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Introduction: Ketamine’s antidepressant effects have been linked to its

modulation of glutamatergic neurotransmission and synaptic plasticity.

However, the precise roles of both glutamate (Glu) levels and brain-derived

neurotrophic factor (BDNF) in this process remain incompletely understood.

Methods: This study examined the relationship between ketamine-induced

changes in Glu levels and peripheral BDNF levels using data from a

randomized, placebo-controlled crossover design. Proton magnetic resonance

spectroscopy (7 Tesla 1H-MRS) assessing Glu concentrations in the pregenual

anterior cingulate cortex (pgACC) and plasma BDNF levels were measured one

hour before and 24 hours after either S-ketamine or placebo infusions in 35

healthy male subjects.

Results: Linear regression analysis revealed a significant interaction between

treatment condition and relative changes in Glu on BDNF level changes, with a

trend-level positive correlation between changes in Glu and BDNF levels

observed only in the ketamine group.

Discussion: These findings provide initial in vivo support for the hypothesis that

ketamine’s effects on BDNF dynamics are linked to its glutamatergic action.
KEYWORDS

ketamine, glutamate, brain-derived neurotrophic factor, magnetic resonance
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Introduction

Major depressive disorder (MDD) is a prevalent and

debilitating psychiatric condition that affects approximately 300

million people globally, accounting for 4.3% of the global disease

burden (1). Among those individuals suffering from MDD, about

30% do not respond adequately to standard antidepressant

therapies and are therefore diagnosed with treatment resistant

depression (TRD) (2, 3), underscoring the necessity for novel

therapeutic interventions. Among these new treatment

approaches are so-called rapid-acting antidepressants, with

ketamine being the most extensively studied agent.

As a non-competitive N-methyl-D-aspartate (NMDA) receptor

antagonist ketamine has demonstrated rapid antidepressant effects,

attributed primarily to its acute influence on glutamatergic

neurotransmission (4–6). Current models propose that ketamine

administration induces a transient surge in extracellular Glu, which

subsequently activates a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors (7). This activation is

believed to initiate intracellular signaling pathways, including

mechanistic target of rapamycin (mTOR) activation, resulting in

enhanced synaptic plasticity and increased release of brain-derived

neurotrophic factor (BDNF) (8–11).

The proposed glutamatergic surge observed in rodents is

supported by experimental evidence in human subjects. Thus,

increased concentration of glutamatergic metabolites in the

prefrontal cortex following ketamine administration were

reported in ¹H-MRS studies (12–15). However, some studies

reported no systematically replicated effect (16) or even a

decrease in Glu metabolism in both rodents (17) and the

ventromedial prefrontal cortex (vmPFC) in humans, which

partially includes the pregenual anterior cingulate cortex (pgACC)

(18). These inconsistencies suggest considerable variation of effects

across individuals. Variable glutamatergic effects have been related

to different subjective baseline conditions, suggesting that

covariance of ketamine-induced effects may shed light on the

relationship of the different affected processes (19).

This also highlights the importance of the pgACC as a central

node within the default mode network (DMN), critically involved in

the pathophysiology of depression and serving as a key mediator of

ketamine’s antidepressant effects (20). In fact, converging evidence

suggests that Glu concentrations are reduced within this region in

depressed patients (21, 22) and restored pgACC activity has been

reported as a result of successful antidepressant treatment (23).

Interestingly, pgACC activity was shown to correlate with Glu

increase 24 hours after ketamine infusion (15). Also, Danyeli

et al. reported that the ketamine-induced immediate changes in

DMN functional connectivity was associated with Glu level increase

in pgACC 24 hours after the infusion (13), further supporting a

critical role of the pgACC as a target region for investigating

ketamine-induced neurochemical changes.

In addition to glutamatergic mechanisms, the neuronal growth

factor BDNF is involved in MDD pathology and contributes to

ketamine’s antidepressant effects. While it is widely acknowledged

that depressive symptoms negatively correlate with BDNF
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concentrations (24, 25) whereas successful antidepressant

treatment typically induces elevated BDNF levels (26), findings

regarding peripheral BDNF after ketamine administration remain

inconsistent: Some studies report increased peripheral BDNF levels

in response to ketamine infusion, particularly in treatment

responders (27, 28), while others detect no significant BDNF

changes (29–31). Interestingly, previous studies have shown that

the BDNF genotype plays a mediating role in this context as the

common BDNF single nucleotide polymorphism leading to an

amino acid substitution (valine to methionine) at codon 66

(val66met) within the 5’ pro-BDNF sequence is associated with

impaired intracellular packaging and reduced activity-dependent

secretion of BDNF (32–34).

