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Creatine, as a naturally occurring organic compound, has gained attention for its

potential role in psychiatric health. The creatine kinase-phosphocreatine energy

buffer system plays a crucial role in maintaining energy supply in the brain. Brain

bioenergetic deficits, particularly those related to mitochondrial dysfunction,

plays a critical role in the pathophysiology of psychiatric illnesses. A growing body

of literature has focused on the potential therapeutic role of creatine

supplementation in psychiatric illnesses. This review summarizes findings from

preclinical, epidemiological, clinical and neuroimaging studies to examine

creatine’s role as both a biomarker and therapeutic agent in psychiatric

disorders, including Major Depressive Disorder, Anxiety Disorders,

Posttraumatic Stress Disorder, and Substance Use Disorder.
KEYWORDS

creatine, major depressive disorder, substance use disorder, posttraumatic stress
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1 Introduction

Over one billion people worldwide are affected by mental and addictive disorders (1).

These conditions place a heavy burden on individuals as the leading causes of disability and

premature death (2). In addition, psychiatric disorders have the strongest effect on suicide

rates throughout the life course, with disorders including depression and substance use

disorders increasing the risk of completed suicide by more than three times (3).

Economically, disability and premature mortality due to mental disorders are associated

with a global loss exceeding $4.7 trillion USD (2). Therefore, it is imperative that mental

health be prioritized as a global health issue, with increased attention to effective and

accessible treatment. Moreover, advancing the understanding of the underlying biological

mechanisms of psychiatric disorders is crucial improving treatment.

Traditionally, behavioral health disorders were primarily understood through the

monoamine theory, which stated that deficiencies in neurotransmitters such as serotonin

and dopamine were the root cause of these disorders (4). However, there is now a growing

focus on mitochondrial dysfunction as a contributing factor to psychiatric illnesses (5).
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The brain, with its high energy demand and large numbers of

mitochondria, is particularly vulnerable to disruptions in

mitochondrial ATP production (6). Previous studies have

established that brain bioenergetic deficits – particularly those

related to mitochondrial dysfunction – play a critical role in the

pathophysiology of psychiatric illnesses. Mitochondria are

implicated in several proposed mechanisms underlying

psychiatric illnesses such as inflammation, oxidative stress,

ferroptosis, etc., – all deeply interconnected and central to the

development of psychiatric illnesses (7). In summary,

mitochondrial dysfunction is a transdiagnostic pathophysiology

across psychiatric illnesses such as Major Depressive Disorder

(MDD), Anxiety Disorders, Posttraumatic Stress Disorder

(PTSD), or Substance Use Disorder (SUD) (8–11).

Creatine (Cr) is a nitrogenous organic compound produced

endogenously mostly in the kidneys and liver from arginine and

glycine (12, 13). Human beings synthesize about 50% of necessary

creatine and supplement the remaining 50% through diet (13).

Approximately 95% of creatine is stored in skeletal muscles, while

the remaining 5% is found in bone tissue and the brain (14).

Although research on creatine supplementation has primarily

focused on muscle function, creatine also plays a crucial role in

maintaining adenosine triphosphate (ATP) supply in the brain,

especially during times of high demand (10) such as hypoxia (15),

sleep deprivation (16, 17), mental fatigue (18) or possibly in

psychiatric illnesses that involve brain bioenergetic deficits (8).

Additionally, creatine supports neurons that require high

amounts of ATP for various cellular processes, including learning,

memory, energy homeostasis and mitochondrial function (19).

In the brain, creatine plays an essential role in the storage and

transmission of energy, as part of the creatine kinase-

phosphocreatine (PCr) system (20). The enzyme creatine kinase

catalyzes the reversible exchange of a phosphate group between Cr

and ATP that manages the energy homeostasis in the body (14).

