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Investigating biomarkers
of mitochondrial and aging-
related genes in major
depressive disorder through
bioinformatics analysis
Zhiyuan Chen, Xiaoxiao Tang, Chao Gu and Shaohong Zou*

Department of Clinical Psychology, People’s Hospital of Xinjiang Uygur Autonomous Region,
Urumqi, China
Background: Major depressive disorder (MDD) is a prevalent mental health

condition in which mitochondrial dysfunction and cellular senescence contribute

to its pathogenesis. This study aims to identify biomarkers related to mitochondria-

associated genes (MRGs) and aging-related genes (ARGs) in MDD

using bioinformatics.

Methods: This study utilized data from GSE201332 and GSE52790, including

1,136 MRGs and 866 ARGs. Initially, candidate genes were selected by

intersecting MRGs, ARGs, and differentially expressed genes (DEGs) derived

from differential expression analysis in GSE201332. Biomarkers were identified

through LASSO regression analysis of the candidate genes. The biomarkers were

then evaluated using ROC curves, and artificial neural network (ANN) models

were constructed. Subsequently, functional enrichment, immune-related

analyses, drug predictions, and molecular docking were performed. Finally, the

expression of biomarkers was validated using reverse transcription-quantitative

polymerase chain reaction (RT-qPCR).

Results: Seven candidate genes were identified from the intersection of 4,041

DEGs, 1,136 MRGs, and 866 ARGs, with SLC25A5, ALDH2, CPT1C, and IMMT

identified as potential biomarkers for MDD through LASSO regression analysis.

ROC curve analysis in both GSE201332 and GSE52790 showed that these

biomarkers effectively distinguished between MDD and control samples, with

AUC values exceeding 0.7. ANN models further confirmed the diagnostic

potential of these biomarkers. Gene set enrichment analysis (GSEA) revealed

significant enrichment of SLC25A5, CPT1C, and IMMT in pathways related to

cellular protein complex assembly and chromatin organization. Immune

infiltration analysis demonstrated significant positive correlations between

SLC25A5, ALDH2, and IMMT and most of the 18 immune cell types. Molecular

docking predictions identified ALDH2 and SLC25A5 as potential targets for specific
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drugs, with NITROGLYCERIN showing the best binding affinity to ALDH2 (-6.4 kcal/

mol). RT-qPCR validation showed significantly lower expression of SLC25A5 and

IMMT, and higher expression of CPT1C, in patients with MDD compared to controls

(p < 0.05), consistent with bioinformatics predictions.

Conclusion: This study identified SLC25A5, ALDH2, CPT1C, and IMMT as

biomarkers associated with MDD, offering insights into its molecular mechanisms.
KEYWORDS

major depressive disorder, mitochondria-related genes, aging-related genes,
biomarker, molecular docking
1 Introduction

Major depressive disorder (MDD) is a prevalent mental health

condition characterized by persistent feelings of sadness,

hopelessness, and a loss of interest or pleasure in daily activities.

Affecting millions globally, MDD has an estimated lifetime

prevalence of around 16.6% in adults, representing a significant

public health issue (1). The etiology of MDD is complex, involving a

combination of genetic, environmental, and psychological factors

that contribute to its onset (2). Its clinical presentation is highly

variable, encompassing emotional disturbances, cognitive

impairments, and somatic symptoms, all of which can severely

affect an individual’s quality of life and functional capacity (3).

Recent epidemiological studies have revealed that MDD

disproportionately impacts certain groups, including women,

individuals with a family history of depression, and those exposed

to chronic stress or traumatic events (4). Despite advancements in

understanding the core processes of MDD, the precise mechanisms

remain elusive, complicating both diagnosis and treatment (5).

The treatment of MDD includes pharmacotherapy,

psychotherapy, and lifestyle changes. However, these approaches

are often hindered by challenges such as delayed therapeutic onset,

limited response rates, and side effects (3). These obstacles

underscore the urgent need for novel therapeutic strategies and

biomarkers to facilitate earlier diagnosis and more effective

management of MDD. Identifying new biological markers and

elucidating the molecular mechanisms underlying MDD may

offer critical insights into its pathophysiology, potentially leading

to improved diagnostic and therapeutic approaches (2).

Mitochondria, the powerhouse of the cell, play a pivotal role not

only in energy production but also in regulating essential processes

such as apoptosis (programmed cell death), calcium homeostasis, and
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cellular metabolism (6). Disruption of mitochondrial function has

been implicated in various diseases, including neurodegenerative

disorders and metabolic syndromes, suggesting that such

dysfunctions may contribute significantly to the pathophysiology of

MDD (7). Mitochondrial dysfunction in aging is marked by increased

oxidative stress, reduced bioenergetics, and impaired mitochondrial

dynamics, which may promote the onset and progression of

depressive symptoms (8). Recent studies have indicated that

mitochondrial dysfunction and age-related pathways are closely

linked to MDD development, although the exact molecular

mechanisms remain unclear (9).

This study utilizes bioinformatics techniques to analyze

transcriptomic data from patients with MDD and healthy

controls obtained from the GEO database. Differential expression

analysis is employed to identify mitochondrial and aging-related

biomarkers associated with MDD. Additionally, an artificial neural

network (ANN) model is constructed to evaluate the diagnostic

potential of these biomarkers. Through functional enrichment

analysis, immune cell infiltration studies, and molecular docking,

the study aims to elucidate the complex roles of these biomarkers in

MDD pathogenesis, highlighting their therapeutic potential.

