
Frontiers in Psychiatry

OPEN ACCESS

EDITED BY

Chang Cai,
University of California, San Francisco,
United States

REVIEWED BY

Serap Aydin,
Hacettepe University, Türkiye
Fengqin Wang,
Hubei Normal University, China
Mingfu Xiong,
Wuhan Textile University, China

*CORRESPONDENCE

Hui Yang

610012480@qq.com

Yu Ye

yeyuyeyu2@163.com

RECEIVED 16 July 2025
ACCEPTED 22 October 2025

PUBLISHED 07 November 2025

CITATION

Yang H and Ye Y (2025) Sobel neural
network for EEG-based major
depressive disorder screening.
Front. Psychiatry 16:1667107.
doi: 10.3389/fpsyt.2025.1667107

COPYRIGHT

© 2025 Yang and Ye. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Brief Research Report

PUBLISHED 07 November 2025

DOI 10.3389/fpsyt.2025.1667107
Sobel neural network for
EEG-based major depressive
disorder screening
Hui Yang1* and Yu Ye2*

1Computer School (Huangshi Key Laboratory of Computational Neuroscience and Brain-Inspired
Intelligence), Hubei Polytechnic University, Huangshi, China, 2Department of Radiology, The Central
Hospital of Huangshi City, Huangshi, China
Early and objective screening for major depressive disorder (MDD) is crucial, with

electroencephalography (EEG) offering significant potential. However,

developing accurate automated tools requires architectures adept at capturing

subtle, discriminative spatiotemporal features in EEG signals. This paper

introduces the Sobel Network, a novel neural architecture designed specifically

for EEG-based MDD screening, namely, identifying MDD patients from healthy

controls (HC). Unlike approaches using Sobel operators solely for preprocessing,

the Sobel Network integrates Sobel-inspired operations intrinsically within its

convolutional layers, enabling end-to-end learning of features emphasizing

gradient patterns and edge-like information highly relevant to depression

biomarkers in EEG. We evaluate the Sobel Network on a publicly available EEG

dataset from the Hospital of Universiti Sains Malaysia (HUSM). This dataset

comprises 34 patients diagnosed with MDD (17 men; mean age, 40.3 ± 12.9

years) and 30 healthy controls (HC; 21 men; mean age, 38.2 ± 15.6 years). The

results demonstrate that the proposed architecture significantly outperforms

other deep learningmodels in keymetrics including accuracy (achieving 98.67%),

sensitivity (99.18%), and specificity (98.10%). The Sobel Network presents a

promising avenue to improve the accuracy and robustness of automated EEG-

based depression screening tools, offering practical impact for clinical

decision support.
KEYWORDS
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1 Introduction

Major depressive disorder (MDD), a pervasive and debilitating mental health disorder,

affects over 300 million individuals worldwide, imposing substantial burdens on personal

well-being, healthcare systems, and societal productivity (1). Its insidious onset and

heterogeneous clinical presentation often leads to underdiagnosis or delayed

intervention, exacerbating long-term outcomes. Early and accurate screening is therefore

critical to enabling timely therapeutic interventions, yet current clinical practices remain

heavily reliant on subjective self-report scales and qualitative clinical interviews (2). These
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methods are prone to bias, recall errors, and variability across raters,

highlighting an urgent need for objective, biologically grounded

screening tools specifically for MDD. It is important to note that

depression encompasses multiple subtypes (e.g., persistent

depressive disorder, seasonal affective disorder), but this work

focuses exclusively on MDD screening.

Electroencephalography (EEG) has emerged as a promising tool

for objective depression assessment due to its non-invasiveness,

high temporal resolution, and sensitivity to neural dynamics.