Cr + ATP ↔ PCr + ADP +  H+

The creatine-kinase-PCr system serves as a buffer for ATP

homeostasis when rates of synthesis are greater than the rates of

consumption and stores energy as PCr. When more energy is

needed, PCr is efficiently transported from sites of ATP synthesis

to sites of ATP break down and expenditure (21). More specifically,

ATP is synthesized in the mitochondria via oxidative

phosphorylation. Within the mitochondrial intermembrane space,

mitochondrial creatine kinase facilitates the transfer of a phosphate

group from ATP to creatine, producing phosphocreatine. The

resulting PCr then diffuses into the cytosol, where it functions as

a mobile, high-energy phosphate reservoir (22). This system is

highly efficient: ATP can be synthesized from PCr 12 times faster

than oxidative phosphorylation and more than 70 times faster than

de novo pathways (23). Therefore, the creatine-kinase-PCr system

plays a vital role in ensuring that neurons have sufficient energetic

reserves to meet the demands of healthy brain function.

For more than a decade, creatine has been one of the most

popular dietary supplements worldwide for its efficacy in enhancing

exercise performance and improving symptoms of neuromuscular
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and cardiometabolic diseases. Although research on creatine has

traditionally investigated its role in skeletal and muscle energetics, a

growing body of evidence now supports its mechanistic potential to

exert therapeutic and neuroprotective effects in brain health (24).

Building on findings that phosphocreatine serves as a critical energy

reservoir in the brain, and recognizing that many psychiatric

disorders are characterized by impaired brain energy metabolism,

researchers have begun to examine creatine as a potential adjunctive

treatment in psychiatric illnesses. For example, animal models have

established creatine’s anti-depressant-like effects, especially in

female rats and in combination with antidepressants (25–27).

Furthermore, preclinical models have reported reduced brain

creatine levels with methamphetamine (MA) administration and

exposure to stress (28–31). Given its critical role in cellular energy

metabolism, creatine is intimately involved in mitochondrial

function and has become of increasing interest in psychiatric

research. These findings provide rationale for further investigating

creatine supplementation as a potential strategy to enhance

psychiatric health in human beings.

Oral creatine supplementation has been shown to increase

creatine levels in the human brain and increase the PCr/ATP

ratio, with regions of initially decreased PCr levels showing most

increase in PCr (32) when measured by proton or phosphorous

magnetic resonance spectroscopy (1H or 31P-MRS) (10, 14). MRS

is a neuroimaging technique that allows investigators to measure

brain chemistry and in vivo metabolism non-invasively, using the

magnetic spin property of odd-mass numbered atoms such as 1H or

31P (33). This allows investigators to observe biochemical processes

in the body, including the brain. Lyoo and colleagues conducted a

placebo controlled MRS study in which healthy subjects who took

creatine monohydrate at 0.3 g/kg/day for seven days and 0.03 g/kg/

day the following week, exhibited significantly increased brain

creatine levels compared to the placebo group (Cr/NAA d=1.67,

Cr/Cho d=0.93). Additionally, participants in the creatine group

showed increased product PCr (d=0.51) and decreased substrate

beta-NTP (d=-0.62). Study investigators concluded that these

changes were indicative of changes in brain energy metabolism

after oral creatine supplementation (34).

A growing body of literature has examined the potential

therapeutic role of creatine supplementation in psychiatric

disorders. Allen (2012) provided a comprehensive overview of the

neurobiology underlying the phosphocreatine energy system and its

relevance to psychological stress, schizophrenia, and mood and

anxiety disorders (35). Kious et al. (2019) concentrated specifically

on creatine supplementation for the treatment of depression (36).

