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This paper proposes a novel approach for distinguishing Major Depressive
Disorder (MDD) patients from healthy controls (HC), namely depression
screening, using EEG signals, where the Hilbert-Huang Transform (HHT) is
integrated into a Self-Attention neural network (HHT-SANN). The
incorporation of the HHT enhances the model’s time-frequency analysis
capabilities and allows for more effective nonlinear processing of the EEG data.
By embedding the HHT within the self-attention module, the model captures
intricate temporal and spectral patterns that are critical for accurate depression
classification. We evaluated our method on a clinical EEG dataset comprising 34
MDD patients and 30 healthy controls from the Hospital of Universiti Sains
Malaysia. Experimental results indicate that the proposed method achieves an
accuracy of 98.78%, sensitivity of 99.23%, and specificity of 98.27%,
outperforming traditional models and offering a more robust solution for
depression detection. This work contributes to advancing the field of
neuroinformatics by providing a more interpretable and effective model for
mental health diagnostics based on EEG data.

classification, depression, EEG, Hilbert-Huang Transform, Self-Attention
Neural Network

1 Introduction

Depression is a pervasive and debilitating psychiatric disorder affecting hundreds of
millions worldwide, with those experiencing severe major depressive disorder (MDD) at
particularly high risk of suicidal ideation. Objective and reliable screening methods are
therefore critical for early intervention and improved outcomes (1). However, traditional
diagnostics—relying on clinician assessments and self-report questionnaires—are
vulnerable to bias and inconsistency, fueling the search for quantitative biomarkers.
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In this context, compared with fMRI (2, 3) and structural MRI
(4), electroencephalography (EEG) has emerged as a noninvasive,
cost-effective modality with exceptional temporal resolution,
adept at capturing the rapid neural dynamics underlying
depressive pathology.

The efficacy of EEG-based diagnosis, however, hinges critically
on two interdependent pillars: the capability of the classifier and,
just as importantly, the appropriateness of the feature extraction
methodology for uncovering the neural mechanisms specific to the
disorder. EEG signals are inherently non-linear and non-stationary,
reflecting the complex, dynamic nature of brain activity in MDD.
Consequently, the choice of feature extraction is paramount. A
diverse array of approaches has been explored in the literature to
capture these aberrant neural patterns. For instance, studies have
investigated functional connectivity and network properties, such as
spectral coherence (5), domain-specific connectivity (6), and global
EEG connectivity (7), which aim to reveal disorganization in large-
scale brain networks associated with MDD. Others have focused on
complexity measures and nonlinear dynamics to quantify the
irregularity of neural signals (8), or have utilized connectivity
features derived from EEG to predict treatment outcomes (9, 10).

While these methods provide valuable insights, many
conventional feature extraction techniques, including those based
on predefined linear transforms or hand-crafted metrics, may not
fully adapt to the non-stationary and nonlinear characteristics of
EEG in depression. This underscores a pressing need for methods
that can effectively and adaptively model the time-varying,
nonlinear dynamics of brain activity in depressive individuals. For
example, Mumtaz et al. (11) proposed a machine learning method
using pre-treatment EEG to predict SSRI antidepressant outcomes
in MDD. Subsequently, Ke et al. developed an AutoML-based dual-
CNN model for real-time EEG classification in brain e-health,
addressing static models and computational complexity with
autonomously optimized hyperparameters, achieving high
accuracy for MDD and significantly outperforming CapsuleNet
and ResNet-16 (12). More recently, a novel TanhReLU-based
CNN was proposed to address MDD diagnosis challenges using
EEG data, with the hybrid activation function combining Tanh and
ReLU properties to mitigate gradient vanishing and overfitting in
EEG pattern recognition (13). Wang et al. (14) enhanced MDD/BD
classification by integrating clinical and EEG data from 400
patients, using feature engineering and ML models to improve
accuracy, address overfitting, and highlight EEG’s diagnostic value
for precision psychiatry.