Depression-related neurophysiological abnormalities—such as

altered frontal alpha asymmetry, disrupted connectivity, and

aberrant synchronization—often manifest as subtle spatial

gradients and edge-like transitions in multi-channel EEG

topography. Recent EEG analytics highlight the value of network

and complexity approaches, with studies showing that domain-

specific connectivity metrics capture brain network alterations in

ADHD (3), spectral coherence identifies emotion regulation

strategies (4), and frequency-specific complexity discriminates

maladaptive rumination (5). Most pertinent to this work, EEG-

derived network analysis predicts rTMS outcomes in MDD (6), and

functional connectivity patterns link to specific depressive

symptoms as treatment biomarkers (7). These features reflect

localized disruptions in neural circuitry and inter-regional

communication, hallmarks of MDD pathology. The sensitivity of

Sobel operators to such spatial gradients makes them particularly

suitable for capturing these depression-specific biomarkers.

However, translating raw EEG data into reliable diagnostic

markers remains challenging. EEG signals are inherently noisy,

non-stationary, and high-dimensional, with subtle discriminative

patterns often obscured by artifacts (e.g., muscle movements, eye

blinks) and inter-individual variability. Traditional analytical

approaches, which rely on handcrafted features such as spectral

power and coherence, struggle to capture the complex

spatiotemporal dynamics underlying depression-related neural

activity, thereby limiting their sensitivity and specificity.

In recent years, deep learning has revolutionized EEG analysis by

enabling end-to-end learning of discriminative features from raw

processed signals (8, 8). Convolutional neural networks (CNNs), in

particular, have demonstrated significant promise in extracting spatial

and spectral patterns from EEG data, outperforming traditional

methods in applications such as emotion recognition and seizure

detection. However, existing deep learning models for EEG-based

depression screening often fail to explicitly prioritize the subtle

gradient and edge-like information in EEG signals—features that are

increasingly recognized as critical to identifying depression-related

biomarkers, such as localized aberrations in neural synchrony. While

some studies have employed Sobel operators (9) as a preprocessing step

to enhance edge features, these methods typically treat gradient

extraction as a fixed, offline process (10). This disconnects edge

detection from the subsequent learning stages and limits the model’s

ability to adapt to depression-specific patterns.

To address this gap, we propose the Sobel Network, a novel

neural architecture that intrinsically integrates gradient-based

feature learning within its convolutional layers rather than

treating edge detection as a separate preprocessing step. By
Frontiers in Psychiatry 02
embedding Sobel-inspired gradient operations directly into the

trainable convolutional structure, the model is uniquely

positioned to emphasize edge-like transitions and spatial

gradients—features that align with known neurophysiological

biomarkers of depression in EEG signals.

This end-to-end integration enables the network to dynamically

adapt and prioritize depression-relevant patterns during training,

thereby overcoming the static limitations of traditional preprocessing-

based approaches.

The main contributions of this work are as follows:
1. A novel neural architecture, the Sobel Network, is

proposed, which intrinsically integrates Sobel-inspired

gradient operations into convolutional layers, enabling

end-to-end learning. It can emphasize gradient patterns

and edge-like information that are highly relevant to

depression biomarkers in EEG, breaking through the

limitation of previous approaches that solely used Sobel

operators for preprocessing.

