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Isotope-specific lithium
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reality or laboratory oddity?
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The efficacy of lithium in treating bipolar disorder is well established, yet its

precise molecular mechanisms remain elusive. A frequently overlooked

dimension is the natural occurrence of two stable lithium isotopes (6Li and 7Li),

which differ significantly in mass and nuclear spin and may therefore exhibit

distinct bioactivity within living systems. Evidence from multiple rodent studies

demonstrates isotope-dependent behaviour effects, suggesting translational

relevance. Mechanistic exploration indicates that while classical lithium targets

such as glycogen synthase kinase-3 beta andmyo-inositol monophosphatase do

not discriminate between isotopes, differential effects emerge at the level of

mitochondrial calcium handling. Lithium isotopes modulate the calcium storage

capacity of brain mitochondria, potentially via incorporation into amorphous

calcium phosphate structures, which form crucial calcium depots within the

mitochondrial matrix. The physical basis may involve isotope-dependent

differences in mass or nuclear spin, possibly interacting with amorphous

calcium phosphate or influencing radical pair formation, situating these

findings within the rapidly expanding field of quantum biology. However,

critical experimental gaps remain, particularly regarding whether isotope-

specific mitochondrial effects translate to changes in neuronal signaling.

Addressing these gaps through targeted physiological and clinical studies

could clarify whether lithium isotope bioactivity is a laboratory curiosity or a

tractable quantum biological phenomenon with therapeutic potential.
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Introduction

Lithium has been a cornerstone in the treatment of bipolar

disorder and related mood disorders for decades (1). Despite its

clinical efficacy, the precise molecular targets underlying its

therapeutic effects remain under investigation. Classically, two

main mechanisms are thought to be of importance: inhibition of

glycogen synthase kinase-3 beta (GSK-3b) and modulation of myo-

inositol monophosphatase. A third and more recent hypothesis

focuses on mitochondrial function (2) and will be the primary focus

of this review. Although lithium appears deceptively simple as a

monovalent metal ion, its interaction with the various proposed

molecular mechanisms remains rather incompletely understood.

A frequently disregarded aspect of lithium is the natural

occurrence of its two stable isotopes, 6Li and 7Li, which might

contribute differently to complex physico-chemical processes within

living biomatter. The existence of multiple stable isotopes for a given

element is not unusual and is observed in many biologically relevant

elements. In the case of lithium, the lighter isotope (6Li), though less

abundant, is still present at a substantial proportion (7.5% compared

to 92.5% for 7Li). The mass difference between these isotopes is

relatively large compared to isotope differences in heavier elements,

and each differs in their nuclear spin (3/2 for 7Li versus 1 for 6Li). Each

of these factors could plausibly result in differential bioactivity between

the two isotopes – an aspect understandably overlooked in the clinical

use of lithium salts, where the 6Li/7Li natural isotope ratio remains

effectively constant.

Isotopes are generally assumed to behave nearly identically in a

biochemical context, owing to their highly similar electronic

structure. Indeed, isotopes are typically incorporated into

biological systems without significant discrimination. Examples

such as 12C/13C, 14N/15N, and 16O/17O/18O illustrate how isotopic

variants are readily integrated into biomolecules and metabolic

processes, with minimal selectivity (3). While isotopic selection

does occur in biological and geological systems, its minuteness is

consistent with the nearly identical electron configurations of

isotopes of a given element and minor variations in atomic mass,

which exert only subtle effects on bond lengths and strengths. Such

small differences could account for slight isotope fractionation in

living matter. This is not the case for the hydrogen (1H) – deuterium

(2H) pair for which pronounced effects have been observed arising

from the 100%mass difference that causes a large difference in zero-

point quantum mechanical vibration energy, strongly affects the

strength of chemical bonds, and leads to particularly strong

fractionation (4). Isotopic effects can occur at the level of

molecular interactions, where quantum effects are predominant.

