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Chinese Preventive Medicine Association, Sydney, NSW, Australia
Objective: To identify and characterize overlapping genes and pathways linking

Depression and Sleep Apnea Syndrome (SAS).

Methods: A three-level analysis was conducted. Clinically, depression severity in

29 SAS patients was assessed using the Zung Self-Rating Depression Scale.

Molecularly, an AI-driven literature mining approach was applied to extract

gene–disease associations from PubMed and bioinformatics databases (19,924

genes), with prioritization using the Adjusted Binomial Method and validation via

differential expression analysis. Functionally, shared genes were explored

through protein–protein interaction (PPI) networks, enrichment analysis, and

directional pathway modeling.

Results: Clinically, 62.07% of SAS patients exhibited depressive symptoms, with

mild to moderate severity based on the Zung Self-Rating Depression Scale.

Molecularly, 872 genes were found to be shared between 4,544 Depression-

related and 1,197 SAS-related genes (OR = 11; p = 4.95 × 10-319). Further

prioritization identified 24 overlapping genes with strong enrichment (OR =

10.9; p = 3.32 × 10-16), supported by validation in multiple gene expression

datasets. These genes formed a densely connected protein–protein interaction

network (238 edges; density = 0.43; clustering coefficient = 0.87), with core hubs

including CASP3, TP53, SOD2, HMOX1, and MIR146A. Enrichment analysis

highlighted involvement in oxidative stress, ferroptosis, and inflammatory

pathways. Directional pathway modeling indicated that SAS may influence

Depression via 18 genes and vice versa via 5 genes, with MIF and SOD2 acting

as shared regulators.

Conclusion: This study reveals significant clinical and molecular links between

Depression and SAS, identifying shared biological pathways and candidate

targets for integrated therapeutic strategies.
KEYWORDS

depression, sleep apnea syndrome, adjusted binomial method, pathways,
genetic connection
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1 Introduction

Depression is a prevalent mental health disorder marked by

persistent sadness, loss of interest or pleasure, and a range of

cognitive and physical symptoms such as fatigue, sleep and appetite

disturbances, and impaired concentration, all of which substantially

impair daily functioning (1, 2). Affecting approximately 5% of the

global adult population—around 280 million individuals—it occurs

more frequently in women than in men (2, 3). Depression often

coexists with other mental disorders, including anxiety and substance

use disorders (4, 5), as well as with chronic physical illnesses such as

cardiovascular disease, diabetes, and cancer, compounding disease

burden and worsening health outcomes (6). Similarly, Sleep Apnea

Syndrome (SAS), particularly obstructive sleep apnea (OSA), is a

prevalent sleep-disordered breathing condition characterized by

recurrent upper airway obstruction during sleep, leading to

intermittent oxygen desaturation and sleep fragmentation (7, 8).

Globally, SAS affects approximately 2–4% of adults, with higher

prevalence in men and individuals with obesity or hypertension (7,

8). Untreated SAS could significantly elevate the risk of cardiovascular

diseases, including hypertension, stroke, and myocardial infarction

(9). These findings are consistently supported by clinical,

epidemiological, and guideline-based evidence (7, 9).

Depression and SAS are both prevalent conditions that

significantly impact overall well-being, and growing evidence

suggests they often co-occur and may exacerbate one another.

Emerging research highlights a potential genetic link between the

two, indicating that shared genetic factors may contribute to their

comorbidity. Genetic predispositions to obstructive sleep apnea

(OSA), the most common form of SAS, have been associated with

increased risk for a range of health issues, including mood disorders

like depression (10, 11). Furthermore, studies have shown a

significant association between sleep disorders—including SAS—

and depressive symptoms, suggesting a possible bidirectional

relationship (12, 13). Genetic polymorphisms, such as those in

the MTHFR gene, have also been linked to depression, providing

further support for a shared genetic basis (14). These findings

underscore the importance of further research into the genetic

mechanisms that underlie the co-occurrence of depression and SAS.

Current research has identified genetic factors associated with

depressive and SAS independently; however, the shared genetic

basis between these two conditions remains largely underexplored.

