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Hilbert-Huang Transform
Embedded Self-Attention Neural
Network for EEG-based major
depressive disorder vs. healthy
controls classification
Junxian Chen1*, Kaikun Tian2*, Yu Ye3* and Jiaming Liu2

1Suzhou Industrial Park Institute of Services Outsourcing, School of Information Engineering, Suzhou,
Jiangsu, China, 2School of Physics and Electronic Science, Hubei Normal University, Huangshi, China,
3Department of Radiology, The Central Hospital of Huangshi City, Huangshi, China
This paper proposes a novel approach for distinguishing Major Depressive

Disorder (MDD) patients from healthy controls (HC), namely depression

screening, using EEG signals, where the Hilbert-Huang Transform (HHT) is

integrated into a Self-Attention neural network (HHT-SANN). The

incorporation of the HHT enhances the model’s time-frequency analysis

capabilities and allows for more effective nonlinear processing of the EEG data.

By embedding the HHT within the self-attention module, the model captures

intricate temporal and spectral patterns that are critical for accurate depression

classification. We evaluated our method on a clinical EEG dataset comprising 34

MDD patients and 30 healthy controls from the Hospital of Universiti Sains

Malaysia. Experimental results indicate that the proposed method achieves an

accuracy of 98.78%, sensitivity of 99.23%, and specificity of 98.27%,

outperforming traditional models and offering a more robust solution for

depression detection. This work contributes to advancing the field of

neuroinformatics by providing a more interpretable and effective model for

mental health diagnostics based on EEG data.
KEYWORDS

classification, depression, EEG, Hilbert-Huang Transform, Self-Attention
Neural Network
1 Introduction

Depression is a pervasive and debilitating psychiatric disorder affecting hundreds of

millions worldwide, with those experiencing severe major depressive disorder (MDD) at

particularly high risk of suicidal ideation. Objective and reliable screening methods are

therefore critical for early intervention and improved outcomes (1). However, traditional

diagnostics—relying on clinician assessments and self-report questionnaires—are

vulnerable to bias and inconsistency, fueling the search for quantitative biomarkers.
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In this context, compared with fMRI (2, 3) and structural MRI

(4), electroencephalography (EEG) has emerged as a noninvasive,

cost-effective modality with exceptional temporal resolution,

adept at capturing the rapid neural dynamics underlying

depressive pathology.

The efficacy of EEG-based diagnosis, however, hinges critically

on two interdependent pillars: the capability of the classifier and,

just as importantly, the appropriateness of the feature extraction

methodology for uncovering the neural mechanisms specific to the

disorder. EEG signals are inherently non-linear and non-stationary,

reflecting the complex, dynamic nature of brain activity in MDD.

Consequently, the choice of feature extraction is paramount. A

diverse array of approaches has been explored in the literature to

capture these aberrant neural patterns. For instance, studies have

investigated functional connectivity and network properties, such as

spectral coherence (5), domain-specific connectivity (6), and global

EEG connectivity (7), which aim to reveal disorganization in large-

scale brain networks associated with MDD. Others have focused on

complexity measures and nonlinear dynamics to quantify the

irregularity of neural signals (8), or have utilized connectivity

features derived from EEG to predict treatment outcomes (9, 10).

While these methods provide valuable insights, many

conventional feature extraction techniques, including those based

on predefined linear transforms or hand-crafted metrics, may not

fully adapt to the non-stationary and nonlinear characteristics of

EEG in depression. This underscores a pressing need for methods

that can effectively and adaptively model the time-varying,

nonlinear dynamics of brain activity in depressive individuals. For

example, Mumtaz et al. (11) proposed a machine learning method

using pre-treatment EEG to predict SSRI antidepressant outcomes

in MDD. Subsequently, Ke et al. developed an AutoML-based dual-

CNN model for real-time EEG classification in brain e-health,

addressing static models and computational complexity with

autonomously optimized hyperparameters, achieving high

accuracy for MDD and significantly outperforming CapsuleNet

and ResNet-16 (12). More recently, a novel TanhReLU-based

CNN was proposed to address MDD diagnosis challenges using

EEG data, with the hybrid activation function combining Tanh and

ReLU properties to mitigate gradient vanishing and overfitting in

EEG pattern recognition (13). Wang et al. (14) enhanced MDD/BD

classification by integrating clinical and EEG data from 400

patients, using feature engineering and ML models to improve

accuracy, address overfitting, and highlight EEG’s diagnostic value

for precision psychiatry.

