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Depression and daytime
dysfunction centralize the
fatigue–sleep cascade in island
firefighters: a symptom network
and Bayesian DAG study
Yudan Liu1,2, Zhihong Li1,2, Qiong Xiang1,2, Xue Zhang1,
Runhua Bai1, Chenjing Sun 1* and Jianguo Liu1*

1Department of Neurology, The Sixth Medical Center, Chinese People’s Liberation Army of China
(PLA) General Hospital, Beijing, China, 2School of Medicine, South China University of Technology,
Guangzhou, China
Background: Sleep disturbances, fatigue, and psychological distress are

prevalent among island-based firefighters, a high-risk occupational group.

However, the interactions and mechanisms underlying these factors remain

unclear. This study investigated relationships among fatigue, sleep

disturbances, psychological distress, and psychological resilience using

symptom network analysis and exploratory Bayesian Directed Acyclic Graph

(DAG) modeling.

Methods: We surveyed 570 male island-based firefighters in China (cross-

sectional). The PSQI, FSS, SCL-90, and CD-RISC were administered. Variables

were residualized for demographic/behavioral covariates and z-standardized.

We estimated an EBICglasso Gaussian Graphical Model (g = 0.50) to quantify

centrality (Strength, expected influence) and predictability (R²). Robustness was

assessed via g = 0.25–0.75 sensitivity, bootstrapping, and Network Comparison

Tests across sleep status (sleep-disturbed [SD] vs sleep-normal [SN]) and work

type (shift work [SW] vs non-shift [NS]). Exploratory Bayesian DAG modeling was

conducted in SD using parallel Tabu/Hill-Climbing with BIC scoring and

bootstrapped aggregation to derive a CPDAG.

Results: Sleep disturbance prevalence was 46.0% (262/570). In the full network,

depression (S4) and daytime dysfunction (P7) were among the most central nodes

(EI = 1.938 and 1.613), and the fatigue total (F0) showed the highest predictability

(R² = 0.176). In SD, hostility (S6, EI = 1.913) and anxiety (S5, EI = 1.462) emerged as

potential affective hubs; tenacity (C1) was positioned upstream (Strength = 1.961; EI

= −1.315) in relation to sleep and depression. Compared with SN, SD showed lower

density and global strength (both P < 0.01). Between SW and NS, overall network

structure differed (P = 0.014) whereas global strength did not (P = 0.694).

Sensitivity analyses indicated high agreement of non-zero edges and minimal

fluctuations in density/global strength across g = 0.25–0.75. The DAG/CPDAG

suggested a potential path from subjective sleep quality→ fatigue→ depression→

hostility → somatization, with C1 potentially influencing sleep and depression;

directionality warrants further longitudinal validation.

Conclusion: Depression (S4) and daytime dysfunction (P7) may serve as key

nodes linking sleep and affective processes; fatigue may relate to psychological

distress via sleep; and tenacity (C1) could play an upstream protective role. Sleep
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status and shift work may reorganize network structure without necessarily

altering global connectivity. Targeted interventions may consider subjective

sleep perception and psychological resilience in island-based firefighters.
KEYWORDS

sleep disturbance, fatigue, psychological distress, psychological resilience, shiftwork,
symptom network analysis, Bayesian Directed Acyclic Graph
1 Introduction

Sleep disturbances have emerged as a pressing global public

health challenge, affecting approximately 30% of adults worldwide

(1). Such conditions not only elevate the risk of chronic illnesses but

also impair neurocognitive functioning and increase the likelihood of

accidents, thereby imposing substantial societal and healthcare

burdens (2). Among high-risk occupational groups, island

firefighters face compounded stressors including extreme work

demands, prolonged geographic isolation, and repeated trauma

exposure, rendering them particularly vulnerable to sleep

disturbances. Meta-analytic evidence suggests that the comorbidity

rate of sleep disorders among firefighters is 30.49% (95% CI: 25.90–

35.06), while the prevalence of poor sleep quality reaches 51.43%

(95% CI: 42.76–60.10) (3). Existing studies highlight shift work,

psychological distress, and trauma exposure as major contributors

to sleep disruption, all of which synergistically elevate the risk of

operational errors, chronic fatigue, and burnout (4).

An increasing body of evidence supports a bidirectional

relationship between sleep disturbance and psychological distress:

symptoms of anxiety and depression interfere with sleep, while poor

sleep in turn exacerbates emotional dysregulation (5–9). This

dynamic interplay is especially pronounced in high-stress

professions. Shift work has been identified as a key disruptor of

circadian rhythm homeostasis, and its exposure correlates positively

with risks of insomnia, fatigue, and mood disorders (10–13).

However, not all individuals exposed to these occupational

stressors develop psychopathology, suggesting the presence of

protective psychological resources. Resilience, conceptualized as a

cross-context adaptive capacity encompassing adaptability,

emotion regulation, and tenacity in goal pursuit, has been widely

recognized as a buffer against stress-related mental health risks

(14–17).

Despite these advances, twomajor gaps remain in the literature: (1)

most studies adopt a variable-centered, main-effect approach,

overlooking the dynamic symptom interconnections and

maintenance mechanisms; (2) the moderating role of occupational

context—particularly shift work—on symptom networks has not been

systematically examined.

To address these gaps, this study adopted a network

psychopathology framework grounded in emotion regulation

theory and resilience mechanisms, aiming to explore the systemic
02
associations among sleep disturbance, fatigue, psychological

distress, and resilience in island firefighters (18, 19). We

hypothesized that these variables would exhibit specific network

patterns, with daytime dysfunction and emotional distress

occupying central positions as bridge symptoms, and resilience

exhibiting upstream protective connections. Contextual factors

such as shift work and sleep status may further moderate these

network structures.

To test these hypotheses, we employed two complementary

analytic frameworks: symptom network analysis (SNA) and

Bayesian-directed acyclic graph (DAG) modeling. SNA, rooted in

graph theory, treats symptom dimensions as nodes and partial

correlations as edges, quantifying node influence via strength and

expected influence (EI), and node predictability via R² (20–25).

DAG modeling, as an exploratory causal inference tool, identifies

potential directional dependencies to generate testable hypotheses

about underlying mechanisms.

Accordingly, this study aimed to: (1) construct a symptom

network encompassing fatigue, sleep disturbance, psychological

distress, and resilience among island firefighters; (2) compare

global and centrality features across sleep status (sleep-disturbed

vs. normal) and work schedule (shift vs. non-shift) subgroups; and

(3) explore potential directional paths among these domains via

DAGmodeling within the sleep-disturbed subgroup. The novelty of

this study lies in integrating the complementary strengths of SNA

and DAG, applying a dual-dimensional grouping strategy (sleep ×

shift) to systematically characterize the mental-sleep network of a

high-risk occupational cohort, thereby providing mechanistic

insights and testable foundations for precision interventions.
2 Methods

2.1 Participants

This study employed a cross-sectional design and was

conducted in July 2023. Stratified cluster random sampling was

used to recruit firefighters stationed on islands. Stratification was

based on geographic location and administrative jurisdiction.

Within each stratum, entire fire stations were randomly selected

as sampling units, and on-duty personnel were sampled according

to the daily shift schedule.
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Inclusion criteria were: (1) employment duration of at least one

month; (2) ability to complete the survey while on duty; and (3)

provision of written informed consent.

Covariates were collected to control for potential confounding,

including sociodemographic (age, gender, marital status,

educational level, years of service, only-child status) and

behavioral variables (smoking, tea consumption, caffeine intake,

other stimulant use). Note: Data on alcohol use were not collected

due to an on-duty alcohol prohibition policy.

