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Early and objective screening for major depressive disorder (MDD) is crucial, with
electroencephalography (EEG) offering significant potential. However,
developing accurate automated tools requires architectures adept at capturing
subtle, discriminative spatiotemporal features in EEG signals. This paper
introduces the Sobel Network, a novel neural architecture designed specifically
for EEG-based MDD screening, namely, identifying MDD patients from healthy
controls (HC). Unlike approaches using Sobel operators solely for preprocessing,
the Sobel Network integrates Sobel-inspired operations intrinsically within its
convolutional layers, enabling end-to-end learning of features emphasizing
gradient patterns and edge-like information highly relevant to depression
biomarkers in EEG. We evaluate the Sobel Network on a publicly available EEG
dataset from the Hospital of Universiti Sains Malaysia (HUSM). This dataset
comprises 34 patients diagnosed with MDD (17 men; mean age, 40.3 + 129
years) and 30 healthy controls (HC; 21 men; mean age, 38.2 + 15.6 years). The
results demonstrate that the proposed architecture significantly outperforms
other deep learning models in key metrics including accuracy (achieving 98.67%),
sensitivity (99.18%), and specificity (98.10%). The Sobel Network presents a
promising avenue to improve the accuracy and robustness of automated EEG-
based depression screening tools, offering practical impact for clinical
decision support.
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1 Introduction

Major depressive disorder (MDD), a pervasive and debilitating mental health disorder,
affects over 300 million individuals worldwide, imposing substantial burdens on personal
well-being, healthcare systems, and societal productivity (1). Its insidious onset and
heterogeneous clinical presentation often leads to underdiagnosis or delayed
intervention, exacerbating long-term outcomes. Early and accurate screening is therefore
critical to enabling timely therapeutic interventions, yet current clinical practices remain
heavily reliant on subjective self-report scales and qualitative clinical interviews (2). These
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methods are prone to bias, recall errors, and variability across raters,
highlighting an urgent need for objective, biologically grounded
screening tools specifically for MDD. It is important to note that
depression encompasses multiple subtypes (e.g., persistent
depressive disorder, seasonal affective disorder), but this work
focuses exclusively on MDD screening.

Electroencephalography (EEG) has emerged as a promising tool
for objective depression assessment due to its non-invasiveness,
high temporal resolution, and sensitivity to neural dynamics.
Depression-related neurophysiological abnormalities—such as
altered frontal alpha asymmetry, disrupted connectivity, and
aberrant synchronization—often manifest as subtle spatial
gradients and edge-like transitions in multi-channel EEG
topography. Recent EEG analytics highlight the value of network
and complexity approaches, with studies showing that domain-
specific connectivity metrics capture brain network alterations in
ADHD (3), spectral coherence identifies emotion regulation
strategies (4), and frequency-specific complexity discriminates
maladaptive rumination (5). Most pertinent to this work, EEG-
derived network analysis predicts rTMS outcomes in MDD (6), and
functional connectivity patterns link to specific depressive
symptoms as treatment biomarkers (7). These features reflect
localized disruptions in neural circuitry and inter-regional
communication, hallmarks of MDD pathology. The sensitivity of
Sobel operators to such spatial gradients makes them particularly
suitable for capturing these depression-specific biomarkers.

However, translating raw EEG data into reliable diagnostic
markers remains challenging. EEG signals are inherently noisy,
non-stationary, and high-dimensional, with subtle discriminative
patterns often obscured by artifacts (e.g., muscle movements, eye
blinks) and inter-individual variability. Traditional analytical
approaches, which rely on handcrafted features such as spectral
power and coherence, struggle to capture the complex
spatiotemporal dynamics underlying depression-related neural
activity, thereby limiting their sensitivity and specificity.

In recent years, deep learning has revolutionized EEG analysis by
enabling end-to-end learning of discriminative features from raw
processed signals (8, 8). Convolutional neural networks (CNNG), in
particular, have demonstrated significant promise in extracting spatial
and spectral patterns from EEG data, outperforming traditional
methods in applications such as emotion recognition and seizure
detection. However, existing deep learning models for EEG-based
depression screening often fail to explicitly prioritize the subtle
gradient and edge-like information in EEG signals—features that are
increasingly recognized as critical to identifying depression-related
biomarkers, such as localized aberrations in neural synchrony. While
some studies have employed Sobel operators (9) as a preprocessing step
to enhance edge features, these methods typically treat gradient
extraction as a fixed, offline process (10). This disconnects edge
detection from the subsequent learning stages and limits the model’s
ability to adapt to depression-specific patterns.