To address the inconsistencies regarding ketamine’s influence

on central brain Glu and peripheral BDNF blood levels, this

secondary analysis of data from a randomized, placebo-

controlled, double-blind mechanistic crossover study in healthy

individuals aimed to examine whether ketamine-induced changes

in Glu and BDNF levels are associated. In line with previous

investigations of ketamine effects on BDNF (28) and Glu (35) in

healthy subjects, the careful selection of healthy participants in this

study minimized potential confounding factors such as

antidepressant medication, disease duration or comorbidities,

ensuring that the observed effects could be solely attributed to the

experimental conditions. Enhanced insights into the mechanisms

underlying ketamine’s rapid antidepressant effects could help to

identify potential biomarkers for treatment response and facilitate

the development of novel antidepressant treatments with improved

safety profiles and fewer side effects.
Materials and methods

Study design

This study was conducted as a secondary analysis of data from a

randomized, placebo-controlled, double-blind crossover study that

investigated the immediate and delayed effects of a single sub-

anesthetic S-ketamine infusion on functional connectivity and

glutamatergic metabolite levels (13). The study enrolled 35

healthy male participants, aged between 18 and 35 years, with a

mean age of 25.1 years (for complete demographic data, see

Supplementary Table 1). The selection of male subjects in this

mechanistic trial was based on previous observations of differential

ketamine effects between males and females (36), which could have

influenced the primary interindividual covariations of interest.

Since the study did not aim to assess therapeutic outcomes,

potential gender biases limiting generalizability to clinical use

were not a primary concern. Subjects were carefully screened to

exclude neurological or physical constraints, severe illnesses, and,

according to the fourth edition of the Statistical Manual of Mental

Disorders (DSM-IV) criteria (37), current or past psychiatric

disorders as well as substance use disorders, through demographic

questionnaires, clinical interviews (Structured Clinical Interview for

DSM-IV, SCID) and physical examinations (38).
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Participants underwent two treatment sessions, receiving either

S-ketamine hydrochloride (0.33 mg/kg body weight; Ketanest® S;

Pfizer Pharma) or placebo (0.9% saline) administered via an

infusion pump (Injectomat® MC Agilia; Fresenius Kabi). The

infusion protocol comprised an initial bolus (0.11 mg/kg body

weight) delivered over 8 minutes, followed by a brief pause of 2

minutes, and subsequently a maintenance dose (0.22 mg/kg body

weight) administered over 40 minutes. Blood samples for BDNF

analysis were collected one hour before infusion and 24 hours after

infusion completion, both prior to the respective MRI session.

Sampling occurred within a daytime range between 08:15 and

19:36 across participants. Sessions were separated by a washout

period of approximately three weeks to prevent carry-over effects (a

schematic of the study protocol is provided in Supplementary

Figure S1). All participants provided written informed consent.

The study protocol was approved by the Otto-von-Guericke-

University Magdeburg Institutional Review Board and conducted

according to Declaration of Helsinki guidelines and local

legal provisions.
Magnetic resonance spectroscopy

As reported by Danyeli et al., participants underwent magnetic

resonance spectroscopy (MRS) measurements on an ultra-high field

7 Tesla MR scanner (Siemens Healthineers, Erlangen, Germany)

using a 32-channel head coil. Spectra were acquired from the

pgACC using a stimulated-echo acquisition mode (STEAM)

sequence with the following parameters: voxel size = 20 × 15 × 10

mm³, echo time (TE) = 20 ms, repetition time (TR) = 3000 ms,

mixing time (TM) = 10 ms, bandwidth = 2800 Hz, and 128

averages. A single average water signal was recorded as an

internal reference for quantification and eddy current correction.