2. Evaluations on relevant datasets show that this architecture

significantly outperforms other deep learning models in key

metrics such as accuracy (reaching 98.67%), sensitivity, and

specificity. The Sobel Network provides a promising avenue

to improve the accuracy and robustness of automated EEG-

based depression screening tools and has practical impact

on clinical decision support.
2 Methods

2.1 Datasets and experiment setup

This study utilized an EEG dataset acquired at the Hospital of

Universiti Sains Malaysia, comprising 34 patients diagnosed with

major depressive disorder (MDD; 17 men; mean age, 40.3 ± 12.9

years) and 30 healthy controls (HC; 21 men; mean age, 38.2 ± 15.6

years) (11). Each participant completed 5 min of resting-state EEG

under both eyes-closed and eyes-open conditions, recorded from 20

scalp electrodes (Fp1, Fp2, F3, F4, F7, T3, T5, C3, C4, Fz, Cz, Pz, F8,

T4, T6, P3, P4, O1, O2, ECG) arranged according to the

international 10–20 system at a sampling rate of 256 Hz, where

the EEG data were recorded with Linked Ear (LE) reference and

were re-referenced to the Infinity Reference (IR) (11). The exclusion

criteria included psychosis, pregnancy, substance abuse, smoking,

and epilepsy. The control subjects were free from any neurological

or psychiatric disorders. The EEG signals were preprocessed using

BESA software (11, 12) to remove artifacts, which included the

application of a 50-Hz notch filter to eliminate power line

interference. From the cleaned data, 2-min artifact-free segments

were extracted per condition using a 4-s sliding window, resulting in

a total of 18,442 epochs (9,789 from MDD subjects and 8,653

from controls).

Experiments were conducted using a standardized computing

environment: a desktop equipped with an Intel i7 processor (3.33
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GHz), 64 GB of RAM, an Nvidia RTX4090 graphics card with 24

GB memory, and operating on a 64-bit Windows 10 system with

Keras of 2.10.0.
2.2 Definition of EEG edge features

In the context of this study, edge features in EEG signals refer to

spatially localized abrupt transitions or gradients observed in multi-

channel topographic maps. The Sobel Network processes these EEG

edge features by adaptively responding to data variations across

different spatial locations, enabling it to capture depression-relevant

neural patterns with enhanced precision. These include the following:
Fron
• Phase-based edges: Sudden discontinuities in phase

synchrony between adjacent brain regions, potentially

indicating disruptions in functional connectivity networks

• Energy/amplitude gradients: Sharp spatial variations in

signal power or amplitude across electrode arrays,

possibly reflecting localized abnormalities in neural activity

• Spectral boundary features: Rapid transitions in frequency-

specific patterns across cortical regions, which may

correspond to pathological changes in oscillatory dynamics
These edge characteristics are particularly relevant for

depression identification as they may capture the breakdown in

normal large-scale neural coordination observed in MDD patients.

The Sobel operator’s sensitivity to spatial gradients makes it

particularly suitable to amplify these clinically relevant features

while suppressing diffuse background activity.
2.3 Sobel edge detection layer

The Sobel edge detection layer is the core innovation of our

model. It computes horizontal and vertical gradients of the input

using fixed kernels. The horizontal gradient kernel is defined as

Equation 1:

Gx =

−0:1 0 0:1

−0:2 0 0:2

−0:1 0 0:1

2
664

3
775, (1)

and the vertical gradient kernel define in Equation 2

Gy =

−0:1 −0:2 −0:1

0 0 0

0:1 0:2 0:1

2
664

3
775 : (2)

Given an input tensor X ∈ RB�H�W�C , where B is the batch

size, H �W is the spatial dimension, and C is the number of

channels, we replicate and concatenate the Sobel kernels Nf = 10

times to construct the filter bank Equation 3:
tiers in Psychiatry 03
F = ⊕
Nf

i¼1
½Gx ⊕ Gy�, (3)

where ⊕ denotes channel-wise tensor concatenation. The

convolution operation is defined as Equation 4:

∇X = conv2d(X, F,   stride = 1,   padding =0 SAME0), (4)

resulting in an output ∇X ∈ RB�H�W�Nf , which captures

directional edge features at each location.

The convolutional block consists of two layers. The first

convolutional layer applies 20 filters of size 2 × 9, using a ReLU

activation function Equation 5:

C1 = ReLU(conv2d(∇X,W1)), (5)

which outputs a feature map of size (H − 1)� (W − 8)� 20.

The second convolutional layer applies 18 filters of size 8� 7, with

no activation (Equation 6):

C2 =  conv2d(C1,W2), (6)

yielding an output of size (H − 8)� (W − 14)� 18.

The fully connected classification head begins with flattening

the output Equation 7:

F = flatten(C2),  F ∈ RDf ,  Df = (H − 8)(W − 14) · 18: (7)

This is followed by two dense (Equations 8, 9) layers and a final

sigmoid output (Equation 10):

H1 = s (W3 · F + b3),    H1 ∈ R350, (8)

H2 = W4 · H1 + b4,   H2 ∈ R60, (9)

ŷ = s (W5 · H2 + b5),     ŷ ∈ R1, (10)

where s (x) = 1
1+e−x is the sigmoid activation function.

