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Epigenetic regulation of
SYNGAPI in alcohol use disorder
in whole blood and saliva
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University of Tuebingen, Tuebingen, Germany, 2German Center for Mental Health (DZPG),
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Epigenetic regulation is significantly altered in individuals with alcohol use
disorder (AUD), representing a promising avenue for understanding its
pathomechanisms and developing new therapies. In an earlier epigenome-
wide study of CD3+ T cells, we identified SYNGAPI-a critical regulator of
synaptic plasticity that influences neuronal communication and network
remodeling—as epigenetically dysregulated, with significantly lower DNA
methylation (DNAm) in patients than controls. After three weeks of inpatient
withdrawal, SYNGAP1 DNAm increased to control levels. In the present study, we
aimed to validate these differential SYNGAPI DNAm levels in an independent
cohort of 64 AUD patients and 83 healthy controls in peripheral blood and saliva,
to assess its potential as a biomarker. Using a linear mixed-effects model
including AUD status and covariates, no significant differences were observed.
Post hoc analyses revealed an unexpected pattern: In blood, SYNGAPI DNAmM
was higher in patients before treatment than controls, with no difference after
withdrawal; in saliva, no differences or therapy effects were detected. Overall,
these results did not confirm our previous findings, suggesting limited value of
SYNGAPI DNAm as a biomarker for AUD. While blood methylation showed some
association, the effect direction contradicted earlier results, and saliva showed no
signal. Further research is needed to clarify SYNGAPI1 epigenetic regulation in
AUD and its potential relevance for biomarkers or therapy.
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1 Introduction

Alcohol Use Disorder (AUD) is a severe chronic disorder contributing substantially to
the global burden of disease (1). The development of AUD underlies both genetic and
environmental factors (2, 3), and gene-environment interactions, such as epigenetic
mechanisms, play a pivotal role (4). Epigenetics describes the — reversible - modulation
of genomic activity and gene function without changing the DNA sequence itself. One of
the most studied epigenetic mechanisms is DNA methylation (DNAm) (5). AUD has been
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widely described as being associated with altered DNAm (4, 6, 7).
Several investigations conducting epigenome-wide association
studies (EWAS) in blood and brain provided evidence for altered
DNAm patterns, e.g. in genes involved in glutamate signaling (8),
immune-related pathways (9, 10), and glucocorticoid and
inflammation-related signaling (11). Recently, White et al. (2024)
identified 105 AUD-associated CpGs annotated to 120 genes within
and across brain regions that were enriched in histone marks
tagging active promoters (12). In a previous epigenome-wide
study in our group, we identified decreased DNAm levels of the
CpG site ¢g02652579 present in the promotor region of Synaptic
Ras-GTPase-activating protein gene (SYNGAPI) in CD3" T-cells of
male AUD patients compared to matched control individuals.
Interestingly, following three weeks of inpatient withdrawal
treatment, SYNGAP1 DNAm levels increased and reached levels
observed in healthy control individuals (13). SYNGAPI encodes for
the SynGAP protein (14, 15) which is part of complex networks
located on the postsynaptic density (PSD), mainly in the cortex and
hippocampus. SynGAP fulfills several functions in neurotransmitter
signaling, morphology of synapses and scaffolding of protein
networks (15, 16). Furthermore, SynGAP promotes, via various
intracellular signal cascades, AMPAR (a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor) insertion and long-term
potentiation (LTP) induction in activated neurons while providing
for a stable number of AMPARs during baseline activity (15, 17-
23). An association between alcohol consumption and SYNGAPI
has been described recently in mice, where SynGAP protein was
significantly downregulated in animals undergoing alcohol
withdrawal (24).

The aim of the current study was to validate our earlier finding of
significantly altered DNAm patterns of SYNGAPI (i.e. ¢g02652579) in
more easily accessible somatic tissue — peripheral venous whole blood
and saliva - as well as female AUD patients. SYNGAPI was prioritized
for validation as it was among the top hits exhibiting this therapy-
associated reversal pattern, suggesting its potential involvement in
AUD pathophysiology and response to treatment. Therefore, we
investigated the potential of SYNGAPI DNAm to serve as a novel
epigenetic biomarker for AUD diagnosis as well as withdrawal therapy
outcome. Our study may support the understanding of underlying
molecular processes, which could open new perspectives on SynGAP as
a possible therapeutic target, enabling personalized therapy options and
a more effective health care.