To address this gap, we propose the Sobel Network, a novel
neural architecture that intrinsically integrates gradient-based
feature learning within its convolutional layers rather than
treating edge detection as a separate preprocessing step. By
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embedding Sobel-inspired gradient operations directly into the
trainable convolutional structure, the model is uniquely
positioned to emphasize edge-like transitions and spatial
gradients—features that align with known neurophysiological
biomarkers of depression in EEG signals.

This end-to-end integration enables the network to dynamically
adapt and prioritize depression-relevant patterns during training,
thereby overcoming the static limitations of traditional preprocessing-
based approaches.

The main contributions of this work are as follows:

1. A novel neural architecture, the Sobel Network, is
proposed, which intrinsically integrates Sobel-inspired
gradient operations into convolutional layers, enabling
end-to-end learning. It can emphasize gradient patterns
and edge-like information that are highly relevant to
depression biomarkers in EEG, breaking through the
limitation of previous approaches that solely used Sobel
operators for preprocessing.

2. Evaluations on relevant datasets show that this architecture
significantly outperforms other deep learning models in key
metrics such as accuracy (reaching 98.67%), sensitivity, and
specificity. The Sobel Network provides a promising avenue
to improve the accuracy and robustness of automated EEG-
based depression screening tools and has practical impact
on clinical decision support.

2 Methods
2.1 Datasets and experiment setup

This study utilized an EEG dataset acquired at the Hospital of
Universiti Sains Malaysia, comprising 34 patients diagnosed with
major depressive disorder (MDD; 17 men; mean age, 40.3 £ 12.9
years) and 30 healthy controls (HC; 21 men; mean age, 38.2 + 15.6
years) (11). Each participant completed 5 min of resting-state EEG
under both eyes-closed and eyes-open conditions, recorded from 20
scalp electrodes (Fp1, Fp2, F3, F4, F7, T3, T5, C3, C4, Fz, Cz, Pz, F8,
T4, T6, P3, P4, Ol, O2, ECG) arranged according to the
international 10-20 system at a sampling rate of 256 Hz, where
the EEG data were recorded with Linked Ear (LE) reference and
were re-referenced to the Infinity Reference (IR) (11). The exclusion
criteria included psychosis, pregnancy, substance abuse, smoking,
and epilepsy. The control subjects were free from any neurological
or psychiatric disorders. The EEG signals were preprocessed using
BESA software (11, 12) to remove artifacts, which included the
application of a 50-Hz notch filter to eliminate power line
interference. From the cleaned data, 2-min artifact-free segments
were extracted per condition using a 4-s sliding window, resulting in
a total of 18,442 epochs (9,789 from MDD subjects and 8,653
from controls).

Experiments were conducted using a standardized computing
environment: a desktop equipped with an Intel i7 processor (3.33
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GHz), 64 GB of RAM, an Nvidia RTX4090 graphics card with 24
GB memory, and operating on a 64-bit Windows 10 system with
Keras of 2.10.0.

2.2 Definition of EEG edge features

In the context of this study, edge features in EEG signals refer to
spatially localized abrupt transitions or gradients observed in multi-
channel topographic maps. The Sobel Network processes these EEG
edge features by adaptively responding to data variations across
different spatial locations, enabling it to capture depression-relevant
neural patterns with enhanced precision. These include the following:

* Phase-based edges: Sudden discontinuities in phase
synchrony between adjacent brain regions, potentially
indicating disruptions in functional connectivity networks

* Energy/amplitude gradients: Sharp spatial variations in
signal power or amplitude across electrode arrays,
possibly reflecting localized abnormalities in neural activity

* Spectral boundary features: Rapid transitions in frequency-
specific patterns across cortical regions, which may
correspond to pathological changes in oscillatory dynamics

These edge characteristics are particularly relevant for
depression identification as they may capture the breakdown in
normal large-scale neural coordination observed in MDD patients.
The Sobel operator’s sensitivity to spatial gradients makes it
particularly suitable to amplify these clinically relevant features
while suppressing diffuse background activity.