Exploring the relationship between mitochondrial function,

aging, and MDD is crucial for enhancing our understanding of

the disorder. By investigating the molecular foundations of these

interactions, the goal is to provide valuable insights into MDD

pathophysiology and identify potential biomarkers that could

improve clinical management and treatment outcomes.
2 Materials and methods

2.1 Data sources

This study utilized MDD-related datasets obtained from GEO

(http://www.ncbi.nlm.nih.gov/geo/). The GSE201332 dataset,

serving as the training set, included whole blood samples from 20

patients with MDD and 20 healthy controls (Supplementary

Table 1), while GSE52790, used as the validation set, comprised

whole blood samples from 10 patients with MDD and 12 healthy
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controls. MitoCarta3.0 (https://www.broadinstitute.org/mitocarta)

and the HAGR database (https://genomics.senescence.info/) were

used to extract 1,136 mitochondria-related genes (MRGs) and 866

aging-related genes (ARGs), respectively. A flowchart of the study is

provided in Figure 1.
2.2 Differential expression analysis and
functional enrichment analysis

Differential expression analysis was performed to identify

disease-related genes by screening for differentially expressed

genes (DEGs) between the MDD and control groups using the

Limma package (v 3.44.3) in GSE201332, applying thresholds of an

adjusted p-value < 0.05 and |Log2FC| > 0.5 (10). The intersection of

MRGs, ARGs, and DEGs was then analyzed to pinpoint potential

biomarkers. GO and KEGG functional enrichment analyses were

conducted using the clusterProfiler package (v 4.0.2) (p-value <

0.05, count > 1) (11). The candidate genes were further analyzed

using the STRING database to construct a protein-protein

interaction (PPI) network with a threshold of 0.2.
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2.3 Identification of biomarkers and
construction of ANN

For biomarker screening, LASSO logistic regression was

performed on the candidate genes using the glmnet package

(v 4.0-2) (12), with family = “binomial” to accommodate the

binary outcome variable. To ensure reproducibility, set.seed (30)

was used to fix random number generation, and a maximum of

5,000 iterations was allowed to ensure algorithm convergence. Ten-

fold cross-validation (nfolds = 10) was employed to evaluate model

performance and determine the optimal regularization strength (l).
The l value with the smallest cross-validation error (lambda.min)

was chosen for model fitting, and genes with non-zero coefficients

were identified as potential biomarkers. The diagnostic

performance of these biomarkers was further evaluated through

Receiver Operating Characteristic (ROC) curves in both

GSE201332 and GSE52790. The ROC curve plotted the false

positive rate on the x-axis and the true positive rate on the y-axis,

with the Area Under the Curve (AUC) serving as the quantitative

measure. An AUC of 0.5 indicated random guessing, an AUC > 0.7

indicated good discriminative ability, and an AUC > 0.9 suggested
FIGURE 1

Flowchart of the research process for biomarker screening.
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excellent diagnostic performance. Genes with an AUC > 0.7 were

selected for further analysis. Finally, an ANN model based on the

biomarkers was developed using the neuralnet package to further

assess their diagnostic performance. The ROC curves for the ANN

models were also evaluated in both datasets.
2.4 Functional analysis of biomarkers

To elucidate the regulatory mechanisms and biological

functions of biomarkers, gene set enrichment analysis (GSEA)

was performed using the clusterProfiler package (v 4.0.2) (11).

GO gene sets were sourced from the org.Hs.eg.db database via

the gseGO function, and KEGG gene sets were retrieved using the

gseKEGG function with the organism parameter set to “hsa”. First,

correlation coefficients between each biomarker and the expression

levels of all genes were calculated, and genes were ranked based on

these coefficients, from high to low. Enrichment scores were

determined using the classic permutation method of GSEA (gene

set permutation), with significantly enriched gene sets identified

using a threshold of p-value < 0.05. In addition, GeneMANIA

(https://genemania.org/) was used to predict the genes and

functions associated with the biomarkers.
2.5 Immune-related analyses

To explore immune cell-related variations, the study

investigated the differences in ssGSEA scores for 29 immune cell

types between individuals with neurodegenerative diseases (NDD)

and control subjects in the GSE201332 dataset (13). The

associations between differentially expressed immune cells and

the biomarkers were then analyzed. Moreover, to assess the

relationship between biomarkers and immunological factors,

various immunomodulators and chemokines were retrieved from

the ISIDB database (http://cis.hku.hk/TISIDB/), and their

correlations with biomarkers were evaluated using Spearman’s

method (|cor| > 0.3, p-value < 0.05).
2.6 Regulatory network analysis

To examine the molecular regulatory mechanisms of the

biomarkers, the NetworkAnalyst platform was used to access the

“CORE vertebrates” dataset from the JASPAR database (https://

www.networkanalyst.ca/). Transcription factors (TFs) with

potential binding affinity to the biomarkers were identified using

a motif matching score ≥ 800 and a corresponding p-value ≤ 1e-4.