2 Methods
2.1 Study subjects

In total, 147 participants were included in the study between
2020 and 2023. The patient group consisted of 64 individuals
diagnosed with a severe form of AUD (Alcohol dependence)
according to the International Statistical Classification of Diseases
and Related Health Problems, 10th Revision (ICD-10 (25),).
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Patients underwent a three-weeks inpatient qualified withdrawal
treatment according to the German S3 guideline on alcohol related
disorders (26) at the Department of Psychiatry and Psychotherapy
of the University Hospital Tiibingen. Samples and data have been
collected at hospital admission (T1), as well as after three-weeks of
therapy (T2). Samples and data of 83 control individuals have also
been collected. At T2, 134 participants (N = 53 AUD patients, N =
81 healthy control individuals, Supplementary Table S1) remained
in the study. Of both groups, individuals with comorbid substance
use disorder other than nicotine or alcohol and with comorbid
psychiatric disorders other than Major Depressive Disorder were
excluded. At both time points, the following self-administered
questionnaires were assessed: alcohol consumption using the
Alcohol Use Disorder Identification Test (AUDIT (27),) for
alcohol consumption and Obsessive-Compulsive Drinking Scale
(OCDS (28),) for alcohol craving (Supplementary Table S1).

All participants were of European descent and aged between 20
and 71, sampling numbers and details are shown in Supplementary
Table S1. They provided informed written consent. The study was
approved by the ethics committee of the University of Tiibingen
(Reference number 264/2018 BO2) and was conducted in
accordance with the Declaration of Helsinki.

2.2 DNA methylation analysis

Ethylenediaminetetraacetic (EDTA) blood and saliva samples
(in Oragene® DNA Collection Kits, DNA Genotek, Ottawa,
Ontario, Canada) were collected at both time points (T1 and T2).
The DNA was extracted from blood samples using the QIAamp®
DNA Blood-Maxi Kit (Qiagen, Hilden, Germany) and with
Oragene® prepIT«L2P (DNA Genotek, Ottawa, Ontario, Canada)
for saliva samples, respectively, according to the manufacturer’s
instructions. The DNA was stored at -20 °C until proceeding and
bisulfite converted with EpiTect® Fast DNA Bisulfit Kit (Qiagen,
Hilden, Germany). The region of interest within the promotor
region of SYNGAPI (hgl9, chr6:33386818-33387117) was amplified
using the PyroMark PCR Kit (Qiagen, Hilden, Germany) according
to the manufacturer’s instructions. PCR primers (Metabion,
Planegg, Germany) were as follows: PCR forward primer: 5 -GAG
GGG TTA ATG AGA GGT AGA GAG GTG-3'; PCR reverse
primer: Biotin-5- - CCC CAC TTC CCT ACC CTA AAA CC -’3.
The PCR products were quality-controlled on an agarose gel and
subsequently pyrosequenced with the PyroMark® Q24 using the
Pyromark Gold Q24 reagents (Qiagen, Hilden, Germany) and the
following sequencing primer: 5-TGG TTT GGT GGT GGG GAT
GTT-3". The analyzed CpG site (cg02652579) is located at
chr6:33386967 (hg 19). The DNAm level was analyzed using the
PyroMark® software (Version Q24 2.0.7). At least two replicates of
the PCR and sequencing reaction were performed for each sample.
Only replicates with a deviation of < 3% between runs were further
analyzed. In all steps of the protocol, samples were arranged in a
balanced order to avoid batch effects.
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2.3 Statistical analysis and visualization

All analyses were performed using the software environment R
and Python. Statistical tests, that are available within the R package
ggpubr (version 0.6.0) (29) or the Python package stat.test (30) were
used depending on the analysis specified in the following sections.

Distribution of the values per group, variable (such as age and
questionnaire scores) and time point of sampling was analyzed
applying the Shapiro-Wilk-test (Supplementary Table S2). To
investigate the effects of AUD and its therapy on SYNGAPI DNA
methylation levels, a linear mixed-effects model (using the R
package Ime4 (31)) was fitted including age, sex and smoking as
covariates using the following formula: DNAm ~ group*time +
group*smoking + age + sex + (1[ID).

For the post-hoc tests, normally distributed values (i.e., DNAm data
of blood samples) were analyzed with parametric student s t-test. Non-
parametric tests (Mann-Whitney U test for independent samples and
Wilcoxon signed rank test for paired data) were applied for not-
normally distributed data. Benjamini-Hochberg correction (32) was
performed to correct for multiple testing and therefore, protect against
false positive or Type 1 errors. An adjusted p-value was calculated for
the respective number of tests for time-wise demographic/clinical
variables as well as DNAm data of blood and saliva independently.
An adjusted p-value (p.adj.) <.050 was considered as significant. Effect
sizes were calculated using Cohen’s d (33).