For example, genetic variants such as the A allele of the rs6311

polymorphism have been associated with severe depressive

symptoms, indicating a genetic influence on depression (15).

Similarly, the severity of OSA, the most common form of SAS,

has been linked to altered expression of circadian clock genes,

suggesting a genetic component in SAS as well (16). Despite these

advances, little is known about the overlapping genetic risk factors

between MDD and SAS. This gap underscores the need for further

research to uncover potential shared genetic pathways. A better

understanding of these shared mechanisms could illuminate the

biological underpinnings of their comorbidity and support the

development of more targeted and effective therapeutic strategies.
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This study investigates the genetic and molecular overlap

between Depression and SAS to better understand their

comorbidity and uncover shared biological mechanisms. While

prior studies have explored each disorder independently, few have

systematically addressed their intersection at the molecular level. To

fill this gap, we employ a comprehensive, large-scale strategy

combining AI-driven literature mining of nearly 20,000 genes,

independent validation through gene expression datasets, and

advanced network/pathway modeling. This integrative approach

allows us to prioritize biologically relevant genes, identify shared

pathways, and model potential bidirectional regulatory mechanisms

between Depression and SAS. Our findings aim to provide novel

insights that support personalized diagnostics and therapeutic

development for individuals affected by both conditions.
2 Methods and materials

This study employed a three-level analytical framework to

investigate the association and shared biological mechanisms

between depression and SAS. At the clinical level, we assessed

depression severity in SAS patients using the Zung Self-Rating

Depression Scale (SDS) to establish the prevalence of comorbid

depression. At the molecular level, we performed AI-assisted

literature mining and gene expression analysis to identify and

prioritize genes associated with both conditions, using the

Adjusted Binomial Method (ABM) and differential expression

testing. Finally, at the functional level, we conducted enrichment

analyses, protein–protein interaction (PPI) network construction,

and pathway modeling to explore shared biological functions and

mechanisms underlying the observed comorbidity. This multilevel

design bridges clinical observations and molecular insights to

uncover potential therapeutic targets and biological links between

SAS and depression.
2.1 Clinical study between SAS and
depression

2.1.1 Participant recruitment and eligibility criteria
From 2018 to the present, approximately 500 individuals

underwent comprehensive sleep monitoring at our hospital.

Among them, 250 participants were diagnosed with SAS, defined

by an apnea–hypopnea index (AHI) >5 events/hour. To minimize

selection bias and avoid subjective intervention, 40 participants

were randomly selected from this eligible pool and invited to

complete a depression assessment using the Zung Self-Rating

Depression Scale (SDS). After informed consent was obtained, 29

participants returned completed questionnaires and were included

in the final analysis. Clinical parameters such as age and sex were

recorded and included in the analysis to monitor their potential

influence on the results. The study protocol was approved by the

Ethics Committee of Shanghai Jing’an Shibei Hospital (Approval

ID: 2021422-03).
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2.1.1.1 Inclusion criteria

Participants met established diagnostic criteria for SAS, with

AHI >15 events/hour; were able to undergo full overnight

polysomnography (PSG); and, for those in the intervention group

(e.g., receiving BiPAP therapy), adherence was defined as wearing

the device for ≥4 hours per night on at least 5 nights per week,

accounting for ≥70% of the total treatment time.

2.1.1.2 Exclusion criteria

Individuals were excluded if they had other pulmonary

conditions such as pneumothorax, bronchial asthma, pleural

effusion, or malignancy; comorbidities severely affecting quality of

life including advanced heart, liver, or kidney dysfunction;

hematological disorders involving thrombosis, embolism, or

coagulation abnormalities; anatomical airway obstructions (e.g.,

nasal blockage, pharyngeal stenosis, tonsillar hypertrophy,

macroglossia) likely to cause snoring or upper airway blockage;

contraindications to PSG monitoring; or if they were using long-

term sedatives, analgesics, or had psychiatric conditions that could

interfere with study participation.

