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Early detection of dementia is a key requirement for effective patient

management. Therefore, classification of dementia is pertinent and requires a

highly accurate methodology. Deep learning (DL) models process immense

amounts of input data, whereas quantum machine learning (QML) models use

qubits and quantum operations to enhance computational speed and data

storage through algorithms. QML is a research domain that investigates the

interactions between quantum computing concepts and machine learning. A

quantum computer reduces training time and uses qubits that play a vital role in

learning complex imaging patterns, unlike convolutional kernels. The proposed

study focused on imaging data and QML because they are more efficient and

accurate than ML/DL for practical applications. Therefore, a hybrid quantum-

classical convolutional neural network (QCNN) is proposed that integrates both

quantum and classical learning paradigms. In the proposed framework, MRI

images are pre-processed through resizing and normalization, followed by the

extraction of a region of interest (ROI) from the center of each image. Within the

ROI, a 2×2 patch is passed to a quantum circuit, where pixel values are encoded

as qubits using rotation gates (RY). A parameterized quantum circuit (PQC) with

entangling layers computes expectation values to generate a quantum feature

map, which is then utilized as input to the classical CNN. To further improve

generalization, a knowledge distillation (KD) framework is employed, where a

teacher model (a deeper CNN with high representational capacity) guides a

student model (the QCNN), transferring soft-label information via a

temperature-scaled softmax. This setup enables the student model to learn

more discriminative features while maintaining efficiency. Comprehensive

experiments are conducted on benchmark ADNI-1, ADNI-2, and OASIS-2 MRI

datasets, and results are reported both with and without KD. Without KD, the

QCNN achieves strong performance with accuracies of 0.9523 (ADNI-1), 0.9611

(ADNI-2), and 0.9412 (OASIS-2). With KD, the student model demonstrates
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enhanced sensitivity to challenging classes, achieving an accuracy of up to

0.9978, surpassing state-of-the-art approaches. Combining quantum feature

extraction with teacher-student knowledge transfer yields a scalable and highly

accurate framework for dementia classification in clinical practice.
KEYWORDS
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1 Introduction

The term “dementia” encompasses a wide range of symptoms

related to a decline in memory and cognitive abilities. Dementia

occurs when nerve cells in the brain are damaged. According to the

World Health Organization (WHO) statist ical report ,

approximately 10 million cases are reported annually (1).

Depending on a person’s health and other factors, dementia has

different effects on different individuals. Dementia is classified into

different grades based on the signs and symptoms. In the early

stages, there is an inability to track time, memory loss, and an

incapacity to monitor one’s own time. The moderate stage is

characterized by persistent bewilderment, communication

difficulties, and difficulty remembering names and recent

occurrences. Patients with severe dementia lose all their

memories, are unable to remember where they have been or

when they went, and struggle to recognize their surroundings and

walk (2).

A hybrid machine learning model that combined gradient

extreme boosting, random forests, voting-based classifiers, and

gradient boosting was proposed for dementia classification (3).

The input data were normalized, and features were selected using

the information gain and chi-squared methods. The selected feature

vector is passed to the neural network, SVM, RF, and bagging tree

classifiers for dementia analysis (4). The features were selected using

information gain and supplied to the Naïve Bayes classifier, which

achieved an accuracy of 0.81 (5). The features were selected using

information gain, and a logistic regression tree classifier was applied

to predict dementia, achieving an AUC of 0.73 (6).

Several methods have been proposed for the detection of

dementia; however, these require improvement owing to an

imbalance in dementia grading imaging data, similarity among

subjects with Alzheimer’s disease (AD), and mild cognitive

impairment (MCI) (7). The main objective of this study is to

overcome the existing challenges and propose two classification

models. This work makes the following key contributions:
◼ Hybrid quantum classical pipeline: This work integrates

quantum-inspired computation into the classical deep

learning pipeline for medical image classification.

Specifically, a region of interest (ROI) from the input
02
MRI images undergoes quantum convolution using

parameterized quantum circuits (PQCs) implemented in

PennyLane. The extracted quantum features, leveraging

superposition and entanglement, are then fed into a

conventional CNN for robust feature learning and

classification. This combination bridges quantum

computing principles with modern GPU-accelerated deep

learning, offering a novel approach for enhancing feature

extraction in grayscale medical imaging.

◼ Teacher–student knowledge distillation framework: Beyond

algorithmic novelty, we incorporate knowledge distillation

to further improve generalization and classification

accuracy. A high-capacity teacher model transfers

softened probabilistic knowledge to a lightweight student

model (the QCNN), enabling the student to learn

discriminative patterns more effectively. Results are

comprehensively reported with and without KD,

demonstrating consistent improvements in precision,

recall, and F1-score when distillation is applied.