3 Results

The study sample included 64 AUD patients and 83 healthy
control individuals (Table 1, Supplementary Table S1). Although
age, sex and smoking behavior of both groups were aimed to be
matched throughout the recruitment process, the two groups still
revealed significant differences: Healthy control individuals (HC)
were significantly younger (40.64 + 13.73, W = 3708, p.adj. < 0.001,
Table 1) and included more females (66% females, X-squared =
9.71, df = 1, p = 0.002, Table 1) than patients (age: 49.8 + 11.47
years, 39% females, Table 1). Although assessed, it was not possible
to match the groups for smoking status resulting in a large overlap

TABLE 1 Demographic and clinical information of the study cohort.
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of the variables AUD status and smoking status (77% of the AUD
patients were smokers and 95% of the healthy control group were
non-smokers, X-squared = 74.38, df = 1, p < 0.001).

AUDIT scores were significantly higher in patients at both time
points (T1: AUD: 26.40 + 7.95, HC: 2.93 + 2.30, p < 0.001; T2: AUD:
22.90 + 8.48, HC: 3.09 + 2.39, Wy = 4573, p.adj.1; < 0.001; W, =
1064, p.adj.1> < 0.001; Table 1). OCDS scores were also significantly
higher at both time points (T1: AUD: 21.30 + 7.60, HC: 2.00 + 2.66,
Wiy = 4946, p.adj.r; < 0.001; T2: AUD: 1330 + 6.21, HC: 1.63 +
2.24; Wr, = 4059, p.adj.t, < 0.001; Table 1), which shows elevated
craving and obsessive tendencies towards alcohol in AUD patients.
All questionnaire scores significantly improved post therapy in
patients (OCDS: V = 1154, p.adj. < 0.001 (n; = 60, nr, = 52);
AUDIT: V = 198, p.adj. = 0.027 (n1; = 56, nt, = 24)), showing a
tendency of positive effects of the detoxification treatment on
drinking behavior and withdrawal of AUD patients.

To investigate the effects of AUD and its therapy on SYNGAPI
DNAm in blood while accounting for potential effects of
demographic variables, a linear mixed-effects model with the
factors group (AUD patients vs. healthy control individuals), time
(pre and post withdrawal treatment) as well as smoking status and
their interaction together with age and sex was fitted. A significant
effect of time was revealed (Std. Error = 0.366, p = 0.012,
Supplementary Table S3). However, neither a significant effect of
AUD status (Std. Error = 1.202, p = 0.758, Supplementary Table S3)
nor of the interaction of AUD status and time (reflecting
withdrawal treatment, Std. Error = 1.108, p = 0.488) was observed.

As previously noted, unfortunately, smoking status was strongly
overlapping with AUD status in the cohort (Table 1). To address
this, we included both smoking status and the interaction between
AUD and smoking status in the model. However, neither smoking
status (Std. Error = 1.918, p = 0.163) nor the interaction term
reached significance (Std. Error = 1.098, p = 0.644, Supplementary
Table S3). Furthermore, neither age (Std. Error = 0.026, p = 0.611)
nor sex (Std. Error = 0.736, p = 0.556) had a significant effect on
SYNGAPI DNAm in blood.

However, post-hoc tests comparing AUD patients and healthy
control individuals revealed that prior to the three-weeks inpatient
withdrawal treatment, SYNGAPI DNAm of patients was

Group
Variable g p.adj.
. Healthy control individuals R
AUD patients (N = 64) y
(N = 83)
Sex (Females) n =25 (39%) n =55 (66%) 0.002
Smoking (Yes) n =46 (77%) n =4 (5%) < 0.001
Age (years) 49.80 + 11.47 40.64 + 13.73 <0.001
Tl 26.40 + 7.95 2.93 +2.30 < 0.001
AUDIT
T2 22.90 + 8.48 3.09 + 2.39 < 0.001
Tl 21.30 + 7.60 2.00 + 2.66 < 0.001
0CDS
T2 13.30 + 621 1.63 +2.24 < 0.001
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significantly higher with an average of 77.8 + 4.78% compared to
that of healthy control individuals with an average of 76.1 + 3.77%
at T1 (t = 2.30, p.adj. = 0.047; Cohen’s d = 0.41, AUD patients: n =
64, Healthy controls: n =83, Figure 1A).