More recently, Forbes et al. (2022) investigated the effects of

creatine, and explored guanidinoacetic acid supplementation as

an alternative to or adjunctive with creatine supplementation,

exploring implications for neurological and mental health

conditions (14). These reviews represent a subset of the ongoing

research in this area. Given the expanding interest in this field, the

present review aims to evaluate the role of creatine supplementation

in neuropsychiatric conditions such as MDD, Anxiety Disorders,

PTSD, and SUD with a particular focus on its potential as an

adjunctive treatment in behavioral mental health care.
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2 Methodology

For the current review, key terms like “creatine AND

depression,” “creatine AND substance use disorder,” and

“creatine AND PTSD” were used to search relevant literature on

PubMed and Cochrane Library databases. Although most studies

cited in this review were published within 2009-2025, due to the

limited number of literatures on creatine supplementation in

psychiatric illnesses, some studies dating further back were

included. Therefore, this review puts greater emphasis on studies

published during the last two decades, given that the field has been

building on this line of research overtime. The above search yielded

2708 records: 2506 articles from PubMed and 202 articles from

Cochrane Library. All the records were title/abstract screened. Only

those articles directly related to creatine supplementation in

depression, substance use disorders, and PTSD were included in

the current review. In contrast, records that discussed creatine in

context of physical health conditions, those not available in the

English language, and whose full text was unavailable were

excluded. The findings of the review were described narratively.
2.1 Depression and anxiety + creatine

Preclinical models have provided initial support for the

antidepressant potential of creatine. For example, Allen et al.

assessed effects of combining creatine supplementation with low-

dose fluoxetine treatment for four weeks on depression-like behaviors

using the forced swim test in male and female rats. Female rats fed a

4% creatine diet exhibited antidepressant-like behaviors with or

without fluoxetine, while male rats did not show such effects.

When fluoxetine was administered, female rats receiving creatine

supplementation displayed enhanced antidepressant-like responses

compared to those treated with fluoxetine alone. Estrous cycle data

suggested that ovarian hormones in female rats may mediate these

antidepressant effects in females (35).

Epidemiological studies further support a link between creatine

metabolism and depressive symptoms. An analysis of 22,692

participants from the National Health and Nutrition Examination

Survey (NHANES) found an inverse association between dietary

creatine intake and depression, particularly among women (d=-

0.25), individuals aged 20-39 (d=-0.34), and those not taking

antidepressant or anxiolytic medications (d=-0.27) (37).

Additionally, data from the China Health and Retirement

Longitudinal Study found that compared to participants with

high creatinine levels (the breakdown product of creatine

phosphate), those with moderate and low levels of serum creatine

had higher risk of depression (middle level: OR = 1.41, 95% CI =

1.26-1.57; low level: OR = 1.67, 95% CI = 1.49-1.88) (38).

Neuroimaging studies using MRS have corroborated these

findings. Kato et al. (1992) reported significantly reduced PCr

levels in individuals with severe depressive symptoms compared

to those with milder symptoms (d=-1.05). Furthermore, beta-NTP,

a 31P MRS proxy measure of energy homeostasis, was significantly

lower in female subjects, highlighting possible sex differences in
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bioenergetic dysfunction in MDD (39). These biological differences

align with broader epidemiological patterns showing that women

are diagnosed with MDD at higher rates and at earlier ages than

men, with differing symptom profiles across sexes (40, 41).

Anxiety disorders and MDD co-occur in high prevalence and

have negative psychosocial and medical impacts (42). Therefore, it

is important to note that anxiety disorders demonstrate similar

patterns of altered brain bioenergetics. For instance, Yue et al.

reported that individuals with anxiety disorders had reduced

creatine concentrations in the left dorsolateral prefrontal cortex

(d=0.82). Creatine concentrations negatively correlated with scores

on the Liebowitz Social Anxiety Scale, indicating that lower creatine

levels were associated with more severe social anxiety symptoms

such as avoidance (r=-0.589) and fear (r=-0.553) (43). Similarly,

individuals with General Anxiety Disorder (GAD) without a history

of early trauma exhibited lower levels of total creatine (creatine +

phosphocreatine) compared to healthy controls (left d=1.17, right

d=1.44). GAD patients with a history of early trauma, however did

not show significant differences compared to healthy controls (44).