2.3 Sobel edge detection layer

The Sobel edge detection layer is the core innovation of our
model. It computes horizontal and vertical gradients of the input
using fixed kernels. The horizontal gradient kernel is defined as
Equation 1:

-0.1 0 0.1
-02002], 1)
-0.1 0 0.1

G, =

and the vertical gradient kernel define in Equation 2

-0.1 0.2 -0.1
G=|0 0 o0 |[. 2)
0.1 02 0.1

Given an input tensor X & RE*H*WXC where B is the batch
size, H x W is the spatial dimension, and C is the number of
channels, we replicate and concatenate the Sobel kernels Nf =10
times to construct the filter bank Equation 3:
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Nf
F= gal[c;x G, (3)

where @ denotes channel-wise tensor concatenation. The
convolution operation is defined as Equation 4:

VX = conv2d(X, F, stride = 1, padding =' SAME)), (4)

resulting in an output VX & REXAxWxN;

, which captures
directional edge features at each location.

The convolutional block consists of two layers. The first
convolutional layer applies 20 filters of size 2 x 9, using a ReLU

activation function Equation 5:

C, = ReLU(conv2d(VX, W))), (5)

which outputs a feature map of size (H — 1) x (W —8) x 20.
The second convolutional layer applies 18 filters of size 8 x 7, with
no activation (Equation 6):

C, = conv2d(C,, W,), (6)

yielding an output of size (H — 8) x (W —14) x 18.
The fully connected classification head begins with flattening
the output Equation 7:

F = flatten(C,), FER", D; = (H-8)(W-14)-18.  (7)

This is followed by two dense (Equations 8, 9) layers and a final
sigmoid output (Equation 10):

H, = o(W;-F+by), H, €R®, (8)
H,=W,-H, +b,, H, € Réo; %)

j=06(Ws-H,+bs), yER, (10)

where o(x) = ﬁ is the sigmoid activation function.
The model is trained using a mean squared error (MSE) loss
function Equation 11:

128 .
L=220i-7)% (11)
i=1
where B is the batch size, and y; and y; denote the true and
predicted labels, respectively. Optimization is performed using
stochastic gradient descent (SGD) with momentum Equations 12
and 13:

Ve = YV + NV L(6)), (12)

01 =6, — v, (13)

with learning rate 17 = 0.01, momentum ¥ = 0.9, and Nesterov
acceleration enabled.

To mitigate overfitting, a dropout layer is applied after the
input, with a drop probability of 0.03 Equation 14:

Xgrop = Dropout(X, p =0.03). (14)
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This architecture effectively combines edge-preserving gradient
filtering with convolutional representation learning, enabling robust
classification under noisy conditions.

3 Results

3.1 Feature enhancement and robustness
validation experiment based on Sobel layer

This experiment was designed to assess the noise robustness of our
convolutional neural network in an EEG classification task and to
quantify the signal enhancement effect introduced by the Sobel layer.
EEG recordings are typically contaminated by electromyographic and
electrooculographic artifacts, which degrade both classification
accuracy and signal quality; thus, methods that effectively increase
the signal-to-noise ratio (SNR) are essential. We propose inserting a
Sobel edge-detection filter layer (Sobel layer) at the network’s input to
extract salient spatial features and suppress noise. The network outputs
both the classification prediction and the Sobel-processed signal,
enabling computation of signal-quality metrics (e.g., improvements
in SNR, PSNR, and SSIM). By systematically varying the input noise
level (testing across multiple SNR conditions), we evaluated the model’s
classification performance and signal enhancement capability, thereby
demonstrating enhanced noise robustness for EEG classification.

Figure la plots the SNR improvement conferred by the Sobel
layer (blue curve) and the corresponding classification accuracy
(red curve, secondary axis) as functions of input SNR, based on
aggregate results from all test samples and channels. Despite a
reduction in input SNR from 20 dB to -5 dB, the Sobel layer
consistently yields an output SNR gain of approximately 2.12-2.13
dB—for example, an input SNR of 17.98 dB (nominally 20 dB) is
raised to 20.11 dB (a = 2.13 dB), and an input SNR of -7.03 dB
(nominally — dB) is elevated to — 4.91 dB (A = 2.12 dB),
demonstrating strong resilience under high-noise conditions.
Classification accuracy remains relatively stable but shows a
declining trend as noise increases: from 0.98 at 20 dB to 0.96 at
15 dB and 0.98 at 10 dB, then decreasing to 0.94, 0.90, and 0.74 at 5,
0, and -5 dB respectively, indicating that extreme noise still impacts
classification performance.