These isotopic effects can be attributed to differences in atomic mass

affecting kinetic and thermodynamic properties or to differences in

nuclear spin underlying effects of a nuclear nature. Interestingly,

certain biological processes may rely on quantum effects, e.g.

enzyme catalysis, photosynthesis, and olfactory sensing [reviewed

in Ref (5)], and thus may be sensitive to isotopic effects of quantum

mechanical nature.
Frontiers in Psychiatry 02
The exact ratio of lithium isotopes has repeatedly been observed

to deviate from the generally expected 7.5% 6Li to 92.5% 7Li ratio by

a few per mile to several percent points in various systems,

suggesting the presence of processes favoring one isotope over the

other. These examples range from abiotic processes acting on

marine basalts (6, 7), to more relevant examples of lithium

isotope distribution within living organisms, e.g. in certain

microalgae (8), absorption and excretion rates of cats (9), passage

across the blood brain barrier in rats (10), and uptake by human

erythrocytes (11). Furthermore, the different diffusion constants of

lithium isotopes displayed in vitro (12) may be involved in

differential in vivo compartmentalization.
Evidence for differential lithium
isotope effects on mammalian
behaviour

Numerous studies have documented differential interactions of

lithium isotopes with both abiotic and biotic systems. In this short

review, we focus on neuronal-lithium interaction. Before exploring the

mechanistic underpinnings that might cause such differences to

manifest into mammalian behaviour, it is prudent to first ask

whether there is evidence for the existence of any such effect in the

first place. And indeed, multiple studies report different effects of 6Li

versus 7Li on the behaviour of rats (13–16). In two studies in which

lithium isotopes were delivered via the drinking water or injected, an

entire battery of behavioural observables strongly differed between

groups, including nest building, several parental care aspects,

grooming, and alertness (14, 16). Aside from behavioural effects, 6Li

also displays a higher toxicity in mice than 7Li (LD50 of 6Li: 13.2 mEq/

kg; 7Li: 15.9 mEq/kg; natural Li: 14.9 mEq/kg) (20). While these

differences seem small, they may be relevant due to the small

therapeutic window of lithium concentrations in humans. This first

qualitative evidence for isotopic behavioural effects gains clinical

relevance through findings in a more translational rat model of

mania – ketamine-induced hyperactivity – where similar differences

in isotopic efficacy were also observed (15). Here, lithium was

provided via highly palatable food, was ingested in a controlled

amount, and led to similar measured plasma levels across isotopes.

In measurements of spontaneous ambulatory activity, only the isotope
6Li was able to counteract ketamine-induced hyperlocomotion. Note

that beyond new therapeutic possibilities, these behavioural studies

provide the first demonstrations of isotopic lithium effect on

mammalian behaviour.
Interaction of lithium isotopes with
plausible candidate mechanisms

Direct experimental investigation into the causes of lithium

isotope-dependent effects on mammalian behaviour is complicated

by the unresolved nature of mechanistic lithium targets. The
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mechanisms most commonly proposed as relevant have already

been investigated using individual lithium isotopes.

Regarding the molecular scale, the most extensively studied

target of lithium – yet still poorly understood – is GSK-3b (17, 18).

However, neither activity nor phosphorylation state of this enzyme

is differentially affected by lithium isotopes in a neuronal cell line

(19). The same is true for another often assumed mechanism via

myo-inositol monophosphatase, which is similarly inhibited by

both 6Li and 7Li (20).