2.1.2 Detection metrics and analysis
Zung’s self-rating depression scale (SDS) served as a direct

indicator of patients’ depressive experiences over the week

preceding their enrolment in the study (17). The scale comprises

20 items, each rated on a 4-point scale. In this framework, 10 items

are scored positively, whereas the other 10 are scored in reverse. The

raw score is calculated by summing the scores of all 20 items, and

this total is then multiplied by 1.25. The integer part of the resulting

product is taken as the standard score. Based on the Chinese norm,

a standard score of ≥ 53 indicates depression, with the severity

increasing along with the score. More precisely, a score of 53–62

points indicates mild depression, 63–72 denotes moderate

depression, and ≥ 73 indicates severe depression.

Measurement data were expressed as the mean ± SE of the

mean. Multi-way ANOVA was employed to analyze the risk factors

associated with depression in these patients, including Age, Sex, and

severity level of Obstructive Sleep Apnea (OSA). A P value < 0.05

was considered statistically significant.
2.2 Disease-gene mining and analysis

2.2.1 Disease-gene identification
To identify genes potentially associated with depression and

SAS, a large-scale literature mining process was performed,

covering 19,924 human genes. Two primary tools were used for

data retrieval: the Entrez API (www.ncbi.nlm.nih.gov/Entrez/),

which provides automated access to biomedical literature in

PubMed, and the AIC Bioinformatics Toolbox (ABT:

www.gousinfo.com/en/userguide.html), an AI-powered platform

that extracts gene–disease relationships from a proprietary

literature database (ABD) as well as public sources like PubMed.

Retrieved information—including article titles, publication dates,

PMIDs, DOIs, and abstracts—was organized into a structured Excel
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file for downstream analysis. Both tools enabled efficient large-scale

extraction of relevant literature, supporting the identification of

candidate genes based on published evidence.

2.2.2 Gene prioritization using adjusted binomial
method

To evaluate the reliability of each gene–disease association

identified through literature data mining (LDM), we applied the

Adjusted Binomial Method Algorithm (ABMA). This statistical

approach accounts for both the volume of supporting literature

and the consistency (or polarity agreement) of reported

associations. The method calculates a confidence score for each

gene–disease pair based on its observed literature evidence.

To control for multiple testing and reduce the likelihood of false

positives, we applied a False Discovery Rate (FDR) correction,

selecting only those associations with an FDR adjusted p-value ≤

0.05. This filtering step allowed us to retain statistically significant

and biologically plausible gene–disease links for downstream

functional and network analyses (18).

The statistical significance was assessed using the following

formula:

  p − value =   P(X   ≥   np)   =   binom : sf (np  −   1,  N ,   p0)

where binom.sf is the survival function of the binomial

distribution, np is the observed number of positive polarity

findings, N is the total number of polarity-adjusted observations,

and   p0 is the expected null proportion under random association.

2.2.3 Using gene expression data analysis
For the overlapping genes identified through the literature data

mining (LDM) process, we conducted an independent gene

prioritization step based on gene expression analysis. Specifically,

genes were prioritized if they showed statistically significant

expression differences (p-value ≤ 0.05 and effect size ≤ -1 or ≥ 1)

in any of the selected case–control datasets. This step was

independent of the ABM-based literature evaluation.

The selection criteria for gene expression datasets were as

follows: 1) The dataset must be based on a case–control study

design. 2) Both the expression data file and the corresponding

platform annotation file must be fully available for download.

Table 1 lists all the datasets used for the both diseases, including

24 depression datasets and 4 SAS datasets.

For each dataset, gene expression levels were log2-transformed.

One-way ANOVA was then applied to compare the expression

levels of each gene between the case and control groups, with both

p-values and effect sizes calculated. Given the limited number of

genes tested (n = 24), false discovery rate (FDR) correction was

deemed unnecessary.
2.3 Cross-disease gene analysis

2.3.1 Overlap analysis
Gene lists associated with Depression and SAS were compared

to identify both unique and overlapping genes. Fisher’s exact test
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was applied to evaluate the statistical significance of the observed

overlap. To visualize the intersection, a Venn diagram was

generated. While comparisons were made using both the full set

of disease-associated genes and the subset of prioritized genes,

subsequent analyses focused primarily on the prioritized gene set.