Figure 1b presents boxplots of the three enhancement metrics
(SNR, PSNR, and SSIM) computed across all test samples. SNR
improvements are tightly clustered approximately 2.12-2.13 dB,
and PSNR gains approximately 4.48 dB, indicating stable
enhancement with minimal variability. SSIM changes average
near zero: slightly negative at high SNR conditions (e.g., —0.0095
at 20 dB and —0.0117 at 15 dB) and slightly positive under low SNR
conditions (e.g., +0.0335 at 0 dB and +0.0291 at -5 dB), suggesting
that under heavy noise, the Sobel layer aids in recovering
structural information.

The consistent performance across all SNR conditions and the
minimal variability in enhancement metrics demonstrate that the
Sobel layer provides robust feature enhancement throughout the
entire recording duration, validating its effectiveness for EEG-based
depression screening under realistic noisy conditions.
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3.2 Performance on identifying MDD

We first conducted a parameter sensitivity analysis on the
number of Sobel filters. Without loss of generality, we monitored
the classification performance when the number of filters was set to
10, 20, and 30, which yielded results of 98.72%, 98.67%, and 98.67%,
respectively. The classification results indicate that the number of
filters has no direct correlation with the classification performance,
and the optimal setting is 10.

The learning curve presented in Figure 2 illustrated the
performance trends of the model during the training process to
identify MDD, with the x-axis representing the number of training
epochs (ranging from 0 to 40) and the y-axis indicating the metric
values (ranging from 0.0 to 1.0). From the curve, the overfitting
and underfitting did not occur because the training accuracy
and validation accuracy exhibit a “U-shaped” pattern while
improving synchronously.

The performance is evaluated based on a series of quantitative
metrics such as accuracy, sensitivity, and specificity, with comparisons
between different models and existing state-of-the-art methods. The
results aim to validate the effectiveness of the proposed framework in
improving MDD identification accuracy, especially in capturing the
subtle neurophysiological patterns associated with MDD. Table 1
compares the performance of five approaches in terms of sensitivity,
specificity, and accuracy. Among them, the Sobel Network proposed in
this paper ranks first with 98.56% specificity and 98.72% accuracy,
while the TahnReLU-based CNN exhibits slightly superior sensitivity
(99.03%). Both approaches significantly surpass other methods (e.g.,
GoogLeNet: 93.74% accuracy; Resnet-16: only 82.26%), indicating that
the newly proposed Sobel Network demonstrates optimal
comprehensive recognition capabilities—particularly excelling in
positive sample detection—whereas the TahnReLU-based CNN
shows marginally better robustness in discriminating negative
samples. Both are suitable for high-precision scenarios. Possible
reasons include the following: (1) The Sobel Network integrates
traditional Sobel edge detection operators to enhance critical feature
extraction, significantly improving sensitivity in identifying subtle
structures (e.g., lesion boundaries in medical images), thereby
optimizing positive sample detection while maintaining high
specificity through end-to-end deep learning training and (2) The
TahnReLU-based CNN leverages an improved activation function
design (combining Tanh and ReLU), which mitigates ReLU’s neuron
death issue while enhancing robustness in negative sample
discrimination via Tanh’s saturation characteristics, achieving

exceptional performance in balanced inter-class recognition.

4 Discussions and conclusions

Sobel Network to capture electrophysiological signatures of
depression: The success of the Sobel Network in capturing
electrophysiological signatures of brain dysfunction in depression
can be attributed to its unique ability to emphasize spatial
gradient and edge-like features in EEG signals, which are
known to reflect key neuropathological mechanisms of MDD.
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Learning curve of Sobel Network on MDD identification.

Depression-related abnormalities—including altered frontal alpha
asymmetry, disrupted functional connectivity, and aberrant neural
synchronization—often manifest as subtle spatial gradients and
edge-like transition patterns in multi-channel EEG topography.
The Sobel Network, through its embedded gradient operations,
dynamically enhances these fine-grained spatial variations, thereby
effectively capturing neural circuit abnormalities associated
with depression.

Sobel-based EEG enhancement for noise-robust classification:
The results show that adding a Sobel layer consistently improves

TABLE 1 Detailed description.