The model is trained using a mean squared error (MSE) loss

function Equation 11:

L =
1
Bo

B

i=1
(yi − ŷ i)

2, (11)

where B is the batch size, and yi and ŷ i denote the true and

predicted labels, respectively. Optimization is performed using

stochastic gradient descent (SGD) with momentum Equations 12

and 13:

vt = g vt−1 + h∇qL(qt), (12)

qt+1 = qt − vt , (13)

with learning rate h = 0:01, momentum g = 0:9, and Nesterov

acceleration enabled.

To mitigate overfitting, a dropout layer is applied after the

input, with a drop probability of 0.03 Equation 14:

Xdrop = Dropout(X,   p = 0:03) : (14)
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This architecture effectively combines edge-preserving gradient

filtering with convolutional representation learning, enabling robust

classification under noisy conditions.
3 Results

3.1 Feature enhancement and robustness
validation experiment based on Sobel layer

This experiment was designed to assess the noise robustness of our

convolutional neural network in an EEG classification task and to

quantify the signal enhancement effect introduced by the Sobel layer.

EEG recordings are typically contaminated by electromyographic and

electrooculographic artifacts, which degrade both classification

accuracy and signal quality; thus, methods that effectively increase

the signal-to-noise ratio (SNR) are essential. We propose inserting a

Sobel edge-detection filter layer (Sobel layer) at the network’s input to

extract salient spatial features and suppress noise. The network outputs

both the classification prediction and the Sobel-processed signal,

enabling computation of signal-quality metrics (e.g., improvements

in SNR, PSNR, and SSIM). By systematically varying the input noise

level (testing acrossmultiple SNR conditions), we evaluated themodel’s

classification performance and signal enhancement capability, thereby

demonstrating enhanced noise robustness for EEG classification.

Figure 1a plots the SNR improvement conferred by the Sobel

layer (blue curve) and the corresponding classification accuracy

(red curve, secondary axis) as functions of input SNR, based on

aggregate results from all test samples and channels. Despite a

reduction in input SNR from 20 dB to −5 dB, the Sobel layer

consistently yields an output SNR gain of approximately 2.12–2.13

dB—for example, an input SNR of 17.98 dB (nominally 20 dB) is

raised to 20.11 dB (a = 2.13 dB), and an input SNR of −7.03 dB

(nominally − dB) is elevated to − 4.91 dB (D ≈ 2.12 dB),

demonstrating strong resilience under high-noise conditions.

Classification accuracy remains relatively stable but shows a

declining trend as noise increases: from 0.98 at 20 dB to 0.96 at

15 dB and 0.98 at 10 dB, then decreasing to 0.94, 0.90, and 0.74 at 5,

0, and −5 dB respectively, indicating that extreme noise still impacts

classification performance.

Figure 1b presents boxplots of the three enhancement metrics

(SNR, PSNR, and SSIM) computed across all test samples. SNR

improvements are tightly clustered approximately 2.12–2.13 dB,

and PSNR gains approximately 4.48 dB, indicating stable

enhancement with minimal variability. SSIM changes average

near zero: slightly negative at high SNR conditions (e.g., −0.0095

at 20 dB and −0.0117 at 15 dB) and slightly positive under low SNR

conditions (e.g., +0.0335 at 0 dB and +0.0291 at −5 dB), suggesting

that under heavy noise, the Sobel layer aids in recovering

structural information.