Notably, for each disease, the prioritized genes included those

identified as statistically significant either through ABM analysis

or gene expression analysis.

2.3.2 Functional analysis
To better understand the shared biology between depression

and SAS, we performed functional annotation and Protein-Protein

Interaction (PPI) network analysis on the overlapping genes.

For Functional Annotation, we used the DAVID database

(https://david.ncifcrf.gov) to identify enriched biological

processes, cellular components, molecular functions (via GO

terms: GOTERM_BP_DIRECT, GOTERM_CC_DIRECT, and

GOTERM_MF_DIRECT), and known pathways (BBID,

BIOCARTA, and KEGG_PATHWAY). This analysis helps reveal

the biological roles and pathways these genes are involved in.

For Protein-Protein Interaction (PPI) Network Analysis, we

built a PPI network using experimentally validated and literature-

supported interactions. We then analyzed the network structure

using key topological measures: Network density; Average path

length; Clustering coefficient; Diameter; and Centrality measures.

Genes that ranked highly across these centrality metrics were

considered hub genes, which may play critical roles in the shared

disease mechanisms. We further analyzed these hub genes for

enriched biological functions.

2.3.3 Pathway analysis
To investigate possible biological pathways connecting Depression

and SAS, we constructed a directed gene network based on literature

polarity data extracted during the AI-driven literature mining process.

Specifically, directional relationships were inferred from curated

PubMed abstracts and full texts that reported positive or negative

associations between genes and diseases. This polarity information

reflects whether the literature supports an upregulating,

downregulating, or neutral effect between entities. The directional

model was constructed using only statistically significant gene–disease

associations (q ≤ 0.05) with clearly defined polarity. The resulting

network focused on overlapping genes significantly associated with

both Depression and SAS, providing insight into potential bidirectional

regulatory mechanisms.

We integrated known or inferred gene-gene interactions to

form directional paths—such as depression → Gene A →SAS—
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which represent potential biological routes through which one

disease may influence the other. This network highlights

candidate pathways and hub genes that may mediate cross-

disease effects and serve as targets for further study.
3 Results

3.1 Clinical depression assessment in SAS
patients

Out of the 29 patients diagnosed with SAS, 11 (37.93%) exhibited

no signs of depression (SDS score: 44.20 ± 9.04), 14 (48.28%) were

classified withmild depression (SDS score: 56.70 ± 2.33), and 4 (13.79%)

with moderate depression (SDS score: 64.06 ± 2.37), as illustrated in

Figure 1. No cases of severe depression were observed. Overall, 62.07%

of SAS patients demonstrated clinically relevant depressive symptoms,

suggesting a substantial comorbidity burden and supporting a potential

association between SAS and depression severity.

Multi-way ANOVA analysis was conducted to assess the

influence of age, sex, and obstructive sleep apnea (OSA) severity

on depression levels among SAS patients. The results showed that

neither age (F(15) = 0.941, p = 0.564) nor sex (F(1) = 0.352, p =

0.570) had a statistically significant effect on depression scores (see

Table 2). OSA severity level demonstrated a marginal association

with depression (F(2) = 3.847, p = 0.068), suggesting a possible

trend that warrants further investigation with a larger sample size.
3.2 Disease-gene identification and
comparison results

Among a total of 19,924 genes, the AI-driven literature mining

approach identified 4,544 genes linked to Depression, supported by

11,141 references (Supplementary Table S1), and 1,197 genes linked

to SAS, supported by 2,769 references (Supplementary Table S2). Of
TABLE 1 Gene expression datasets used for the gene prioritization.

Disease GEO list

Depression
GSE114852; GSE12654; GSE32280; GSE35974; GSE35977; GSE35978; GSE39653; GSE44593; GSE45603; GSE46743; GSE53987; GSE54562; GSE54563;
GSE54564; GSE54565; GSE54566; GSE54567; GSE54568; GSE54570; GSE54571; GSE54572; GSE54575; GSE92538; GSE98793

Sleep
Apnea
Syndrome

GSE2271; GSE7224; GSE21409; GSE38792
TABLE 2 Multi-way ANOVA analysis of risk factors for depression level.