Approach Sensitivity Specificity Accuracy

GoogLeNet (13) 96.48 90.62 93.74
Resnet-16 (13) 88.9 74.79 82.26
MLRW (11) 95 80 87.5
TahnReLU-based CNN (14) 99.03 98.21 98.64
Sobel Network 98.87 98.56 98.72
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SNR and PSNR across noise conditions, with minimal impact on
SSIM. Classification accuracy declines as noise rises, as expected.
Quantitatively, the Sobel layer provides average gains of 2.125 dB in
SNR and 4.48 dB in PSNR, highlighting its ability to enhance signal
features while suppressing noise. The near-zero SSIM changes
(slight decrease at high SNR) may stem from Sobel’s edge
emphasis, introducing structural variations irrelevant to
classification. Performance stays high at 20 dB (98%) but drops
under severe noise, emphasizing remaining challenges in extreme
cases. Overall, the Sobel layer is an effective feature enhancement
module for EEG networks, improving signal quality and noise
robustness. Future work may integrate advanced denoising or
multi-channel fusion to boost performance in adverse conditions.
Fusion of signal processing and deep learning: The deep integration
of traditional signal processing methods with neural networks (15) has
shown significant benefits in EEG-based depression screening, with
broader relevance to biomedical signal analysis and cross-domain data
processing. This approach bridges prior knowledge from traditional
techniques with the end-to-end learning capability of neural networks,
mitigating deep learning’s heavy data dependence and “black box”
limitations while overcoming traditional methods’ constraints in
modeling complex patterns (16). This integrative strategy also applies
effectively to wavelet transform, a classical time—frequency analysis tool
adept at decomposing non-stationary signals (e.g, EEG, EMG, ECG)
and capturing transient changes and local energy fluctuations—features
often critical to identifying abnormal physiological states. However,
traditional wavelet-based feature extraction relies on manual design and
lacks end-to-end optimizability with classifiers. By embedding wavelet
multi-scale decomposition into neural networks [e.g., via Fourier (17) or
wavelet attention mechanisms (18)], models can autonomously learn
discriminative time—frequency features—such as abnormal EEG delta
waves or fMRI BOLD fluctuations—and achieve joint optimization of
feature extraction and classification through end-to-end training.
Extend applications: The proposed hybrid framework, which
leverages the strengths of both traditional signal processing and deep
learning, is not limited to EEG signal enhancement. Its philosophy of
combining domain-knowledge-driven preprocessing with data-driven
modeling holds significant potential to inspire solutions in a wider
range of cross-domain applications—for instance, similar frameworks
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could be explored for deep-learning-based intelligent vehicle control
(19), where traditional control theory meets neural networks, or for
complex multimodal fusion tasks (20) that require robust feature
extraction from heterogeneous data sources. Furthermore, the
principles could be adapted to advance unsupervised learning
paradigms (21) by integrating structured prior knowledge to guide
the learning process.

Future works: To tackle the issue of generalizability, we will
conduct extensive cross-dataset validation utilizing several
publicly available EEG datasets to thoroughly assess the
transferability of our model. Concurrently, to bridge the gap
between artificial and real noise, we are designing experiments
to incorporate EEG data with naturally occurring artifacts. This
will involve a systematic analysis of the model’s performance on
real-world noisy data and a discussion on its practical robustness
for clinical application.

Conclusions: This study proposes and validates the Sobel
Network—an innovative neural architecture that embeds Sobel
gradient operators for end-to-end learning—designed for EEG-
based depression screening. Experiments demonstrate that the
model significantly outperforms existing methods in key metrics
(accuracy: 98.67%, sensitivity: 99.18%). Its core advantages stem
from (1) a trainable Sobel layer that dynamically enhances edge-
gradient features in EEG signals (highly correlated with depression
biomarkers), maintaining a stable SNR gain of 2.125 dB under noisy
conditions and (2) a groundbreaking fusion of traditional signal-
processing priors with deep learning adaptability, overcoming
limitations of decoupled preprocessing approaches.

This “domain-knowledge-embedded” paradigm not only
provides a high-precision tool for objective depression screening
but also pioneers new pathways for cross-modal biomedical signal
analysis (e.g., wavelet neural network fusion), advancing the
development of interpretable, low-data-dependent intelligent
diagnostic systems.
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