A further putative mechanism for lithium bioactivity has been

proposed by Shalbuyeva and coworkers, namely an interference

with mitochondrial calcium sequestration (21). In the presence of a

high concentration of lithium, brain mitochondria displayed an

altered capacity to transiently store calcium. This ability of

mitochondria is central to synaptic calcium signaling and

neurotransmitter release and thus neuronal communication

underlying behavioural effects (22). Deline et al. tested the

hypothesis of a divergent effect of 6Li and 7Li in isolated

mitochondria of mouse brain and liver. In both types of

mitochondria, lithium isotopes differently modified calcium

storage capacity. In liver, lithium isotopes even differentially

altered the susceptibility of mitochondria to the so-called

permeability transition, a terminal phenomenon indicating

calcium overload that was not observed in neuronal mitochondria

under our experimental conditions (23). Interestingly, the direction

of change was dependent on the tissue source (lithium decreased

calcium storage capacity in liver and increased it in brain

mitochondria), an observation in line with the well-known

differing roles in calcium buffering between the high-capacity

neuronal versus the low-capacity liver mitochondria (24). In both

directions, 7Li invoked a greater change than 6Li compared to the

potassium control. Changes to the calcium capacity of neuronal

mitochondrial are thus the only known mechanistic component to

date that may explain differential mammalian behaviour in

response to 6Li versus 7Li.
Unravelling the molecular clockwork

Many individual processes govern mitochondrial calcium

buffering at the molecular level that might be sensitive to isotopic

lithium effects. To better understand their complex molecular

actions on intracellular signaling and rhythmic regulation, it is

helpful to consider its potential influence across three

interconnected levels: (i) the compartmentalization, such as how

lithium distributes across cellular and subcellular spaces, (ii) the ion

transport, and in particular its interactions with calcium and

sodium ion channels and exchangers, and, finally, (iii) how it may

affect mitochondrial calcium buffering and storage.

An obvious process is a differential compartmentalization

across the mitochondrial inner membrane, where lithium may

serve as a direct or indirect counter ion for calcium transport. As

outlined above, there are multiple abiotic and biotic examples for a

selective accumulation of one lithium isotope over the other. Most

relevant here are studies that reported such effects across
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biomembranes (10, 11). Since none of these older reports

specifically studied the structures relevant here, Deline et al.

recently determined lithium isotope compartmentalization in

mitochondria at rest and during calcium sequestration by state-

of-the-art inductively coupled plasma mass spectrometry (ICP-MS)

(23). Neither ion was selectively enriched in either case. The

experiment was extended to mouse synaptosomes to study

lithium isotope transport across the neuronal plasma membrane

and, again, did not reveal any selectivity. The same remained true

for lithium compartmentalization across living cells as determined

by two-dimensional nanoscale secondary ion mass spectrometry

(NANO-SIMS) and for cultured neurons. In short, none of the

experimental models relevant to mitochondrial calcium

sequestration displayed any isotope selectivity.

A possible lithium isotopic contribution could involve the sole

known mitochondrial transporter exchanging lithium against

calcium, the mitochondrial sodium/calcium/lithium exchanger

(NCLX). In line with a lack of isotope fractionation, the NCLX

proved ignorant of isotope identity (25). Also, the lithium

compatible voltage-gated sodium channel did not discriminate

isotopes in a patch clamp experiment (26). In summary, there is

no evidence for direct or indirect isotope effects on membrane

transport processes in the context of mitochondrial calcium

sequestration, and, apparently, little room left to look for it.

What remains is the actual calcium depot within the

mitochondrial matrix itself. Calcium is stored within the matrix

in the form of gel-like amorphous calcium phosphate (ACP) to

relieve concentration dependent import from excessive free calcium

levels and to protect from hyperosmolar swelling (27–29). The

building block of ACP is generally believed to be a highly

symmetrical arrangement in the Ca9(PO4)6 stoichiometry, the so-

called Posner cluster (30, 31). Interestingly, this cluster has been

modelled to contain alternative cations, e.g. replacing the central

calcium ion (32). Lithium turned out to be an energetically

favorable substitution and may by that route influence both

mitochondrial calcium, as observed earlier, explain isotopic

differences (21, 23). Indeed, lithium integrates both into in vitro

generated ACP and the presence of 6Li versus 7Li leads to

differential formation of aggregate ACP (23, 33). The different

properties of these 6Li-ACP or 7Li-ACP aggregates and their

formation need to be further investigated to fully describe its role

in different mitochondrial calcium storage capacity. These

observations are a plausible root cause of isotopic lithium effects

on mitochondrial ACP generation and storage capacity.