Factors sum_sq df F PR(>F)

Age 781.430 15.0 0.941 0.564

Sex 19.471 1.0 0.352 0.570

OSA level 426.042 2.0 3.847 0.068

Residual 443.029 8.0 NaN NaN
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these, 872 genes were shared between the two disorders. As

illustrated in Figure 2A, this overlap is highly significant, with a

Fisher’s exact test revealing an odds ratio (OR) of 11 and a p-value

of 4.95 × 10-319 (Figure 2), indicating a substantial enrichment of

common genes between Depression and Sleep Apnea Syndrome.

In addition to the overall gene overlap, a focused analysis on

statistically significant genes (p-value ≤ 0.05) revealed 261 genes

associated with Depression and 205 genes associated with SAS, with

24 genes overlapping between the two conditions, as shown in
Frontiers in Psychiatry 05
Figure 2B. Details of gene list in Figure 2B are provided in

(Supplementary Table S3). This overlap demonstrated a strong

enrichment, with an odds ratio of 10.9 and a p-value of 3.32 × 10-16

(Table 3). Notably, the relevance of these genes is further supported by

gene expression data: 13 of the 261 Depression-associated genes were

validated in three gene expression datasets (GSE182195; GSE54562;

GSE54570), while 148 of the 205 SAS-associated genes were

confirmed across four datasets (GSE7224; GSE38792; GSE21409;

GSE2271), underscoring the robustness of these findings.
FIGURE 1

Box plot of Zung self-rating depression scale (SDS) scores among 29 patients with Sleep Apnea Syndrome (SAS). Group 0, no depression; Group 1,
mild depression; Group 2, moderate depression.
FIGURE 2

Venn diagrams illustrating the overlap between genes associated with Depression and Sleep Apnea Syndrome. (A) Overlap based on all identified
disease-related genes. (B) Overlap based on statistically significant disease-related genes (p-value ≤ 0.05 for both gene expression analysis and
Adjusted Binomial Method (ABM) analysis).
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The 24 significant overlapping genes identified for further

analysis are: CAMK2B, CASP1, CASP3, CD27, CX3CR1, EGR2,

ESR1, FOXP3, GCLC, GLS, GPX4, GSK3B, HGS, HMOX1, MC4R,

MIF, MIR146A, NFE2L2, NOD2, SFN, SOD2, TET1, TNXB, and

TP53, as detailed in the subsequent sections.

Many of these overlapping genes have well-established roles in

biological processes relevant to both Depression and SAS. For instance,

TP53 is a master regulator of cellular stress responses, including

apoptosis and oxidative stress, which are commonly dysregulated in

neuropsychiatric and metabolic disorders. CASP3, a central

executioner in the apoptotic pathway, is implicated in

neuroinflammation and neuronal cell death, processes shared by

both conditions. Other genes such as SOD2 and GPX4 are involved

in antioxidant defense mechanisms, while MIR146A regulates immune

responses. These examples illustrate that the shared gene set is not only
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statistically enriched but also biologically meaningful, supporting the

hypothesis of converging molecular pathways in Depression and SAS.
3.3 PPI analysis

PPI network analysis of 24 genes revealed a highly dense and

cohesive network connected by 238 edges (Figure 3). The network

exhibited a high density of 0.43, a short average path length of 1.52, a

clustering coefficient of 0.87, and a diameter of 2, indicating a compact

structure with substantial interconnectivity. The network formed a

single connected component, underscoring a tightly integrated

module potentially involved in shared molecular functions.

Centrality analysis identified several hub genes with prominent

network roles.
TABLE 3 Venn diagram statistics for overlapping genes among three diseases.

Gene Category Source Disease Target Disease #genes Source #genes Target Overlap Odds ratio
p-

value

All genes Depression SAS 4544 1197 872 11 4.95E-319

Significant Genes
(p-value ≤0.05)

Depression SAS 261 205 24 10.9 3.32E-16
fro
For significant genes, the observed overlap is further supported by gene expression analysis. Specifically, 13 of the 261 Depression-associated genes were validated in three gene expression
datasets, while 148 of the 205 SAS-associated genes were validated in four gene expression datasets.
FIGURE 3

PPI network of overlapping genes between depression and sleep apnea syndrome.
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Fron
• CASP3, TP53, HMOX1, NFE2L2, and SFN displayed high

in-degree centrality (≥0.65), suggesting they are key

recipients of interactions.