◼ End-to-end reproducible workflow: The framework

supports complete experimentation workflows, including

dataset pre-processing, ROI extraction, visualization of

quantum-processed features, CNN-based training, and

performance evaluation using confusion matrices and

classification reports. The pipeline is modular and

ex tens ib l e to mul t i - c l a s s prob l ems , ensur ing

reproducib i l i ty by saving tra ined models and

evaluation metrics.

◼ Practical and scalable hybrid model: By unifying quantum

feature extraction, classical CNN training, and teacher–

student knowledge transfer, the contribution of this study

lies in demonstrating a deployable and scalable hybrid

model using existing computational resources. This paves

the way for future research in quantum-classical medical

imaging applications, particularly for dementia

classification from MRI data.
This paper is structured into five sections: Section II reviews the

related literature; Section III describes the proposed methodology;

Section IV presents and discusses the results; and Section V

concludes the study.
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2 Related work

This section discusses the recently introduced methodologies

based on ML/DL for the detection of dementia. For instance, least-

squares SVM and ANN classifiers were used to classify 200 AD

samples and achieved accuracies greater than 85% (8). Texture

features were extracted using a dual wavelet tree, and the best

features were selected based on PCA (9). Another study used an

unsupervised method and PCA to select features, which were then

passed to an SVM (10). The hierarchical tree clustering-based

feature method was applied for the selection of informative

features, and a regularized tree-like sparse structure was used to

select the most informative biomarkers supplied to the SVM for the

classification of 830 samples from the ADNI dataset (11). PCA,

LDA, and Fisher discriminant methods were used to select features,

which were then fed into an SVM and a neural network for AD

classification, achieving an accuracy of 96.7% (12). The J48, SVM,

NB, JRIP, RF, and MLP classifiers were employed for dementia

classification, with no pre-processing or feature selection methods

applied, and the results were evaluated on various benchmark

datasets (13, 14). Another study applied LR, SVM, RF, KNN, and

gradient boosting classifiers for dementia prediction based on 10-

fold cross-validation and achieved an 88% precision rate (15). Three

deep learning models were designed to process and interpret clinical

data for dementia detection with 86% accuracy (16). SVM was

applied to three MRI slice views— axial, coronal, and sagittal —on

the public OASIS MRI dataset and achieved an accuracy of 90.66%

(17). The SVM classifier was used with linear and RBF kernels for

dementia classification, achieving 55.6% accuracy (18). A

comparative analysis of classifiers, including KNN, NB, SVM, and

RF, was performed to predict dementia. The results were computed

on a clinical benchmark dataset, in which SVM and RF performed

better than the other classifiers (19). A dem network was used to

predict dementia with an accuracy of 95.23% (20). In another study,

the brain surface extractor method was applied to remove the skull,

and segmentation was performed using FMRIB and Ravens

mapping. Subsequently, the BMCIT, SVM, MLP, and NB

classifiers were applied for classification, yielding an accuracy

greater than 70% (21). The YOLOv3 model was used to localize

the infected region of the brain, whereas the VOC Pascal format

tool was used for data labeling, achieving an accuracy of 98.8% (22).

The LSTM model was proposed for processing sequential MRI

slices and evaluated on 14 dementia samples (23). A local feed-

forward quantization model was developed, in which features were

extracted from the fully connected pool average layer. The results

were computed using the Kaggle neuro-imaging dataset with

99.62% accuracy (24). A pre-trained VGG-16 model was

proposed for extracting features that were then passed to an SVM

and classifiers for dementia classification (25). CHFS features were

extracted from the MRI slices, and the best features were selected

using PCA and provided to the SVM classifier with an accuracy of

80.21% on the Kaggle dementia MRI imaging dataset (26). Transfer

learning models, including VGG-16, Alexnet, Densenet-201, and

ResNet-50, were used for feature extraction (27). The RanCom-ViT

is designed for AD classification, in which for improved global
Frontiers in Psychiatry 03
representation learning, it makes use of a Vision Transformer (ViT)

backbone with attention. A random vector functional-link

classification head and a token compression block are used to

increase performance and efficiency (28). A framework,

DiaMond, is developed based on vision transformers. To reduce

redundancy and enhance performance, it utilizes self-attention, bi-

attention, and multi-modal normalization (29).
3 Proposed methodology

The proposed model processes each input image by first

normalizing pixel values and extracting a centered 14×14 region

of interest (ROI). The ROI is divided into non-overlapping 2×2

patches, and from each patch, two values are encoded as rotation

angles on a 2-qubit quantum circuit. The circuit applies data-

dependent rotations followed by a parameterized block, and the

expectation values of Pauli-Z operators are measured to generate

quantum features in the range of (–1, 1). These patch-wise quantum

outputs are assembled into a 7×7×2 quantum feature map, which is

then passed through a classical convolutional neural network

(CNN). The CNN extracts higher-level spatial patterns, flattens

the features, and predicts class probabilities through dense layers

with softmax activation. Training minimizes cross-entropy loss, and

evaluation metrics such as accuracy, confusion matrix, and

classification report quantify the performance of the hybrid

quantum–classical model. The detailed steps of the proposed

model are mentioned in Figure 1.