The physical reason for a different interaction of 6Li and 7Li

with a surrounding Posner cluster is speculative. It may depend on

the mass difference of the ions as well as on the differing nuclear

spins. The latter has been proposed and theoretically modelled to

form the basis of Posner cluster quantum characteristics (32, 34–

37). Another theoretical framework proposes that the dissimilar

nuclear spins of lithium isotopes might differently affect the

formation of radical pairs (38). A dominant source of reactive

oxygen species is the mitochondrial electron transport chain. A

different effect of lithium isotope nuclear spin on radical pair

formation within mitochondria may be an additional or
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alternative route towards altered mitochondrial calcium handling.

For ease of reference, the evidence for the above isotopic effects and

mechanisms is summarized in Table 1.

If either mechanism were corroborated experimentally, lithium

isotopic bioactivity may evolve to become a showcase of a highly

relevant quantum biology phenomenon, a discipline that has

rapidly advanced in recent years (5, 39, 40).
A causal chain with missing links

In the light of all of the above, a putative causal chain begins to

take shape that mechanistically accounts for lithium isotopic effects on

mammalian behaviour (Figure 1). At the smallest scale, lithium

incorporates into the building blocks of ACP, via its key building

block – the Posner cluster. Here, 6Li and 7Li cause a differential

aggregation or functionality of the resulting amorphous calcium

lithium phosphate, possibly mediated by their different spin and its

interactions. This difference, in turn, manifests as a different calcium

storage capacity and stability within the mitochondrial matrix.

It is plausible that this difference affects neuronal signaling due

to the prominent role of mitochondrial calcium buffering in

synaptic neurotransmitter release. While a large isotopic effect in

a neurobiological context has recently been reported (44), it has yet

to be experimentally tested in actual living neurons.
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This caveat will have to be soon remedied, because it remains a key

missing link within the causal chain of events linking molecular or

even effective interactions of quantum mechanical origin with lithium

isotopic bioactivity on mammalian behaviour. Finally, a dedicated

clinical study objectively comparing the efficacy of each isotope in

relevant medical indications remains to be performed. A deeper

understanding of the process requires progress in both fundamental

and clinical investigation.
Conclusion

The initial question that inspired this article was whether the

difference in lithium isotope bioactivity is a mere lab oddity or a

reliable manifestation of quantum phenomena useful for clinical

application. In the light of all collected evidence, we will for now

have to settle on an unsatisfying “neither nor” or “to be determined”.

Regarding therapeutic applications, the question can ultimately

be settled by the most authoritative tool: adequate clinical studies.

The reasons why these have still not been performed are manyfold.

One is that in an era of more and more complex pharmacological

agents – biosimilars, RNA therapeutics, and many more – a simple

metal ion inspires little investment enthusiasm. Another may be

concerns of differential isotopic toxicity. A third is the current cost

of pure lithium isotope salts which is orders of magnitude higher
TABLE 1 Summary of evidence for lithium isotope-specific bioactivity.

Preferential distribution and uptake: Lithium isotopes are selectively taken up and distributed ion various tissues and
bio;ogical fluids (plasama, cerebrospinal fluid, cerebral cortex, erythrocytes),often favoring 6Li

9. Stokes et al. (19) CSF/plasma ratio higher for 6Li, shorter half-life (12.9 h VS. 15.9 h)

10. Sherman et al. (10) The cerebral cortex accumulates about 1.5 times more 6Li than 7Li, with no effect on inositol metabolism

11. Lieberman et al. (11) Natural differences in isotopic abundance in erythrocytes suggest biological discrimination

12. Renshaw (12) Measurable differences in diffusion constants in aqueous solution between 6Li and 7Li, contributing to isotopic effects

Distinct behavioural and toxic behaviors effects: 6Li often shows more pronounced therapeutic activity or toxicity,
particularly in animal models of bipolar disorder-related

13-14. Lieberman et al. (13) Distinct biochemical and behavioural effects depending on the isotope (e.g., altered parental behaviour in rats)

15. Ettenberg et al. (15) In a ketamine-induced hyperactivity model, 6Li more strongly and durably reduces hyperactivity than 7Li or natural lithium

16. Alexander et al. (16) Lithium toxicity and behavioural effects vary according to isotope, 6Li being more toxic and more potent.