Collectively, these findings suggest that bioenergetic dysregulation,

particularly in the brain creatine levels, may serve as a biomarker of

psychiatric illness.

Importantly, baseline brain creatine levels may also predict

treatment response. Individuals with higher baseline PCr levels

tend to respond more favorably to selective serotonin reuptake

inhibitors (SSRIs), including escitalopram and fluoxetine (26, 45).

Therefore, creatine augmentation with standard antidepressants may

lead to an earlier and greater response to standard antidepressant

treatment (45). Roitman et al. observed that in eight patients with

unipolar treatment-resistant depression (TRD), a four-week course of

3–5 g/day of adjunctive creatine supplementation led to significant

improvements in clinically relevant depression and anxiety measures.

For example, the Hamilton Depression Rating Scale (HAM-D) scores

decreased from 23.14 at baseline to 12.57 at week 4 (d=1.67),

indicating a significant decrease from the clinically moderate

depression category on the scale to the mild depression category.

Additionally, the Hamilton Anxiety Scale (HAS) scores decreased

from 18.71 at baseline to 12.00 at week 4 (d=1.37), also indicating a

significant improvement from the mild to moderate anxiety category

to the mild anxiety category. Clinical Global Impression scores also

decreased from 4.43 at baseline to 3.00 at week 4 (d=2.86) (46).

Similarly, an eight-week double-blind randomized clinical trial

conducted by Lyoo et al. demonstrated that creatine augmentation

accelerated improvements in HAM-D scores in escitalopram-treated

females with depression. Those receiving creatine exhibited

significant improvement compared to the placebo group, as early

as two weeks after treatment initiation (odds ratio=11.68), and these

gains were maintained through week eight (odds ratio=6.92) (45). A

complimentary study by Kious et al. investigated the effects of

augmenting conventional antidepressants with creatine and 5-

hydroxytryptophan (5-HTP) in women with SSRI or Serotonin-

Norepinephrine Reuptake Inhibitor (SNRI)-resistance. The study

reported a significant reduction in depressive symptoms, with a

mean 60% decrease in HAM-D scores (d=3.19) (47). However, it is

also important to note the effects of the dosage and duration of
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creatine administration. For instance, Nemets and Levine did not see

any significant benefits from creatine augmentation at low doses (5-

10g) for four weeks (48), underscoring the need for either higher

dosages (20 grams or higher) over shorter durations or sustained low-

dose regimens lasting at least eight weeks to alleviate symptoms of

MDD (43).

New research on creatine has also shown potential as an adjunct

to psychological therapies. Sherpa et al. augmented Cognitive

Behavioral Therapy (CBT) with creatine in patients with MDD

(49) and found that the combined intervention group showed lower

scores on the Patient Health Questionnaire-9 (PHQ-9) (d=-2.11), a

depression symptom measure (50), compared to those receiving

CBT with placebo (51). These results raise compelling questions

about how improving brain bioenergetics can enhance cognitive

mechanisms engaged in psychotherapy. Together, the data suggest

that creatine may improve outcomes even in the absence of

pharmacotherapy and could be integrated across treatment

modalities for TRD (52).

The need for novel treatment options is especially urgent in

adolescents with MDD. Adolescents experience more recurrent

episodes, higher suicidality, and increased hospitalization compared

to adults with MDD (53). Importantly, at least 40% of adolescents fail

to respond to first-step interventions (54, 55), and while emerging

interventions such as ketamine and electroconvulsive therapy show

promise, their use in adolescent populations remains limited (56).

Thus, there is a critical need for novel, safe and effective

antidepressant agents in adolescents.