The primary motivation for integrating HHT into a deep
learning framework stems from its inherent suitability for
analyzing the non-linear, non-stationary brain dynamics
characteristic of MDD. Unlike methods relying on predefined
basis functions, HHT’s fully adaptive decomposition into Intrinsic
Mode Functions (IMFs) offers a physiologically plausible
representation of EEG signals, enabling direct extraction of
instantaneous frequency and amplitude components beyond
linear assumptions. Our core theoretical contribution lies in
conceptualizing HHT not as a fixed pre-processor, but as an
integrated layer within an end-to-end network. This allows the
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model to learn task-specific time-frequency representations directly
from raw data, optimizing feature extraction for MDD
identification. Thus, this work bridges theoretically-grounded
signal processing for non-stationary data and deep learning’s
pattern recognition capabilities.

While HHT provides meaningful time-frequency representations,
it remains under-explored as an integrated component in deep learning
frameworks (15). Prior implementations often treated HHT as a static
preprocessing step, limiting end-to-end optimization. To address this
gap and better link neural mechanism-informed feature extraction with
classification power, we propose the novel Hilbert-Huang Transform
Embedded Self-Attention Neural Network (HHT-SANN).

In HHT-SANN, the HHT is embedded as a network layer to
learn intrinsic time-frequency components dynamically. It is
complemented by a Squeeze-and-Excitation (SE) module that
adaptively recalibrates feature channels, and a self-attention
mechanism that captures global dependencies in time-frequency
representations. These components collectively form an end-to-end
system that unifies advanced feature extraction rooted in MDD’s
neural substrate with high-performance classification for EEG-
based screening.

To summarize, the main contributions of this study are
as follows:

1. We propose the first deep learning model that integrates
the Hilbert-Huang Transform as a layer for EEG-based
depression classification.

2. We introduce a novel combination of HHT, self-attention,
and channel-wise excitation, enabling the model to learn
adaptive and interpretable time-frequency representations.

3. We validate our method on real-world EEG datasets and
demonstrate its superiority over conventional and state-of-
the-art approaches in terms of classification accuracy
and robustness.

2 Methodology
2.1 Dataset

The EEG dataset used in this study was acquired at the Hospital
of Universiti Sains Malaysia and comprises recordings from 34
patients with Major Depressive Disorder (MDD: 17 males, mean
age 40.3 £ 12.9 years) and 30 healthy controls (21 males, mean age
38.2 + 15.6 years) (11). All participants underwent 5 min of eyes-
closed and 5 min of eyes-open resting-state EEG, recorded via 20
scalp electrodes (Fp1, Fp2, F3, F4, F7, T3, T5, C3, C4, Fz, Cz, Pz, F8,
T4, T6, P3, P4, O1, 02, ECG) placed according to the international
10-20 system at 256 Hz. Exclusion criteria included psychotic
symptoms, pregnancy, alcohol/substance use, smoking, or
epilepsy; controls were screened to confirm the absence of
neurological or psychiatric conditions. EEG data were
preprocessed in BESA to remove artifacts, and two-minute
artifact-free segments from each resting condition were extracted
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using a 1,024-sample (4 s) sliding window, yielding 18,442 total
epochs (9,789 MDD, 8,653 HC).

2.2 Hilbert Huang Transform Layer

This section introduces our proposed model architecture, which
integrates the Hilbert-Huang Transform (HHT) into a deep neural
network for EEG-based depression screening. Our architecture
consists of three main components: a Hilbert Transform Layer,
and a Squeeze-and-Excitation (SE) block, which forms the Self-
Attention module. The overall architecture illustrated in Figure 1 is
designed to learn discriminative, non-linear time-frequency
features from raw EEG inputs in an end-to-end fashion.

In this approach, the HHT layer is implemented as a neural
network layer that applies Empirical Mode Decomposition (EMD)
followed by the Hilbert Transform to the input EEG signal. Each
EEG signal x(t) for each channel (20, 32¥32) is decomposed into a
set of Intrinsic Mode Functions (IMFs) (Equation 1):

x(t) = %IMFi(t) +7(t) (1)
i=1

where N is the number of IMFs and r(t) is the residual signal.

The Hilbert Transform is then applied to each IMF to obtain its
instantaneous amplitude and frequency. The analytic signal h(IMF;
(1)) is defined as Equation 2:

h(IMF;(#)) = IMF;(t) - exp (j - 6,(1)) 2

The instantaneous frequency f;(¢) is computed as Equation 3:

10.3389/fpsyt.2025.1658918

The output of the HHT layer is a time-frequency feature matrix
Xynr that incorporates both channel and temporal information
from the EEG signal.