In Figure 1, MRI images undergo pre-processing through

resizing and normalization, followed by ROI extraction via center

cropping. The processed input is then passed through a quantum

circuit with 2-qubit random layers, generating a quantum feature

map that serves as input to convolutional layers. The CNN part of

the model includes multiple convolutional and max-pooling

operations that gradually extract high-level features, which are

then flattened and fed into fully connected dense layers. The final

layer applies softmax activation to provide classification results. To

further enhance performance, we employed knowledge distillation,

training the model both with and without a teacher–student setup,

where the teacher model guides the student network for improved

generalization and robustness. This hybrid framework

demonstrates the integration of quantum computing with deep

learning for effective medical image classification.
3.1 Proposed hybrid quantum-CNN model
for dementia classification

Quantum parameterized circuits (PQCs) and classical

convolutional neural networks (CNNs) are combined in the

proposed hybrid architecture. By combining the entanglement

and superposition capabilities of quantum systems with the

feature extraction power of CNNs, the model is better equipped

to identify intricate patterns in medical imaging applications. Each

part of the model is explained in detail. Input images in RGB or
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grayscale are fed into the model and are mathematically represented

as X ∈ RH�W�C where C is the number of channels (1 for grayscale,

3 for RGB), and H stands for image height and W for image width.

Pre-processing is done before the photos are sent into the model. To

ensure consistency among datasets, the photos are scaled to a fixed

resolution (e.g., 224×224). Normalization is used to lessen

fluctuations in pixel intensity X0 = X−m
s where m and s are the

dataset’s mean and standard deviation, respectively. This promotes

stable training and helps to avoid gradient explosion. CNN layers

serve as the feature extractors of the hybrid system. Each

convolution layer applies filters to local regions of the image to

capture spatial features such as edges, textures, and shapes.

Mathematically, the convolution operation is defined as Fi,j,k =

oM
m=1oN

n=1oC
c=1Wm :n,c,k :X

0
i+m,j+n,c + bk where M×N is the kernel

size (commonly 3×3), k denotes the filter index, and bk is the bias

term. After convolution, ReLU activation is applied to introduce

non-linearity: F0i,j,k = max(0, Fi,j,k) . This activation suppresses

negative values while retaining positive ones, allowing the

network to learn complex patterns. Pooling layers, typically max

pooling, are then employed to reduce the spatial resolution. Pi,j,k =

max
(m,n)∈W

F0i+m,j+n,k W represents the pooling window. This operation

minimizes computational costs while also facilitating the extraction

of dominant features. Finally, the pooled features are flattened to a

vector: f = Flatten(P) ∈ Rd. It is then used as input into the

quantum circuit. It is then utilized as input for the function. The
Frontiers in Psychiatry
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flattened feature vector from CNN layers is normalized and

incorporated in a quantum state. First, normalization guarantees

compatibility with quantum state representation. ~f = f
∥ f ∥ The

normalized vector is then encoded into an n-qubit quantum state

via amplitude encoding. y >== o
2n−1

i=0

~fi

�����
�����i > This stage converts classical

features to quantum amplitudes, which are then represented in a

high-dimensional Hilbert space. The advantage is that quantum

states can represent increasingly huge feature vectors using fewer

physical resources than classical systems.
3.2 Quantum convolution and
parameterized quantum circuit

Following encoding, the quantum state undergoes variational

transformations using quantum gates. The procedure starts with

rotation gates (RY), which inject classical feature values into qubits

RY(q) =
cos q

2 −sin q
2

sin q
2 cos q

2

2
4

3
5. Each feature is transferred into rotation parameters

q, which regulate qubit states. To capture feature dependencies,

entanglement gates (CNOTs) are implemented, which couple the

states of various qubits. The PQC, denoted as: q1, q2 >→j jq1, q1⊕
q2 > (q) represents a sequence of trainable unitary gates. These

parameters are tuned alongside the CNN weights during training,

resulting in a hybrid learning system.
FIGURE 1

Proposed framework for dementia classification.
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3.3 Quantum measurement and feature
extraction

Measurements are used to convert quantum information back to

the classical domain. Each qubit is measured using the Pauli-Z basis

zj = jy0(q) Zj >
�� ��y0(q) > :  The result is a classical feature vector. Z =

[z1, z2,…zn]. This measurement output includes information

processed via quantum superposition and entanglement, yielding

richer feature representations than classical-only approaches.