After the three-weeks inpatient withdrawal treatment (T2),
SYNGAPI DNAm of AUD patients remained without significant
changes compared to T1 (t = 1.20, p.adj. = 0.237; Cohen’s d = 0.16,
n = 46). Also, in healthy control individuals, SYNGAPI DNAm
levels in blood did not significantly change compared to T1 (t =
1.71, p.adj. = .184; Cohen’s d = 0.18, n = 72). However, the
difference in DNAm between the groups at T1 was no longer
observed at T2 (t = 1.68, p.adj. = 0.097, Cohen’s d = 0.32).

The same way, we analyzed SYNGAPI DNAm in saliva of AUD
patients in comparison to healthy controls before and after
withdrawal treatment. SYNGAPI DNAm of saliva was in average
higher compared to blood SYNGAPI DNAm (DNAmMg,jivaaun):
87.3 £ 2.91% and DNAmMivaa1c): 87.3 £ 2.78% at T1). The linear
mixed effects modelling did not reveal any significant effects of
AUD status or any other tested variable (smoking, age, sex and time
as well as the interaction of AUD status and time or smoking status,
respectively) on saliva DNAm (Supplementary Table S3). Replacing
AUD status with smoking status in the model revealed similar
results (Supplementary Table S4).

Posthoc tests furthermore confirmed stable saliva DNAm levels
throughout treatment (DNAmg,jivaaup): 87.4 * 2.26% and
DNAMjivaric): 87.2 + 2.72% at T2 compared to T1 mentioned
before; Wayp = 458, p.adj.sup = 0.700, Cohen’s dayp = 0.14, Wy
=585, p.adj.;ic = 0.830, Cohen’s dyyc = 0.00) without an influence of
AUD (Wry = 1388, p.adj.t; = 0921, Cohen’s dr; = 0.00, W, =
1064, p.adj.t, = 0.921, Cohen’s dr, = 0.07, Figure 1B).

4 Discussion

In the present study, we investigated DNA methylation of a CpG
site (cg02652579) in the promotor region of SYNGAPI in whole blood

p=0.047,d =0.41

AAUD status

I AUD

HC

SYNGAP1 DNAM [%]

Time point

FIGURE 1
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and saliva of AUD patients in a longitudinal study design - before (T1)
and after (T2) a three-week inpatient withdrawal treatment -
compared to healthy control individuals. Analyzing SYNGAPI
DNAm in whole blood of 64 AUD patients and 83 controls, we
could not confirm our previous results of lower DNA methylation
levels in CD3" T cells in patients than in control individuals. While a
linear mixed-effects model including AUD status and relevant
covariates, revealed no significant differences in SYNGAPI DNAm,
post-hoc analyses showed higher SYNGAPI DNAm in patients prior to
treatment compared to controls. After withdrawal therapy, this
difference was no longer evident. In saliva, no significant differences
in SYNGAPI DNAm were detected between groups, and therapy
showed no effect. Altered DNAm in association with AUD has been
shown before by several studies on an epigenome-wide ( (8, 9, 34) as
well as candidate gene level (35, 36). In a previous epigenome-wide
study, we showed reduced methylation of the same CpG site
(cg02652579) associated with SYNGAPI in CD3" cells of AUD
patients (13). Moreover, SYNGAPI expression has been identified to
be correlated with alcohol withdrawal in mice brains (24). Interestingly,
Witt et al. (2022) observed a significantly hypomethylated CpG site
(cg07573985), which is 500 bp upstream of ¢g02652579, in blood of
AUD patients (37). Although they measured hypomethylation rather
than the hypermethylation we identified for CpG site ¢g02652579, their
data support the notion that SYNGAPI DNAm is influenced by AUD.

Statistically significant effects of the three-week inpatient
withdrawal therapy on the blood DNAm levels were not
observed. Therefore, a potential dysregulation of SYNGAPI on
the DNA methylation levels as revealed by the groupwise post hoc
test could be either consistent or — as the differential methylation of
SYNGAPI observed at T1 was no longer present at T2 - the small
size of our sample does not allow definitive conclusions, but leaves
the trend of reversing towards healthy levels after therapy.
Briickmann et al. identified such a reversal of ¢g02652579
methylation in their epigenome-wide approach in CD3" cells of
AUD patients undergoing withdrawal therapy, although in this
case, the initially lower methylation increased with therapy

