the Molecular
Signatures Database, available at https://www.gsea-msigdb.org/
gsea/msigdb. The differential pathway activity between disease
and control groups was analyzed using the “limma” package, with
significance determined by an adjusted p-value threshold of <0.01.

Consensus clustering

Consensus clustering, a resampling-based approach, was
utilized to explore cluster formation via the k-means algorithm.
We employed the “Consensus Cluster Plus” package to categorize
disease subtypes. Our evaluation included up to 10 potential
categories, performing 100 iterations for each cluster number (k).
For the clustering process, we selected the Partitioning Around
Medoids algorithm paired with the Euclidean distance metric. To
validate the differential expression of pivotal genes among the
identified clusters, box plots were generated and analyzed.

Immune infiltration and correlation analysis

To estimate immune cell proportions in the PAH and MDD
samples, we applied the single-sample gene set enrichment analysis
(ssGSEA) algorithm, using 28 predefined gene sets (23) that represent
diverse immune cell types, including CD8+ T cells, dendritic cells,
macrophages, and regulatory T cells. The “GSVA” R package was
employed to compute the infiltration levels of these cells in each
sample. Box plots were then used to compare the proportions of
immune cells between the two datasets. Additionally, Spearman’s
rank correlation analysis, facilitated by the “ggplot2” package, was
conducted to assess the correlation between the infiltrating immune
cells. This analysis also included the creation of scatter plots to
visually explore the relationships between immunocytes and hub
genes. As a complementary deconvolution approach, we used
CIBERSORT (http://cibersort.stanford.edu/) to estimate relative
immune cell proportions based on the LM22 signature, which
consists of 547 genes distinguishing 22 human hematopoietic
phenotypes, including seven T-cell subsets, naive and memory B
cells, plasma cells, NK cells, and various myeloid populations (24).
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Diagnostic model construction

We performed differential expression analysis and GSEA on
samples from a combined dataset to identify genes commonly
associated with PAH and MDD. Following this, we developed
diagnostic models using the Logistic-Least Absolute Shrinkage and
Selection Operator (Logistic-LASSO) technique, utilizing the
“glmnet” package with a seed set to 2020 and the family parameter
set to “binomial.” The predictive accuracy of our model was assessed
through receiver operating characteristic (ROC) curve analysis.

Animals

This study was approved by the Animal Welfare and Ethics
Committee of Fujian Medical University (Approval No.: FJMU
TACUC 2021-0387) and conducted in accordance with the ARRIVE
guidelines. Male Sprague-Dawley rats (8 weeks old) were obtained
from Shanghai SLACCAS Laboratory Animal Co., Ltd. (Certificate
No.: SCXK 2012-0002) and housed under standard laboratory
conditions with free access to food and water. Animals were
randomly assigned (computer-generated sequence) to either the
PAH group or the control group (n = 6 per group). Investigators
responsible for behavioral testing and data analysis were blinded to
group allocation.

Pulmonary arterial hypertension (PAH) was induced by a single
intraperitoneal injection of monocrotaline (MCT; Sigma Aldrich,
30 mg/kg), while control rats received an equal volume of saline.
Although a 60 mg/kg MCT dose is widely used to generate robust
PAH within 3-4 weeks, it is associated with systemic toxicity, early
right heart failure, and high mortality, which complicate
longitudinal and behavioral assessments. In contrast, previous
studies have shown that a lower dose of 30 mg/kg elevates right
ventricular systolic pressure (RVSP) and the right ventricular
hypertrophy index (RVHI), while producing lower lethality and
allowing stable subchronic observations over 4-8 weeks (25-27).
Based on this evidence, we selected 30 mg/kg to establish a
reproducible, moderately severe PAH phenotype suitable for
subsequent behavioral and molecular analyses.

To avoid the influence of invasive procedures on behavior, all
behavioral tests were conducted during week 4 after injection.
Immediately thereafter, right-heart catheterization was performed
to measure RVSP, and RVHI was calculated as RV/(LV + S) to
confirm model induction (25, 28). Lung tissue (right lower lobe) was
snap-frozen in liquid nitrogen for subsequent qPCR analysis (25).

Anxiety-like and depression-like behaviors

Behavioral testing was performed during week 4 after
monocrotaline or saline injection, following a fixed sequence
designed to minimize cross-test carryover and anxiogenic effects:
Sucrose Preference Test (SPT) on Days 26-28 (48h adaptation with
bottle switching, followed by 24h food/water deprivation and a 1h
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test), Open Field Test (OFT) on Day 29 (5min session), and
Elevated Plus Maze (EPM) on Day 30 (5min session). Tests were
spaced by =24 h and conducted during the light phase (09:00-
12:00). Animals were habituated to the testing room for 30min
before each assay, and all apparatuses were sanitized with 70%
ethanol between animals. The order was chosen because SPT is
minimally stressful and non-invasive for assessing anhedonia, OFT
induces moderate novelty- and light-related anxiety, and EPM is the
most anxiogenic due to elevation and open arms; therefore, EPM
was performed last (29-32).