miRNAs related to the biomarkers were then predicted using the

miRWalk 3.0 (http://mirwalk.umm.uni-heidelberg.de/) and

Starbase v3.0 (http://starbase.sysu.edu.cn/) databases, with

Starbase requiring a “Pan-Cancer Conservation” score ≥ 3. The

miRNAs identified from both databases were intersected to

determine the target miRNAs. Next, lncRNAs corresponding to

these miRNAs were predicted using the miRNet 2.0 database
Frontiers in Psychiatry 04
(https://www.mirnet.ca/), with the screening condition set as

CancerNum > 0 in Starbase v3.0. The lncRNAs identified by both

databases were intersected to establish the final set of target

lncRNAs. Finally, a TF-gene and lncRNA-miRNA-mRNA

regulatory network was constructed using Cytoscape software to

visually depict these complex molecular interactions.
2.7 Drug prediction and molecular docking

To assess the effects of chemotherapeutic drugs on biomarkers,

a drug-gene network was constructed using the DSigDB database

(https://dsigdb.tanlab.org/DSigDBv1.0/). The structural

information for the chemotherapeutic drugs in this network was

sourced from PubChem (https://pubchem.ncbi.nlm.nih.gov/).

Concurrently, protein sequences and functional data for the key

genes were retrieved from the Uniprot database (https://

www.uniprot.org/), and their three-dimensional structures were

obtained from the PDB database (https://www.rcsb.org/). These

protein and drug structures were uploaded to the CB-Dock2

platform (https://cadd.labshare.cn/cb-dock2/php/index.php) for

molecular docking analysis. The platform standardized

protonation states and automatically identified and defined

binding sites using its built-in algorithm. Binding affinity between

the proteins and ligands was evaluated based on binding energy,

with lower values indicating stronger binding. To validate the

stability and reliability of the docking results, additional docking

experiments were performed using alternative receptor structures of

known binders to assess the binding interactions.
2.8 Drug prediction and molecular docking

To further elucidate the mechanism of action of drugs and

evaluate the stability of drug-biomarker complexes as well as the

kinetic characteristics of drug binding, molecular dynamics

simulations were conducted using GROMACS 2024.4 software.

The simulations followed the AMBER99SB-ILDN force field and

utilized the TIP3P water model. A cubic system box was set,

ensuring the box edges were 1 nm away from the protein edges,

and 0.15 mol/L Na+/Cl⁻ ions were added to maintain electrical

neutrality. Energy minimization was first performed using the

steepest descent method. Subsequently, both a heat bath (NVT,

with fixed particles, volume, and temperature) and a pressure bath

(NPT, with fixed particles, pressure, and temperature) were applied,

employing the V-rescale method for temperature coupling. The

reference temperature was set to 300 K, with a time step of 2

femtoseconds, and each simulation phase lasted 100 picoseconds.

The final molecular dynamics simulation ran for 20 nanoseconds.

To quantify binding characteristics, the root-mean-square deviation

(RMSD) of backbone atoms in the protein-ligand complex was

calculated to assess conformational stability. The root-mean-square

fluctuation (RMSF) of protein backbone atoms was analyzed to

observe changes in residue flexibility, and fluctuations in total

system energy were monitored to evaluate thermodynamic
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stability. Additionally, the number of hydrogen bonds and their

occupancy between the drug and target were counted to quantify

the strength of binding interactions. The distance between the small

molecule binding site and the amino acid residues of the protein

was measured to evaluate binding stability, interaction mechanisms,

and conformational changes.
2.9 Subcellular localization, chromosomal
localization, and association analysis with
disease risk of biomarkers

The position of the biomarker on the chromosome was

visualized using the RCircos package (v 1.2.2) (14). Gene

sequences for the biomarkers were retrieved from the NCBI

database, and subcellular localization was assessed using the

mRNALocator database. The relationship between the biomarkers

and MDD risk was explored using the CTD database.
2.10 Biomarker expression analysis

To further validate biomarker expression in MDD and control

groups, expression levels were analyzed in both the training and

validation sets, followed by RT-qPCR validation. Five pairs of whole

blood samples were obtained from patients with MDD and healthy

controls (Supplementary Table 2) at the People’s Hospital of

Xinjiang Uygur Autonomous Region for qRT-PCR analysis.

The study cohort consisted of female patients aged 40 to 50

years, diagnosed with depression, who sought care at the

Department of Clinical Psychology, People’s Hospital of Xinjiang

Uygur Autonomous Region, in June 2024. A control group of

healthy females in the same age range was also included.

Inclusion criteria were as follows: (1) Diagnosis: Participants met

DSM-5 criteria for MDD, confirmed through structured clinical

interviews; (2) Symptom severity: A baseline score ≥18 on the 17-

item Hamilton Depression Rating Scale (HAMD-17), indicating

moderate-to-severe depression; (3) Age: Adults aged 18–65 years;

(4) Treatment status: Participants were not receiving any

medication or psychological treatment at the time of enrollment.

Exclusion criteria were as follows: (1) Comorbid psychiatric

disorders: Axis I disorders (e.g., bipolar disorder, psychosis,

primary anxiety disorders) or substance use disorders (within 6

months); (2) High suicide risk: Defined by HAMD item 3 score ≥3,

recent suicide attempt, or active ideation with intent; (3) Unstable

medical conditions (e.g., neurological disorders, uncontrolled

diabetes) or medications influencing mood (e.g., corticosteroids).