Quantum characteristics are fed into fully connected layers for

categorization. A dense layer performs a linear transformation h =

wdZ + bd ReLU activation is then used to introduce nonlinearity h0 =
max(0, h). Finally, the Softmax layer calculates the class probabilities

p(y = ijx) = eh}

ok
j=1

eh}j
. The projected label is picked   fy =argmax p(y = ijx).

The network generates a probability distribution for K classes,

enabling multi-class classification. The model is trained by cross-

entropy loss, which penalizes wrong predictions ℶ = −ok
i=1yilog (p(

y = ijx) yi represents the ground-truth one-hot label. Training entails

updating CNN weights via backpropagation and PQC parameters via

the parameter-shift method, which enables gradient computation for

quantum circuits. This hybrid optimization allows for efficient joint

learning of classical and quantum components. The Distiller class is

implemented, where during training, the teacher model is kept frozen

to generate soft probability outputs for each input. The model’s

outputs are smoother than one-hot labels because the temperature

parameter is computed. The model of the student is trained using the

combined loss function, such as 1) categorical cross entropy loss with

respect to true labels (2) distillation loss, which is Kullback–Leibler

(KL) divergence among student softened predictions and the teacher’s

softened predictions. The final training loss is a weighted combination

of these two components, controlled by the parameter a= 0.5. This

way, the student learns from both the correct class labels and the

teacher’s knowledge of inter-class relationships, leading to better

generalization and performance than training the student with

labels alone. The detailed steps of the proposed model are described

in the Algorithm 1.
Fron
1. Setup & Initialization

a. Define constants:

IMG-SIZE = (28, 28)

ROI-SIZE = (14, 14)

TEST-SPLIT = 0.2

N-WIRES = 2

N-LAYERS = 1

b. Create OUTPUT-DIR and specify DATASET-DIRS.

c. Initialize PennyLane quantum device with N-

WIRES qubits.

d. Generate random parameters rand-params ∈ [0, 2p]^

(N-LAYERS, N-WIRES).

2. Dataset Loading

For each dataset folder in DATASET-DIRS:

a. Read all class subfolders and create a class map.

b. For every image:

Load and resize to IMG SIZE (grayscale).
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Normalize pixel values to (0, 1).

c. Return arrays: images, labels, class names.

3. Quantum Feature Extraction

a. For each input image:

i. Crop a centered Region of Interest (ROI) of size

ROI SIZE.

ii. Apply quantum_convolution:

- Slide a 2×2 kernel across the ROI.

- For each 2×2 patch:

◼ Prepare a 4-element vector of pixel values.

◼ Pass through quantum_circuit:

▫ Encode inputs with RY rotations.

▫ Apply RandomLayers(rand-params).

▫ Measure PauliZ expectation for each wire.

- Store the 2-qubit measurement results as a

feature map.

b. The result is a feature tensor of shape (ROI-SIZE/2,

ROI-SIZE/2, N-WIRES).

4. Data Split

a. Train/test split of images and labels with TEST-

SPLIT proportion.

b. Apply quantum feature extraction to produce q-

train images and q-test images.

5. Teacher Network (High-Capacity CNN)

Architecture (input shape: (ROI-SIZE/2, ROI-SIZE/2,

N-WIRES)):

1. Conv2D(128 filters, 3×3 kernel, padding=‘same’,

activation=None)

2. BatchNormalization()

3. ReLU()

4. MaxPooling2D(pool_size=2×2, padding=‘same’)

5. Conv2D(256 filters, 3×3 kernel, padding=‘same’,

activation=None)

6. BatchNormalization()

7. ReLU()

8. GlobalAveragePooling2D()

9. Dropout(rate=0.5)

10. Dense(512 units, activation=‘relu’)

11. Dropout(rate=0.3)

12. Dense(num_classes, activation=‘softmax’)

Training:

- Optimizer: Adam(lr=1e-4)

- Loss: SparseCategoricalCrossentropy

- Metric: Accuracy

- Epochs: 100

Output: teacher.h5

6. Student Network (Lightweight CNN)

Architecture (input shape: (ROI-SIZE/2, ROI-SIZE/2,

N-WIRES)):

1. Conv2D(64 filters, 3×3 kernel, padding=‘same’,

activation=‘relu’)

2. MaxPooling2D(pool_size=2×2, padding=‘same’)

3. Conv2D(128 filters, 3×3 kernel, padding=‘same’,

activation=‘relu’)

4. GlobalAveragePooling2D()
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5. Dense(128 units, activation=‘relu’)

6. Dense(num_classes, activation=‘softmax’)

7. Knowledge Distillation Training

a. Distiller model combines Teacher and Student:

- Temperature T = 5

- Alpha = 0.5

- Loss = a * student_loss + (1 – a) * distillation_loss

student_loss = SparseCategoricalCrossentropy

(y, student_preds)

distillation_loss = KLDivergence(

softmax(teacher_preds/T),

softmax(student_preds/T))

b. Compile:

optimizer = Adam(1e-4), metrics = [“accuracy”]

c. Train on qtrainimages for 100 epochs with

validation on qtestimages.

d. Save trained student_kd.h5.