AUD status
AUD

80 HC

SYNGAP1 DNAM [%]

Time point

SYNGAP1 DNAm (%) in (A) Blood and (B) Saliva of patients (AUD) and healthy control individuals (HC) at T1 and T2. For A, student's t-test with
Benjamini-Hochberg correction was used. For B, Mann-Whitney U test with Benjamini-Hochberg correction was used. For A, Cohen's d is

additionally reported.
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approximating the healthy control levels (13). In our study, the
initial higher cg02652579 methylation showed a tendency of
decreasing towards control levels. Moreover, the general tendency
of SYNGAPI DNAm reversal after withdrawal therapy is supported
by the findings of Witt et al., who identified two other CpG sites
within the SYNGAPI gene body, whose methylation levels changed
with therapy: ¢g01069468 (first intron) and cg26257411 (third
intron), both of which were higher methylated post treatment
compared to prior (37).

Taken together, we were not able to validate the findings of
Briickmann et al. (2017) in our study. The opposite direction of
alteration observed in our recent data could be attributed to
differences in the study materials analyzed, as DNAm varies
widely across tissues (38). This is further supported by our data
from whole blood and saliva that show different methylation levels
of the same CpG site within the same individuals. It is plausible that
SYNGAPI DNA methylation does not exhibit a uniform pattern of
dysregulation across tissues in AUD, but instead reflects
heterogeneous or context-specific changes. Furthermore,
Briickmann et al. studied DNAm in a cohort only consisting of
males. Therefore, even if the AUD diagnosis is the same in male and
female patients in our cohort, different drinking patterns may
induce differential DNAm of SYNGAPI. For example, women
with AUD may demonstrate a telescoping pattern—initiating
drinking later than men but advancing more rapidly to
dependence and treatment in clinical samples (39). Furthermore,
due to sex-specific biological differences in alcohol metabolism (e.g.,
lower total body water, reduced dehydrogenase activity), women
tend to reach higher blood alcohol levels than men from equivalent
intake and are more prone to harm, even at lower drinking levels
(40, 41). However, males and females revealed no differences in
SYNGAPI DNAm in our cohort.

SynGAP, encoded by SYNGAPI, plays a central role in excitatory
synaptic networks, including the postsynaptic density and NMDAR
complexes, where it regulates excitability and plasticity (13-16, 38, 39).
Because the analyzed CpG site is located in the promoter region, higher
DNA methylation could suppress SYNGAPI expression (42, 43),
possibly leading to reduced SynGAP protein and downstream
signaling changes involving Ras/Rab/Rap, ERK, and AMPAR
insertion (15, 17, 18, 20-22, 44). This may hypothetically resemble
chronic ethanol effects, which have been linked to altered NMDAR
activity, AMPAR expression, and increased hippocampal excitability in
rodents (45-52). These interpretations remain highly speculative and
require direct experimental validation. While direct evidence linking
SYNGAPI DNAm to AUD symptoms remains limited, dysregulation
of synaptic gene methylation is increasingly recognized in AUD
pathophysiology (53, 54). Studies have shown that alcohol exposure
alters DNA methylation in genes related to synaptic function and
neuronal communication, which may influence AUD-related
behaviors (55). Although SYNGAPI methylation itself has not been
extensively studied in the context of AUD, its role in synaptic plasticity
suggests potential involvement in molecular mechanisms underlying
addiction and symptom severity. Further targeted studies are
warranted to explore SYNGAPI methylation changes in AUD and
their clinical implications.
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Epigenetic marks vary fundamentally between individuals and
different somatic tissues (56, 57). The choice of tissue and cell type
to analyze in order to provide robust information about epigenetic
mechanisms concerning the respective research object is substantial
and challenging (38). In an online tool created by Hannon et al., a trend
of correlation between SYNGAPI DNAm in blood and the prefrontal
cortex was displayed (r = 0.219, p = 0.061 (58)). The prefrontal cortex is
especially intertwined in the neurocircuitry of addiction and it is
ascribed a central position in the controlling of craving (59).
Simultaneously, its activation decreases and impedes decision making
and self-regulation (59). Therefore, a neuronal activation during
craving would be correlated with an increase in SYNGAPI DNAm,
which would enable glutamatergic activity. This is coherent with our
finding of a significantly higher SYNGAPI DNAm in blood of patients
compared to control individuals and substantiates the potential as a
possible diagnostic biomarker. However, as we, as well as Briickmann
et al. (2017), examined peripheral tissues, we are not able to draw final
conclusions on the regulation of SYNGAPI in the brain of AUD
patients through differential DNAm. A potentially tissue dependent
epigenetic regulation of SYNGAPI is supported by our findings in
saliva, where we did not identify any effects of AUD on SYNGAPI
DNAm. Although in an earlier study, an impact of hazardous drinking
behavior on DNA methylation was observed in saliva (60), SYNGAPI
sites were not among the differentially methylated CpG sites. We
therefore conclude that SYNGAPI DNAm in saliva cannot be used as a
biomarker for AUD diagnosis or therapy outcome. However, saliva
DNA methylation analysis faces unique technical challenges, including
contamination with bacterial DNA, DNA fragmentation, and
variability in cell types, which can affect data quality and sensitivity.
Therefore, technical limitations may contribute to the null findings for
SYNGAPI methylation in saliva, warranting cautious interpretation
and further methodological refinement.