Participants were required to fast overnight for at least 8 hours

before blood collection, which was performed between 8:00 AM and

10:00 AM under controlled temperature and lighting conditions.

Blood was drawn by a trained phlebotomist using sterile techniques,

and aliquots were stored at -20°C for no more than 2 weeks.

This study was approved by the Clinical Research Ethics

Committee of the People ’s Hospital of Xinjiang Uygur

Autonomous Region (KY2024070801), and all patients provided
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signed informed consent. To validate biomarker expression, total

RNA was extracted from the samples using TRIZOL, according to

the manufacturer’s instructions. The first strand of complementary

DNA (cDNA) was synthesized from 2 mg of total RNA using the

SureScript First Strand cDNA Synthesis Kit (Servicebio, Wuhan,

China). RT-qPCR was performed with the 2xUniversal Blue SYBR

Green qPCR Master Mix (Servicebio, Wuhan, China). The reaction

protocol was as follows: 1 minute at 95°C, followed by 40 cycles of

20 seconds at 95°C, 20 seconds at 55°C, and 30 seconds at 72°C.

Primer sequences are listed in Table 1 and were validated for

specificity using BLAST. GAPDH was used as the internal

reference gene. Gene expression levels were calculated using the

2-△△Ct method (15). Data analysis and visualization were

performed using GraphPad Prism 5 (GraphPad Software

Inc., USA).
2.11 Statistical analysis

Bioinformatics analysis was performed using R software.

Statistical significance was set at p < 0.05. Due to the small

sample size, non-parametric tests (Mann–Whitney U test) were

used for group comparisons in PCR experiments to ensure the

robustness of the results.
3 Results

3.1 A total of 7 candidate genes were
subjected to functional enrichment
analysis

A total of 4,041 DEGs were identified in GSE201332,

comprising 2,154 upregulated genes and 1,887 downregulated

genes (Figures 2A, B). Seven candidate genes were further

selected by intersecting DEGs with 1,136 MRGs and 866 ARGs

(Figure 2C). GO enrichment analysis revealed that these candidate

genes were associated with 47 functional categories, including

mitochondrial outer membrane, organelle outer membrane, and

other relevant terms (Figure 2D). KEGG pathway analysis

highlighted the involvement of these genes in 10 signaling

pathways, such as fatty acid degradation and NOD-like receptor

signaling (Figure 2E). The PPI network analysis identified key PPIs,

including MAVS-BCL2 and NBR1-MMT (Figure 2F).
3.2 SLC25A5, ALDH2, CPT1C, and IMMT
had excellent diagnostic performance for
MDD

In LASSO regression analysis, the lowest error during cross-

validation was achieved with a lambda.min of 0.0115, which led to

the selection of four biomarkers: SLC25A5, ALDH2, CPT1C, and

IMMT (Figure 3A). The ROC curve analysis showed AUC values

greater than 0.7 in both GSE201332 and GSE52790, indicating that
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these biomarkers could effectively differentiate between MDD and

control samples (Figures 3B, C). The ANN model built using these

biomarkers demonstrated excellent diagnostic performance in both

the training and validation sets, with AUC values of 1 and 0.95,

respectively (Figures 3D, E).
3.3 Biomarkers had different biological
functions

GO enrichment analysis indicated that SLC25A5, CPT1C, and

IMMT were significantly associated with processes such as cellular

protein-containing complex assembly, chromatin organization, and

chromosome organization (Figures 4A–C). Additionally, CPT1C

was linked to the detection of chemical stimuli and sensory

perception (Figure 4D). In KEGG pathway analysis, SLC25A5,

CPT1C, and IMMT were implicated in various biological

processes, including ATP-dependent chromatin remodeling,

neutrophil extracellular trap formation, and protein processing in

the endoplasmic reticulum (Figures 4E–G). Moreover, CPT1C was

involved in pathways such as cortisol synthesis and secretion, and

focal adhesion (Figure 4H). The gene-gene interaction (GGI)

network revealed additional genes related to biomarkers,

including ACSS1 and SLC25A6, which are involved in functions

such as organelle outer membrane composition, fatty acid

transmembrane transport, and other processes (Figure 4I). GO

and KEGG pathway enrichment analysis results for the four

biomarkers are provided in Supplementary Table 3.
3.4 Biomarkers correlated with both
different immune cells and immune factors

The ssGSEA algorithm revealed significant differences in the

scores of 18 immune cells between the MDD and control groups.

For example, activated B cells, activated CD8 T cells, and activated

dendritic cells (DCs) displayed reduced expression levels in the

MDD group (Figure 5A). Most of these immune cell types were

positively correlated with one another (Figure 5B). Additionally,

SLC25A5, ALDH2, and IMMT showed positive correlations with

several differential immune cells, including activated B cells,

activated CD8 T cells, and activated DCs. In contrast, CPT1C

exhibited an inverse relationship with most immune cells, except

for Immature B cells and Type 1 T helper cells (Figure 5C).