A total of 610 questionnaires were distributed, and 609 were

returned (response rate: 99.84%). After excluding invalid responses

due to missing key variables, logical inconsistencies, patterned

responses, or refusal, 578 valid questionnaires were retained

(validity rate: 94.90%).

Given the limited number of female participants (n = 8) and the

absence of sex-stratified hypotheses, only male participants (n = 570)

were included in the final analysis to avoid estimation instability.

In the work schedule comparison, only fixed day shift (NS) and

fixed rotating shift (SW) personnel were included; those with irregular

or on-call duties were excluded to reduce exposure misclassification.
Frontiers in Psychiatry 03
2.2 Measurement instruments

2.2.1 Sleep quality
The Chinese version of the Pittsburgh Sleep Quality Index (PSQI)

(26) was used to assess subjective sleep quality over the past month. It

contains 19 items across seven components: subjective sleep quality

(P1), sleep latency (P2), sleep duration (P3), habitual sleep efficiency

(P4), sleep disturbances (P5), use of sleepmedication (P6), and daytime

dysfunction (P7). Each component is scored from 0 to 3, with a total

score ranging from 0 to 21; higher scores indicate poorer sleep. A cutoff

score of >7 was used to define clinically significant sleep disturbance,

based on prior validation studies in Chinese adult populations

demonstrating good internal consistency and test-retest reliability

(e.g., a ≈ 0.84, ICC ≈ 0.81) (27). In this study, Cronbach’s a was 0.85.

2.2.2 Fatigue severity
Fatigue was measured using the Fatigue Severity Scale (FSS)

(28), which assesses subjective fatigue over the past week. The scale

contains 9 items rated on a 7-point Likert scale (1 = “strongly

disagree” to 7 = “strongly agree”), yielding a total score from 9 to 63.
FIGURE 1

Flowchart of participant selection and sample allocation. A total of 609 questionnaires were collected. After excluding invalid questionnaires (n=31)
and female respondents (n=8), 570 male participants were included in the full analytic sample. Participants were classified by sleep status into sleep-
disturbed (SD; PSQI>7; n=262) and sleep-normal (SN; PSQI ≤ 7; n=308). For the shift-status analyses, individuals with irregular/on-call schedules
were excluded (n=138), yielding 432 participants: shift-work (SW; n=255) and non-shift (NS; n=177). PSQI, Pittsburgh Sleep Quality Index; SD, sleep-
disturbed; SN, sleep-normal; SW, shift-work; NS, non-shift.
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Higher scores indicate more severe fatigue. A total score ≥36 or

average score ≥4 was used to indicate high fatigue, as commonly

applied in clinical and occupational studies. The Chinese version

has demonstrated good internal consistency (a ≈ 0.93) and

acceptable construct validity (29). In this study, Cronbach’s a
was 0.92.

2.2.3 Psychological distress
Psychological distress was assessed using the Symptom Checklist-

90 (SCL-90) (30), a 90-item self-report measure with 10 dimensions:

somatization (S1), obsessive-compulsiveness (S2), interpersonal

sensitivity (S3), depression (S4), anxiety (S5), hostility (S6), phobic

anxiety (S7), paranoid ideation (S8), psychoticism (S9), and additional

symptoms (S10). Each item is scored on a 5-point Likert scale (1 = “not

at all” to 5 = “extremely”). A total score ≥160 or any subscale mean ≥2

indicated elevated psychological distress. The Chinese version has been

validated in general populations with high internal consistency (31). In

this study, Cronbach’s a = 0.93.
Frontiers in Psychiatry 04
2.2.4 Psychological resilience
Psychological resilience was measured using the 25-item

Connor-Davidson Resilience Scale (CD-RISC) (32), which

includes three dimensions: tenacity (C1), strength (C2), and

optimism/control (C3). Items are rated on a 5-point Likert

scale (1 = “not true at all” to 5 = “true nearly all the time”),

with total scores ranging from 25 to 125. Higher scores indicate

greater resilience. The Chinese version has demonstrated strong

internal consistency (a ≈ 0.91) and structural validity across

adolescent and adult samples (33). In this study, Cronbach’s a
was 0.93.
2.3 Common-method bias assessment

To assess potential common-method bias, we conducted

Harman’s single-factor test. Eleven factors with eigenvalues

greater than 1 were extracted, and the first factor accounted for
FIGURE 2

Variable classification and subgrouping strategy for network analysis. Variables were Z-standardized; correlations were computed on covariate-
residualized scores (see Methods for prespecified covariates). The color scale denotes r from −1 to 1 (blue = negative; red = positive). Asterisks
indicate two-sided significance (*P < 0.05; **P < 0.01; ***P < 0.001). P1–P7, PSQI components; S1–S10, SCL-90 factors; C1–C3, CD-RISC
dimensions; F0, FSS total score.
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FIGURE 3

Network structure of sleep disturbance, fatigue, psychological distress, and resilience in the full sample. The network is a Gaussian graphical model
estimated via EBICglasso (g = 0.50) with Z-standardized variables. Node colors denote instrument domains (P = PSQI; S = SCL-90; C = CD-RISC; F
= FSS). Solid red edges indicate positive partial correlations; dashed blue edges indicate negative partial correlations; edge thickness is proportional
to the absolute edge weight. Node layout was determined by the Fruchterman–Reingold algorithm. P1–P7, PSQI components; S1–S10, SCL-90
subscales; C1–C3, CD-RISC factors; F0, FSS total score.
TABLE 1 Centrality and predictability of symptoms in the full sample.

Node Strength
Expected
Influence

Predictability
(R2)

P1 0.777 0.202 0.106

P2 -0.010 -0.132 0.152

P3 0.242 0.139 0.008

P4 -0.254 -0.455 0.011

P5 0.797 0.673 0.046

P6 -1.208 -0.982 0.142

P7 1.324 1.613 0.096

S1 -0.077 0.180 0.010

S2 -0.338 0.001 0.012

S3 0.653 0.873 0.058

S4 1.741 1.938 0.077

S5 0.851 0.846 0.104

(Continued)
F
rontiers in
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TABLE 1 Continued

Node Strength
Expected
Influence

Predictability
(R2)

S6 0.330 0.648 0.016

S7 -2.595 -2.190 0.151

S8 -0.846 -0.493 0.074

S9 -1.541 -1.462 0.001

S10 -0.213 0.122 0.147

C1 0.228 -1.124 0.002

C2 0.578 0.356 0.007

C3 -0.797 -1.134 0.015

F0 0.357 0.379 0.176
Strength and expected influence (EI) values were derived from EBICglasso-based partial
correlation networks. Predictability (R²) indicates the proportion of variance in each node
explained by its neighboring nodes. P, PSQI components (P1–P7); S, SCL-90 subscales (S1–
S10); C, CD-RISC factors (C1–C3); F, FSS total score. Strength, absolute connectivity of a
node; Expected Influence, signed connectivity; Predictability (R²), proportion of variance
explained by neighboring nodes.
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FIGURE 4

Stability of node centrality indices estimated by case-dropping bootstrap. (A) Case-dropping bootstrap stability of node centrality indices (strength
and expected influence, EI). Curves show the average correlation between original centrality and centrality recomputed in subset samples across
increasing case-dropping proportions. (B) Nonparametric bootstrap 95% confidence intervals for edge weights; black dots denote bootstrap means
and the red line indicates the sample estimate, with narrower bands reflecting higher precision. EI, expected influence; P1–P7, PSQI components;
S1–S10, SCL-90 subscales; C1–C3, CD-RISC factors; F0, FSS total score.
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only 26.51% of the total variance—well below the conventional 40%

threshold, indicating no significant common-method bias.
2.4 Statistical analyses

All analyses and visualizations were conducted using R (version

4.4.2). All variables were z-standardized prior to network estimation.