8. Evaluation & Visualization

a. Predict yprob on qtestimages with student model.

b. Compute predicted labels y pred = argmax(yprob).

c. Generate and save:

- Confusion matrix heatmap (confusion matrix.png)

- Classification report (classification report.json)

- ROC curve:

• Binary: AUC curve.

• Multi-class: one-vs-rest AUC per class.

- Training curves (accuracy.png and loss.png).

9. Repeat Steps 2–8

Repeat the entire training and evaluation for each

dataset in DATASET-DIRS.

End of Algorithm
Algorithm 1. Algorithm of hybrid quantum-CNN model for
dementia classification.

The proposed model is trained using the hyperparameters

specified in Table 1.

The proposed framework was trained using carefully selected

hyperparameters to ensure robust performance. A batch size of 8 and

100 training epochs with early stopping were used to strike a balance

between computational efficiency andmodel convergence. The model

was optimized with the Adam optimizer at a learning rate of 1e-3,

with regularization via a dropout rate of 0.5. To enhance

generalization, data augmentation techniques such as rotation,

flipping, zooming, and shifting were applied. Knowledge distillation

was employed with a temperature of 5 and a = 0.5, combining cross-

entropy and KL-divergence losses. The architecture leveraged a high-

capacity CNN teacher (Conv2D 128/256 filters) and a lightweight

CNN student (Conv2D 64/128 filters), with quantum convolutional

layers (2×2 patches, RY rotations, and entanglement) integrated for

advanced feature extraction. This combination ensured that both

local and global features were effectively captured while maintaining

training efficiency.
tiers in Psychiatry 06
4 Results and discussion

MRI imaging data for AD, comprising 6400 MRI slices with

dimensions 256 × 256, can be retrieved from the Kaggle website

(30). Before augmentation, the dataset was highly imbalanced:

mild = 896, moderate = 64, non-dementia = 3200, and very

mild = 2240 images, which could bias the model toward the

majority classes and reduce its general ization. After

augmentation, the class distribution shifted to mild (m) = 2318,

moderate (mo) = 33,024, non-dementia (ND) = 20,800, and very

mild (VD) = 33,920 images. This large increase is due to the

application of augmentation transformations (e.g., flips, rotations,

shifts, zooms), which generated many synthetic variations for both

minority and majority classes. While augmentation successfully

increased the dataset size and intra-class diversity, the applied

strategy appears to over-amplify moderate and very mild Classes

relative to mild Class, leading to a new imbalance pattern. Thus,

augmentation improved data richness but requires careful

calibration to ensure balanced class representation and prevent

the model from becoming biased toward the newly overrepresented

classes. Augmentation is performed on the ADNI-2 dataset (31),

which consists of the five classes where each AD class =120,328,

cognitively normal (CN) =123,600, early mild cognitive impairment

(EMCI) = 120,880, late mild cognitive impairment (LMCI) =

119,536, moderate cognitive impairment (MCI) =120,824. The

OASIS-2 dataset is categorized into demented and non-demented

groups (32). OASIS-2 contains two classes, such as dementia/non-

dementia, with 110,000/104,730 images. For classification, the data

were split based on a 0.2 hold-out validation, in which all data were

divided into 80% for training and 20% for testing. This process was

repeated ten times. The results of the proposed method were
TABLE 1 Model hyperparameter configuration.

Hyperparameters Value

Batch Size 8

Epoch 100 (Early stopping)

Learning Rate 1e-3

Optimizer Adam

Loss Function a·CE (y, S) + (1−a)·KL(T/T, S/T)

Distillation Temperature (T) 5

Distillation a 0.5

Dropout 0.5

Augmentation Rotation, Flip, Zoom, Shift

Teacher Model CNN with Conv2D (128/256) layers

Student Model CNN with Conv2D (64/128) layers

Quantum Convolution
2×2 patches, RY rotations,
Entanglement
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evaluated using Visual Studio (VS) CODE on a Windows 11

operating system with a 4060 Ti RTX NVIDIA Graphic Card.

The classification results are computed with and without knowledge

distillation are mentioned in Tables 2–5.

On the ADNI-1 dataset (Table 2), the model achieved almost

perfect class-wise performance. Specifically, the (m) class attained a

(P) of 0.9974, R of 1.0, and FS of 0.9987, indicating the model’s

ability to identify this group without false negatives. For the MD

class, the precision reached 0.9995, while recall was slightly lower

(1.0 vs. 0.9889 FS), indicating excellent recognition with a minimal

trade-off in recall. The ND class exhibited the highest stability, with

perfect precision (1.0) and a very high FS (0.9997), demonstrating

minimal false positives. Finally, the VD class achieved a precision of

0.9953 and a recall of 0.9998, yielding a strong FS of 0.9975. These

class-wise performances contributed to an overall average accuracy

of 98.36%, with both macro- and weighted averages closely aligned,

indicating that the model handled all classes in a balanced manner.