The voxel was placed individually for each participant according to

anatomical landmarks, touching the genu of the corpus callosum

while avoiding the callosomarginal artery, and tilted to align with

the anterior commissure-posterior commissure plane. MRS data

were acquired before and 24 hours after intravenous infusion of

either S-ketamine (0.33 mg/kg body weight) or placebo (0.9%

saline). Glu concentrations were quantified as absolute values

using water as an internal reference. Data preprocessing and

metabolite quantification were performed with LCModel (version

6.3.0), and spectra were visually inspected for quality assurance,

excluding spectra with a Cramér-Rao lower bound (CRLB) >20%,

line width >24 Hz, or signal-to-noise ratio <20 in accordance with

previous investigations (39, 40). These thresholds account for the

technical challenges of achieving optimal data quality in the pgACC

region, which is located near air-tissue interfaces. Spectral quality

assessment for the analyzed timepoints revealed acceptable data

quality, with a mean linewidth (full width at half maximum) of 6.72

± 2.59 Hz and a mean signal-to-noise ratio of 41.05 ± 5.97 across the

included spectra. After excluding measurements that did not fulfil

quality criteria, spectra for Glu analysis were available from 29
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post-infusion, and from 32 participants in the S-ketamine

condition. For further methodological details and voxel placement

illustrations related to the MRS data, please refer to (13).
Blood sampling

Two separate blood samples were collected at each timepoint.

One in EDTA-anticoagulated tubes for BDNF genotyping (BD

Vacutainer, K3E, 7.2 mg, REF 368860) and one in heparin-

containing tubes for BDNF quantification (BD Vacutainer, LH,

68 I.U. REF 368884). Both samples were collected before and 24

hours after infusions using a BD Vacutainer Safety-Lok Blood

Collection Set, with participants seated.

Heparin tubes were immediately placed on ice and centrifuged

within 15 minutes at 20°C and 2000 relative centrifugal force (RcF) for

15 minutes. The resulting plasma supernatants were stored at -80°C

until further analysis. Plasma BDNF levels were quantified using a

sandwich enzyme-linked immunosorbent assay (ELISA) according to

the manufacturer’s instructions (DuoSet ELISA Development Kit,

R&D Systems, Wiesbaden, Germany). Photometric analysis of

samples was performed with an ELISA reader (Infinite® 200, Tecan,

Switzerland). For quantification of BDNF, plasma samples were diluted

1:8 and serum samples 1:128. Dilution linearity was obtained in the

range of 1:6, 1:8, 1:10 and 1:12 for plasma samples (coefficient of

variation: minimum–maximum, 2.2–5.8) and in the range of 1:64, 1:80,

1:100, 1:128, 1:150 and 1:180 for serum samples [coefficient of

variation: minimum–maximum, 0.6–4.8; see (41)]. This methodology

is consistent with current best practice recommendations for BDNF

quantification in plasma samples (41–43).

The BDNF genotype of each subject was assessed using

polymerase chain reaction (PCR) followed by restriction fragment

length polymorphism (RFLP) analysis to investigate a potential

influence of the val66met polymorphism (NCBI accession number:

rs6265) on BDNF blood levels after ketamine administration, with

forward primer 5′-GCATCCCGGTGAAAGAAAGCCCTAAC-3′
and reverse primer 5′-GCCCCTGCAGCCTTCTTTTGTGTAAC-
3′ for amplification. PCR was performed using MyTaq™ DNA

Polymerase (Bioline, Meridian Bioscience), and the resulting

amplicon was digested with Eco72I FastDigest enzyme (Thermo

Scientific). The resulting fragments were analyzed by

electrophoresis on a 1% agarose gel stained with MIDORI Green

Advance (Nippon Genetics Europe). Assays were conducted under

blinded conditions. Missing BDNF blood level data occurred in 32

out of 210 samples. Of these, 31 values fell below the assay’s limit of

quantification (LOQ = 23.4 pg/mL), and one additional value was

missing due to technical issues during blood withdrawal. Relative

BDNF changes could thus ultimately be calculated for 27

participants receiving S-ketamine and 24 in placebo controls.

Therefore, the final analyzed correlation pairs between relative

changes in Glu and BDNF were n = 20 in the placebo condition

and n = 26 in the S-ketamine condition.
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Statistical analysis

Given the consistently observed circadian variation of plasma

BDNF levels (44–46), values were statistically adjusted for the exact

blood sampling time. Specifically, residuals were obtained from a

linear regression model with plasma BDNF levels predicted by

numerically scaled and rescaled blood collection times. To

approximate a normal distribution suitable for subsequent

statistical analyses, these residuals were shifted by adding the

absolute minimum residual value (to eliminate negative numbers)

i.e., plus one, and were then log-transformed. This methodological

approach aligns with established procedures previously applied in

related studies examining plasma BDNF levels (28). Glu

concentrations were normalized to the combined gray matter

(GM) and white matter (WM) volume within each pgACC voxel.