2.4.1 Descriptive statistics and correlation
analysis

Descriptive statistics and group comparisons (SD vs. SN; SW vs.

NS) were performed using the compareGroups package. To reduce

confounding effects, we first regressed all network variables on

covariates—including age, marital status, education, years of

service, only-child status, smoking, tea, caffeine, and other

stimulant use—and extracted standardized residuals. All network
Frontiers in Psychiatry 07
and DAG analyses were based on these residualized scores. Spearman

correlations were computed to estimate bivariate associations among

residualized variables and visualized using the corrplot package.

2.4.2 Network estimation and visualization
Gaussian Graphical Models (GGMs) were estimated to identify

conditional dependencies among symptom dimensions. The

EBICglasso method (g = 0.50) was applied, combining graphical

LASSO regularization with the Extended Bayesian Information

Criterion to balance sparsity and model fit. All input variables

were z-standardized residuals obtained after covariate adjustment.

To evaluate model robustness, we conducted two sensitivity

analyses: (1) altering g to 0.25 and 0.75, and (2) replacing the

Spearman correlation matrix with a mixed-type correlation matrix

estimated via cor_auto, which is more suitable for ordinal data.

Twenty-one nodes were included in the network, covering the 7

PSQI components, 10 SCL-90 subscales, 3 CD-RISC dimensions,
FIGURE 5

Subgroup network structures by sleep disorder and shift work status. (A) Sleep-disturbed (SD; n = 262); (B) Sleep-normal (SN; n = 308); (C) Shift-
work (SW; n = 255); (D) Non-shift (NS; n = 177). Networks were estimated using EBICglasso (g = 0.50) on Z-standardized variables, with covariates
controlled as specified in the Methods (shift-status analyses exclude irregular/on-call schedules). Nodes represent symptom dimensions; node
colors denote instrument domains (P = PSQI; S = SCL-90; C = CD-RISC; F = FSS). Solid red edges = positive partial correlations; dashed blue edges
= negative partial correlations; edge thickness = absolute edge weight. Node layout = Fruchterman–Reingold algorithm. P1–P7, PSQI components;
S1–S10, SCL-90 subscales; C1–C3, CD-RISC factors; F0, FSS total score; SD, sleep-disturbed; SN, sleep-normal; SW, shift-work; NS, non-shift.
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and the FSS total score. We chose to model at the domain/factor

level rather than the item level to improve network interpretability

and ensure stability in subgroup analyses, while acknowledging that

this approach may mask item-level heterogeneity. Networks were

visualized using the Fruchterman–Reingold layout. Red solid edges

represent positive partial correlations; blue dashed edges represent

negative ones; edge thickness reflects absolute edge weights.
Frontiers in Psychiatry 08
2.4.3 Centrality and predictability metrics
To identify key nodes within the symptom network, two centrality

indices were calculated: (1) Strength – the sum of the absolute weights

of all edges connected to a node, reflecting overall connectedness; (2)

Expected Influence (EI) – the algebraic sum of edge weights

(considering sign), which captures potential activation or inhibition

effects. Additionally, predictability (R²) for each node was computed by
FIGURE 6

Strength and expected influence of nodes across subgroups. (A) Strength: SD vs SN; (B) Expected influence (EI): SD vs SN; (C) Strength: SW vs NS;
(D) Expected influence (EI): SW vs NS. Centrality metrics were computed from subgroup-specific EBICglasso networks (g = 0.50) estimated on Z-
standardized variables, with covariates controlled as described in the Methods. Each point denotes a node’s standardized centrality score; higher
values indicate greater influence within the network. Definitions: Strength, sum of absolute partial-correlation edge weights; EI, sum of signed edge
weights. SD, sleep-disturbed; SN, sleep-normal; SW, shift-work; NS, non-shift; P1–P7, PSQI components; S1–S10, SCL-90 subscales; C1–C3, CD-
RISC factors; F0, FSS total score.
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regressing each variable on its directly connected neighbors, indicating

how much of a node’s variance is explained by its adjacent nodes. All

computations were performed using the mgm package.

2.4.4 Network stability and accuracy
Stability and accuracy of the estimated network were assessed

using the bootnet package.

Nonparametric bootstrapping (5,000 resamples) was used to

generate 95% confidence intervals (CIs) for edge weights, indicating

estimation precision. Centrality stability was evaluated via case-

dropping bootstraps: random subsets ranging from 10% to 90% of

the sample were removed, and the centrality estimates recalculated

across 5,000 iterations. The resulting Correlation Stability (CS)

coefficient was computed based on Pearson correlations between

centrality estimates from subsets and those from the full sample,
Frontiers in Psychiatry 09
quantifying the robustness of centrality indices to sampling

variation. A CS coefficient > 0.25 was considered acceptable;

values > 0.50 were interpreted as indicating good stability.

2.4.5 Network comparison tests
To compare network properties across subgroups, the

NetworkComparisonTest (NCT) package was used to test for: (1)

global strength differences (sum of all absolute edge weights); (2)

overall network structure invariance; (3) individual edge differences.

All tests were conducted using 5,000 permutations. Invariance test

statistic (M) and global strength statistic (S) were used to evaluate

differences. When global strength was not significantly different, we

reported descriptive trends only.

2.4.6 Bayesian DAG modeling
In the sleep-disturbed (SD) subgroup, exploratory Bayesian

Directed Acyclic Graphs (DAGs) were constructed using the bnlearn

package under the assumption of acyclicity (i.e., no feedback loops)

(34). Both Tabu and Hill-Climbing (HC) structure learning algorithms

were used in parallel, with the Bayesian Information Criterion (BIC) as

the scoring metric. Bootstrap resampling (5,000 iterations) was used to

estimate arc strength (i.e., edge frequency across bootstrap samples)

and directional probabilities. The main analysis retained arcs with

strength ≥ 0.50 and direction ≥ 0.80. Arcs with strength ≥ 0.20 were

reported as sensitivity-level connections. We also generated a

Completed Partially Directed Acyclic Graph (CPDAG) to reflect

undirected or uncertain-direction arcs. Concordance between

Tabu and HC algorithms was examined to evaluate model

robustness. Importantly, DAGs based on cross-sectional data are

exploratory in nature; inferred directional relationships are

hypothesis-generating only and should be validated via longitudinal

or interventional designs.
3 Results

3.1 Sample characteristics and group
differences

A total of 570 male island firefighters were included in the final

analysis (Figure 1). Based on the PSQI cutoff of >7, 262 participants

(46.0%) were classified as sleep-disturbed (SD), and 308 (54.0%) as

sleep-normal (SN). Regarding work schedule, 255 individuals

(44.7%) were assigned to the shift-work group (SW), and 177

(31.1%) to the non-shift group (NS); an additional 138

participants (24.2%) were excluded from shift status comparisons

due to irregular/on-call work patterns.

Baseline characteristics (Supplementary Table S1) revealed

significant differences (P < 0.05) between the SD and SN groups

in age, years of service, marital status, work schedule distribution

(SW/NS), and lifestyle factors (smoking, tea drinking, caffeine

intake, and other stimulant use). Similarly, the SW and NS
TABLE 2 Comparison of node predictability (R²) between subgroups.