The consistent performance across all SNR conditions and the

minimal variability in enhancement metrics demonstrate that the

Sobel layer provides robust feature enhancement throughout the

entire recording duration, validating its effectiveness for EEG-based

depression screening under realistic noisy conditions.
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3.2 Performance on identifying MDD

We first conducted a parameter sensitivity analysis on the

number of Sobel filters. Without loss of generality, we monitored

the classification performance when the number of filters was set to

10, 20, and 30, which yielded results of 98.72%, 98.67%, and 98.67%,

respectively. The classification results indicate that the number of

filters has no direct correlation with the classification performance,

and the optimal setting is 10.

The learning curve presented in Figure 2 illustrated the

performance trends of the model during the training process to

identify MDD, with the x-axis representing the number of training

epochs (ranging from 0 to 40) and the y-axis indicating the metric

values (ranging from 0.0 to 1.0). From the curve, the overfitting

and underfitting did not occur because the training accuracy

and validation accuracy exhibit a “U-shaped” pattern while

improving synchronously.

The performance is evaluated based on a series of quantitative

metrics such as accuracy, sensitivity, and specificity, with comparisons

between different models and existing state-of-the-art methods. The

results aim to validate the effectiveness of the proposed framework in

improving MDD identification accuracy, especially in capturing the

subtle neurophysiological patterns associated with MDD. Table 1

compares the performance of five approaches in terms of sensitivity,

specificity, and accuracy. Among them, the Sobel Network proposed in

this paper ranks first with 98.56% specificity and 98.72% accuracy,

while the TahnReLU-based CNN exhibits slightly superior sensitivity

(99.03%). Both approaches significantly surpass other methods (e.g.,

GoogLeNet: 93.74% accuracy; Resnet-16: only 82.26%), indicating that

the newly proposed Sobel Network demonstrates optimal

comprehensive recognition capabilities—particularly excelling in

positive sample detection—whereas the TahnReLU-based CNN

shows marginally better robustness in discriminating negative

samples. Both are suitable for high-precision scenarios. Possible

reasons include the following: (1) The Sobel Network integrates

traditional Sobel edge detection operators to enhance critical feature

extraction, significantly improving sensitivity in identifying subtle

structures (e.g., lesion boundaries in medical images), thereby

optimizing positive sample detection while maintaining high

specificity through end-to-end deep learning training and (2) The

TahnReLU-based CNN leverages an improved activation function

design (combining Tanh and ReLU), which mitigates ReLU’s neuron

death issue while enhancing robustness in negative sample

discrimination via Tanh’s saturation characteristics, achieving

exceptional performance in balanced inter-class recognition.
4 Discussions and conclusions

Sobel Network to capture electrophysiological signatures of

depression: The success of the Sobel Network in capturing

electrophysiological signatures of brain dysfunction in depression

can be attributed to its unique ability to emphasize spatial

gradient and edge-like features in EEG signals, which are

known to reflect key neuropathological mechanisms of MDD.
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Depression-related abnormalities—including altered frontal alpha

asymmetry, disrupted functional connectivity, and aberrant neural

synchronization—often manifest as subtle spatial gradients and

edge-like transition patterns in multi-channel EEG topography.

The Sobel Network, through its embedded gradient operations,

dynamically enhances these fine-grained spatial variations, thereby

effectively capturing neural circuit abnormalities associated

with depression.

Sobel-based EEG enhancement for noise-robust classification:

The results show that adding a Sobel layer consistently improves
Frontiers in Psychiatry 05
SNR and PSNR across noise conditions, with minimal impact on

SSIM. Classification accuracy declines as noise rises, as expected.

Quantitatively, the Sobel layer provides average gains of 2.125 dB in

SNR and 4.48 dB in PSNR, highlighting its ability to enhance signal

features while suppressing noise. The near-zero SSIM changes

(slight decrease at high SNR) may stem from Sobel’s edge

emphasis, introducing structural variations irrelevant to

classification. Performance stays high at 20 dB (98%) but drops

under severe noise, emphasizing remaining challenges in extreme

cases. Overall, the Sobel layer is an effective feature enhancement

module for EEG networks, improving signal quality and noise

robustness. Future work may integrate advanced denoising or

multi-channel fusion to boost performance in adverse conditions.