For this correction, GM and WM fractions were extracted from

individual average T1-weighted reference images using CAT12 in

SPM12 (http://www.neuro.uni-jena.de/cat/), bias-field corrected

and segmented into GM, WM and cerebrospinal fluid (CSF), with

spatial normalization performed via ANTs (ANTs 2.2.0). The

resulting GM+WM fractions were then used to scale fitted

metabolite levels, as detailed in (13).

Relative changes for both metabolites were then calculated as

the difference between measurements taken 24 hours post-

infusion and baseline values, divided by the baseline values

[(24h post-infusion - baseline)/baseline]. Linear regression

analysis was conducted to evaluate the relationship between

relative changes in BDNF and relative changes in Glu

concentrations across the two treatment conditions. The

regression model included treatment (S-ketamine vs placebo),

relative Glu changes, and their interaction term as predictors for

the relative BDNF changes. Normality of residuals was assessed

visually using histograms and Q-Q plots and statistically via

Shapiro test (W = 0.95946, p = 0.1092), indicating no significant

deviation from normality with the overall model reaching

statistical significance (F(3,42) = 2.832, p = 0.0497). Due to the

non-normal distribution of relative Glu changes in the S-ketamine

group, a post-hoc Spearman’s rank correlation was performed to

investigate the relationship between relative changes in Glu and

BDNF separately for each treatment condition. Bonferroni

correction was applied to account for multiple dependent

variables, resulting in adjusted significance levels of a = 0.0335

for the S-ketamine correlation (n = 26) and a = 0.025 for the

Placebo correlation (n = 20). The adjusted significance thresholds

were calculated using the Bonferroni adjustment tool provided at

www.quantitativeskills.com, with different adjusted alpha levels

reflecting the unequal number of comparisons or dependent

variables tested within each treatment condition.

Following the approach described by Danyeli et al., who

examined the relationship between delayed Glu levels and resting

state functional connectivity changes with respect to their baseline

values (13), we applied the same analytical method to our BDNF
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Oldham’s method, assessing the relationship between the change

from baseline (24 hours post-infusion minus baseline) and the

mean of these two time points (24 hours post-infusion plus baseline

divided by two) (47) in order to detect potential systematic biases or

proportional changes. In addition, paired t tests were conducted

separately for BDNF and Glu concentrations to examine differences

between baseline and 24 hours after infusion measurements within

each treatment condition (S-ketamine and placebo), as well as to

assess differences between the two treatment conditions at each

respective time point.
Results

Delayed effects of S-ketamine on pgACC
glutamatergic metabolites

As the present study builds on MRS findings from a previous

investigation by our group, key results from that work are briefly

summarized here to provide context; for full statistical details, see

(13). Danyeli et al. reported a significant increase in Glu

concentrations in the pgACC 24 hours after S-ketamine infusion,

while no such effect was observed in the placebo group.

Furthermore, individuals with lower initial Glu levels showed

greater post-infusion increases, suggesting a baseline-dependent

modulation. Given that no significant changes in glutamine (Gln),

Glx (combined Glu and Gln), or the Gln/Glu ratio were found in

either treatment arm, no additional analyses of these metabolites

were conducted in the present study.
Delayed effects of S-ketamine on plasma
BDNF levels

To ensure consistency with our main analysis, plasma BDNF

analyses were restricted to participants with available data for both

Glu and BDNF. No significant differences in plasma BDNF levels

were observed between the ketamine and placebo condition at

baseline (t(27) = −1.01, p = 0.321) or 24 hours post-infusion (t

(20) = 0.47, p = 0.644). Interestingly, within-group analyses revealed

a significant decrease in BDNF from baseline to 24 hours post-

infusion in the ketamine group (t(25) = 2.39, a = 0.025, p = 0.0249),

while BDNF levels in the placebo group did not change significantly

between the two timepoints (t(19) = 1.12, a = 0.025, p = 0.278; for

details, see Supplementary Figures S2A, B). Furthermore, no

significant correlation was found between the BDNF level change

and the respective baseline BDNF level (rs = 0.186, a = 0.05, p =

0.195), suggesting that, unlike Glu, Plasma BDNF levels do not

exhibit a baseline-dependent modulation following S-ketamine

administration. For the exact sample size of each genotype group,

see Supplementary Table 1.
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Association of delayed effects of
S-ketamine on pgACC Glu and plasma
BDNF levels