Correlation analysis with immune factors demonstrated

significant associations between the biomarkers and XCL1,

CXCL9, CXCL8, CXCL5, CXCL1, and CCL8 (Figure 5D).
3.5 Regulatory networks and molecular
docking of biomarkers were performed

A total of 27 TFs were predicted in this study. Bioinformatics

analysis suggested that STAT1 may target the promoter regions of

ALDH2 and SLC25A5, while NKX3–2 may regulate the
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transcription of IMMT and SLC25A5 (Supplementary Figure 1A).

Nine target miRNAs were identified by intersecting the predicted

miRNAs from the miRWalk and Starbase databases. Based on this,

79 target lncRNAs were predicted, with the following regulatory

pairs: HCP5-hsa-miR-27b-3p-SLC25A5, LINC02535-hsa-miR-

30b-5p-ALDH2, among others (Supplementary Figures 1B–D).

Furthermore, drugs corresponding to ALDH2 and SLC25A5 were

predicted in the DSigDB database, including four compounds

(acetaldehyde, denatured ethanol, nitroglycerin, disulfiram) and

two drugs (clodronic acid, butyric acid) (Figure 6A). Molecular

docking of these drugs with the biomarkers was performed, with

ALDH2 (PDB ID: 1nzw) and nitroglycerin showing the most

favorable results, exhibiting a docking energy of -6.4 kcal/mol

(Figure 6B). To validate the docking results, further analysis

revealed that the docking energy between ALDH2 and selective

serotonin reuptake inhibitors (SSRIs) was 8.2 kcal/mol (Figure 6C).

When the 3D structure of ALDH2 was replaced with 1CW3, its

binding energy with nitroglycerin was 6.3 kcal/mol (Figure 6D),

which showed minimal change from the original result, further

confirming the accuracy of the docking analysis.
3.6 Molecular dynamics validation of
ALDH2

This study investigated the conformational changes and energy

stability of ALDH2 upon binding to nitroglycerin using 100 ns

molecular dynamics simulations. The results showed that the

RMSD value of the ALDH2-nitroglycerin system fluctuated

between 0.45 and 0.6 nm, indicating that the protein structure

reached dynamic equilibrium between 25 and 100 ns and

maintained a stable conformation (Figure 7A). RMSF analysis

revealed that the flexibility of individual residues ranged from

0.05 to 0.4 nm, reflecting local flexibility while ensuring the

overall stability of the binding (Figure 7B). Energy monitoring

demonstrated that the total system energy remained low with

minimal fluctuations, and combined with Gibbs free energy
TABLE 1 Primer sequences.

Primers Sequences (5’-3’)
Amplification

size (bp)

CPT1C-F GGCTAGGGACACGAGAGAGA
112

CPT1C-R CCAATCCCAGTGCAAGGAGT

SLC25A5-F AGACTGCGTGGTCCGTATTC
190

SLC25A5-R TGCCAGATTCCCTGCAAAGT

ALDH2-F GCATGGACGCATCACACAG
103

ALDH2-R TTGCCATTGTCCAGGGTCTC

IMMT-F CACCTACAGAAGCGGCTCAA
139

IMMT-R TCTGAAAGTGCAGGTGTGGG

GAPDH-F CGAAGGTGGAGTCAACGGATTT
148

GAPDH-R ATGGGTGGAATCATATTGGAAC
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landscape analysis, this further confirmed the thermodynamic

stability of the complex (Figures 7C, D). Hydrogen bond analysis

revealed that nitroglycerin formed 1–2 stable hydrogen bonds with

the active site of ALDH2, occasionally increasing to 3–4 bonds,
Frontiers in Psychiatry 07
highlighting the significance of non-covalent interactions in

maintaining binding stability (Figure 7E). Additionally, spatial

distance monitoring showed that the distances between key

binding sites (Residues 150/179) and nitroglycerin stabilized
FIGURE 2

Differential expression analysis and functional enrichment analysis. (A) Volcano plot of differentially expressed genes between MDD and control groups.
(B) Heat map of differentially expressed genes between MDD and control groups. (C) Venn diagram identifying candidate genes. (D) GO enrichment
analysis results of candidate genes. (E) KEGG enrichment analysis results of candidate genes. (F) Protein interaction network of candidate genes.
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within the ranges of 0.6-0.8 nm and 0.45-0.65 nm, respectively,

without a consistent directional change, further confirming the

sustained stability of the binding state (Figure 7F). In summary, the

ALDH2-nitroglycerin complex exhibited stable conformation,

favorable thermodynamic properties, and sustained interactions,

demonstrating the robustness of their binding.
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3.7 Biomarkers were localized to different
chromosomes and subcellular
compartments