Sucrose Preference Test (SPT) — Anhedonia was assessed as
described (33). Rats were habituated to 1% sucrose in two 150-mL
bottles for 24h, followed by 24h with one bottle of water and one of
1% sucrose. After an additional 24-h food and water deprivation,
rats were given lh access to both bottles, with bottle positions
switched halfway to avoid side bias. Intake (by weight) was
recorded, and sucrose preference was calculated as [sucrose
intake/total intake] x 100%. After SPT, animals were returned to
ad libitum food and water before proceeding to the next assays.

Open Field Test (OFT) — Locomotor activity and anxiety-like
behavior were assessed in a 100cm % 100cm arena with 40-cm walls
(5-min session), recorded using an infrared camera (Model: TA-
758RP) (34). Primary outcomes included total distance traveled, time
spent in the center, and distance traveled in the center. Reduced
center exploration was taken as an indicator of elevated anxiety.

Elevated Plus Maze (EPM) — Anxiety-like behavior was further
evaluated in a 5-min session recorded from above (35). After 30min
of acclimation to the testing room, each rat was placed in the maze
center facing an open arm. A blinded investigator recorded the time
spent in open arms and the number of open-arm entries.
Reduced exploration of open arms was considered a sign of
increased anxiety.

Where applicable, recovery intervals were provided between tests
(SPT — OFT — EPM) to reduce stress and fatigue. Behavioral scoring
for all tasks was performed by an investigator blinded to treatment.

RNA extraction and gPCR

Total RNA was extracted from the right lung using the FastPure
Cell/Tissue Total RNA Isolation Kit V2 (Vazyme). cDNA was
synthesized with HiScript II Q RT SuperMix for qPCR (+gDNA
wiper) (Vazyme). qPCR was carried out with ChamQ SYBR qPCR
Master Mix on a LightCycler® 96 system (Roche) in 20 pL
reactions. Negative controls (NTC and -RT) were included, and
melt-curve analysis (65-95 °C) confirmed single, specific products.
Primer efficiencies ranged from 90-110% (R* > 0.99).

Gene expression was normalized to B-actin and calculated by the
2724 method, with saline controls as the calibrator. Each group
included six biological replicates, with triplicate technical replicates
per sample. Data are presented as mean + SEM. Statistical tests
(independent-samples t-test or Mann-Whitney U when assumptions
were violated) are specified in the Results and figure legends.

The primer sequences used for the qPCR:
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FIGURE 2

Identification of Common DEGs between PAH and MDD. (A) Raw expression matrix of the PAH dataset (Before) and Normalized expression matrix of
the PAH dataset (After). (B) Raw expression matrix of the MDD dataset (Before) and Normalized expression matrix of the MDD dataset (After). (C, D).
Volcano plots of DEGs between the disease and control group in the PAH dataset (C) and MDD dataset (D). These plots highlight significant DEGs
with a fold change on the x-axis and the negative logarithm of the p-value on the y-axis, identifying genes significantly upregulated or
downregulated. (E) A Venn diagram illustrating the overlap of DEGs between the PAH and MDD datasets, with DEGs that meet a significance
threshold of a p<0.05. (F, G) Heatmaps of the 42 co-DEGs between the disease and control groups for the PAH dataset (F) and MDD dataset (G).
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B—actin: forward primer 5'-CGCGAGTACAACCITCITG
Cc-3,
reverse primer 5'-CCTTCTGACCCATACCC
ACC-3’

Statistical analysis

Bioinformatics analyses were performed in R, while animal
experiment data were analyzed using GraphPad Prism 9.5
(GraphPad Software). Data are expressed as mean + SEM.
Between-group comparisons of MCT-induced PAH indices,
behavioral outcomes, and qPCR results were evaluated using two-
tailed independent-samples t-tests. Statistical significance was
defined as P < 0.05. Assumptions of normality and homogeneity
of variance were tested; when violated, nonparametric alternatives
were applied (Mann-Whitney U for between-group comparisons,
Wilcoxon signed-rank for paired data).

Results

Identification of common DEGs between
PAH and MDD

The expression matrices from the PAH datasets (GSE53408,
GSE113439) and the MDD datasets (GSE44593, GSE54564) were
normalized. The resulting box plots displayed straight lines,
indicating the distribution trends (Figures 2A, B).

Using the Limma R method, the analysis of the GSE53408 and
GSE113439 datasets identified 2416 DEGs in the combined PAH
dataset, with 1663 upregulated and 753 downregulated genes.
Additionally, in the MDD dataset, a total of 326 DEGs were
discovered, consisting of 136 upregulated and 190 downregulated
genes. The volcano plots displaying the DEGs for both PAH and
MDD are presented in Figure 2C and Figure 2D, respectively. The
Venn diagram analysis revealed 42 DEGs common to both
conditions (Figure 2E). Heatmaps showcasing these 42 common
DEGs in both the PAH and MDD datasets are depicted in
Figures 2F, G (Supplementary Table S2).

GSEA and GSVA results of the PAH and
MDD datasets

GSEA and GSVA were performed on both disease patients and
healthy controls within the PAH and MDD datasets to uncover
deeper biological insights into the behavior of DEGs.