To begin addressing this need, Kondo et al. treated five female

adolescents with SSRI-resistant MDD with a combination of

fluoxetine and 4 g/daily of creatine over 8 weeks. Following

creatine augmentation, subjects’ Children’s Depression Rating

Scale-Revised (CDRS-R) declined 56% (d=4.21), and compared to

the healthy controls, those who received creatine showed a

significant increase in brain PCr concentration after eight weeks

of daily creatine augmentation (d=0.33) (57). The CDRS-R serves as

a reliable and valid metric for adolescents with depression (58). In a

follow-up dose-ranging trial, adolescent females receiving 10 g/day

of creatine showed a 9.1% increase in frontal lobe PCr levels,

whereas the placebo group experienced a slight decline of 0.7%

(d=0.8) (52). These results mirror adult findings and reinforce the

hypothesis that creatine improves brain bioenergetics through the

elevation of high-energy phosphate stores.

In summary, the evidence suggests that creatine supplementation

may offer a safe and biologically plausible adjunct to traditional

treatments for MDD, with particular relevance for women. Given the

consistent findings across animal models, epidemiological data, MRS

studies, and clinical trials, future research should continue to explore

sex-specific mechanisms and optimize dosing protocols to harness

the full therapeutic potential of creatine in psychiatric care.
2.2 PTSD + creatine

Approximately 70% of the adult population worldwide has

experienced at least one traumatic life event (59), and lifetime
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prevalence of Posttraumatic Stress Disorder (PTSD) is 6.1% (60),

indicating individual differences in stress recovery from traumatic

life events. As discussed above PTSD is highly comorbid with

depression and both disorders may share underlying

neurobiological mechanisms including reactivity of the HPA axis

(61) and brain mitochondrial dysfunction (9). Emerging research

has focused on how brain creatine may be implicated in the brain’s

response to stressful events. Preclinical models suggest that brain

creatine levels, particularly in the frontal brain regions, is reduced

when exposed to stress (31). For example, subordinate animals

exposed to psychosocial defeat by dominant animals exhibit

significantly less total creatine (creatine + phosphocreatine), along

with reduced hippocampal volume and impaired neurogenesis (35).

In patients with PTSD, trends toward reduced creatine levels

have been observed throughout the dorsal anterior cingulate cortex

(ACC) (62, 63), hippocampus and occipital white matter (64, 65). In

addition, in the ACC, lower creatine concentrations correlated with

higher arousal scores, suggesting that prefrontal deficits in brain

bioenergetics of the prefrontal tissue is associated with hyperarousal

observed in PTSD (63, 66). This information points to the need to

further explore creatine levels in trauma response and stress

recovery. Another study by Yancey et al. used 1H-MRS to

measure creatine levels in US Veterans who experienced at least

one traumatic life event, they found that higher total creatine

(creatine + phosphocreatine) in the anterior cingulate was

correlated with better traumatic recovery as assessed via

retrospective self-report (r(25)=0.43) (31). This finding suggests

that creatine may be associated with greater stress recovery. The

similarity between findings from the preclinical animal models that

suggest that creatine concentrations are reduced following exposure

to high-stress in the laboratory conditions (67), together with the

findings from clinical studies that higher levels of total creatine were

associated with greater self-reported stress recovery, suggests that

creatine may be an important factor related to capacity for

responding to and recovering from stressful environmental

conditions (31). Given creatine’s association with MDD and

PTSD symptoms, more research is necessary to investigate the

underlying mechanism of creatine and its interaction with various

psychiatric illnesses.

Regarding creatine as a possible therapeutic agent, there are

successful cases of creatine augmentation in PTSD patients such as

this case of a 52-year-old woman who suffered from PTSD and

comorbid depression and fibromyalgia, after losing her left eye in a

terror bombing scene. This patient showed resistance to standard

psychotherapy. When the patient was treated with creatine for 4

weeks (3 g daily in the first week, then 5 g daily) with continued

ongoing psychotropic treatment, the patient showed improvements

in depression and fibromyalgia symptoms, with reported improved

sleep patterns and somatic symptoms, leading to a 30% increase in

her quality of life (68). This patient was part of an open-label clinical

study conducted by Levine et al. that carried out creatine

augmentation to ongoing psychotropic treatment in treatment-

resistant PTSD patients. In the creatine group, Clinical Global

Impressions scores, used to measure general psychiatric health

(69), improved significantly (d=0.47). In addition, in the creatine
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group, all clinician-administered PTSD scales parameters mildly