Chromosomal localization analysis indicated that SLC25A5 is

located on chromosome X, ALDH2 on chromosome 12, CPT1C on
FIGURE 3

SLC25A5, ALDH2, CPT1C, and IMMT had excellent diagnostic performance for MDD. (A) LASSO regression analysis was used to screen biomarkers.
The left panel depicted the coefficient trajectory plot of genes. The horizontal axis represented the logarithm of the regularization parameter l (Log
Lambdas), and the vertical axis denoted the regression coefficients of genes. Lines of different colors corresponded to the coefficient trajectories of
candidate genes as l varied: blue for SLC25A5, red for ALDH2, yellow for CPT1C, and gray for IMMT. The right panel showed the cross - validation
error curve. The shaded area indicated the standard error of the error, and the red curve represented the binomial deviance. (B, C) ROC curve
analysis of biomarkers (GSE201332 training set and GSE52790 validation set). The horizontal axis stood for 1−Specificity, and the vertical axis
represented Sensitivity. (D) Artificial neural network diagnostic model constructed based on biomarkers. Red-colored connections indicated positive
corresponding weights, while gray - colored ones indicated negative weights. (E) ROC was used to evaluate the performance of the artificial neural
network in the training set and validation set.
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chromosome 19, and IMMT on chromosome 2 (Figure 8A). In

subcellular localization analysis, IMMT was localized to the nucleus,

while SLC25A5, ALDH2, and CPT1C were localized to the

cytoplasm (Figure 8B). Furthermore, based on the CTD database,

the biomarkers displayed higher scores in depression-related

diseases, suggesting that they play a pivotal role in depression

pathogenesis (Figure 8C).
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3.8 Biomarker expression levels were
verified

The expression levels of the biomarkers were further validated.

In both the training and validation sets, SLC25A5 and IMMT

expression were significantly decreased in the MDD group, while

CPT1C showed an opposite expression trend. ALDH2 was
FIGURE 4

Biomarkers had different biological functions. GO enrichment analysis results for (A) SLC25A5, (B) CPT1C, (C) IMMT, and (D) CPT1C. KEGG
enrichment analysis results for (E) SLC25A5, (F) CPT1C, (G) IMMT, and (H) CPT1C. (I) Gene-gene interaction of biomarkers.
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downregulated in the MDD group in both datasets, although this

change was not statistically significant in the validation set

(Figures 9A, B). RT-qPCR validation revealed that in patients

with MDD, IMMT and SLC25A5 expression were significantly

lower, while CPT1C expression was markedly elevated compared

to controls (p < 0.05) (Figure 9C). These findings were consistent

with the bioinformatics analysis. Only ALDH2 expression did not

show a significant difference (p > 0.05) (Figure 9C).
4 Discussion

MDD is a debilitating mental disorder characterized by persistent

sadness, reduced interest in activities, and various cognitive

impairments, which significantly affect the quality of life and

functioning of affected individuals. The multifactorial nature of

MDD involves genetic, environmental, and neurobiological factors,
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including changes in brain volume and function, particularly in areas

like the hippocampus, which plays a key role in memory and mood

regulation (16). Current treatment approaches primarily include

psychotherapy and pharmacotherapy, yet a substantial number of

patients remain resistant to standard treatments. This underscores

the urgent need for novel therapeutic strategies and biomarkers to

better understand the complex pathophysiology of MDD (17).

Mitochondrial damage and the release of mitochondrial DNA are

important markers of age-related inflammation, potentially

contributing to the development of depression. Additionally, the age-

associated decline in mitochondrial function has been linked to an

increased risk of depression (18). Therefore, exploring mitochondrial

and aging-related biomarkers may uncover new antidepressant

therapies that target the mitochondrial-inflammation axis, offering

strategies to reduce the risk of MDD.

This study aims to investigate the role of MRGs and ARGs in

MDD using a comprehensive bioinformatics approach. By integrating
FIGURE 5

Biomarkers correlate with both different immune cells and immune factors. (A) The ssGSEA algorithm revealed substantial differences in the scores
of 18 immune cells between the MDD and control groups. ns represented no significance, ****p-value<0.0001. (B) Heat map showing the
correlation analysis of differential immune cells. *p-value<0.05, **p-value<0.01, ***p-value<0.001. (C) Correlation analysis between differential
immune cells and biomarkers. (D) Heat map of correlation between biomarkers and immune factors.
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transcriptomic data from the GEO database, this study identified

several candidate biomarkers associated with MDD and conducted

functional enrichment analyses to explore their potential roles in the

disease’s mechanisms. Among the findings, four key biomarkers—

SLC25A5, ALDH2, CPT1C, and IMMT—emerged as significant.

These biomarkers could provide valuable insights into the molecular

mechanisms underlying MDD, particularly in relation to

mitochondrial dysfunction and cellular senescence (19, 20). The

results of this study contribute to the existing literature and

emphasize the need for further research into the molecular pathways

influenced by these biomarkers. Such investigations may pave the way

for the development of novel treatment strategies and ultimately

improve patient outcomes in MDD (21, 22).

This study highlights the important link between mitochondrial

dysfunction and aging in the pathophysiology of MDD. Our

findings indicate that the biomarkers SLC25A5, ALDH2, CPT1C,

and IMMT exhibit significant expression differences in patients

with MDD and are strongly associated with pathways related to

mitochondrial dysfunction and aging.

The ANT2 protein, encoded by the SLC25A5 gene, is a key

transporter located in the inner mitochondrial membrane,

responsible for facilitating the exchange of ADP from the cytosol

with ATP from the mitochondrial matrix via an “alternate access

mechanism” (23). ANT2 plays a key role in the formation and

opening of the mitochondrial permeability transition pore (MPTP).