Node
SD (n =
262)

SN (n =
308)

SW (n =
255)

NS (n =
177)

P1 0.103 0.091 0.091 0.118

P2 0.020 0.114 0.068 0.170

P3 0.023 0.000 0.003 0.030

P4 0.012 0.008 0.010 0.019

P5 0.061 0.015 0.046 0.137

P6 0.057 0.186 0.164 0.144

P7 0.052 0.022 0.145 0.034

S1 0.032 0.222 0.023 0.001

S2 0.015 0.034 0.006 0.032

S3 0.105 0.141 0.082 0.083

S4 0.013 0.096 0.081 0.042

S5 0.013 0.340 0.133 0.032

S6 0.000 0.099 0.004 0.035

S7 0.000 0.108 0.162 0.000

S8 0.139 0.334 0.071 0.083

S9 0.142 0.243 0.004 0.034

S10 0.061 0.161 0.084 0.131

C1 0.008 0.029 0.000 0.002

C2 0.075 0.011 0.001 0.001

C3 0.211 0.029 0.019 0.016

F0 0.006 0.084 0.076 0.109
Predictability (R²) indicates the proportion of variance in each node explained by its neighboring
nodes. R² was obtained from nodewise regressions in the EBICglasso Gaussian graphical model
using residualized, z-standardized variables. SD, Sleep-disturbed (PSQI > 7); SN, Sleep-normal
(PSQI ≤ 7); SW, Shift-work; NS, Non-shift; P, PSQI components (P1–P7); S, SCL-90 subscales
(S1–S10); C, CD-RISC factors (C1–C3); F0, FSS total score. Values are reported to three decimals;
values <0.0005 are shown as 0.000. Top-5 R² within each subgroup are bolded.
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groups differed significantly in coffee, tea, and other stimulant

consumption (Supplementary Table S2), supporting the need to

residualize all covariates in subsequent analyses.

Group-level symptom comparisons (Supplementary Tables S3

and S4) indicated that the SD group had significantly higher scores

across all PSQI sleep components, most SCL-90 distress

dimensions (except phobic anxiety and psychoticism), and

fatigue (F0) (all P < 0.001), while scoring lower on all CD-RISC

resilience components (P < 0.001). The SW group also scored

significantly higher than the NS group on multiple sleep

components (P1, P2, P3, P5, P7), psychological distress

dimensions (S1–S6, S8, S10), and fatigue (F0), with significantly

lower resilience scores on C1 and C2.
3.2 Correlations between symptom
dimensions

After residualizing for covariates, the Spearman correlation

matrix (Figure 2) revealed the strongest associations between

fatigue (F0) and sleep-related dimensions: F0–P7 (r = 0.725), F0–

P1 (r = 0.647), and F0–P2 (r = 0.627), all with P < 0.001.

Significant correlations were also observed between emotional

symptoms and sleep dimensions, particularly S4–P7 (r = 0.677), S4–

P1 (r = 0.625), and S5–P7 (r = 0.618), highlighting a strong affect–

sleep connection in the network structure.
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3.3 Overall network structure

3.3.1 Visualization and centrality
The overall symptom network comprised 21 nodes. Of the 210

possible edges, 104 remained after EBICglasso regularization (g =

0.50), yielding a network density of 0.495 (Figure 3).

As shown in Table 1, depression (S4) and daytime dysfunction

(P7) exhibited the highest centrality in both strength (1.741 and

1.324, respectively) and expected influence (EI = 1.938 and 1.613),

suggesting their broad connectivity and high propagation potential.

Anxiety (S5) also showed a notably high EI (0.846), indicating

its possible regulatory role within the network.

Regarding predictability (R²), fatigue (F0) was the most

predictable node (R² = 0.176), followed by sleep latency (P2, R² =

0.152) and phobic anxiety (S7, R² = 0.151), implying that these

nodes were more easily explained by their neighbors.

3.3.2 Network accuracy and stability
The accuracy and stability of the network were verified using

case-dropping bootstrapping (Figure 4A). Even after removing up

to 80% of cases, the Pearson correlations between the

bootstrapped and original centrality metrics remained above

0.75. The correlation stability coefficient (CS) was 0.846,

exceeding the recommended threshold of 0.50, suggesting robust

centrality estimates. Bootstrap confidence intervals for edge

weights (Figure 4B) revealed narrower intervals for stronger
FIGURE 7

Stability of node centrality and edge-weight accuracy by sleep-status subgroup. (A) SD—case-dropping bootstrap stability of node centrality
(strength & expected influence, EI); (B) SN—case-dropping bootstrap stability of node centrality (strength & EI); (C) SD—nonparametric bootstrap
95% confidence intervals for edge weights; SN—nonparametric bootstrap 95% confidence intervals for edge weights. Networks were estimated with
EBICglasso (g = 0.50) on Z-standardized variables, controlling covariates as described in the Methods. In (A–B), curves show the average correlation
between original centrality and centrality recomputed in subset samples across case-dropping proportions; shaded ribbons = bootstrap bands
(higher curves = better stability). In (C, D), black dots = bootstrap means; red line = sample estimate; narrower bands = higher precision. Definitions:
Strength = sum of absolute partial-correlation edge weights; EI = sum of signed edge weights. SD = sleep-disturbed; SN = sleep-normal; P1–P7 =
PSQI components; S1–S10 = SCL-90 subscales; C1–C3 = CD-RISC factors; F0 = FSS total score.
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edges, while weaker edges showed greater uncertainty, indicating a

need for cautious interpretation.
3.4 Subgroup network structures

3.4.1 Network features by sleep status
Four subgroup networks (SD, SN, SW, NS) were constructed

using EBICglasso (g = 0.50) on residualized data, with consistent

Fruchterman–Reingold layout for comparability (Figure 5).

In the SD group, the most central node by strength was

resilience (C1 = 1.961), followed by anxiety (S5 = 1.369), hostility

(S6 = 1.160), depression (S4 = 1.122), and interpersonal sensitivity

(S3 = 0.626).

In contrast, the SN group showed highest strength centrality for

obsessive-compulsion (S2 = 1.431), interpersonal sensitivity (S3 =

1.398), and depression (S4 = 1.371), followed by sleep disturbance

(P5 = 1.022) and hostility (S6 = 0.654) (Figure 6A).

Regarding EI, in the SD group, the most influential nodes were

hostility (S6 = 1.913), anxiety (S5 = 1.462), and interpersonal sensitivity
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(S3 = 1.304), whereas C1 had a negative EI (–1.315), suggesting its

involvement in a protective, non-propagating subnetwork.

In the SN group, top EI nodes included S2 (1.568), S4 (1.509),

S3 (1.448), and P5 (1.167) (Figure 6B).

Predictability (R²) analyses revealed greater explanatory power

in the SN group: anxiety (S5 = 0.340), paranoia (S8 = 0.334),

psychoticism (S9 = 0.243), interpersonal sensitivity (S3 = 0.222),

and hypnotic use (P6 = 0.186) were most predictable. In contrast, S6

and S7 had near-zero R² in the SD group.

These patterns suggest that the SN network was more

structured around internalizing symptoms, while in the SD group,

C1 played a central role, indicating a potential buffering function

under conditions of sleep disturbance.
3.4.2 Network features by work schedule
In the SW group, the nodes with highest strength were

depression (S4 = 1.606) and daytime dysfunction (P7 = 1.161),

followed by anxiety (S5 = 0.996), sleep disturbance (P5 = 0.886), and

interpersonal sensitivity (S3 = 0.697).
FIGURE 8

Edge structure and node strength by sleep-status subgroup. (A) SD—edge-selection matrix; (B) SN—edge-selection matrix; (C) SD—node-strength
heatmap; (D) SN—node-strength heatmap. Networks were estimated with EBICglasso (g = 0.50) on Z-standardized variables, with covariates
controlled as described in the Methods. In (A–B), cells depict the presence of non-zero partial-correlation edges (gray = present, black = absent;
diagonal = self). In (C, D), shading reflects node-wise strength (lighter = larger), and the diagonal labels show each node’s standardized strength
value (sum of absolute edge weights). SD = sleep-disturbed; SN = sleep-normal; P1–P7 = PSQI components; S1–S10 = SCL-90 subscales; C1–C3 =
CD-RISC factors; F0 = FSS total score. Strength = sum of absolute partial-correlation edge weights.
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In the NS group, P7 (1.546) and S4 (1.484) remained dominant,

with stronger involvement of P5 (0.941), P1 (0.793), and S5

(0.823) (Figure 6C).