For the PAH dataset, GSEA revealed that DEGs in the disease
group (PAH/control) are significantly enriched in several key
pathways. These include the interleukin-12 (IL-12) signaling
pathway, the regulation of tumor protein TP53 activity through
phosphorylation, Notch signaling, TP53-regulated transcription of
DNA repair genes, signaling by NOTCH4, and signaling by
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NOTCH2 (Figure 3, Supplementary Table S3). Furthermore,
GSVA of the PAH/control datasets identified that 10 gene sets,
such as the PID p38 gamma delta pathway, showed statistical
significance (p<0.05) among the PAH/control samples in the
PAH dataset (Supplementary Figure S1, Supplementary Table S5).

For the MDD dataset, significant enrichment of genes was
observed across various biological pathways when comparing
disease groups to controls (MDD/control). Notable pathways that
showed significant enrichment included neuroactive ligand-
receptor interaction, ion channel transport, interferon signaling,
laminin interactions, the gonadotropin-releasing hormone
signaling pathway, and oxidative phosphorylation (Figure 4,
Supplementary Table S4).

Additionally, GSVA was conducted on the MDD dataset to
further compare the disease and control groups (MDD/control).
The analysis identified that seven gene sets, including DNA
mismatch repair, were statistically significant between the MDD
and control groups within the MDD dataset (Supplementary Figure
S2, Supplementary Table S6).

Identification and external validation of
candidate hub genes

The process of identifying and externally validating key genes
that play a significant role in both PAH and MDD involved several
sophisticated bioinformatics tools and databases. The STRING tool
was utilized to analyze the PPI networks of shared DEGs, helping to
clarify how these genes interact within the networks (Figure 5A).
The CytoHubba plugin, using algorithms such as Maximal Clique
Centrality, Maximum Neighborhood Component, and Degree
Network Centrality Measure, was employed to pinpoint and
assess the top 10 hub genes in the PPI network (Figures 5B-E).
From these, six candidate hub genes were identified at the
intersection of these algorithms: CHD8, DCLK1, DDX42, DHX36,
EIF3D, and GFM1I (Supplementary Table S7).

Further analysis using the CHIPBase database (v3.0) allowed for
the visualization of interaction networks between the candidate hub
genes and various TFs. This revealed 61 interactions involving the 6
hub genes and 33 TFs, which were then visualized using Cytoscape,
where mRNAs were represented as blue circles and TFs as red
circles (Figure 5F, Supplementary Table S8). Predictions from the
miRDB database, with a Target Score of 295, identified 42 target
miRNAs for the hub genes. A co-expression network comprising
these hub genes and miRNAs was constructed, uncovering 44
mRNA-miRNA pairs (Figure 5G, Supplementary Table S9).

The mRNA-drug interaction network illustrated potential
therapeutic implications by revealing nine potential drugs
associated with four of the hub genes: DCLKI, DHX36, EIF3D,
and GFM1 (Supplementary Figure S3A, Supplementary Table S10).
Additionally, the mRNA-RBP interaction network showcased 31
RBPs interacting with 6 hub genes, with CHDS specifically targeting
17 RBPs (Supplementary Figure S3B, Supplementary Table S11).
Furthermore, Friends analysis highlighted that DEAH-Box Helicase
36 (DHX36) exhibits the strongest correlation with the other hub
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FIGURE 3

Results of gene set enrichment analysis (GSEA) of the PAH dataset. (A) Summary of the overall findings from GSEA, indicating which Reactome
pathways were significantly enriched in the PAH dataset. (B) Genes significantly enriched in the “PID IL12 2PATHWAY," revealing involvement in
immune response modulation. (C) Enrichment in the "REGULATION OF TP53 ACTIVITY THROUGH PHOSPHORYLATION," highlighting the pathway's
role in cell cycle control and apoptosis. (D) Enrichment in the “NOTCH SIGNALING" pathway, detailing gene enrichment that affects cell
differentiation processes. (E) Enrichment in the “TP53 REGULATES TRANSCRIPTION OF DNA REPAIR GENES,” emphasizing the pathway's importance
in genomic stability. (F, G) Enrichment of genes in "SIGNALING BY NOTCH4" and "SIGNALING BY NOTCH2," respectively, pointing out their specific

roles in cellular development and fate determination.

genes (Supplementary Figure S3C), underscoring its potential
significance in these diseases.

Enrichment analysis of hub genes
We conducted an enrichment analysis of co-DEGs to understand

the biological roles they play in the context of Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and GO terms. The analysis,

Frontiers in Psychiatry

08

depicted in Figure 6 (Supplementary Table S12), reveals that the BP
terms identified hub genes predominantly involved in processes such as
the regulation of transcription by RNA polymerase III, changes in
DNA geometry, dendrite morphogenesis, enhancement of translation,
and augmentation of the cellular amide metabolic process. These
findings suggest that mechanisms related to gene regulation, cellular
shape, and metabolism are crucial in the development of PAH
alongside MDD. Concerning CC terms, our findings point to a
significant association of hub genes with structures like the nuclear
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FIGURE 4