Its conformational changes regulate MPTP activity, which, in turn,

influences apoptosis. For instance, abnormal activation of ANT2

exacerbates mitochondrial membrane rupture during myocardial

ischemia-reperfusion injury (24). In mouse models of anxiety and

depression induced by chronic social defeat stress, ANT2

expression in the hippocampus and hypothalamus was

significantly upregulated, correlating with mitochondrial

dysfunction and the activation of inflammatory pathways (25,
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26). In contrast, our PCR results revealed significantly

downregulated ANT2 expression in patients with MDD,

suggesting that reduced ADP/ATP transport efficiency may

impair energy metabolism and compromise neuronal function in

brain regions responsible for emotion regulation. The discrepancy

between increased ANT2 levels in animal models and decreased

levels in patients could stem from differences in disease stages (acute

stress versus chronic depression), specific brain regions, or

variations in compensatory mechanisms. These findings highlight

that ANT2’s role in depression is microenvironment-dependent,

and its dysregulated expression could serve as a potential diagnostic

biomarker and therapeutic target for MDD through modulation of

energy metabolism.

CPT1C (carnitine palmitoyltransferase 1C) is a member of the

CPT1 family and is predominantly expressed in the brain, especially in

the hypothalamus, hippocampus, and cerebral cortex. It is essential for

long-chain fatty acid metabolism, energy homeostasis, lipid regulation,

and modulation of neuronal activity (27). CPT1C facilitates the

transport of fatty acids into mitochondria for b-oxidation and also

regulates neuronal synaptic plasticity, including AMPAR trafficking,

through non-catalytic mechanisms, thus influencing neural signal

transmission (28). In CPT1C knockout mouse models, researchers

observed impaired dendritic spine maturation in the hippocampus,

disrupting AMPAR synthesis and trafficking and ultimately

compromising spatial learning ability (27). Interestingly, our study

found that CPT1C expression was upregulated in patients with MDD.

Depression is often associated with synaptic loss in the prefrontal

cortex and hippocampus. However, this study observed elevated

CPT1C levels, suggesting that this increase may represent a

compensatory mechanism to counteract weakened synaptic

transmission by enhancing AMPAR synthesis and membrane

localization. However, CPT1C’s palmitoyl thioesterase activity must

be tightly regulated, as overexpression could disrupt the balance of
FIGURE 6

Drug prediction and molecular docking results. (A) Drug-gene interaction network. Red circles represent genes, green diamonds represent drug
names, and lines connecting drugs and genes indicate regulatory interactions between them. (B) Molecular docking of ALDH2 and NITROGLYCERIN.
(C) Molecular docking of ALDH2 and Selective Serotonin Reuptake Inhibitor. (D) Molecular docking of ALDH2 (1CW3) and NITROGLYCERIN.
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AMPAR palmitoylation and impair synaptic signaling. CPT1C

participates in AMPAR regulation through the BDNF-mTOR

pathway, with aberrant BDNF signaling being a core pathological

mechanism in depression. The observed upregulation of CPT1C may

reflect a compensatory response to reduced BDNF signaling.
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Nevertheless, under pathological conditions, CPT1C may fail to

adequately activate downstream mTOR pathways, preventing

functional compensation despite its elevated expression. This contrast

underscores the complex and context-dependent roles of CPT1C in

synaptic plasticity regulation and the pathology of depression.
FIGURE 7

Molecular dynamics validation of ALDH2-NITROGLYCERIN. (A) RMSD plot of protein ALDH2. (B) RMSF plot of protein ALDH2. (C) Energy fluctuation
plot between the small molecule drug and the protein. (D) Gibbs Free Energy Landscape Diagram of the Interaction between ALDH2 and
NITROGLYCERIN. (E) Hydrogen bond count plot between the small molecule drug and the protein active site. (F) Distance plot between the small
molecule drug and the binding site.
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ALDH2, a key biomarker identified in this study, plays a pivotal

role in managing oxidative stress and detoxifying aldehydes, thereby

contributing to neuroprotection. Dysregulation of ALDH2 has been

linked to various mood disorders, highlighting its potential relevance

in MDD (29). IMMT, involved in mitochondrial dynamics and
Frontiers in Psychiatry 13
integrity, has not been extensively studied in the context of MDD,

making our findings a novel contribution to understanding its role in

depressive pathology (22, 30).

Further GSEA revealed significant involvement of the identified

biomarkers in pathways such as ATP-dependent chromatin
FIGURE 8

Subcellular localization of biomarkers and chromosome localization analysis. (A) The location of biomarkers on chromosomes. (B) Subcellular
localization scoring of biomarkers. (C) The relationship between biomarkers and disease risk. Different colors represented specific diseases respectively:
cyan represented Learning Disabilities, orange represented Cognition Disorders, purple represented Depressive Disorder, rose red represented Anxiety
Disorders, green represented Alzheimer Disease, yellow represented Mental Disorders, and brown represented Sleep Wake Disorders.
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remodeling and neutrophil extracellular trap formation. These

pathways are associated with cellular stress responses and

inflammation, both of which are increasingly recognized as key

factors in the development of MDD. Notably, ATP-dependent

chromatin remodeling is essential for regulating gene expression

in response to stress. Disruptions in this process may lead to

changes in neuronal plasticity and function, potentially

contributing to the mechanisms underlying depression (31, 32).