improved during the study (d=0.57), with intrusiveness scores

improving the most, and HAM-D scores also improving

significantly (d=0.67). In particular, treatment-resistant PTSD

patients with comorbid depression showed greatest improvements

from creatine augmentation (70). The positive and hopeful results

of this study provide further evidence for creatine augmentation in

PTSD treatment.
2.3 Substance use dual-diagnosis +
creatine

Substance use disorders (SUD) are frequently comorbid with

MDD and PTSD. 11-41% of individuals seeking treatment for SUD

meet diagnostic criteria for PTSD, a comorbidity associated with

more severe cravings and higher relapse rates compared to SUD

alone (71). Furthermore, both PTSD and SUD independently

increase the risk for developing MDD (71). When MDD co-

occurs with either PTSD or SUD, individuals experience more

severe psychosocial impairments than with either condition alone

(71). Adolescents with SUD are more likely to have MDD than

those without (72) and patients diagnosed as having both

depression and SUD tend to have more severe clinical courses

and worse outcomes than those who only have either or (73). A

meta-analysis by Stokes et al. has also raised concerns that SSRI

treatments, either alone or in combination with relapse prevention

medications in SUD, such as naltrexone, had no significant effect on

depressive symptoms in people with MDD and comorbid

addictions (74).

Methamphetamine Use Disorder (MUD), in particular,

presents distinct clinical challenges due to its profound

neurotoxic, psychiatric, and medical consequences. MUD is one

of the most addictive and treatment-resistant forms of SUDs, which

results in serious impairments in social and occupational

functioning (75). MUD can develop rapidly, and is characterized

by a cyclical pattern of intense use followed by intermittent

abstinence. Medically, it is associated with severe cardiovascular

and cerebrovascular complications, which constitute the leading

causes of mortality in MA users (76). Neurotoxic effects in MUD are

also prominent: in a study involving 100 adults with MUD and no

medical comorbidities, 36% exhibited psychiatric comorbidities

such as mood disorders and anxiety disorders, and 25% of those

were substance induced (77). In addition, MUD is difficult to treat –

those who do not engage in treatment show a 5-year remission rate

of 30%, and even among those who do receive treatment, 61%

relapse within the first year (76). Despite the urgent need for

effective treatments, pharmacological options for MUD remain

limited and underdeveloped (78).

Numerous clinical trials investigating medications for MUD

have yielded mixed or inconclusive results. For example, bupropion

was found in some studies to reduce cravings but not in others (79,

80). Similarly, naltrexone has been shown to modify MA cravings,

possibly via endogenous opioid pathways (81); however, evidence

does not currently support its efficacy in promoting abstinence or
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reducing relapse rates (82). Other medications such as vigabatrin,

ondansetron, topiramate, and gabapentin are under investigation,

but their efficacy for MUD has not yet been established (83). As of

now, no FDA approved pharmacological treatment is available for

MA dependent individuals seeking treatment in the United States

(83, 84). Therefore, further research into medications for MUD

treatment is necessary.

As with depression, anxiety, and PTSD, there is growing

evidence that mitochondrial dysfunction and brain energy

metabolism play key role in the pathophysiology of MUD (35). In

preclinical models, MA use has been associated with reduced

activity in the electron transport chain (ETC), particularly in

striatal regions, leading to decreased ATP production (28, 29).

Preclinical studies in rats have demonstrated MA-induced

reductions in ETC complexes I, II, and III, which contribute to

impaired mitochondrial function and decreased energy

production (30).