Results of gene set variation analysis of the MDD dataset. (A) Overview of the enriched Reactome pathways discovered in the MDD dataset through
GSEA, setting the stage for detailed explorations. (B) Genes significantly enriched in the "NEUROACTIVE LIGAND-RECEPTOR INTERACTION" pathway,
suggesting a major role in neurotransmitter dynamics, which are crucial for brain function and mood regulation. (C) Enrichment in "ION CHANNEL
TRANSPORT," highlighting its importance in neuronal excitability and signaling, factors that can influence depressive behaviors. (D) Significant gene
involvement in “INTERFERON SIGNALING," indicating potential links between immune response and psychiatric conditions like depression. (E) Genes
enriched in "LAMININ INTERACTIONS,” which are essential for cell adhesion and integrity, impacting brain structural and synaptic functions. (F) Details of
the "GNRH SIGNALING PATHWAY,” which is associated with the regulation of reproductive hormones that may also influence mood and emotional
states. (G) Enrichment in "OXIDATIVE PHOSPHORYLATION,” a pathway crucial for energy metabolism, which has been implicated in the pathophysiology

of depression due to energy dysregulation in brain cells.

speck, eukaryotic 48S and 43S preinitiation complexes, translation
preinitiation complex, and the MLLI/2 complex, highlighting their
nuclear involvement. In the realm of MF, the hub genes showed
enrichment in functions including helicase activity, ATP hydrolysis,
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DNA helicase activity, RNA helicase activity, and catalytic activity
impacting DNA. This indicates their key role in DNA and RNA
processing. Notably, the KEGG pathway analysis did not reveal any
statistically significant enrichment.
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A comprehensive view of the interaction network of common differentially expressed genes (Co-DEGs) in the study of PAH and MDD. (A) The
protein—protein interaction (PPI) network of Co-DEGs. This network illustrates how proteins encoded by these genes might interact with each other,
suggesting potential functional collaborations or signaling cascades that are perturbed in both conditions. (B—D) The identification of hub genes
within the PPl network using three different computational models. (B) Hub genes identified using the Matthews correlation coefficient (MCC)
metric, which considers the correlation between gene pairs within the network. (C) Hub genes pinpointed by the maximal neighborhood
component (MNC), focusing on genes with the largest and most significant local network connections. (D) Hub genes derived through differential
metabolic network construction (DMNC), which identifies key genes based on their metabolic network roles. (E) The Venn diagram used to pinpoint
the six hub genes common to both the PAH and MDD datasets, illustrating the overlap and suggesting genes of significant interest due to their
potential shared roles in the pathophysiology of both diseases. (F) The mRNA-transcription factor (TF) regulatory network, maps out the interactions
between target genes and their regulating TFs, providing insights into the gene regulation mechanisms altered in the diseases. (G) The mRNA-
microRNA (miRNA) regulatory network. This network details the interactions between target genes and miRNAs, offering a look into how gene
expression is post-transcriptionally regulated in the context of PAH and MDD.

Internal cross-dataset validation of hub the PAH (GSE113439, GSE53408) and MDD (GSE44593,

genes

GSE54564) datasets, as shown in Figure 7. Our analysis revealed
notable upregulation of all six genes in the PAH cohort compared

We evaluated the differential expression of six pivotal hub  to the controls (Figure 7A). For the MDD cohort, the expression
genes (CHDS, DCLK1, DDX42, DHX36, EIF3D, and GFM1) within levels of CHDS8, DDX42, and EIF3D were elevated, among which,
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GFMI expression decreased, while no significant changes in
DCLK1 and DHX36 (Figure 7B). Further analysis identified that
CHD8, DDX42, EIF3D, and GEM1 are differentially expressed
across both datasets. We then conducted ROC analysis for these
genes. EIF3D demonstrated the highest diagnostic accuracy for
PAH, with an AUC of 0.932 (Figure 7E). CHD8 and GFM1I
displayed moderate diagnostic performance, with AUCs of 0.754
(Figure 7C) and 0.864 (Figure 7F), respectively, whereas
DDX42 showed relatively lower accuracy with an AUC of 0.673
(Figure 7D). In the MDD cohorts, the predictive values of these
genes were more limited: CHD8 (AUC=0.640; Figure 7G), DDX42
(AUC=0.660; Figure 7H), EIF3D (AUC=0.649; Figure 7I), and
GFM1 (AUC=0.669; Figure 77).

Following this, we performed Pearson correlation analysis to
compute the correlation coefficients among the key genes. Heatmaps
visualizing these correlations are displayed in Supplementary Figures
S4A, C. Of all of the pairwise correlations evaluated, DDX42 and
CHDS showed the strongest positive correlation. To better illustrate
their relationship, scatter plots were created. These analyses revealed
that in the PAH dataset, the correlation coefficient between DDX42
and CHD8 was significant, with R=0.754 (Supplementary Figure S4B).
In contrast, within the MDD dataset, the correlation was somewhat
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lower, with R=0.636(Supplementary Figure S4D). These findings
underscore a robust inter-gene connection, particularly in the PAH
context, suggesting potential pathways for further investigation.