Fusion of signal processing and deep learning: The deep integration

of traditional signal processing methods with neural networks (15) has

shown significant benefits in EEG-based depression screening, with

broader relevance to biomedical signal analysis and cross-domain data

processing. This approach bridges prior knowledge from traditional

techniques with the end-to-end learning capability of neural networks,

mitigating deep learning’s heavy data dependence and “black box”

limitations while overcoming traditional methods’ constraints in

modeling complex patterns (16). This integrative strategy also applies

effectively to wavelet transform, a classical time–frequency analysis tool

adept at decomposing non-stationary signals (e.g., EEG, EMG, ECG)

and capturing transient changes and local energy fluctuations—features

often critical to identifying abnormal physiological states. However,

traditional wavelet-based feature extraction relies onmanual design and

lacks end-to-end optimizability with classifiers. By embedding wavelet

multi-scale decomposition into neural networks [e.g., via Fourier (17) or

wavelet attention mechanisms (18)], models can autonomously learn

discriminative time–frequency features—such as abnormal EEG delta

waves or fMRI BOLD fluctuations—and achieve joint optimization of

feature extraction and classification through end-to-end training.

Extend applications: The proposed hybrid framework, which

leverages the strengths of both traditional signal processing and deep

learning, is not limited to EEG signal enhancement. Its philosophy of

combining domain-knowledge-driven preprocessing with data-driven

modeling holds significant potential to inspire solutions in a wider

range of cross-domain applications—for instance, similar frameworks
FIGURE 2

Learning curve of Sobel Network on MDD identification.
FIGURE 1

(a) SNR improvement (blue curve) introduced by the Sobel layer under different input SNR conditions and the corresponding classification accuracy
(red curve, secondary axis) as a function of input SNR, averaged across all test samples and channels. (b) Boxplots of signal quality enhancement
metrics across all test samples, including improvements in SNR, PSNR, and SSIM.
TABLE 1 Detailed description.

Approach Sensitivity Specificity Accuracy

GoogLeNet (13) 96.48 90.62 93.74

Resnet-16 (13) 88.9 74.79 82.26

MLRW (11) 95 80 87.5

TahnReLU-based CNN (14) 99.03 98.21 98.64

Sobel Network 98.87 98.56 98.72
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could be explored for deep-learning-based intelligent vehicle control

(19), where traditional control theory meets neural networks, or for

complex multimodal fusion tasks (20) that require robust feature

extraction from heterogeneous data sources. Furthermore, the

principles could be adapted to advance unsupervised learning

paradigms (21) by integrating structured prior knowledge to guide

the learning process.

Future works: To tackle the issue of generalizability, we will

conduct extensive cross-dataset validation utilizing several

publicly available EEG datasets to thoroughly assess the

transferability of our model. Concurrently, to bridge the gap

between artificial and real noise, we are designing experiments

to incorporate EEG data with naturally occurring artifacts. This

will involve a systematic analysis of the model’s performance on

real-world noisy data and a discussion on its practical robustness

for clinical application.

Conclusions: This study proposes and validates the Sobel

Network—an innovative neural architecture that embeds Sobel

gradient operators for end-to-end learning—designed for EEG-

based depression screening. Experiments demonstrate that the

model significantly outperforms existing methods in key metrics

(accuracy: 98.67%, sensitivity: 99.18%). Its core advantages stem

from (1) a trainable Sobel layer that dynamically enhances edge-

gradient features in EEG signals (highly correlated with depression

biomarkers), maintaining a stable SNR gain of 2.125 dB under noisy

conditions and (2) a groundbreaking fusion of traditional signal-

processing priors with deep learning adaptability, overcoming

limitations of decoupled preprocessing approaches.

This “domain-knowledge-embedded” paradigm not only

provides a high-precision tool for objective depression screening

but also pioneers new pathways for cross-modal biomedical signal

analysis (e.g., wavelet neural network fusion), advancing the

development of interpretable, low-data-dependent intelligent

diagnostic systems.
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