• Genes such as SOD2, TP53, MIR146A, FOXP3, GPX4, MIF,

and GLS exhibited high out-degree centrality (≥0.6),

indicating broad regulatory influence.

• Although betweenness centrality values were generally low,

CASP3 (0.09), TP53 (0.07), and SOD2 (0.05) stood out as

potential signal mediators within the network.

• Eigenvector centrality highlighted CASP3, TP53, SOD2,

GPX4, GSK3B, and HMOX1 (≥0.24) as influential nodes

connected to other highly connected genes.
Together, these metrics designate CASP3, TP53, SOD2,

HMOX1, and MIR146A as core hub genes, likely contributing to

the functional backbone of the network. Further pathway and

functional enrichment analysis of these key genes is presented in

the following section.
3.4 Functional annotation analysis results

To explore the biological functions of the 24 significant

overlapping genes between Depression and SAS, we performed

functional enrichment analysis (as described in the Methods).

This analysis revealed nine significantly enriched pathways or

functional categories (Figure 4), primarily related to oxidative

stress, ferroptosis, and cancer-associated processes. Key terms

included “response to oxidative stress” (GO:0006979, Bonferroni-

adjusted p = 0.0108), “ferroptosis” (KEGG hsa04216, Bonferroni-

adjusted p = 0.0237), and “lipid and atherosclerosis” (KEGG

hsa05417, Bonferroni-adjusted p = 0.00195). Several genes—such

as TP53, NFE2L2, HMOX1, GPX4, and GSK3B—were involved in

multiple enriched terms, suggesting their key roles in stress

response and disease-related pathways.
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3.5 Pathway connecting depression and
SAS

Functional pathway analysis revealed a bidirectional regulatory

relationship between Depression and SAS through a shared set of

functionally relevant genes (Figure 5). Depression positively

regulates key genes such as NFE2L2 (10 references; q = 0.0052)

and HMOX1 (3 references; q = 0.0326), both of which are involved

in oxidative stress responses. Depression also negatively regulates

EGR2 (3 references; q = 0.0326), MC4R (3 references; q = 0.0326),

and SOD2 (5 references; q = 0.0036), indicating its suppressive

effect on metabolic and redox-related pathways.

These genes, in turn, are significantly altered in SAS. For

example, FOXP3 (9 references; q = 0.00033), SOD2 (9 references;

q = 0.00033), and GPX4 (4 references; q = 0.0061) are strongly

downregulated in SAS, while MIF is highly upregulated (8

references; q = 3.32 × 10-5). This pattern suggests that SAS and

Depression influence a common network of genes that mediate

inflammation, oxidative stress, and immune regulation.

The reciprocal regulation of genes such as MIF, SOD2, and

GPX4 supports the existence of a Depression → gene → SAS

feedback mechanism, where Depression-driven gene dysregulation

may contribute to SAS pathophysiology, and vice versa. The

consistent polarity and significant q-values observed across these

pathways highlight shared molecular mechanisms between the two

disorders. However, we emphasize that these should be interpreted

as hypothesis-generating and not as definitive mechanistic

pathways. Experimental validation is required to confirm these

proposed gene-mediated influences.
4 Discussion

This study provides integrated clinical and molecular evidence

supporting a strong bidirectional relationship between Depression
FIGURE 4

Functional enrichment analysis for overlapping genes associated with both depression and sleep apnea syndrome.
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and SAS. Clinically, 62.07% of SAS patients exhibited depressive

symptoms, reinforcing their comorbidity. Molecularly, AI-assisted

literature mining identified 872 genes shared between the two

conditions—a highly significant overlap (odds ratio = 11, p = 4.95

× 10-319) that aligns with prior associations between sleep

disturbances and mood disorders (10, 11). The 24 statistically

prioritized overlapping genes, especially TP53, CASP3, SOD2,

HMOX1, and MIR146A, formed a tightly connected protein

interaction network and were enriched in pathways related to

oxidative stress, ferroptosis, and inflammation. These hub genes

are known mediators of cellular stress, apoptosis, and immune

regulation, suggesting they may serve as molecular links between

SAS-related hypoxia and depression-related neuroinflammation.