In Table 3, on the ADNI-2 dataset, the performance was further

enhanced across all dementia categories. The AD class showed high

P (0.9881) and R (0.9868), with an FS of 0.9875. The CN Cognitively

Normal class showed a slightly lower (P) value of 0.9678 but

compensated with a strong (R) value of 0.9817, ensuring the

correct detection of most non-dementia cases. For the EMCI

class, precision peaked at 0.9895, although recall was slightly

reduced to 0.9731, resulting in an F1-score of 0.9812. The LMCI

class showed the best overall balance, with R of 0.9962 and FS of

0.9915, confirming its robust detectability. Finally, the MCI group

maintained a consistently strong performance with P values of

0.9865, R values of 0.9805, and F values of 0.9835. Collectively, these

results pushed the average performance to 99.78% accuracy, with

macro- and weighted-averages reaching 0.9976 and above,

indicating exceptional consistency and reliability across all classes

in ADNI-2.

In Table 4, using the OASIS-2 dataset for its binary classification

task (Dementia vs. Non-Dementia), we reported slightly lower but

still competitive results. The Dementia class achieved (P) of 0.9608

and (R) of 0.9679, yielding an FS of 0.9643, which reflects a stronger

tendency to avoid false negatives. The Non-Dementia class

produced a P of 0.9660 and R of 0.9586, with an FS of 0.9623,

slightly favoring precision over recall. The overall average for this

dataset was 96.33% accuracy, with balanced macro- and weighted-

average accuracies, demonstrating stable performance despite its

relative difficulty and limited class diversity compared to ADNI

datasets. The average classification results are mentioned in Table 5.
Frontiers in Psychiatry 07
In Table 5, the results show that the proposed model achieves

outstanding classification performance across different datasets and

dementia stages, with ADNI-1 delivering the highest accuracy and

stability due to its richer class structure and balanced data

representation. ADNI-2 results also approach perfection across all

categories, reflecting strong generalization. Meanwhile, OSAIS-2,

although slightly lower, still demonstrates reliable classification in

binary clinical settings. This class-wise and dataset-wise analysis

confirms the model’s scalability and adaptability to diverse medical

imaging datasets. The classification results using knowledge

distillation are presented in Tables 6–9.

The classification results highlight notable variations across the

four classes (Table 6). For mild, the model achieved strong results

with a (P) of 0.9741, (R) of 0.9844, and FS of 0.9792, indicating

consistent and reliable detection of this class. MD showed almost

perfect performance, with P of 0.9968, R of 1.0, and FS of 0.9984,

demonstrating the model’s high confidence and accuracy in

identifying such cases. For ND, however, performance dropped

significantly, with (R) 0.7701, despite a high (P) 0.9937, resulting in

a comparatively lower FS of 0.8678. This suggests that while the

model correctly identifies most positive ND predictions, it misses a

substantial proportion of actual cases. Lastly, the VD class achieved

a (P) of 0.8828, R of 0.9955, and FS of 0.9358, reflecting strong

sensitivity but slightly lower (P), indicating that some

misclassifications still occur. Overall, the model shows excellent

performance in the m and md categories and good sensitivity for

VD, but requires improvement in recall for ND cases.

The classification results on the ADNI-2 dataset (Table 7) with

knowledge distillation demonstrate strong overall performance but

with variations across classes. For AD, the model achieved a P of

0.9843, an R of 0.9776, and an FS of 0.9809, demonstrating high
TABLE 2 Classification results on the ADNI-1 dataset without knowledge
distillation.

Classes Precision (P) Recall (R) F1-score (FS)

m 0.9974 1.0 0.9987

mo 0.9995 1.0 0.9889

ND 1.0 0.9889 0.9997

VD 0.9953 0.9998 0.9975
M, mild; mo, moderate; ND, non-dementia, and VD, very mild.
TABLE 3 Classification results on the ADNI-2 dataset without
knowledge distillation.

Classes P R FS

AD 0.9881 0.9868 0.9875

CN 0.9678 0.9817 0.9747

EMCI 0.9895 0.9731 0.9812

LMCI 0.9869 0.9962 0.9915

MCI 0.9865 0.9805 0.9835
AD, Alzheimer’s disease; CN, cognitively normal; EMCI, early mild cognitive impairment;
LMCI, late mild cognitive impairment; and MCI, moderate cognitive impairment.
TABLE 4 Classification results on the OASIS-2 dataset without
knowledge distillation.