2.3 Squeeze-and-Excitation block with
HHT

To enhance channel-wise representations, a Squeeze-and-
Excitation (SE) block is incorporated after the HHT layer. Let Fyyr
€ R™C denote the output from the HHT layer, where C'
represents the expanded feature dimension after IMF
concatenation, and T is the number of time points.

Squeeze step: Global average pooling is applied across the
temporal dimension to generate a channel descriptor (Equation 4):

1T
z, = ?EFHHT(L c) (4)
-1

Excitation step: The descriptor z € R® is passed through two
fully connected layers with a ReLU activation followed by a sigmoid
function (Equation 5):

s=0(W, -ReLU(W, - 2)) (5)

c

where W, € ]R%,XC’, w, € RE™ v,, and r is the reduction ratio
controlling the bottleneck compression. The sigmoid function of( -)
ensures the output values lie in the range (0, 1).

Scale: The excitation vector s is broadcast and multiplied
element-wise with the original feature map Fuyr to generate the
recalibrated feature map Fgp in Equation 6:

£(t) = 1 .do® 3) Fgg(t, ¢) = s¢ - Fupr(t, ) (6)
! 2w dt
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FIGURE 1

Model architecture.
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Feature importance comparison.

This operation allows the network to emphasize informative
features and suppress less relevant ones by adaptively adjusting the
importance of each channel.

3 Results

The experiments conducted in this section serve as a validation
and assessment of the classification performance of the proposed
model. Initially, we describe the experimental platform utilized for
these assessments. Finally, the classification effectiveness of the
TanhReLU-based Convolutional Neural Network (CNN) is
evaluated using metrics such as accuracy, sensitivity, and
specificity (see Section 3.2). The experiments were executed on a
desktop equipped with an Intel i7 CPU operating at 3.33GHz, an
Nvidia RTX 1080Ti GPU, 32GB RAM, and running Windows 10.
This system configuration ensured consistent testing conditions
throughout the experiments.

3.1 Feature importance analysis

To quantify the contribution of Hilbert-Huang Transform
(HHT) features compared to original signal features to model
decision-making, this study employed the SHAP (SHapley
Additive exPlanations) method (16, 17) for feature importance
analysis, which illustrated in Figure 2. The specific procedure is as
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follows: using the KernelSHAP explainer (applicable to any model),
one training sample was randomly selected as the background, and
calculations were performed on 10 independent test samples.
Feature importance was quantified by calculating the mean
absolute SHAP value (|[SHAP|) for each channel, with specific
separation of HHT feature channels (containing amplitude and
frequency information) and original signal channels. Finally, the
contributions were compared by calculating the importance ratio R
(R = Mean HHT Feature Importance/Mean Original Feature
Importance). The experimental results show that HHT features
exhibit significantly higher importance than original features, with
the importance ratio R reaching as high as 3.52 2. This fully
demonstrates that HHT features play a dominant role in model

decision-making.

3.2 Performance on identifying MDD

Figure 3 presents the model’s learning curves. As shown, the
training accuracy (red line) rises rapidly within the first few epochs
and approaches 1 (nearly 100%), indicating that the model has
sufficient capacity to fit the training data well. Meanwhile, the
validation accuracy (blue line) also increases quickly at an early
stage and eventually becomes close to the training accuracy,
demonstrating good generalization to unseen data. Both the
training loss and validation loss (green and black dashed lines,
respectively) decrease steadily and converge toward zero, with the
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Learning curve for classifying MDD.

training and validation accuracies remaining highly consistent.
Therefore, the model does not exhibit any obvious signs of
underfitting or overfitting.

Finally, the classification performance of the proposed model
was assessed on the designated test set using a Leave-One-Subject-
Out cross-validation protocol. It achieved an impressive accuracy of
98.78%, along with a sensitivity of 99.23% and a specificity of
98.27%, as summarized in Table 1. Among the baseline approaches,
CapsuleNet demonstrates strong specificity (99.23%) but
comparatively low sensitivity (89.01%), leading to a moderate
overall accuracy of 94.42%. ResNet-16 yields the lowest
performance across all metrics, particularly in specificity
(74.79%), which significantly reduces its classification reliability
(82.26% accuracy). The MLRW method shows balanced but
suboptimal results with 95% sensitivity and 80% specificity.