Neuronal modulation: Lithium isotopes similarly influence neuronal ion channels and potentially key enzymes (e.g.,
GSK-3b, myo-inositol monophosphatase)

18. Livingstone (18) In HT22 neuronal cells, no significant difference between 6Li and 7Li on GSK-3b activity or phosphorylation, nor on cell viability.

19. Livingstone et al. (19) Confirmed in HT22 cells that 6Li and 7Li do not differ in toxicity, phosphorylation, or GSK-3b enzymatic activity

20. Parthasarathy et al. (20) Similar effects of lithium isotopes on myo-inositol monophosphatase in multiple rat tissues.

26. Bukhteeva et al. (26)
Similar effects of natural lithium and its isotopes on voltage-gated sodium channel activity in SH-SY5Y neurons and iPSC-derived cortical
neurons.

Mitochondrial mechanisms: 6Li and 7Li differentially modulate calcium dynamics, potentially impacting cellular function
and signaling

23. Deline et al. (23)
Lithium isotopes differentially alter the size distribution of amorphous calcium phosphate clusters in mitochondria, as well as
mitochondrial calcium capacity, 7Li being the more potent isotope.

25. Bukhteeva et al. (25) Similar isotopic effects on sodium/lithium co-transport and calcium efflux via the mitochondrial sodium/calcium/lithium exchanger.
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than that of natural lithium (approx. 250€/g 6Li or 7Li salts versus 1

€/g natural (non-isotopically enriched) Li salts). Nevertheless, at an

estimated 1 gram per day of intervention, the cost of such a

hypothetical treatment would still be far less than the most

expensive therapies on the market (41), especially considering

that by its simple salt nature lithium requires virtually no prior

cost intensive drug development. The supply situation may even

further improve substantially in the coming decades, since enriched
6Li is envisioned to provide a substrate to breed tritium in all major

concepts of current nuclear fusion research and eventually power

generation (42, 43). A scaled-up worldwide lithium isotope

separation capacity may in future provide more affordable

amounts or either lithium isotope for clinical research and

therapeutic application.

Can isotopic/quantum effects lead to systemic differences within

a biological system? There undoubtedly are suggestive pieces of

evidence in place – however, these do not yet form a complete

mechanistic chain of causal events. In a bottom-up perspective,

lithium isotopes differentially interact with amorphous calcium

phosphate that in turn plausibly underlies an isotope specific

mitochondrial calcium capacity. It remains unresolved if these

changes are of sufficient magnitude to affect neuronal signal

transduction in general or at least in specific neurophysiological

situations. Such experiments are vitally called for to causally

connect lithium isotope specific bioactivity on the abiotic and

organellar level with the observed difference on the level of

mammalian behaviour.
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FIGURE 1

Overview on the mechanistic steps and gaps in the current understanding of lithium isotopic efficacy. Left to right: Lithium ions can enter the
building blocks of amorphous calcium phosphate (ACP), the Posner cluster, and lead to differential aggregation by a yet unidentified – classical or
quantum in nature – mechanism. This process plausibly underlies an established, differential isotope effect on the capacity of neuronal mitochondria
to store calcium. It remains to be determined if a difference in mitochondrial calcium capacity manifests in altered neuronal signal processing, which
in turn would provide a complete causal chain of events explaining lithium isotopic effects on mammalian behaviour. A clinical trial directly
comparing lithium isotope therapeutic efficacy has yet to be conducted.
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