Subtype construction

To delineate disease subtypes within the PAH and MDD datasets,
we applied consistency clustering analysis. Analysis of the cumulative
distribution function curves of the consensus score matrix and the
proportion of ambiguous clustering statistic indicated that the ideal
cluster number is two (k=2), as shown in Supplementary Figures S5B,
G, F, G. Specifically, in the PAH dataset, cluster 1 included 27 samples,
and cluster 2 comprised 22 samples, as detailed in Supplementary
Figures S5A-C. In the MDD dataset, cluster 1 contained 30 samples,
while cluster 2 had 40 samples, as illustrated in Supplementary Figures
S5E-G. Additionally, box plots revealed statistically significant
differences in the expression of hub genes between the clusters in the
PAH dataset (p<0.05), signifying distinct subtypes with potentially
varying pathological characteristics. However, in the MDD dataset, the
differences in hub gene expression between clusters were not
statistically significant, as depicted in Supplementary Figures S5D, H.
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FIGURE 7

A comprehensive validation of six hub genes within the context of PAH and MDD. (A, B) The expression levels of the six hub genes in the PAH

(A) and MDD (B) datasets. The graphical representations highlight differences in gene expression between the disease and control groups, with
statistical significance marked by various symbols (ns = not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001), indicating p-values
from nonsignificant to highly significant differences. (C—F) Receiver operating characteristic (ROC) analysis of the four hub genes (CHD8, DDX42,
EIF3D, and GFM1) in the PAH dataset. Each panel depicts the ROC curve for one gene, providing the area under the curve (AUC) values: (C) ROC
curve for CHD8. (D) ROC curve for DDX42. (E) ROC curve for EIF3D. (F) ROC curve for GFMI1. These curves evaluate the diagnostic effectiveness of
each gene, with AUC values assessing their performance as biomarkers. A higher AUC value (closer to 1) indicates a more effective diagnostic
outcome. (G-=J) Similar to panels (C—F) but for the MDD dataset, showing the ROC analysis for the same hub genes. (G) ROC curve for CHDS.

(H) ROC curve for DDX42. (1) ROC curve for EIF3D. (J) ROC curve for GFM1. Each panel details the AUC value, reflecting the diagnostic accuracy for
MDD, with the same significance markers used to indicate statistical relevance.

Immune cell infiltration analysis

In our study, the microenvironment, comprising immune cells,
the extracellular matrix, inflammatory mediators, and growth
factors, was analyzed for its impact on therapeutic sensitivity and
diagnostic accuracy. Using the ssGSEA algorithm, we quantified the
abundance of 28 immune cell types and identified statistically
significant differences in 18 immune cell populations within the
PAH dataset (Figure 8A), whereas only plasmacytoid dendritic cells
showed significant variation in the MDD dataset (Figure 9A).
Notably, significant positive correlations were found between the
hub genes CHD8, DDX42, and EIF3D and plasmacytoid dendritic
cells in the PAH dataset (Figures 8B, C), suggesting a vital role for
these cells in the pathogenesis of PAH in the context of MDD. In the
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MDD dataset, CHD8 and DDX42 also demonstrated positive
correlations with plasmacytoid dendritic cells (Figures 9B-F),
reinforcing the potential importance of these cells.

Additionally, the CIBERSORT algorithm was employed to
estimate the proportions of 22 different immune cells in both PAH
and MDD (Supplementary Figures S6A, S7A). In the PAH dataset,
immune cell correlations among the 22 immune cell types showed that
M2 macrophages, CD8* T cells, resting dendritic cells, and resting mast
cells were predominantly positively correlated, while negative
correlations with activated natural killer cells, MO macrophages,
eosinophils, activated dendritic cells, plasma cells, and regulatory T
cells were observed (Supplementary Figures S6B, C). Notably, resting
dendritic cells and CD8" T cells were significantly negatively correlated
with the four key genes CHDS8, DDX42, EIF3D, and GFMI
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FIGURE 8

Differences in immune characteristics between the disease and control groups in the PAH dataset through single-sample gene-set enrichment analysis
(ssGSEA). (A) Subgroup comparison plot of ssGSEA immune infiltration analysis results for PAH versus control in the PAH dataset. (B) Correlation analysis
of immune cell infiltration abundance differences between the PAH and control groups in the PAH dataset. (C) Point plots showing correlations between
the infiltration abundances of different immune cells and four key genes in the PAH dataset. Statistical significance indicators (ns = not significant,

*p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001) are used throughout the figure to denote the reliability of the observed differences and
correlations, ensuring that readers can quickly discern the most scientifically relevant findings.

(Supplementary Figure S6D). Conversely, in the MDD dataset,
immune cells generally displayed negative correlations with one
another (Supplementary Figure S7B). However, EIF3D exhibited a
significant positive correlation with the abundance of resting memory
CD4" T cells, and DDX42 and CHDS correlated positively with the
abundance of resting natural killer cells (Supplementary Figure S7C).

Diagnostic model construction

For assessing the diagnostic potential of hub genes, we utilized
LASSO logistic regression within our study (Figures 10A, E).
Furthermore, we visualized the results of the LASSO regression
and generated the corresponding LASSO variable coefficient path
plots (Figures 10B, F). In the PAH dataset, three genes were
identified as potential biomarkers: CHDS, EIF3D, and GFM]I. The
evaluation of these genes showed promising results, with AUC
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values of 0.754 for CHDS, 0.932 for EIF3D, and 0.864 for GFM]1,
indicating their significant diagnostic value (Figures 10C, D).