In terms of EI, the SW group was dominated by S4 (1.873), P7

(1.454), S5 (0.989), S6 (0.981), and S3 (0.818), whereas F0 (0.750)

and P5 (0.788) also showed high propagation potential.

The NS group showed greater EI for sleep-related nodes such as S4

(1.642), P7 (1.167), P5 (1.155), S5 (1.131), and P1 (0.854) (Figure 6D).

Overall, the NS network was more centered on sleep pathways,

while the SW network highlighted emotional and interpersonal

propagation, suggesting greater emotional reactivity under shift work.

For predictability (R²), the SW group showed higher R² for

hypnotics (P6 = 0.164), daytime dysfunction (P7 = 0.145), anxiety

(S5 = 0.133), and phobic anxiety (S7 = 0.162).

In the NS group, the most predictable nodes were P2 (0.170), P6

(0.144), P5 (0.137), F0 (0.109), and P1 (0.118), indicating greater

structural coherence along sleep pathways (Table 2).

3.4.3 Subgroup network accuracy and stability
In the SD group, the correlation stability coefficients (CS) for

strength and expected influence (EI) were 0.370 and 0.267,

respectively—both exceeding the minimum acceptable threshold

of 0.25, indicating adequate stability. Greater centrality stability was
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observed in the SN group (CS = 0.636), the SW group (Strength CS

= 0.596), and the NS group (Strength CS = 0.492). Bootstrap-based

confidence intervals for edge weights across all subgroups (Figures

7–10) indicated overall reliability of network estimation.
3.5 Subgroup network comparison

The Network Comparison Test (NCT) suggested significant

differences between the SD and SN groups in both structure (M =

0.306, P = 0.003) and global strength (S = 1.012, P = 0.007).

The SN group demonstrated higher overall connectivity (7.053

vs. 6.041), suggesting that individuals with normal sleep exhibited

tighter integration and greater propagation potential in the affect–

sleep symptom network, whereas sleep disturbance may lead to

fragmented connectivity and weakened coupling.

In the shift-work comparison, SW and NS groups differed

significantly in network structure (M = 0.295, P = 0.014), but not

in global strength (S = 0.122, P = 0.694).

Comparable average edge weights across the two groups suggest

that shift status may primarily influence the configuration and

layout of connections, rather than the overall magnitude of

connectivity, resulting in similar levels of propagation potential.
FIGURE 9

Stability of node centrality and edge-weight accuracy by shift-work subgroup. (A) SW—case-dropping bootstrap stability of node centrality (strength
& EI); (B) NS—case-dropping bootstrap stability of node centrality (strength & EI); (C) SW—nonparametric bootstrap 95% confidence intervals for
edge weights; (D) NS—nonparametric bootstrap 95% confidence intervals for edge weights. Networks were estimated with EBICglasso (g = 0.50) on
Z-standardized variables, with covariates controlled (shift-status analyses exclude irregular/on-call schedules). In (A–B), curves depict stability as the
average correlation between original and subset centrality across case-dropping proportions; shaded ribbons = bootstrap bands. In (C–D), black
dots = bootstrap means; red line = sample estimate; narrower bands = higher precision. Definitions: Strength = sum of absolute partial-correlation
edge weights; EI = sum of signed edge weights. SW = shift-work; NS = non-shift; P1–P7 = PSQI components; S1–S10 = SCL-90 subscales; C1–C3
= CD-RISC factors; F0 = FSS total score.
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3.6 Sensitivity analyses

To assess the robustness of the results, two sensitivity analyses

were conducted: First, the network was re-estimated using cor_auto

(polychoric correlations) instead of Spearman correlations. The

resulting network structures were identical across the full sample

and all subgroups, with edge weight correlations of r = 1.000, Jaccard

similarities = 1.000, and centrality rank correlations (Spearman’s r)
= 1.000 (Supplementary Table S5; Supplementary Figures S5–S9 S1;

Figures 11–14). Second, the EBIC hyperparameter g was varied to

0.25 and 0.75, and compared to the main model (g = 0.50). Across all

g values, the networks showed high structural consistency, with edge

correlations ≥ 0.976, centrality rank correlations (Spearman’s r) ≥
0.966, and substantial overlap in the top 5 central nodes

(Supplementary Table S6; Supplementary Figures S2–S9).

Although minor fluctuations were observed in network density

and global strength, the overall pattern remained stable.

Additionally, the top five strongest edges (with bootstrap

confidence intervals) were identified for the full and subgroup
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networks (Supplementary Table S7), providing direct estimates of

the most robust associations.

Together, these findings confirm that the main results are

robust to both analytical methods and tuning parameter choices.
3.7 Directed acyclic graph modeling in the
sleep-disturbed group

To explore the directional dependencies among fatigue, sleep,

psychological distress, and resilience in individuals with sleep

disturbance (SD), we applied parallel structure learning using Tabu

and Hill-Climbing (HC) algorithms with Bayesian Information

Criterion (BIC) scoring to the residualized SD subgroup (n = 262).

Edge strength and directional probabilities were estimated via 5,000

bootstrap replications. A completed partially directed acyclic graph

(CPDAG) was generated to account for undirected edges within

Markov equivalence classes. The primary threshold for edge

inclusion was set at ≥ 0.50 (Figure 15; Supplementary Table S8),
FIGURE 10

Edge structure and node strength by shift-work subgroup. (A) SW—edge-selection matrix; (B) NS—edge-selection matrix; (C) SW—node-strength
heatmap; (D) NS—node-strength heatmap. Networks were estimated with EBICglasso (g = 0.50) on Z-standardized variables, with covariates
controlled as specified in the Methods (irregular/on-call schedules excluded). In (A, B), cells denote the presence of non-zero partial-correlation
edges (gray = present; black = absent; diagonal = self). In (C, D), shading reflects node strength (lighter = larger), and diagonal labels show each
node’s standardized strength value (sum of absolute edge weights). SW = shift-work; NS = non-shift; P1–P7 = PSQI components; S1–S10 = SCL-90
subscales; C1–C3 = CD-RISC factors; F0 = FSS total score. Strength = sum of absolute partial-correlation edge weights.
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while a sensitivity threshold was set at ≥ 0.20 (Supplementary Figure

S10; Supplementary Table S9).
3.7.1 Primary pathway: subjective sleep → fatigue
→ depression → hostility

At the primary threshold (edge strength ≥ 0.50), a relatively

stable directional chain was identified: subjective sleep quality (P1)

→ fatigue (F0) → depression (S4) → hostility (S6).

The edge from P1 to F0 showed high algorithmic support, with

representative strengths of approximately 0.87 under both Tabu

and HC, and directional probabilities > 0.83.

This suggests that poor subjective sleep perception may

contribute to increased fatigue.

Likewise, the F0 → S4 connection demonstrated stable support

(strength > 0.78), indicating that fatigue may serve as a mediator

between nocturnal sleep experience and emotional disturbances.

3.7.2 Upstream protection: cross-domain
regulation by hardiness (C1)

The resilience subnetwork revealed a top-down architecture

centered on hardiness (C1). Directional edges from C1 to strength
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(C2) and optimism/control (C3) had near-maximal strength under

both algorithms (≈1.00; Table 1).

Cross-domain effects included C1→ sleep latency (P2) (strength

≈ 0.80, directionality ≈ 0.92), and C1 → subjective sleep quality (P1)

and C1→ depression (S4), both reaching or approaching the primary

threshold (strengths ranging from 0.78–0.80).