The primary motivation for integrating HHT into a deep

learning framework stems from its inherent suitability for

analyzing the non-linear, non-stationary brain dynamics

characteristic of MDD. Unlike methods relying on predefined

basis functions, HHT’s fully adaptive decomposition into Intrinsic

Mode Functions (IMFs) offers a physiologically plausible

representation of EEG signals, enabling direct extraction of

instantaneous frequency and amplitude components beyond

linear assumptions. Our core theoretical contribution lies in

conceptualizing HHT not as a fixed pre-processor, but as an

integrated layer within an end-to-end network. This allows the
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model to learn task-specific time-frequency representations directly

from raw data, optimizing feature extraction for MDD

identification. Thus, this work bridges theoretically-grounded

signal processing for non-stationary data and deep learning’s

pattern recognition capabilities.

While HHT provides meaningful time-frequency representations,

it remains under-explored as an integrated component in deep learning

frameworks (15). Prior implementations often treated HHT as a static

preprocessing step, limiting end-to-end optimization. To address this

gap and better link neural mechanism-informed feature extraction with

classification power, we propose the novel Hilbert-Huang Transform

Embedded Self-Attention Neural Network (HHT-SANN).

In HHT-SANN, the HHT is embedded as a network layer to

learn intrinsic time-frequency components dynamically. It is

complemented by a Squeeze-and-Excitation (SE) module that

adaptively recalibrates feature channels, and a self-attention

mechanism that captures global dependencies in time-frequency

representations. These components collectively form an end-to-end

system that unifies advanced feature extraction rooted in MDD’s

neural substrate with high-performance classification for EEG-

based screening.

To summarize, the main contributions of this study are

as follows:
1. We propose the first deep learning model that integrates

the Hilbert-Huang Transform as a layer for EEG-based

depression classification.

2. We introduce a novel combination of HHT, self-attention,

and channel-wise excitation, enabling the model to learn

adaptive and interpretable time-frequency representations.

3. We validate our method on real-world EEG datasets and

demonstrate its superiority over conventional and state-of-

the-art approaches in terms of classification accuracy

and robustness.
2 Methodology

2.1 Dataset

The EEG dataset used in this study was acquired at the Hospital

of Universiti Sains Malaysia and comprises recordings from 34

patients with Major Depressive Disorder (MDD: 17 males, mean

age 40.3 ± 12.9 years) and 30 healthy controls (21 males, mean age

38.2 ± 15.6 years) (11). All participants underwent 5 min of eyes-

closed and 5 min of eyes-open resting-state EEG, recorded via 20

scalp electrodes (Fp1, Fp2, F3, F4, F7, T3, T5, C3, C4, Fz, Cz, Pz, F8,

T4, T6, P3, P4, O1, O2, ECG) placed according to the international

10–20 system at 256 Hz. Exclusion criteria included psychotic

symptoms, pregnancy, alcohol/substance use, smoking, or

epilepsy; controls were screened to confirm the absence of

neurological or psychiatric conditions. EEG data were

preprocessed in BESA to remove artifacts, and two-minute

artifact-free segments from each resting condition were extracted
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using a 1,024-sample (4 s) sliding window, yielding 18,442 total

epochs (9,789 MDD, 8,653 HC).
2.2 Hilbert Huang Transform Layer

This section introduces our proposed model architecture, which

integrates the Hilbert-Huang Transform (HHT) into a deep neural

network for EEG-based depression screening. Our architecture

consists of three main components: a Hilbert Transform Layer,

and a Squeeze-and-Excitation (SE) block, which forms the Self-

Attention module. The overall architecture illustrated in Figure 1 is

designed to learn discriminative, non-linear time-frequency

features from raw EEG inputs in an end-to-end fashion.

In this approach, the HHT layer is implemented as a neural

network layer that applies Empirical Mode Decomposition (EMD)

followed by the Hilbert Transform to the input EEG signal. Each

EEG signal x(t) for each channel (20, 32*32) is decomposed into a

set of Intrinsic Mode Functions (IMFs) (Equation 1):

x(t) =o
N

i=1
IMFi(t) + r(t) (1)

where N is the number of IMFs and r(t) is the residual signal.