Interestingly, Briickmann et al. restricted their analyses to
smokers and observed different SYNGAPI methylation patterns.
Smoking is known to exert widespread epigenetic effects, including
changes in DNA methylation across multiple loci (Zillich 2022),
which could interact with or mask alcohol-related methylation
signals. Thus, differences between studies may partly reflect the
inclusion of non-smokers in our sample, highlighting a potential
modulatory role of smoking on SYNGAPI DNA methylation.

Taken together, this study has several limitations: Given the
small sample, the study was likely underpowered to detect effects of
small magnitude. Additionally, sample size (especially of patients)
decreased from T1 to T2, leading to reduced sample sizes over time.
While the longitudinal mixed models applied can accommodate
missing data, the smaller numbers remain a limitation for post hoc
comparisons of change between time points. Moreover, the AUD
patient group and the healthy control group were not properly
matched concerning age and sex. Although we have examined these
variables for their potential to confound our results in a mixed-
effects model, hidden effects cannot be excluded. In addition,
smoking was assessed as a binary yes/no variable, which may
have obscured differences in intensity, duration, or recency of use.
This simplification could reduce statistical power, mask dose-
response relationships, and introduce residual confounding.
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Furthermore, smoking status largely overlapped with AUD status.
Therefore, it is not possible to distinguish between AUD and
smoking and the effects of these variables on SYNGAPI DNAm.
In order to tackle this problem within our data, we included not
only smoking status, but also the interaction of smoking and AUD
status (to analyze potential additive or interactive effects) in our
linear mixed-effects models, which did not reveal any notable effect.
Moreover, in this study, cell-type composition measures were not
available for the blood or saliva samples analyzed. As methylation
levels can vary substantially across cell types, this represents a
potential confounding factor that may influence interpretation of
DNA methylation results. While computational deconvolution
methods exist for genome-wide methylation data, they are not
applicable for targeted, single-gene methylation assays due to
limited coverage. Therefore, the effects of cell-type heterogeneity
could not be directly assessed or corrected in our analyses. The
SYNGAPI DNA methylation differences observed in our study
(~1%) are substantially smaller than the 6% reported by
Briickmann et al., which may limit their potential functional
impact; however, a 1% difference in DNAm is small but not
necessarily negligible, as its significance depends on CpG location,
tissue/cell type, and the biological context of the gene, and for
dosage-sensitive neural genes even minor changes could
theoretically influence protein levels and downstream signaling.
Moreover, gene expression underlies a complex network of
regulatory factors (61) of which DNAm represents only one (62).
Unfortunately, literature has been limited to gene expression or
DNAm of SYNGAPI. Investigations into additional mechanisms
related to SYNGAPI expression represent a necessary topic of
research to provide a more complete picture of its regulation in
general and specifically in association with alcohol consumption
and AUD.

In conclusion, differential DNAm of SYNGAPI could not be
reliably validated in comparison to the previous study of
Briickmann et al. (13) in whole blood, although differential
methylation levels were observed when not including potential
confounding factors. When extending the analysis to saliva, we
observed no differences in SYNGAPI DNAm comparing AUD
patients and healthy control individuals. We neither observed an
effect of withdrawal therapy on SYNGAPI DNAm in whole blood,
nor in saliva. As the effects in blood were small and there were no
effects in saliva, we conclude that SYNGAPI DNAm provides
restricted potential as a biomarker for AUD diagnosis — perhaps
as part of a panel - but not therapy. An important challenge for
future studies is the identification of biomarkers with stronger
effects in sample materials that meet the requirement for both
informative value and convenient access and analysis.
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