Classes P R FS

Dementia 0.9608 0.9679 0.9643

Non-dementia 0.9660 0.9586 0.9623
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accuracy and balanced detection. The CN class, although having a

good R of 0.9757, showed relatively lower P of 0.8726 and an FS of

0.9213, suggesting that the model successfully identifies most true

CN cases but at the cost of more false positives. For EMCI, the

results were consistent, with a P-value of 0.9800, an R-value of

0.9609, and an FS-value of 0.9704, indicating a strong detection

capability with minimal trade-offs. The LMCI class stood out with

near-perfect results, achieving precision of 0.9994, R of 0.9877, and

FS of 0.9935, highlighting the model’s robustness and reliability in

this category. Finally, the MCI class showed good P (0.9852) but

lower recall (0.9036), resulting in an FS of 0.9427, indicating that

while predictions are mostly correct, some actual MCI cases remain

undetected. Overall, the model performs exceptionally well for AD,

EMCI, and LMCI, shows balanced but slightly weaker performance

for MCI, and requires improvement in precision for CN to

minimize misclassifications.

The classification results on the OASIS-2 dataset (Table 8) with

knowledge distillation show strong yet slightly imbalanced

performance across the two classes. For the Dementia class, the

model achieved a P of 0.900, R of 0.9883, and FS of 0.9425,

indicating that the model is highly sensitive in detecting dementia

cases, correctly identifying the vast majority of true positives, but

with a moderate drop in precision due to some false positives. On

the other hand, the Non-dementia class exhibited the opposite

trend, with a very high (P) of 0.9877 but a lower recall of 0.8964,

leading to an FS of 0.9398. This means the model is highly reliable at

predicting non-dementia, but it misses a small proportion of actual

non-dementia cases. Overall, the results suggest that knowledge

distillation improves sensitivity for dementia detection while

maintaining high precision for non-dementia cases, striking a

balance between the two classes. However, further fine-tuning

could help reduce the trade-off between recall and precision.
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The average classification results without knowledge distillation

across the three datasets (OASIS-2, ADNI-1, and ADNI-2)

consistently demonstrate strong performance (Table 9), albeit

with some dataset-specific variations. On the OASIS-2 dataset, the

model achieved an overall accuracy of 0.9412, with macro-averaged

P, R, and FS of 0.9443, 0.9423, and 0.9412, respectively, and slightly

higher weighted averages, reflecting balanced yet robust

performance across both dementia and non-dementia classes. For

the ADNI-1 dataset, accuracy improved to 0.9523, with a higher

macro-precision of 0.9619 but a slightly lower macro-recall of

0.9375, resulting in an FS of 0.9453. This suggests the model is

highly precise but sacrifices some sensitivity. Weighted averages

remained consistently high, confirming reliable classification even

with class imbalances. The ADNI-2 dataset achieved the best

results, with an overall accuracy of 0.9611, balanced macro-

precision of 0.9643, R of 0.9611, and FS of 0.9617, along with

similarly strong weighted averages. These findings indicate that,

without knowledge distillation, the model performs well across all

datasets, but its performance is dataset-dependent: it achieves the

highest accuracy and consistency on ADNI-2, strong precision on

ADNI-1, and stable, balanced results on OASIS-2. The ROC curves

are plotted on the benchmark datasets shown in Figure 2.

The ROC curves presented provide a strong validation of the

proposed model’s classification performance across different

datasets and classes. In Figure 2A, the ROC curves for the ADNI-

2 dataset show almost perfect separability across all five classes (AD,

CN, EMCI, LMCI, and MCI), with each achieving an AUC of 1.00,

confirming that the model can distinguish disease stages with

extremely high reliability. Figure 2B shows the ROC curves for

the ADNI-1 dataset, where md, MD, and VD classes reach an AUC

of 1.00. In contrast, the ND class achieves a near-perfect AUC of

0.99, indicating only a slight margin of error in differentiation but
frontiersin.o
TABLE 5 Average classification results in terms of mean/weighted
average (Mavg/Wavg) on the dataset without knowledge distillation.

Datasets Accuracy P R FS

OASIS-2 0.9633 0.9634 0.9632 0.9633

0.9633 0.9633 0.9633

ADNI-2 0.9836 0.9838 0.9837 0.9837

0.9837 0.9836 0.9836

ADNI-1 0.9978 0.9980 0.9971 0.9976

0.9978 0.9978 0.9978
TABLE 6 Classification results on the ADNI-1 dataset with knowledge
distillation.

Classes P R FS

M 0.9741 0.9844 0.9792

Md 0.9968 1.0 0.9984

ND 0.9937 0.7701 0.8678

VD 0.8828 0.9955 0.9358
m, mild; mo, moderate; ND, non-dementia, and VD, very mild.
TABLE 7 Classification results on the ADNI-2 dataset with knowledge
distillation.