In contrast, within the MDD dataset, four genes were highlighted
as potential biomarkers: CHD8, DDX42, EIF3D, and GFMI. Their
diagnostic effectiveness was assessed, revealing AUC values of 0.640
for CHDS, 0.660 for DDX42, 0.649 for EIF3D, and 0.669 for GFM1, as
illustrated in Figures 10G, H. These values suggest the moderate
diagnostic utility of these biomarkers for MDD, highlighting the need
for further validation and potentially the exploration of additional
markers to improve diagnostic accuracy.

In-vivo model and further validation of the
hub genes

In line with prior research, our in-vivo model utilizing
monocrotaline to induce PAH in rats revealed typical symptoms
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FIGURE 9

Differential analysis of immune characteristics by single-sample gene-set enrichment analysis (sSGSEA) between the MDD and control groups.

(A) Subgroup comparative graphical presentation of the ssGSEA immune infiltration analysis results between the MDD and control groups. It visually
summarizes the differences in immune cell infiltration, highlighting which types of immune cells are more or less abundant in MDD patients
compared to healthy controls. (B) Lollipop plot linking the infiltration abundance of plasmacytoid dendritic cells with the expression of four key
genes in the MDD dataset. (C—F) Scatter plots illustrating the correlation between the expression of each of the four key genes: CHD8 (C), DDX42
(D), EIF3D (E), and GFM1 (F) in the MDD dataset and the infiltration abundance of plasmacytoid dendritic cells. Each scatter plot explores the nature
of these correlations, providing insights into how the activity of specific genes may be influenced by or influence the presence of particular immune
cells in the context of MDD. Statistical significance indicators (ns = not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001) are used
across all panels to denote the levels of statistical significance of the findings.

such as increased right ventricular systolic pressure and right
ventricular hypertrophy index, as depicted in Figures 11A-C. For
the first time, our study also identified negative emotional behaviors
in PAH rats, as evidenced by their performance in behavioral tests.
In the open field test, the PAH rats showed a reduced distance and
time spent in the center compared to the control rats, indicating
increased anxiety (Figures 11D, F, G), while the overall distance
traveled remained unchanged (Figure 11E). Similarly, in the
elevated-plus-maze test, the PAH rats exhibited a decrease in
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retention time and fewer entries into the open arms relative to
the controls, further supporting signs of anxiety and depression
(Figures 11H-J). The sucrose preference test underscored these
findings, with the PAH rats showing a decreased preference for
the sucrose solution, suggesting anxiety- and depressive-like
behaviors (Figure 11K).

To further validate the involvement of hub genes, we conducted
quantitative qPCR analysis on lung tissues from both the PAH and
control groups. Our results confirmed significant upregulation of
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FIGURE 10

Development and validation of diagnostic models based on immune-related differentially expressed genes (ILRDEGs) for PAH and MDD using LASSO
regression analysis. (A) The results of ten-fold cross-validation for tuning parameter (A) selection in the LASSO regression model for PAH. This plot
helps to determine the optimal A value that minimizes prediction error, which is crucial for enhancing the model's accuracy. (B) The coefficient
profiles of variables in the LASSO regression model for PAH. This graph traces the paths of coefficients as A changes, illustrating how the inclusion of
each variable in the model is affected by regularization, which helps to select the most significant predictors. (C) Receiver operating characteristic
(ROC) curves of hub genes in PAH. This panel assesses the diagnostic performance of individual genes, providing a clear comparison of their ability
to discriminate between disease and control states. (D) The ROC curve of the risk score in PAH, computed based on the LASSO model. This curve
evaluates the overall diagnostic accuracy of the combined model, showing the effectiveness of the risk score in predicting PAH. (E) Ten-fold cross-
validation for A selection in the LASSO model for the MDD dataset. This panel aids in identifying the best regularization parameter to prevent
overfitting while maintaining model performance. (F) The coefficient profiles of variables in the LASSO regression model for MDD. This panel
highlights how variables are selected and their coefficients shrink as A increases, focusing on the most impactful predictors. (G) ROC curves for hub
genes in MDD, which can be used to analyze each gene's diagnostic power and its utility as a biomarker for detecting MDD. (H) The ROC curve of
the risk score in MDD, generated by the LASSO model. This panel assesses the predictive performance of the risk score, indicating its potential as a
diagnostic tool for MDD.
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FIGURE 11

Effects of monocrotaline (MCT)-induced PAH on physiological parameters, behavioral outcomes, and hub gene expression in the rat model.

(A—C). Characterization of PAH, showing elevated right ventricular systolic pressure (RVSP) (A, B) and right ventricular hypertrophy index (RVHI)

(C). These parameters indicate the severity of PAH in the model (n = 6 per group; independent-samples t-test). (D—G) Open field test (OFT) for
anxiety-like behavior. (D) Representative movement traces; (E) total distance traveled; (F) distance traveled in the central area; (G) time spent in the
central area (reduced values indicate higher anxiety). (n = 6; independent-samples t-test for (E, F), Mann—-Whitney U test for G). (H-J) Elevated plus
maze (EPM) for anxiety-like behavior. (H) Representative movement traces; (l) time spent in open arms; (J) number of open-arm entries (greater
exploration indicates lower anxiety). (n = 6; independent-samples t-test). (K) Sucrose preference test (SPT) for depression-like behavior, with
reduced sucrose preference indicating a depressive-like state (n = 6; independent-samples t-test). (L—N) Expression of hub genes in the PAH model:
relative mRNA levels of CHDS8 (L), EIF3D (M), and DDX42 (N). (n = 6; independent-samples t-test). Data are shown as mean + SEM. Statistical
significance was assessed using independent-samples t-tests or Mann—-Whitney U tests, as indicated.

