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Early detection of dementia is a key requirement for effective patient
management. Therefore, classification of dementia is pertinent and requires a
highly accurate methodology. Deep learning (DL) models process immense
amounts of input data, whereas quantum machine learning (QML) models use
qubits and quantum operations to enhance computational speed and data
storage through algorithms. QML is a research domain that investigates the
interactions between quantum computing concepts and machine learning. A
quantum computer reduces training time and uses qubits that play a vital role in
learning complex imaging patterns, unlike convolutional kernels. The proposed
study focused on imaging data and QML because they are more efficient and
accurate than ML/DL for practical applications. Therefore, a hybrid quantum-
classical convolutional neural network (QCNN) is proposed that integrates both
quantum and classical learning paradigms. In the proposed framework, MRI
images are pre-processed through resizing and normalization, followed by the
extraction of a region of interest (ROI) from the center of each image. Within the
ROI, a 2x2 patch is passed to a quantum circuit, where pixel values are encoded
as qubits using rotation gates (RY). A parameterized quantum circuit (PQC) with
entangling layers computes expectation values to generate a quantum feature
map, which is then utilized as input to the classical CNN. To further improve
generalization, a knowledge distillation (KD) framework is employed, where a
teacher model (a deeper CNN with high representational capacity) guides a
student model (the QCNN), transferring soft-label information via a
temperature-scaled softmax. This setup enables the student model to learn
more discriminative features while maintaining efficiency. Comprehensive
experiments are conducted on benchmark ADNI-1, ADNI-2, and OASIS-2 MRI
datasets, and results are reported both with and without KD. Without KD, the
QCNN achieves strong performance with accuracies of 0.9523 (ADNI-1), 0.9611
(ADNI-2), and 0.9412 (OASIS-2). With KD, the student model demonstrates
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enhanced sensitivity to challenging classes, achieving an accuracy of up to
0.9978, surpassing state-of-the-art approaches. Combining quantum feature
extraction with teacher-student knowledge transfer yields a scalable and highly
accurate framework for dementia classification in clinical practice.

dementia, deep learning, quantum machine learning, features, classification

1 Introduction

The term “dementia” encompasses a wide range of symptoms
related to a decline in memory and cognitive abilities. Dementia
occurs when nerve cells in the brain are damaged. According to the
World Health Organization (WHO) statistical report,
approximately 10 million cases are reported annually (1).
Depending on a person’s health and other factors, dementia has
different effects on different individuals. Dementia is classified into
different grades based on the signs and symptoms. In the early
stages, there is an inability to track time, memory loss, and an
incapacity to monitor one’s own time. The moderate stage is
characterized by persistent bewilderment, communication
difficulties, and difficulty remembering names and recent
occurrences. Patients with severe dementia lose all their
memories, are unable to remember where they have been or
when they went, and struggle to recognize their surroundings and
walk (2).

A hybrid machine learning model that combined gradient
extreme boosting, random forests, voting-based classifiers, and
gradient boosting was proposed for dementia classification (3).
The input data were normalized, and features were selected using
the information gain and chi-squared methods. The selected feature
vector is passed to the neural network, SVM, RF, and bagging tree
classifiers for dementia analysis (4). The features were selected using
information gain and supplied to the Naive Bayes classifier, which
achieved an accuracy of 0.81 (5). The features were selected using
information gain, and a logistic regression tree classifier was applied
to predict dementia, achieving an AUC of 0.73 (6).

Several methods have been proposed for the detection of
dementia; however, these require improvement owing to an
imbalance in dementia grading imaging data, similarity among
subjects with Alzheimer’s disease (AD), and mild cognitive
impairment (MCI) (7). The main objective of this study is to
overcome the existing challenges and propose two classification
models. This work makes the following key contributions:

B Hybrid quantum classical pipeline: This work integrates
quantum-inspired computation into the classical deep
learning pipeline for medical image classification.
Specifically, a region of interest (ROI) from the input
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MRI images undergoes quantum convolution using
parameterized quantum circuits (PQCs) implemented in
PennyLane. The extracted quantum features, leveraging
superposition and entanglement, are then fed into a
conventional CNN for robust feature learning and
classification. This combination bridges quantum
computing principles with modern GPU-accelerated deep
learning, offering a novel approach for enhancing feature
extraction in grayscale medical imaging.

M Teacher-student knowledge distillation framework: Beyond
algorithmic novelty, we incorporate knowledge distillation
to further improve generalization and classification
accuracy. A high-capacity teacher model transfers
softened probabilistic knowledge to a lightweight student
model (the QCNN), enabling the student to learn
discriminative patterns more effectively. Results are
comprehensively reported with and without KD,
demonstrating consistent improvements in precision,
recall, and F1-score when distillation is applied.