Consistent with these preclinical findings, human studies have

reported altered brain energy metabolism in MA users. Relative to

healthy controls, MA users exhibited significantly reduced levels of

total creatine (PCr + creatine) in the frontal lobe as measured by

1H-MRS (d=-0.71) (85). Additionally, 31P-MRS data revealed sex

differences, with significantly lower phosphocreatine-to-total

phosphorous (PCr/TPP) ratios in females MA users than male

users, despite lower daily amounts of MA (d=-1.0) (11, 85). This

finding points to the possibility that along with mitochondrial

dysfunction observed in MA dependence (28–30), decreased brain

PCr high energy phosphate reserve in MA users may also contribute

to the reduced brain energy metabolism (86), especially in female

MA users.

Following this line of investigation, Hellem et al. conducted a

pilot study administering 5g of creatine monohydrate daily to 14

female participants with comorbid depression and MA dependence

over an eight-week period (11). Post-treatment assessments showed

significant increases in brain PCr concentrations as measured by 31P-

MRS (d=0.92). Concurrently, participants exhibited significant

reductions in depressive symptoms (HAM-D) (d=1.99) and anxiety

(Beck Anxiety Inventory) (d=1.71), along with a 50% decrease in MA

positive urine drug screens by week six (11). These preliminary

findings suggest that creatine may be a promising adjunctive

treatment for co-occurring depression and MA dependence.

However, despite positive results, there is a lack of literature

focusing on creatine’s potential as an adjunctive treatment for

MUD, and furthermore, SUD. Therefore, further research is

necessary to understand creatine’s treatment efficacy in SUD,

especially in women, and to elucidate the mechanisms underlying

interaction behind creatine in SUD and co-occurringmood disorders.
3 Conclusion

Creatine is an organic acid endogenous to mammals that plays a

key role in supporting brain bioenergetics. It can also be readily

assessed in vivo using MRS. As discussed in this review, variations in

brain creatine have been identified across depression and PTSD – two
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psychiatric disorders with substantial public health implications.

Variations in creatine have also been observed among patients with

methamphetamine addiction. The fact that creatine levels are related

to various mental health conditions suggest that it could be a potential

role as a transdiagnostic marker of impaired brain bioenergetic

capacity and a proxy marker of mitochondrial (dys)function. This

idea would be consistent with increasing evidence across scientific

modalities that mitochondrial function plays an important role in

mental health.

Moreover, as discussed above, brain creatine can be inexpensively

supplemented with creatine monohydrate supplementation, and it

has an excellent safety profile. Thus, creatine holds promise not

only as putative biomarker, but also treatment target across

neuropsychiatric conditions. Indeed, the review of this literature

suggests that creatine has shown efficacy as an adjunctive to SSRI

treatment for TRD MDD, particularly in female patients.

Importantly, clinical trials utilizing MRS have shown that changes

in brain phosphocreatine corresponded with treatment responses,

providing strong mechanistic evidence that creatine supplementation

addresses symptoms by altering brain bioenergetic resources. Though

more limited, there is also evidence that creatine supplementation

may also be effective as an adjunctive to pharmacotherapy for PTSD,

and that it may improve symptoms of methamphetamine use

disorder. However, more clinical trials, particularly those with MRS

are needed to further validate these encouraging initial findings.

Recently, exciting work has shown that it can be combined with

talk therapy to improve depressive symptoms. This finding may be

especially relevant for PTSD as evidence-based psychotherapies

(e.g. Prolonged Exposure and Cognitive Processing Therapy)

remain the gold-standard treatments. Future research is needed to

explore the mechanisms by which creatine may affect cognitive and

affective processes that are engaged in psychotherapy. Overall, brain

bioenergetics and underlying mitochondrial function is becoming

increasingly recognized as an important biological contributor to

psychiatric illness. Our review provides an overview of creatine both

as an in vivo marker of brain bioenergetic health and as potential

therapeutic target across a range of conditions. Future research is

necessary to better understand the promise of creatine

supplementation as both an adjunctive and monotherapy.