CHDS8 and EIF3D in the PAH group compared to the controls
(Figures 11L, M). DDX42 also showed an elevation in the expression
levels in the PAH group, although the difference did not reach
statistical significance (Figure 11N). These transcriptional changes
align with our earlier bioinformatics findings, reinforcing the role of
these genes in the pathogenesis of PAH and its associated
emotional disturbances.
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Discussion

To identify common differentially expressed genes (Co-DEGs)
associated with both pulmonary arterial hypertension (PAH) and
major depressive disorder (MDD), a comprehensive analysis of
multiple datasets was performed in this research, using the
combination of bioinformatics tools. The overlapping pathogenic
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genes between these conditions are identified for the first time.
Through analyses such as protein-protein interaction, pathway
enrichment, and immune infiltration studies, the potential
pathogenic mechanisms underlying PAH-associated MDD were
explored, which are related to inflammatory and immune
processes. These include the IL-12 signaling pathway, the Notch
signaling pathway, the interferon signaling pathway, the neuroactive
ligand-receptor interaction pathway, and plasmacytoid dendritic cell
immune infiltration. Moreover, three pivotal co-hub genes (CHDS,
DDX42, and EIF3D) were identified by using machine learning
techniques, which were later validated in a PAH rat model. This
study is the first to report that PAH rats, which exhibit elevated
expression of these genes, display anxiety and depression-
like behaviors.

Depression is a common complication associated with PAH.
The impact of depression on the health and quality of life has been
reported in literatures (36-38). However, except for reports
on its prevalence, there is rare publication of the large-scale,
high-quality, prospective population-based cohort studies, with
the focus on defining the diagnostic criteria and specific
mechanisms underlying PAH-related major depressive disorder
(MDD). Investigating objective predictive biomarkers from a
biological perspective could facilitate earlier and more effective
interventions or preventive measures in these patients.

It has been reported that compared to the general population,
patients with pulmonary hypertension (PH) have a higher incidence
of depression (39, 40), but the MDD incidence is different across
different PH subgroups. Up to 53% of PAH patients experienced
depression (41). Although it is a comorbidity for the PH patients,
their treatment efficacy is also affected by depression, which could
cause worse clinical outcomes, such as a reduced exercise capacity
measured by the 6-minute walk distance (6MWD), an important
prognostic indicator in PH. Additionally, the PAH patients with
depression may have poorer hemodynamic profiles and higher
hospitalization rates (40, 42). Therefore, it is essential to develop
novel associative findings for the PAH patients with depression,
offering a more potential measure of their disease status.

PAH is marked by increased pulmonary vascular resistance due
to lung remodeling or vasoconstriction, leading to severe
cardiopulmonary issues and premature mortality (43, 44). Either
depression, or MDD is associated with neurotransmitter imbalance,
neuroendocrine dysregulation, and immune inflammation (42).

CHDS is pivotal in neural development and is implicated in
both MDD and PAH. As an ATP-dependent chromatin remodeling
factor, CHD8 influences neuronal differentiation, cell cycle
progression, and proliferation, which are critical for brain
development and function (45-48). It is also linked to autism and
intellectual disability (49), with research showing that CHDS
mutations in mice lead to anxiety and depression-like symptoms.
Additionally, the proliferation of vascular smooth muscle cells is
recognized as a pathological hallmark of pulmonary hypertension
(50, 51). Furthermore, disruption of a single copy of CHDS in
human neural precursor cells has been shown to alter the cell cycle,
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potentially impacting cell proliferation—a key factor in PAH
pathology (52, 53).

EIF3D is crucial for initiating protein synthesis and affects the
translation of specific mRNA molecules, influencing cellular
phenotype transitions from proliferation to migration (54). This
action facilitated through the modulation of EIF3D-mediated
mRNA translation, is vital in the vascular proliferation found in
PAH (55). Additionally, EIF3D plays a significant role in the cellular
response to sustained endoplasmic reticulum stress, a known
pathogenic factor in depression, by regulating the expression of
the m6A demethylase ALKBH5 (56, 57).

DDX42 participates in key RNA processes such as translation
initiation, splicing, and ribosome biogenesis (58). Its role in
modulating mRNA splice isoforms and vascular smooth muscle
cell function could be instrumental in PAH. DDX42 is also crucial
for the regulation of neurotransmitter mRNA splicing and
translation, affecting neurotransmitter dynamics and potentially
providing a therapeutic target for MDD, given its role in
neurotransmitter balance.

In the literature, the lung-brain axis refers to a two-way
communication channel between the lungs and the brain,
including the complex interactions between the nervous,
endocrine, and immune systems (59-61). Within this pathway,
the vagus nerve, the immune and neuroendocrine systems and
various neurotransmitters act as essential links, each with distinct
functions (61, 62). Neuroinflammation and altered autonomic
functions have been found to be associated with the systemic
manifestation of PAH, supporting extension of the disease
beyond the pulmonary vasculature (63) and existence of the lung-
brain axis, where immune dysregulation and inflammation are key
factors (64).