The Hilbert Transform is then applied to each IMF to obtain its

instantaneous amplitude and frequency. The analytic signal h(IMFi
(t)) is defined as Equation 2:

h(IMFi(t)) = IMFi(t) · exp (j · qi(t)) (2)

The instantaneous frequency fi(t) is computed as Equation 3:

fi(t) =
1
2p

dqi(t)
dt

(3)
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The output of the HHT layer is a time-frequency feature matrix

XHHT that incorporates both channel and temporal information

from the EEG signal.
2.3 Squeeze-and-Excitation block with
HHT

To enhance channel-wise representations, a Squeeze-and-

Excitation (SE) block is incorporated after the HHT layer. Let FHHT

∈ RT�C0
denote the output from the HHT layer, where C0

represents the expanded feature dimension after IMF

concatenation, and T is the number of time points.

Squeeze step: Global average pooling is applied across the

temporal dimension to generate a channel descriptor (Equation 4):

zc =
1
To

T

t=1
FHHT(t, c) (4)

Excitation step: The descriptor z ∈ RC0
is passed through two

fully connected layers with a ReLU activation followed by a sigmoid

function (Equation 5):

s = s (W2 · ReLU(W1 · z)) (5)

where W1 ∈ RC0
r �C0

, W2 ∈ RC0�C0
r , and r is the reduction ratio

controlling the bottleneck compression. The sigmoid function s ( · )
ensures the output values lie in the range (0, 1).

Scale: The excitation vector s is broadcast and multiplied

element-wise with the original feature map FHHT to generate the

recalibrated feature map ~FSE in Equation 6:

~FSE(t, c) = sc · FHHT(t, c) (6)
FIGURE 1

Model architecture.
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This operation allows the network to emphasize informative

features and suppress less relevant ones by adaptively adjusting the

importance of each channel.
3 Results

The experiments conducted in this section serve as a validation

and assessment of the classification performance of the proposed

model. Initially, we describe the experimental platform utilized for

these assessments. Finally, the classification effectiveness of the

TanhReLU-based Convolutional Neural Network (CNN) is

evaluated using metrics such as accuracy, sensitivity, and

specificity (see Section 3.2). The experiments were executed on a

desktop equipped with an Intel i7 CPU operating at 3.33GHz, an

Nvidia RTX 1080Ti GPU, 32GB RAM, and running Windows 10.

This system configuration ensured consistent testing conditions

throughout the experiments.
3.1 Feature importance analysis

To quantify the contribution of Hilbert-Huang Transform

(HHT) features compared to original signal features to model

decision-making, this study employed the SHAP (SHapley

Additive exPlanations) method (16, 17) for feature importance

analysis, which illustrated in Figure 2. The specific procedure is as
Frontiers in Psychiatry 04
follows: using the KernelSHAP explainer (applicable to any model),

one training sample was randomly selected as the background, and

calculations were performed on 10 independent test samples.

Feature importance was quantified by calculating the mean

absolute SHAP value (|SHAP|) for each channel, with specific

separation of HHT feature channels (containing amplitude and

frequency information) and original signal channels. Finally, the

contributions were compared by calculating the importance ratio R

(R = Mean HHT Feature Importance/Mean Original Feature

Importance). The experimental results show that HHT features

exhibit significantly higher importance than original features, with

the importance ratio R reaching as high as 3.52 2. This fully

demonstrates that HHT features play a dominant role in model

decision-making.
3.2 Performance on identifying MDD

Figure 3 presents the model’s learning curves. As shown, the

training accuracy (red line) rises rapidly within the first few epochs

and approaches 1 (nearly 100%), indicating that the model has

sufficient capacity to fit the training data well. Meanwhile, the

validation accuracy (blue line) also increases quickly at an early

stage and eventually becomes close to the training accuracy,

demonstrating good generalization to unseen data. Both the

training loss and validation loss (green and black dashed lines,

respectively) decrease steadily and converge toward zero, with the
FIGURE 2

Feature importance comparison.
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training and validation accuracies remaining highly consistent.

Therefore, the model does not exhibit any obvious signs of

underfitting or overfitting.