Linear regression analysis revealed a significant interaction

effect between relative Glu changes and treatment condition

(b = 1.00482, SE = 0.46990, t = 2.138, p = 0.0383) on relative

BDNF changes (for detailed model parameters, see Table 1). Thus,

the relationship between Glu and BDNF changes significantly

differed between the two treatment groups. Spearman correlation

analyses showed a trend-level positive correlation (rs = 0.34, p =

0.088, adjusted a = 0.0335) in the S-ketamine condition (Figure 1A;

n = 26), whereas a non-significant negative correlation was detected

(rs = -0.29, p = 0.2138, adjusted a = 0.025) in the placebo condition

(Figure 1B; n = 20). Neither relative Glu changes alone (b =

-0.33009, p = 0.4081) nor treatment condition alone (b = -

0.15023, p = 0.0837) showed a statistically significant main effect.

Further analyses were performed to investigate potential

influences of Age, Body Mass Index (BMI), and Genotype

(categorized as Val/Val and Val/Met, with only two subjects

exhibiting the Met/Met genotype) on this relationship. When

each of these covariates was included separately, neither Age (b =-

0.00013, p = 0.9888), BMI (b = 0.00015, p = 0.9926), nor Genotype

showed significant associations with the dependent variable.

Specifically, with Val/Val as the reference category (selected due

to its larger sample size, n = 24, providing more stable parameter

estimates), neither Met/Met (b = -0.02194, p = 0.8967) nor Val/Met

genotypes (b = -0.06347, p = 0.5138) demonstrated significant

effects on BDNF relative change. Importantly, the significant

interaction between relative Glu changes and treatment on BDNF

level changes remained robust after controlling for each of these

covariates individually (p-values remained <0.05), confirming that

this interaction effect was independent of age, BMI, and genotype

(full covariate models are reported in Supplementary Tables 2–4).
Discussion

In this study, we identified an association between ketamine-

induced changes in pgACC glutamate and peripheral plasma BDNF

levels following S-ketamine administration. BDNF levels displayed
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Changes in Glu concentrat ions have been descr ibed

comprehensively in a prior report by Danyeli et al. (13). Notably,

despite this general decrease in BDNF, individuals demonstrating

larger Glu elevations tended to show smaller reductions or even

increases in BDNF levels, indicating a potential coupling between

neurotrophic response and central Glu metabolism. While

previously reported findings showed a baseline-dependent

increase in Glu 24 hours after S-ketamine infusion (13), no such

modulation was observed for BDNF concentrations in the

present study.

Taken together, these observations support a model in which

ketamine’s rapid antidepressant action emerges from an initial

Glu surge – likely pronounced in individuals with low baseline

Glu (13) – triggering BDNF-mediated neuroplastic changes. This

glutamatergic–neurotrophic cascade hypothesis is supported by

pharmacological evidence on ketamine’s signaling pathway stating

that BDNF upregulation is in multiple ways dependent on

glutamatergic activation. Namely, preclinical studies have shown

that ketamine enhances BDNF–TrkB signaling by relieving

translational repression through inhibition of eukaryotic

elongation factor 2 kinase (eEF2K), by facilitating TrkB receptor

activation, and by engaging downstream signaling pathways such as

phosphoinositide 3-kinase–protein kinase B (PI3K–Akt) and

mitogen-activated protein kinase–extracellular signal-regulated

kinase (MEK–ERK) (48, 49). Furthermore, ketamine-induced

glutamatergic transmission may trigger BDNF release on a

timescale faster than BDNF translation (10, 11, 50). This

glutamatergic–neurotrophic cascade hypothesis is in accordance

with the multistage model by Walter et al. arguing that ketamine

first induces an acute glutamatergic disinhibition, followed by

neuroplastic changes that enable a sustained antidepressant effect

(21). Although our findings suggest a metabolic coupling after

ketamine treatment, the proposed sequence requires further

validation through studies incorporating multiple post-infusion

time points and clinical populations.