Immune and inflammatory processes are important in both PAH
and MDD, raising the possibility that patients with both conditions
may show overlapping immune changes. In our analysis, plasmacytoid
dendritic cells (pDCs) stood out, as their infiltration correlated with
the hub genes we identified. pDCs produce large amounts of type I
interferons and act as regulators of immune activity. In PAH, pDCs
have been reported to accumulate around pulmonary vessels, where
they release interferon-induced chemokines such as CXCL10 and
contribute to vascular remodeling (65). The correlation we observed
between pDC infiltration and hub gene expression suggests that these
genes may be involved in pDC recruitment or activation. This fits with
clinical observations: patients receiving long-term interferon-o
treatment, which reproduces a high interferon state, often develop
depressive symptoms or MDD (66), and altered pDC function has also
been described in depression (67).

There is also evidence that neuronal pathways can influence
pDCs. For example, intestinal neurons can regulate their activity
through serotonin-HTR7 signaling (68). Serotonin plays a
recognized role in both pulmonary hypertension and depression:
signaling through receptors such as 5-HT1B promotes vascular
remodeling in PAH (69), while changes in serotonin binding and
metabolism are linked to mood disturbances in MDD (70). Taken
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together, these findings suggest that pDCs may act as a connecting
element within the lung-brain axis, linking immune activation,
vascular remodeling, and neurotransmitter pathways in PAH
with depression.

Limitations and outlook of the study

This study has several limitations. The bioinformatics analysis was
based on GEO datasets rather than direct sequencing, which may
influence the reliability of the results. For molecular validation, gPCR
was carried out only on lung tissue from MCT-induced PAH rats.
These findings mainly reflect pulmonary changes in PAH and do not
establish a direct role in MDD. Thus, we cannot confirm their causal
involvement in the comorbidity mechanism of PAH-MDD.
Extrapolation from lung tissue to central nervous system pathology
should therefore be cautious. In addition, evidence at the protein level
and functional confirmation of hub genes is still lacking. To clarify
causality, future work will need in vitro and in vivo experiments in
which these genes are silenced or overexpressed in relevant cells and
animal models, with effects measured on vascular remodeling and
behavior. Validation at the protein level, such as Western blotting,
ELISA, and immunohistochemistry in both rat and patient samples,
will also be required. Candidate biomarkers including CHDS, DDX42,
and EIF3D should be assessed in larger, independent cohorts of
patients with PAH, with and without depression, as well as in MDD
cohorts, to determine their diagnostic or prognostic potential.

The immune infiltration analysis was performed using ssGSEA
(Bindea 28-cell signatures) and CIBERSORT (LM22). These tools
were originally developed for blood samples, and their accuracy in
solid tissues such as lung and brain may be limited. Tissue
heterogeneity, sampling variation, and the local microenvironment
can all influence the estimates, meaning the results reflect local rather
than systemic immune activity. Future studies combining blood
profiling with single-cell or spatial transcriptomic approaches will
help to resolve these issues and provide more reliable cell-type-
specific information.

In conclusion, the present results are based on transcriptomic
correlations and cannot be taken as evidence of causality or immediate
diagnostic utility. Additional functional experiments, protein-level
studies, and validation in clinical cohorts are necessary to confirm
the biological and clinical relevance of the identified genes.

Conclusion

This research highlights the genetic and molecular links
between PAH and MDD by examining gene expression data. It
identified 42 DEGs common to both conditions. Through PPI
network analysis and LASSO regression modeling, crucial genes
such as CHD8, DDX42, EIF3D, and GFMI1 were pinpointed.
Notably, CHD8, DDX42, and EIF3D emerged as predictive
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markers to the overlapping pathophysiological processes of both
diseases. These findings provide novel insights into potential
therapeutic targets and suggest directions for future investigations.
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Glossary
AUC

BP

CC
CHDS8
Co-DEGs
DDX42
DEGs
DHX36
EIF3D
GEO

GO
GSEA
GSVA
HPA

IL

area under the curve

biological process

cellular component

chromatin helicase DNA-binding protein 8
common differentially expressed genes
DEAD-box helicase 42

differentially expressed genes

DEAH-Box Helicase 36

eukaryotic translation initiation factor 3, subunit D
Gene Expression Omnibus

Gene Ontology

Gene Set Enrichment Analysis

Gene Set Variation analysis
hypothalamic-pituitary-adrenal

interleukin
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KEGG
Logistic-LASSO
MDD
MF
PAH
PPI
PID
PPI
qPCR
RBP
ROC
RVHI

ssGSEA

10.3389/fpsyt

Kyoto Encyclopedia of Genes and Genomes

.2025.1670519

Logistic-Least Absolute Shrinkage and Selection Operator

major depressive disorder

molecular function

Pulmonary arterial hypertension
protein—protein interaction

primary immunodeficiency
Protein-Protein Interaction
quantitative polymerase chain reaction
RNA-binding protein

receiver operating characteristic

right ventricular hypertrophy index

single-sample gene-set enrichment analysis;TF,

transcription factor
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