Finally, the relevance of creatine to the development of novel

behavioral health interventions is underscored by the current

enthusiasm in the field surrounding ketamine and the serotonergic

psychedelics. These repurposed drugs are thought to have

“transformative” potential in the treatment of neuropsychiatric

disorders (87), and are described as exemplars of the “disruptive

psychopharmacology” that is destined to inform the next generation

of psychotropic medications (88). It is therefore notable, that a series

of preclinical experiments has demonstrated that creatine and

ketamine produce their antidepressant-like effects in animal models

through the same mechanism (89, 90). This mechanistic pathway,

known as the mammalian target of rapamycin (mTOR), is the

downstream mechanism-of-action of both ketamine and the

serotonergic psychedelics, according to recent work from the U.S.

National Institute of Mental Health (91). Moreover, creatine

supplementation upregulates mTOR signaling (92), and ketamine
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administration increases brain creatine kinase system activity (93).

However, further research to elucidate the direct causal mechanism

by which mitochondrial ATP and mTOR signaling contribute to

psychiatric illnesses. In particular, we propose that monitoring these

processes through MRS, especially 31P-MRS, will provide valuable

insights. Further work is needed to elucidate the interactions and

overlap between creatine and the dissociative antidepressants, which

ensure creatine’s place as a mechanistic biomarker and potential

treatment intervention in behavioral health conditions.

The limitations to the extant literature at the intersection of

creatine and behavior disorders must be acknowledged. These

include the heterogeneity in study design and statistical analyses,

the limited sample sizes, the representativeness of the study

populations recruited in creatine clinical trials, the observational

nature of data reported in many publications, and the recall bias

and interindividual variability that are unavoidable features of the

self-report measures that have traditionally served as primary

outcome variables in mental health research. The latter has

motivated the National Institute of Mental Health to transition

toward “mechanistic” clinical trials, in its investigator-initiated

funding announcements. This move is designed to facilitate the

identification of the mechanism(s) by which pharmacological,

psychosocial, and neuromodulatory interventions produce

objectively measurable change(s) in research participants. Like

many investigational treatments, the mechanism of creatine has yet

to be elucidated. Converging lines of evidence suggest that the

mechanism of mental disorders may be related to impaired energy

metabolism in brain, and offer directions for future creatine work.

These include analysis of mitochondria-related genes (94),

mitochondrial dynamics (95), and. While converging lines of

evidence implicate mitochondria in psychiatric disorders (96), the

process of defining the precise mechanism of mental health

treatments, including creatine, is complicated by the fact that the

neurobiology of psychiatric illness itself remains unknown (97) –

leaving mitochondrial dysfunction to be described as “the missing

link” (95). One newly-developed tool is the MitoBrainMap v1.0 (98),

which offers the possibility of understanding the connection between

regional mitochondrial activity and neurocognitive function, thus

opening novel possibilities for human medicine and research (98). If

this and other new technologies can be integrated with existing

neuroimaging methods (99), the health of brain mitochondria can

be serially measured in response to a specific treatment. Thus, while

the field has just entered the era of mechanistic clinical trials, the

prospect of defining the neural substrates of mental illness, and

identifying relevant treatment targets, appears to be at hand.

Overall, although existing small-scale, open-label, and pilot

studies provide valuable preliminary guidance, there remains a

crucial need for larger, well-designed clinical trials. Many of the

current studies share limitations in design and sample size, which

introduces variability across findings. There is especially variability

by condition: large-scale double-blind clinical trials provide

relatively strong support for depressive disorders, whereas in

other psychiatric illnesses the evidence is more limited but still

promising. Future research should expand upon these early findings

by employing larger sample sizes and more rigorous methodologies
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to elucidate the mechanisms of creatine, and its efficacy in

improving psychiatric illnesses.
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