Our proposed model, both with and without the Hilbert-Huang
Transform (HHT), outperforms all baselines. The ablated version
(without HHT) achieves a notable accuracy of 98.61% and the
highest specificity (99.25%), indicating a strong ability to correctly
identify negative cases. However, the full version of our model (with
HHT) achieves the highest sensitivity (99.23%) and the best overall
accuracy (98.78%), demonstrating improved detection of positive
cases and overall classification robustness.

TABLE 1 Comparative analysis of the performance between the
proposed methodology and existing state-of-the-art approaches.

Sensitivity

Specificity Accuracy

Approach %) (%) (%)

CapsuleNet (13) 89.01 99.23 94.42
Resnet-16 (13) 88.9 7479 8226
MLRW 95 80 875
Our(without 98.05 99.25 98.61
HHT)

Our 99.23 98.27 98.78

Bold indicates the optimal value for each performance index.
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This comparison highlights the benefit of incorporating the HHT
module, which effectively enhances the model’s sensitivity while
maintaining high specificity. The trade-off between the two
versions of our model reflects a subtle balance between reducing
false negatives and false positives, which is crucial in clinical
applications where missed detections can have serious consequences.

4 Discussions and conclusions

Importance of HHT: Quantitatively, our model achieved
98.78% test accuracy (sensitivity 99.23%, specificity 98.27%),
outperforming conventional baselines (see Table 1). In particular,
incorporating the HHT layer boosted sensitivity from 98.05% to
99.23%, at a minimal cost to specificity. The SHAP feature-
importance analysis further confirms the impact of HHT-based
features: the mean absolute SHAP value for HHT-derived channels
was 3.52 times that of the original signal channels. In other words,
HHT-driven time-frequency components dominate the model’s
decision-making, highlighting that the adaptive nonlinear features
extracted by HHT are far more informative than raw time-domain
EEG samples. This dominance of nonlinear features is consistent
with prior studies showing that nonlinear EEG characteristics (e.g.
asymmetry, entropy measures) are powerful biomarkers of
depression. By embedding HHT as a network layer, our network
learns task-specific intrinsic mode functions (IMFs) directly in the
time domain, which aligns with the known strength of HHT: it is
explicitly designed for nonstationary, nonlinear data and preserves
the instantaneous frequency content of the signal.

Limitations and future works: Nevertheless, there are limitations.
The high training accuracy warrants caution about overfitting to the
specific dataset, even though validation results were strong. Like most
EEG-depression studies, our dataset size is modest, and model
generalization must be tested on larger and more diverse cohorts.
As noted in recent surveys, EEG-based models sometimes suffer from
small sample sizes and heterogeneous protocols. Additionally, we
used only EEG data; integrating other modalities (e.g. MRI, clinical
surveys, genetic or demographic data) could further enhance
accuracy and clinical applicability. Existing research demonstrates
that sophisticated multi-path feature fusion (18) techniques enable
deep integration of heterogeneous data (19). In future work, we plan
to extend HHT-SANN on additional datasets and modalities.
Furthermore, the mobile/wearable deployment aligns perfectly with
our ongoing efforts to optimize the framework for real-time EEG
applications, a priority for future translational research aimed at
point-of-care utility.

Conclusions: In conclusion, this study presents HHT-SANN, a
novel self-attention neural network that embeds the Hilbert-Huang
Transform as a network layer for EEG-based depression screening.
By leveraging the adaptive, nonlinear time-frequency decomposition
capabilities of HHT alongside attention mechanisms, the proposed
model achieves superior classification performance, with 98.78%
accuracy, 99.23% sensitivity, and 98.27% specificity. SHAP-based
analysis reveals that HHT-derived features contribute over three
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times more than original EEG signals, highlighting their critical role
in decision-making. These results demonstrate that HHT-SANN not
only improves diagnostic accuracy but also enhances interpretability,
offering a powerful and practical tool for advancing mental health
diagnostics through neuroinformatics.
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