While previous research has explored the relationship between

Depression and various other disorders (19, 20), as well as the

association of SAS with conditions such as asthma (21), our study is

the first to systematically investigate the molecular and clinical link

between Depression and SAS.

Our study primarily focuses on the association between

Depression and SAS at the genetic level. As illustrated in

Figure 5, SAS may influence the pathology of Depression through

the regulation of 18 genes, while Depression may affect SAS via 5

genes. Notably, MIF and SOD2 are shared between the two

conditions. These genes form a significantly interconnected

network, as revealed by protein–protein interaction (PPI)

analysis, with central hub genes identified as CASP3, TP53,
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SOD2, HMOX1, and MIR146A. These findings represent

plausible directional hypotheses derived from curated gene–

disease polarity data, and future experimental work is needed to

test these relationships.

While a detailed discussion of each gene’s role is beyond the

scope of this section, we highlight CASP3 and TP53 as

representative examples. In SAS, chronic intermittent hypoxia—a

hallmark of obstructive sleep apnea (OSA)—has been shown to

increase levels of cleaved caspase-3, promoting neuronal apoptosis

and cognitive impairment, thereby implicating CASP3 in the

pathological effects of SAS on the brain (22). Likewise, in major

depressive disorder (MDD), CASP3 has been identified as a key

therapeutic target, with molecular docking studies supporting its

role in neuroprotection and antidepressant effects (23). This dual

involvement suggests that CASP3 may act as a molecular bridge

linking SAS and depression. Similarly, TP53, a gene central to

apoptosis and oxidative stress, appears to be another shared

molecular mediator. Multiple studies have identified TP53 as a

core target involved in depression pathophysiology and treatment

response [PMID: 40010035]. For instance, network pharmacology

analyses revealed TP53 as a central node modulated by traditional

Chinese medicines such as Xiaoyao pills, baicalin, and

Danzhixiaoyao pills, which exert antidepressant effects possibly

through PIK3/AKT signaling and apoptosis-related pathways

[PMID: 40010035]. In SAS, chronic intermittent hypoxia

upregulates p53 expression, inducing vascular endothelial cell
FIGURE 5

Pathway connecting depression and sleep apnea syndrome. Green edges represent positive associations, red edges indicate negative associations,
and black edges denote associations with unknown polarity.
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senescence and contributing to vascular aging and cardiovascular

risk [PMID: 38168028]. Moreover, SAS triggers apoptosis in

neuronal and myocardial tissues via caspase activation [PMID:

39694586, 37037067], implicating upstream regulators such as

TP53. Together, these findings support a model in which SAS

may contribute to depression by modulating TP53- and CASP3-

mediated apoptotic pathways.

An association between Depression and SAS is also evident at

the cell process level, involving interconnected inflammatory,

oxidative, and hormonal mechanisms. For example, intermittent

hypoxia in SAS triggers systemic inflammation and oxidative

damage, which in turn may exacerbate depressive symptoms (24).

Additionally, GSK3B links mood regulation and metabolic

processes, suggesting its role in hormonal and stress-related

dysfunction (25). Genetic predisposition further contributes to

this comorbidity; variants in genes involved in inflammatory and

stress-response pathways are enriched in individuals with both

disorders (21), and immune system genes activated by hypoxia

are implicated in sustained inflammation in SAS (26). Hormonal

dysregulations—particularly involving cortisol and leptin—also

bridge the two conditions by affecting both mood and sleep

regulation (27). Altogether, these findings suggest that the

cellular-level interplay among oxidative stress, immune activation,

genetic susceptibility, and hormonal imbalance forms the

mechanistic basis of the comorbidity between MDD and SAS.