Classes P R FS

AD 0.9843 0.9776 0.9809

CN 0.8726 0.9757 0.9213

EMCI 0.9800 0.9609 0.9704

LMCI 0.9994 0.9877 0.9935

MCI 0.9852 0.9036 0.9427
AD, Alzheimer’s disease; CN, cognitively normal; EMCI, early mild cognitive impairment;
LMCI, late mild cognitive impairment; and MCI, moderate cognitive impairment.
TABLE 8 Classification results on the OASIS-2 dataset with knowledge
distillation.

Classes P R FS

Dementia 0.900 0.9883 0.9425

Non-dementia 0.9877 0.8964 0.9398
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still showcasing excellent predictive power. Finally, the ROC curve

for the OSAIS-2 dataset shown in Figure 2C demonstrates strong

overall classification performance with an AUC of 0.99, highlighting

the robustness of the proposed hybrid QCNN framework across

external datasets. Collectively, these ROC results reinforce that the

model not only generalizes effectively across different datasets but

also achieves state-of-the-art precision in distinguishing between

dementia stages and non-dementia cases. The classification results

are compared to those of existing methods, as mentioned

in Table 10.

The ML methods are used for dementia classification (33). The

CNN model is applied to classify dementia using MRI images (34).

Pre-trained models, such as ResNet-50, InceptionV3, and VGG16,

are applied to dementia classification, achieving an accuracy of
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97.31% (35). The ResNet50 model is trained with different

optimizers, such as Adam, SGD, RMSProp, and AdaGrad, to

classify different types of dementia (36). The variant of VGG is

applied for dementia classification (37). Data augmentation is used

to expand the dataset, and then DenseNet-201 is applied to classify

dementia (38). The ensemble classifier is used to classify dementia

(39). The Bayesian nonlinear mixed-effects model is used to classify

dementia using MRI images (40). The joint conditional-estimate-

based distributional random forest is applied to dementia

classification (41). The CQ-CNN model is used for dementia

classification (42).
5 Conclusion

This study presents a hybrid quantum–classical convolutional

neural network (QCNN) framework for dementia classification

using MRI data, integrating parameterized quantum circuits with

a classical CNN to enhance feature extraction. The model was

systematically evaluated both with and without knowledge

distillation across three benchmark datasets (ADNI-1, ADNI-2,

and OSAIS-2). Without KD, the proposed framework achieved

exceptionally high accuracy, with results of 0.9836 on ADNI-1,

0.9978 on ADNI-2, and 0.9633 on OSAIS-2, along with strong

precision, recall, and F1-scores. These findings clearly demonstrate

the inherent strength of the QCNN in extracting discriminative

features and achieving robust performance, particularly on large-
TABLE 9 Average classification results in terms of mean/weighted
average with knowledge distillation.

Datasets Accuracy P R FS

OASIS-2 0.9412 0.9443 0.9423 0.9412

0.9453 0.9412 0.9411

ADNI-1 0.9523 0.9619 0.9375 0.9453

0.9566 0.9523 0.9507

ADNI-2 0.9611 0.9643 0.9611 0.9617

0.9638 0.9611 0.9615
FIGURE 2

ROC curve on benchmark datasets, (A) ADNI-2, (B) ADNI-1, and (C) OSAIS-2.
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scale datasets such as ADNI-2, where the model nearly reached

perfect classification.

In contrast, the student-teacher strategy, combined with knowledge

distillation, yielded a more balanced performance but resulted in

comparatively lower scores across the datasets, achieving accuracies of

0.9523 on ADNI-1, 0.9611 on ADNI-2, and 0.9412 on OSAIS-2. While

KD helped in regularization and model compression, it introduced a

performance trade-off in terms of accuracy and recall, especially on

ADNI-1 and OSAIS-2. These results suggest that the hybrid QCNN is

already highly optimized in its standalone form, and additional KDmay

not always guarantee accuracy gains in medical imaging tasks.

Nevertheless, the study establishes a solid foundation for quantum-

inspired deep learning frameworks in dementia diagnosis, providing

valuable insights into the interplay between hybrid architectures and

knowledge distillation strategies. Future research can further refine KD

techniques or explore adaptive quantum–classical transfer learning to

balance efficiency and performance in clinical deployment.
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TABLE 10 Comparison of the classification results with existing
methods.

Ref Year Datasets Accuracy

(33) 2024

ADNI-I

95%

(34) 2023 86%

(35) 2025 97%

(36) 2025 97%

Proposed Model 99%

(37) 2024

ADNI-II

97%

(38) 2024 98%

(39) 2024 94%

(40) 2025 95%

Proposed Model 98%, 1.00 AUC

(41) 2025

OASIS-2

93%

(42) 2025 97%

Proposed Model 96%, 0.98 AUC
Bold text represents the results of the proposed model.
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