These findings suggest that hardiness may exert a protective

effect by lowering presleep cognitive arousal and negative sleep

appraisal, and by directly attenuating upstream activation of

depressive symptoms.

In addition, the edge from C2 to somatization (S1) (strength >

0.89) implies that perceived strength may be associated with

reduced somatic symptom expression.
3.7.3 Emotional diffusion and downstream
somatization

The directed edge from depression (S4) to hostility (S6) (strength

> 0.73, directionality > 0.68) suggests a potential affective diffusion

pathway from internalizing to externalizing symptoms.

Hostility (S6) further connected to somatization (S1) and other

symptoms (S10), with several edge strengths exceeding 0.90,
FIGURE 11

Robustness of the ALL symptom network to correlation estimators (g = 0.50): Spearman vs. polychoric correlation (cor_auto). (A) Scatterplot of edge
weights estimated using Spearman versus cor_auto; the dashed line indicates the identity line. (B) Comparison of node strength rankings under both
correlation methods. (C) Comparison of expected influence (EI) rankings under both correlation methods. The two correlation estimators yielded
nearly identical networks: edge weights aligned along the 1:1 line, with perfect consistency across all metrics (Pearson r = 1.000, Jaccard = 1.000,
sign agreement = 1.000, Spearman r = 1.000, Top-5 overlap = 1.00). Results indicate that network structure and centrality rankings are robust to the
choice of correlation method.
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highlighting its potential role as a downstream “amplifier” of

emotional dysregulation and somatic expression.
3.7.4 Robustness and uncertainty
Algorithmic consistency was excellent, with near-perfect

correlation in edge strengths between Tabu and HC, and high

agreement in edge directionality (Supplementary Tables S8, S9).

Under both primary and sensitivity thresholds, the directional

pathways P1 → F0 → S4 → S6 and the upstream C1 module

remained stable.

CPDAG results revealed several undirected edges (e.g., P1—S4

or P1—F0), indicating that such relationships lie within a Markov

equivalence class and cannot be definitively oriented; these may

reflect potential bidirectionality or unmeasured confounding, and

should be interpreted as hypothesis-generating.

Regarding structural sparsity, the number of retained directed

edges averaged 35–36 under the primary threshold (≥0.50) and 66–70

under the sensitivity threshold (≥0.20) (Supplementary Table S10),

indicating a moderately sparse yet stable network across algorithms.
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4 Discussion

This study integrated symptom network analysis with

exploratory Directed Acyclic Graph (DAG) modeling to

systematically examine the interrelationships among sleep

disturbances, fatigue, psychological distress, and resilience in

island firefighters. We additionally compared network structures

across sleep status (SD vs. SN) and work schedule (SW vs. NS)

subgroups. Key findings include: (1) Depression (S4) and daytime

dysfunction (P7) showed relatively higher strength and expected

influence (EI) in the overall network, suggesting a possible role as

symptom hubs; (2) the SD group demonstrated a more activated

network structure centered around anxiety and hostility, while the

SN group was characterized by internalizing symptoms such as

obsessive-compulsion and interpersonal sensitivity; (3) the SW

subgroup showed more densely connected sleep–affect pathways,

with depressive symptoms and daytime dysfunction occupying the

most central positions; and (4) DAGmodeling identified a potential

directional chain—P1 → F0 → S4 → S6—in the SD group, with
FIGURE 12

Comparison of network structure and centrality rankings between Spearman and cor_auto methods in the SD subgroup. (A) Scatterplot of edge
weights estimated using Spearman versus cor_auto; the dashed line indicates the identity line. (B) Comparison of node strength rankings under both
correlation methods. (C) Comparison of expected influence (EI) rankings under both correlation methods. The two correlation estimators yielded
nearly identical networks: edge weights aligned along the 1:1 line, with perfect consistency across all metrics (Pearson r = 1.000, Jaccard = 1.000,
sign agreement = 1.000, Spearman r = 1.000, Top-5 overlap = 1.00). Results indicate that network structure and centrality rankings are robust to the
choice of correlation method.
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resilience (C1) emerging as a possible upstream regulatory node,

collectively providing tentative support for a fatigue–sleep–affect

cascade pathway.

The prevalence of sleep disturbance among island firefighters in

this study reached 46.0%, which is consistent with previous reports

(3). In the overall network structure, depression (S4) and daytime

dysfunction (P7) ranked among the top in centrality metrics,

suggesting that they may function as core transdiagnostic hubs

bridging multiple symptom domains. This finding extends prior

research in high-stress occupations, where depressive symptoms

have been repeatedly identified as convergence points between

affective and sleep-related dysfunctions (35, 36). Additional

support comes from a network study by Liu et al. on Chinese

firefighters, which demonstrated that the “emotional exhaustion”

node in burnout was densely connected to various sleep

components—potentially acting as a bridge between emotional

depletion and emerging sleep problems (37).

Our results further suggest that depressive symptoms may

contribute to a cascade of distress and somatization through

psychological mechanisms such as hopelessness and self-criticism.

Moreover, poor nighttime sleep might exacerbate depression via

daytime functional impairments (38, 39). Importantly, daytime

dysfunction (P7) may not only be a direct consequence of
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disrupted sleep, but also serve as a potential mediator linking

sleep quality, occupational performance, and negative affect (40).

Persistent functional decline might contribute to elevated

psychophysiological stress, potentially affecting the hypothalamic–

pituitary–adrenal (HPA) axis and circadian regulation, which could

in turn perpetuate a maladaptive cycle of “sleep disturbance →

impaired functioning → emotional arousal → hypervigilance →

further sleep disturbance” (41). Complementary findings from

another symptom network study in firefighters revealed plausible

directional paths from insomnia components (e.g., subjective sleep

quality, sleep latency) to affective symptoms, highlighting the

potential role of disturbed sleep perception as an upstream

activator of emotional distress (42). Taken together, these findings

provide tentative support for our observation that both depression

and daytime dysfunction may play influential roles in the network,

and underscore their potential relevance as intervention targets.

In the comparison by sleep status, the SD network was centered

around anxiety (S5), hostility (S6), and depression (S4), aligning

with the hyperarousal model that emphasizes reciprocal

amplification among stress, emotion, and sleep dysfunction (43).

Individuals with heightened arousal often exhibit increased

emotional reactivity and stress sensitivity (44, 45), which may

promote frequent activation of negative emotional states (46, 47).
FIGURE 13

Comparison of network structure and centrality rankings between Spearman and cor_auto methods in the SN subgroup. (A) Scatterplot of edge
weights estimated using Spearman versus cor_auto; the dashed line indicates the identity line. (B) Comparison of node strength rankings under both
correlation methods. (C) Comparison of expected influence (EI) rankings under both correlation methods. The two correlation estimators yielded
nearly identical networks: edge weights aligned along the 1:1 line, with perfect consistency across all metrics (Pearson r = 1.000, Jaccard = 1.000,
sign agreement = 1.000, Spearman r = 1.000, Top-5 overlap = 1.00). Results indicate that network structure and centrality rankings are robust to the
choice of correlation method.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1663957
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Liu et al. 10.3389/fpsyt.2025.1663957
Given the highly masculinized culture of firefighting, emotional

suppression may be culturally reinforced to conform to masculine

norms, thereby potentially leading to somatic manifestations of

psychological distress (48–50).

Hostility (S6) emerged as a central node with consistent links to

somatization (S1) and other symptoms (S10) across both algorithms,

suggesting a possible role as a mediator and amplifier in the

downstream diffusion of negative affect, which is also consistent

with the emotion suppression hypothesis, wherein hostility is

externalized through somatic pathways (37). By contrast, the SN

network showed greater centrality for obsessive-compulsion (S2) and

interpersonal sensitivity (S3), which may reflect a greater reliance on

internal control and social regulation in better-sleeping individuals—

an indirect indication that emotional–sleep interference might be

more prominent in the SD group.