Whilst it is important to note that the proposed central

mechanisms of ketamine action and the assumption that

peripheral BDNF levels reflect central concentrations are largely

supported by rodent models and in vitro studies (51), plasma BDNF

has also been shown to correlate with CSF BDNF concentrations in

humans (52). Moreover, decreased BDNF levels in hippocampal

and prefrontal cortex tissue as well as in CSF have been reported in

depressed patients (53) with antidepressant treatment typically

inducing elevations in peripheral levels of the neurotrophic factor

(26). Although these findings collectively support the validity of

using peripheral BDNF as a proxy for central neurotrophic activity,

it should be further acknowledged that findings regarding the

correlation between peripheral serum and plasma BDNF remain

inconsistent (54, 55). In the current study, only plasma BDNF

concentrations were measured. As platelets store a significant

amount of BDNF in the blood stream and are known to release it

upon clotting (56), plasma BDNF levels are significantly lower than

in serum, but potentially better reflect BDNF brain levels since

platelets do not cross the blood-brain barrier (57). Moreover, MDD
TABLE 1 Results of the linear regression analysis assessing the
interaction between relative Glu changes and treatment condition
(S-ketamine vs. placebo) on relative plasma BDNF changes.

Predictor b SE t p

(Intercept) -0.048 0.062 -0.077 0.444

Relative Glu Change -0.330 0.040 -0.836 0.408

Treatment (S-ketamine) -0.150 0.085 -1.772 0.084.

Relative Glu Change: Treatment
(S-ketamine)

1.004 0.470 2.138 0.038*
Glu, Glutamate; SE, Standard Error.
‘*’ p < 0.05, ‘.’ p < 0.1.
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has been shown to induce platelet alterations and antidepressants as

well as antiaggregating medications influence BDNF release from

platelets (58). Given that serum and plasma BDNF measurements

are not interchangeable, future studies are needed to verify whether

the observed association with Glu also holds up in serum

measurements. Due to the generally very low concentrations of

BDNF in plasma, it remains challenging to accurately quantify

plasma BDNF levels. This was also evident in our study, where a

moderate proportion of measurements were left-censored: 31 out of

32 missing values fell below the assay’s lower limit of quantification
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during blood withdrawal. However, because relative changes were

calculated and missing data were handled systematically, this

limitation is unlikely to have introduced significant bias.

Further limitations should be considered. Firstly, the study was

restricted to male participants, which limits the generalizability of the

findings regarding sex differences in BDNF dynamics. This restriction

reflects the fact that the current analysis was part of a larger

investigation examining the relationship between the immediate and

delayed neural effects of S-ketamine, for which relatively stable
FIGURE 1

Scatter plot of the relationship between relative changes in Glu (adjusted for voxel gray and white matter content) and plasma BDNF (adjusted for
sampling time) 24 hours after S-ketamine (A) or placebo (B) infusion. Regression lines indicate a trend-level positive correlation for S-ketamine
(Spearman’s rho = 0.34, p = 0.088, adjusted a = 0.0335) but not for placebo (Spearman’s rho = -0.29, p = 0.2138, adjusted a = 0.025); shaded area
represents the 95% confidence interval.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1662051
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Marx et al. 10.3389/fpsyt.2025.1662051
intersubject variability in target parameters was essential. Secondly,

emerging evidence suggests that (R)-ketamine may rely more heavily

on BDNF/TrkB signaling compared to (S)-ketamine (59, 60). These

indications suggest that the relative contributions of Glu-dependent

neuroplasticity and BDNF signaling may differ between the two

isomers, highlighting the need for further research to elucidate their

distinct pharmacological profiles.

Lastly, our findings demonstrate a Glu-BDNF association after

ketamine administration only in healthy participants. Thus, future

research should explore this correlation also in patient populations,

thereby analyzing whether baseline Glu-BDNF coupling or its post-

treatment modulation can predict clinical outcomes. If validated in

larger clinical samples, this relationship may contribute to precision

medicine approaches, aiding in the stratification of patients who are

most likely to benefit from ketamine treatment and potentially guiding

the development of novel interventions targeting the Glu-BDNF axis.
Conclusion

The observed correlation between ketamine-induced

glutamatergic and BDNF responses in this study suggests a

meaningful functional link between these pathways in humans,

previously well-documented only in animal models. Given the

inconsistent findings on both BDNF and Glu levels across studies,

interpreting peripheral BDNF as a standalone biomarker risks

oversimplifying its role and may obscure key mechanistic insights

in antidepressant research. Instead, our results emphasize the

importance of assessing BDNF and Glu in tandem, as their

combined analysis could yield a more integrated understanding of

ketamine’s neurobiological effects and accelerate the identification

of novel treatment targets.
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