An association between Depression and SAS is also evident at

the organ and tissue level, involving the brain, cardiovascular

system, and respiratory system. In the brain, MDD regulates

genes such as NFE2L2 and HMOX1, which are crucial for

mitigating oxidative stress, while SAS influences genes like

FOXP3, SOD2, and GPX4, suggesting a shared molecular

network that contributes to neuroinflammation and altered

neurotransmitter function. This interaction may underlie the

cognitive and emotional symptoms observed in both conditions,

further supported by evidence that SAS disrupts brain network

connectivity and respiratory regulation (10). In the cardiovascular

and respiratory systems, SAS leads to intermittent hypoxia and

sympathetic nervous system activation, increasing the risk of

hypertension, ischemic heart disease, and cardiac remodeling—

pathways that are also influenced by MDD through chronic

inflammation and oxidative stress (28). Similarly, in the lungs,

SAS contributes to inflammation and fibrosis via chronic

intermittent hypoxia, processes that may be exacerbated by

MDD-related neuroimmune dysregulation (29). Adipose tissue

also plays a key role in the MDD–SAS connection, as obesity—

common in SAS—is associated with systemic inflammation and

metabolic disturbances that can intensify depressive symptoms

(30). Altogether, the convergence of dysregulated processes across

the brain, heart, lungs, and adipose tissue highlights a complex,

systemic interaction between MDD and SAS, underscoring the

importance of integrated therapeutic strategies that target these

interconnected organ systems and molecular pathways.
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This study leverages an AI-driven literature mining approach

combined with rigorous statistical filtering via the Adjusted

Binomial Method (ABM) to identify a significant overlap of genes

associated with Depression and SAS. The ABM accounts for both

the volume and polarity consistency of literature evidence,

enhancing confidence in gene–disease associations. The

integration of independent gene expression analysis across

multiple case–control datasets provides an additional layer of

validation, increasing the robustness and biological plausibility of

the findings. Furthermore, PPI network analysis reveals a highly

interconnected module of core hub genes, and functional

enrichment analysis identifies key shared pathways—such as

oxidative stress and ferroptosis—offering a comprehensive

understanding of the molecular mechanisms linking the

two disorders.

Despite these strengths, this study has several important

limitations. First, the clinical findings are based on a relatively

small cohort (n = 29), which limits statistical power and may reduce

the generalizability of the observed comorbidity between

Depression and SAS. As such, the clinical results should be

interpreted as preliminary and hypothesis-generating, pending

validation in larger and more diverse populations. Second, the

molecular findings rely on large-scale literature-based mining,

which is inherently constrained by the scope, quality, and

reporting biases of the available published literature. Although the

Adjusted Binomial Method (ABM) and independent gene

expression datasets were employed to improve robustness, the

literature-derived associations are limited to gene-level links and

may not reflect upstream regulatory dynamics, epigenetic

influences, or non-coding RNA involvement. Third, while our

pathway and network analyses provide insight into potential

shared mechanisms, the directionality inferences are based on

literature polarity and not on direct mechanistic experiments.

Furthermore, none of the identified hub genes or pathways have

been experimentally validated in this study.

To strengthen biological relevance and clinical applicability,

future research should incorporate in vivo or in vitro functional

experiments—such as animal models or gene perturbation studies

—to validate key genes and pathways. Additionally, longitudinal

clinical cohorts and intervention-based studies (e.g., CPAP therapy

trials in SAS patients with depressive symptoms) could clarify

causal relationships. Integrating multi-omics data, including

transcriptomics, epigenomics, and metabolomics, may also

provide a more comprehensive understanding of the biological

interface between Depression and SAS.
5 Conclusion

This study provides integrated clinical and molecular evidence

supporting a strong comorbidity between Depression and SAS. By

identifying shared genes, enriched biological pathways, and
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polarity-informed directional associations, our findings offer novel

hypotheses regarding their interconnected pathophysiology. While

these results are not yet sufficient to inform clinical practice directly,

they highlight candidate molecular targets and mechanisms that

merit further investigation. These insights lay a foundation for

future studies—such as functional validation, multi-omics

integration, and clinical trials—that may ultimately guide the

development of more personalized approaches to diagnosis

and treatment.
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