In the comparison by work schedule, the SW network displayed

denser andmore direct sleep–affect connectivity, with depression (S4)

and daytime dysfunction (P7) occupying central positions, whereas

the NS network placed relatively greater emphasis on sleep

dimensions such as subjective sleep quality (P1) and sleep

disturbance (P5). This pattern aligns with prior evidence indicating

that shift work may be associated with circadian disruption and

altered melatonin secretion, potentially increasing vulnerability to
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neuroendocrine–immune dysregulation (13, 51, 52). Shift workers in

healthcare and emergency services consistently report higher rates of

sleep problems, cognitive hyperarousal, and affective disturbances

(53). These findings suggest the potential value of implementing

circadian-informed strategies—such as optimized shift scheduling

and light-based interventions—to promote sleep health in shift-

working populations.

The DAG modeling in the SD subgroup provided preliminary

directional insight, identifying a possible progressive chain of P1→

F0 → S4 → S6, as well as upstream influences from resilience (C1)

targeting P1, P2, and S4, all offering initial support for a

hypothesized fatigue–sleep–affect progression model. From a

neurobiological perspective, chronic fatigue has been linked to the

accumulation of neurotoxic metabolites (39) and elevated oxidative

stress, which may disrupt glutamate–glutamine cycling and limbic–

prefrontal regulatory circuits (54–58). Such dysregulation can

activate the HPA axis and pro-inflammatory cytokines, leading to

disturbances in cortisol circadian rhythms (59, 60), which in turn

may contribute to fragmented sleep architecture, emotional

hyperarousal, and somatic symptoms (61, 62).

Resilience (C1) occupied an upstream position in the DAG,

pointing to strength (C2), optimism/control (C3), and multiple

sleep/emotion nodes. This configuration suggests that C1 may
FIGURE 14

Comparison of network structure and centrality rankings between Spearman and cor_auto methods in the SW subgroup. (A) Scatterplot of edge
weights estimated using Spearman versus cor_auto; the dashed line indicates the identity line. (B) Comparison of node strength rankings under both
correlation methods. (C) Comparison of expected influence (EI) rankings under both correlation methods. The two correlation estimators yielded
nearly identical networks: edge weights aligned along the 1:1 line, with perfect consistency across all metrics (Pearson r = 1.000, Jaccard = 1.000,
sign agreement = 1.000, Spearman r = 1.000, Top-5 overlap = 1.00). Results indicate that network structure and centrality rankings are robust to the
choice of correlation method.
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function as an upstream regulatory factor in the fatigue–sleep–

emotion cascade, potentially modulating presleep cognitive arousal

and negative sleep appraisal to enhance emotional stability (17).

When this psychological resource system is impaired, the risk of
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maladaptive emotion–sleep interactions may escalate, highlighting

the potential utility of early resilience-based interventions aimed at

strengthening subjective control and reducing sleep-related

cognitive arousal.
FIGURE 15

Directed acyclic graph (DAG) illustrating directional relationships among symptoms. (A) Averaged DAG (Tabu); (B) Averaged DAG (HC); (C) CPDAG
derived from Tabu; (D) CPDAG derived from HC; (E, F) Bootstrap arc-frequency (strength) distributions for Tabu and HC. Structures were learned
with a BIC score (Gaussian assumption). Nonparametric bootstrap (R = 5,000) was used to compute arc strength (proportion of resamples
containing an arc) and direction probability (conditional probability of the shown orientation given arc presence). Edge width = arc strength; darker
arrows = higher direction probability; light gray segments = lower support. In (E, F), vertical dashed lines mark reference thresholds (0.20 and 0.50).
Variables were Z-standardized prior to learning. Arc strength = bootstrap inclusion proportion; Direction probability = conditional probability of the
displayed orientation given presence. SD, sleep-disturbed; Tabu, tabu search; HC, hill-climbing; CPDAG, completed partially directed acyclic graph;
P1–P7, PSQI components; S1–S10, SCL-90 subscales; C1–C3, CD-RISC factors; F0, FSS total score.
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Based on the integrated findings from the network and DAG

analyses, we propose several preliminary intervention targets and

pathways: (1) For high-impact nodes such as depression (S4) and

daytime dysfunction (P7), behavioral activation and emotion

regulation training may help mitigate downstream symptom

spread. (2) For prominent nodes in the sleep-disturbed group—

namely anxiety (S5) and hostility (S6)—relaxation training and

expressive emotion interventions might interrupt the hyperarousal–

sleep–affect cycle. (3) To address the intensified sleep–depression

link in shift workers, circadian-based interventions such as

optimized scheduling, light therapy, and melatonin regulation

could be prioritized at both organizational and individual levels.

(4) Given C1’s upstream position in the resilience architecture,

stress management and self-efficacy training may enhance its

buffering capacity, providing a potential theoretical basis for

tailored intervention planning.
5 Limitations

This study has several limitations that warrant consideration.

First, the cross-sectional design restricts causal inference and limits

the ability to determine temporal precedence. While DAG models

were employed to explore potential directional dependencies,

they reflect conditional associations rather than causality, and key

pathways require validation through longitudinal or interventional

studies. Second, all variables were measured using self-report

instruments, which may be subject to biases related to social

desirability or cognitive style. Future studies could incorporate

clinician-rated scales and objective indicators (e.g., actigraphy-

based circadian or sleep assessments). Third, the sample was

predominantly male, with a low proportion of female participants,

limiting the generalizability of findings across gender. Future work

should aim to increase female representation and perform gender-

stratified analyses. Fourth, data collection was concentrated in July

2023—a period characterized by elevated heat and operational

demand in island regions—introducing potential seasonal and

workload-related biases. Fifth, for model parsimony and stability,

this study focused on factor/construct-level nodes rather than

individual items. This may obscure within-domain heterogeneity,

and future research is needed to val idate i tem-level

symptom networks.
6 Conclusions

This study employed network psychometrics and exploratory

DAG modeling to delineate the interrelations and potential

directional patterns among sleep disturbances, fatigue,

psychological distress, and resilience in island firefighters.

Depression (S4) and daytime dysfunction (P7) appeared to

function as central symptoms, while fatigue (F0) might act as a

bridge between subjective sleep perception and affective symptoms.

Although the overall network strength remained relatively stable

across sleep and shiftwork subgroups, the structural layout of
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symptom connectivity varied modestly. DAG modeling suggested

a tentative directional chain from subjective sleep quality to

emotional disturbances (P1 → F0 → S4 → S6), with resilience

(C1) occupying a potential upstream position and showing

directed links toward P1, P2, and S4—pointing to a possible

buffering pathway.

These findings may offer a novel network-informed perspective

to understand the dynamics of sleep–psychological comorbidity in

high-risk occupational groups and may help inform theoretical

frameworks for targeted interventions. Future research should

incorporate longitudinal designs and objective metrics to further

explore the causal nature of key pathways and support the

development of multi-level strategies addressing core symptoms

(e.g. , depression, daytime dysfunction) and upstream

resilience factors.
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SUPPLEMENTARY TABLE 1

Baseline Demographic and Lifestyle Characteristics by PSQI Group (n = 570).
Values are presented asmedian (Q1, Q3) for continuous variables and n (%) for

categorical variables. P-values were calculated using Mann–Whitney U test

(a), Pearson’s c² test (b), or Fisher’s exact test (c) as appropriate. PSQI > 7 =
Sleep-disturbed group; PSQI ≤ 7 = Sleep-normal group. Bold p-values

indicate statistical significance at a = 0.05.