Finally, the classification performance of the proposed model

was assessed on the designated test set using a Leave-One-Subject-

Out cross-validation protocol. It achieved an impressive accuracy of

98.78%, along with a sensitivity of 99.23% and a specificity of

98.27%, as summarized in Table 1. Among the baseline approaches,

CapsuleNet demonstrates strong specificity (99.23%) but

comparatively low sensitivity (89.01%), leading to a moderate

overall accuracy of 94.42%. ResNet-16 yields the lowest

performance across all metrics, particularly in specificity

(74.79%), which significantly reduces its classification reliability

(82.26% accuracy). The MLRW method shows balanced but

suboptimal results with 95% sensitivity and 80% specificity.

Our proposed model, both with and without the Hilbert-Huang

Transform (HHT), outperforms all baselines. The ablated version

(without HHT) achieves a notable accuracy of 98.61% and the

highest specificity (99.25%), indicating a strong ability to correctly

identify negative cases. However, the full version of our model (with

HHT) achieves the highest sensitivity (99.23%) and the best overall

accuracy (98.78%), demonstrating improved detection of positive

cases and overall classification robustness.
Frontiers in Psychiatry 05
This comparison highlights the benefit of incorporating the HHT

module, which effectively enhances the model’s sensitivity while

maintaining high specificity. The trade-off between the two

versions of our model reflects a subtle balance between reducing

false negatives and false positives, which is crucial in clinical

applications where missed detections can have serious consequences.
4 Discussions and conclusions

Importance of HHT: Quantitatively, our model achieved

98.78% test accuracy (sensitivity 99.23%, specificity 98.27%),

outperforming conventional baselines (see Table 1). In particular,

incorporating the HHT layer boosted sensitivity from 98.05% to

99.23%, at a minimal cost to specificity. The SHAP feature-

importance analysis further confirms the impact of HHT-based

features: the mean absolute SHAP value for HHT-derived channels

was 3.52 times that of the original signal channels. In other words,

HHT-driven time-frequency components dominate the model’s

decision-making, highlighting that the adaptive nonlinear features

extracted by HHT are far more informative than raw time-domain

EEG samples. This dominance of nonlinear features is consistent

with prior studies showing that nonlinear EEG characteristics (e.g.

asymmetry, entropy measures) are powerful biomarkers of

depression. By embedding HHT as a network layer, our network

learns task-specific intrinsic mode functions (IMFs) directly in the

time domain, which aligns with the known strength of HHT: it is

explicitly designed for nonstationary, nonlinear data and preserves

the instantaneous frequency content of the signal.

Limitations and future works: Nevertheless, there are limitations.

The high training accuracy warrants caution about overfitting to the

specific dataset, even though validation results were strong. Like most

EEG-depression studies, our dataset size is modest, and model

generalization must be tested on larger and more diverse cohorts.

As noted in recent surveys, EEG-based models sometimes suffer from

small sample sizes and heterogeneous protocols. Additionally, we

used only EEG data; integrating other modalities (e.g. MRI, clinical

surveys, genetic or demographic data) could further enhance

accuracy and clinical applicability. Existing research demonstrates

that sophisticated multi-path feature fusion (18) techniques enable

deep integration of heterogeneous data (19). In future work, we plan

to extend HHT-SANN on additional datasets and modalities.

Furthermore, the mobile/wearable deployment aligns perfectly with

our ongoing efforts to optimize the framework for real-time EEG

applications, a priority for future translational research aimed at

point-of-care utility.

Conclusions: In conclusion, this study presents HHT-SANN, a

novel self-attention neural network that embeds the Hilbert–Huang

Transform as a network layer for EEG-based depression screening.

By leveraging the adaptive, nonlinear time-frequency decomposition

capabilities of HHT alongside attention mechanisms, the proposed

model achieves superior classification performance, with 98.78%

accuracy, 99.23% sensitivity, and 98.27% specificity. SHAP-based

analysis reveals that HHT-derived features contribute over three
FIGURE 3

Learning curve for classifying MDD.
TABLE 1 Comparative analysis of the performance between the
proposed methodology and existing state-of-the-art approaches.

Approach
Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

CapsuleNet (13) 89.01 99.23 94.42

Resnet-16 (13) 88.9 74.79 82.26

MLRW 95 80 87.5

Our(without
HHT)

98.05 99.25 98.61

Our 99.23 98.27 98.78
Bold indicates the optimal value for each performance index.
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times more than original EEG signals, highlighting their critical role

in decision-making. These results demonstrate that HHT-SANN not

only improves diagnostic accuracy but also enhances interpretability,

offering a powerful and practical tool for advancing mental health

diagnostics through neuroinformatics.
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