The presence of neutrophil extracellular traps points to an immune-

related component in MDD. These structures can influence

neuroinflammatory responses and may contribute to the
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neurodegenerative processes associated with depression (33, 34).

These findings suggest that targeting these pathways could offer new

therapeutic avenues for treating MDD.

Our drug prediction analysis identified several promising

therapeutic agents, with nitroglycerin emerging as a particularly

noteworthy candidate due to its favorable molecular docking results

with ALDH2. This finding is of particular interest, as nitroglycerin,

known for its vasodilatory properties, could potentially influence

cerebral blood flow. Additionally, it has been suggested as a possible

treatment for certain depressive symptoms, further emphasizing its

relevance in this context (35, 36). However, molecular docking alone
FIGURE 9

Biomarker expression levels were verified. (A) Expression of biomarkers in the training set. ****p-value<0.0001. (B) Expression of biomarkers in the
validation set. ns represented no significance, *p-value<0.05, **p-value<0.01. (C) Validation of biomarker expression in clinical samples by RT-qPCR.
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is insufficient to fully substantiate the therapeutic potential of

nitroglycerin in NDD and psychiatric disorders. To bolster the

reliability of these findings, further validation through in vitro cell

experiments and in vivo animal models is necessary. Such studies

would confirm the interaction between nitroglycerin and its molecular

targets, as well as its therapeutic effects from an experimental standpoint.

Strengthening the biological relevance of these conclusions through

multidimensional experimental data—such as biochemical assays,

cellular investigations, and animal behavior analyses—will provide

solid scientific support for the potential repurposing of nitroglycerin

in treating NDD and psychiatric conditions.

The correlation between the identified biomarkers and immune cell

profiles further underscores the critical role of immune dysregulation in

the development of MDD. Our immunoinfiltration analysis revealed

significantly lower levels of activated B cells, CD8+ T cells, and DCs in

the peripheral blood of patients with MDD, offering new insights into

immune dysfunction in MDD. Notably, this finding mirrors

observations in multiple sclerosis (MS), where B cells contribute to

neuronal cell death by secreting pro-inflammatory cytokines, such as IL-

6 and TNF-a (37). Existing literature supports the association between

MDD and abnormal distribution of B cell subsets, characterized by an

increase in MHC-II+ B cells and a decrease in regulatory B cells (Bregs)

and naïve B cells (38), suggesting that B cell dysfunctionmay represent a

common neuroimmune regulatory mechanism in both MDD and MS.

Furthermore, a significant positive correlation was found between the

expression of the SLC25A5 gene, which encodes mitochondrial adenine

nucleotide translocase 2 (ANT2), and the count of activated B cells. This

correlation suggests that activated B cells may modulate MPTP opening

through ANT2 regulation, potentially disrupting mitochondrial

membrane potential and ATP synthesis. Such mitochondrial

dysfunction could exacerbate energy metabolism deficits in neural

circuits that regulate emotions, thereby intensifying depressive

symptoms. These findings highlight the critical interplay between

adaptive immunity and mitochondrial bioenergetics in MDD

pathogenesis. Our research uncovers novel biomarkers related to

mitochondrial function and aging in MDD, emphasizing their

potential to guide future treatment strategies and deepen our

understanding of the molecular mechanisms underlying this complex

disorder. While these results are promising, further validation in larger

cohorts and mechanistic studies are required to clarify the significance

of these biomarkers in MDD and explore their potential

clinical applications.

Despite the preliminary nature of this study, certain limitations

remain. First, the sample size validated by RT-qPCR is relatively

small, which may restrict the generalizability of the findings.

Additionally, only transcriptional validation has been conducted,

with no functional validation at the protein level, and the

mechanism linking the identified biomarkers to depression

remains unexplored. Second, the clinical data of the cohort are

incomplete, with missing information such as medication status

and body mass index, which may introduce potential confounding

factors. Furthermore, the regulatory relationships between TFs,

miRNAs, and lncRNAs predicted by bioinformatics tools are

hypothetical and require experimental validation.
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To address these limitations, future plans involve expanding the

sample size and incorporating cohorts with detailed clinical

characteristics (such as diagnostic criteria, depression severity,

and comorbidities) to enhance the robustness of the results.

Protein-level validation will be performed using Western blotting

or immunofluorescence, alongside functional studies like gene

knockout and animal models to clarify the mechanisms

underlying the biomarkers in depression. Additionally, the

predicted regulatory relationships will be validated through ChIP

assays and overexpression/downregulation functional studies.

Longitudinal studies will also be conducted to investigate the

dynamic effects of biomarkers on the onset and progression of

depressive symptoms. These efforts will provide a stronger

theoretical foundation for the diagnosis and intervention

of depression.

In conclusion, this study highlights the significant potential of

SLC25A5, ALDH2, CPT1C, and IMMT as biomarkers for MDD,

elucidating their roles in mitochondrial dysfunction and aging

processes. The regulatory networks and immune interactions

associated with these biomarkers deepen our understanding of the

complex mechanisms underlying MDD. Although certain

limitations exist, these findings provide a critical foundation for

future studies focused on identifying clinically relevant biomarkers

and developing therapeutic targets. Further research into these

genes may enhance our understanding of MDD and facilitate the

development of more effective treatments for individuals affected by

this debilitating condition.
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