SUPPLEMENTARY TABLE 2

Baseline Demographic and Lifestyle Characteristics by Work Schedule (n =

432). Values are presented as median (Q1, Q3) for continuous variables and n

(%) for categorical variables. P-values were calculated using Mann–Whitney U
test (a), Pearson’s c² test (b), or Fisher’s exact test (c) as appropriate. SW, Shift-

work group; NS, Non-shift group. Bold p-values indicate statistical
significance at a = 0.05.

SUPPLEMENTARY TABLE 3

Symptom Differences Between Sleep-Disturbed and Sleep-Normal

Firefighters (n = 570). Values are expressed as median (Q1, Q3). Group
comparisons were performed using Mann–Whitney U tests due to non-

normal distribution of most variables. SD group = Sleep-disturbed group
(PSQI > 7); SN group = Sleep-normal group (PSQI ≤ 7). P = PSQI components

(P1–P7); S = SCL-90 subscales (S1–S10); C = CD-RISC factors (C1–C3); F =
FSS total score. All p-values are two-tailed; values in bold indicate statistical

significance at a = 0.05.
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SUPPLEMENTARY TABLE 4

Symptom Differences Between Shift-Work and Non-Shift Firefighters (n =
432). Values are expressed as median (Q1, Q3). Group comparisons were

performed using Mann–Whitney U tests due to non-normal distribution of
most variables. SD = Sleep-disturbed group (PSQI > 7); SN = Sleep-normal

group (PSQI ≤ 7); P = PSQI components (P1–P7); S = SCL-90 subscales (S1–

S10); C = CD-RISC factors (C1–C3); F = FSS total score. All p-values are two-
tailed; values in bold indicate statistical significance at a = 0.05.

SUPPLEMENTARY TABLE 5

Robustness of Symptom Networks to Correlation Estimators (Spearman vs
cor_auto; g = 0.50). ALL = full sample; SN = sleep-normal; SD = sleep-disturbed;

NS=non-shift; SW= shift-work; EI = Expected Influence.Networkswere estimated

with EBICglasso at g = 0.50. “Spearman” uses rank correlations; “cor_auto” uses
polychoric/tetrachoric correlations for ordinal items. Density = proportion of non-

zero edges; Global strength = sum of absolute edge weights; Top-k overlap =
proportion of top-k nodes (by Strength) preserved across estimators.

SUPPLEMENTARY TABLE 6

Structural and Centrality Stability of Symptom Networks Under Varying EBIC

Hyperparameters (g= 0.25, 0.50, 0.75). This table summarizes the structural and
centrality stability metrics of the estimated symptom networks under varying

EBIC hyperparameter values (g = 0.25, 0.50, 0.75). The reference network is
estimated using g = 0.50, while g = 0.25 and g = 0.75 serve as sensitivity

comparisons. SD, sleep-disturbed; SN, sleep-normal; SW, shift-work; NS, non-
shift; EI, Expected Influence; Jaccard, Jaccard similarity index of edge presence;

Edge r, Pearson correlation of edge weights; Sign Agreement, proportion of

consistent edge signs; r (Strength) and r (EI), Spearman correlations of node-
level strength and expected influence; Density, proportion of nonzero edges;

GStrength, Global Strength (sum of absolute edge weights); Top-k, proportion
of top-k ranked nodes (k = 3, 5, 10) preserved across networks.

SUPPLEMENTARY TABLE 7

Top 5 Strongest Edges and 95% Confidence Intervals in Each Subgroup

Network. This table lists the top 5 edges with the highest absolute weights
in each estimated network (overall and subgroups). The edge weight reflects

the strength of association between nodes. 95% nonparametric bootstrap
confidence intervals were computed for each edge. SD, sleep-disturbed

group; SN, sleep-normal group; SW, shift-work group; NS, non-shift group.

SUPPLEMENTARY TABLE 8

Comparison of Edge Strength andDirectional Consistency Between Tabu andHC

Algorithms (g = 0.50). This table compares the edge strength and directional

probabilities of arcs identified by the Tabu andHill-Climbing (HC) algorithms in the
estimated Bayesian DAG (Directed Acyclic Graph) models (bootstrap repetitions R

= 5000). “Arc” denotes the estimated directed edge between two nodes.
“Strength” represents the bootstrap frequency of arc presence, and “Direction”

denotes the estimated directional probability of each arc. “Agreement” indicates
whether both algorithms identified the same arc with consistent direction. Only

arcs with bootstrap presence frequency ≥ 0.50 are included.

SUPPLEMENTARY TABLE 9

Comparison of Edge Strength andDirectional Consistency Between Tabu andHC
Algorithms (g = 0.20). This table compares the edge strength and directional

probabilities of arcs identified by the Tabu andHill-Climbing (HC) algorithms in the
estimated Bayesian DAG (Directed Acyclic Graph) models (bootstrap repetitions R

= 5000). “Arc” denotes the estimated directed edge between two nodes.

“Strength” represents the bootstrap frequency of arc presence, and “Direction”
denotes the estimated directional probability of each arc. “Agreement” indicates

whether both algorithms identified the same arc with consistent direction. Only
arcs with bootstrap presence frequency ≥ 0.50 are included.

SUPPLEMENTARY TABLE 10

Number of Arcs Retained under Different Bootstrap Thresholds and

Algorithms in the Sleep Disturbance Subgroup (n=262). This table
summarizes the number of node pairs (edges) and directed arcs retained in

the averaged DAGs, generated using 5,000 bootstrap samples. Two structure
learning algorithms (Tabu and Hill-Climbing) were applied, and two arc

frequency thresholds were tested (≥0.50 and ≥0.20). “Edges Retained”
refers to the number of node pairs with arc frequency exceeding the

specified threshold; “Directed Arcs” refers to the number of directed edges

retained in the final averaged DAG under each condition.
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PSQI Pittsburgh Sleep Quality Index
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FSS Fatigue Severity Scale
SCL-90 Symptom Checklist-90
CD-RISC Connor–Davidson Resilience Scale
SNA Symptom Network Analysis
DAG Directed Acyclic Graph
CPDAG Completed Partially Directed Acyclic Graph
GGM Gaussian Graphical Model
MGM Mixed Graphical Model
EBICglasso Extended BIC Graphical LASSO
BIC Bayesian Information Criterion
HC Hill-Climbing
Tabu Tabu Search
NCT Network Comparison Test
EI Expected Influence
Strength Strength centrality
R² Predictability (explained variance)
CS Correlation Stability
CI Confidence Interval
a Cronbach’s alpha
SD/SN Sleep-Disturbed/Sleep-Normal
SW/NS Shift-Work/Non-Shift
y 23
HPA Hypothalamic–Pituitary–Adrenal axis
P1 PSQI – Subjective Sleep Quality
P2 PSQI – Sleep Latency
P3 PSQI – Sleep Duration
P4 PSQI – Habitual Sleep Efficiency
P5 PSQI – Sleep Disturbances
P6 PSQI – Use of Sleeping Medication
P7 PSQI – Daytime Dysfunction
S1 SCL-90 – Somatization
S2 SCL-90 – Obsessive–Compulsive
S3 SCL-90 – Interpersonal Sensitivity
S4 SCL-90 – Depression
S5 SCL-90 – Anxiety
S6 SCL-90 – Hostility
S7 SCL-90 – Phobic Anxiety
S8 SCL-90 – Paranoid Ideation
S9 SCL-90 – Psychoticism
S10 SCL-90 – Additional Items
C1 CD-RISC – Tenacity/Hardiness
C2 CD-RISC – Personal Strength
C3 CD-RISC – Optimism & Control
F0 FSS – Total Score
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