B End-to-end reproducible workflow: The framework
supports complete experimentation workflows, including
dataset pre-processing, ROI extraction, visualization of
quantum-processed features, CNN-based training, and
performance evaluation using confusion matrices and
classification reports. The pipeline is modular and
extensible to multi-class problems, ensuring
reproducibility by saving trained models and
evaluation metrics.

M Practical and scalable hybrid model: By unifying quantum
feature extraction, classical CNN training, and teacher-
student knowledge transfer, the contribution of this study
lies in demonstrating a deployable and scalable hybrid
model using existing computational resources. This paves
the way for future research in quantum-classical medical
imaging applications, particularly for dementia
classification from MRI data.

This paper is structured into five sections: Section II reviews the
related literature; Section III describes the proposed methodology;
Section IV presents and discusses the results; and Section V
concludes the study.
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2 Related work

This section discusses the recently introduced methodologies
based on ML/DL for the detection of dementia. For instance, least-
squares SVM and ANN classifiers were used to classify 200 AD
samples and achieved accuracies greater than 85% (8). Texture
features were extracted using a dual wavelet tree, and the best
features were selected based on PCA (9). Another study used an
unsupervised method and PCA to select features, which were then
passed to an SVM (10). The hierarchical tree clustering-based
feature method was applied for the selection of informative
features, and a regularized tree-like sparse structure was used to
select the most informative biomarkers supplied to the SVM for the
classification of 830 samples from the ADNI dataset (11). PCA,
LDA, and Fisher discriminant methods were used to select features,
which were then fed into an SVM and a neural network for AD
classification, achieving an accuracy of 96.7% (12). The J48, SVM,
NB, JRIP, RF, and MLP classifiers were employed for dementia
classification, with no pre-processing or feature selection methods
applied, and the results were evaluated on various benchmark
datasets (13, 14). Another study applied LR, SVM, RF, KNN, and
gradient boosting classifiers for dementia prediction based on 10-
fold cross-validation and achieved an 88% precision rate (15). Three
deep learning models were designed to process and interpret clinical
data for dementia detection with 86% accuracy (16). SVM was
applied to three MRI slice views— axial, coronal, and sagittal —on
the public OASIS MRI dataset and achieved an accuracy of 90.66%
(17). The SVM classifier was used with linear and RBF kernels for
dementia classification, achieving 55.6% accuracy (18). A
comparative analysis of classifiers, including KNN, NB, SVM, and
RF, was performed to predict dementia. The results were computed
on a clinical benchmark dataset, in which SVM and RF performed
better than the other classifiers (19). A dem network was used to
predict dementia with an accuracy of 95.23% (20). In another study,
the brain surface extractor method was applied to remove the skull,
and segmentation was performed using FMRIB and Ravens
mapping. Subsequently, the BMCIT, SVM, MLP, and NB
classifiers were applied for classification, yielding an accuracy
greater than 70% (21). The YOLOv3 model was used to localize
the infected region of the brain, whereas the VOC Pascal format
tool was used for data labeling, achieving an accuracy of 98.8% (22).
The LSTM model was proposed for processing sequential MRI
slices and evaluated on 14 dementia samples (23). A local feed-
forward quantization model was developed, in which features were
extracted from the fully connected pool average layer. The results
were computed using the Kaggle neuro-imaging dataset with
99.62% accuracy (24). A pre-trained VGG-16 model was
proposed for extracting features that were then passed to an SVM
and classifiers for dementia classification (25). CHFS features were
extracted from the MRI slices, and the best features were selected
using PCA and provided to the SVM classifier with an accuracy of
80.21% on the Kaggle dementia MRI imaging dataset (26). Transfer
learning models, including VGG-16, Alexnet, Densenet-201, and
ResNet-50, were used for feature extraction (27). The RanCom-ViT
is designed for AD classification, in which for improved global
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representation learning, it makes use of a Vision Transformer (ViT)
backbone with attention. A random vector functional-link
classification head and a token compression block are used to
increase performance and efficiency (28). A framework,
DiaMond, is developed based on vision transformers. To reduce
redundancy and enhance performance, it utilizes self-attention, bi-
attention, and multi-modal normalization (29).

3 Proposed methodology

The proposed model processes each input image by first
normalizing pixel values and extracting a centered 14x14 region
of interest (ROI). The ROI is divided into non-overlapping 2x2
patches, and from each patch, two values are encoded as rotation
angles on a 2-qubit quantum circuit. The circuit applies data-
dependent rotations followed by a parameterized block, and the
expectation values of Pauli-Z operators are measured to generate
quantum features in the range of (-1, 1). These patch-wise quantum
outputs are assembled into a 7x7x2 quantum feature map, which is
then passed through a classical convolutional neural network
(CNN). The CNN extracts higher-level spatial patterns, flattens
the features, and predicts class probabilities through dense layers
with softmax activation. Training minimizes cross-entropy loss, and
evaluation metrics such as accuracy, confusion matrix, and
classification report quantify the performance of the hybrid
quantum-classical model. The detailed steps of the proposed
model are mentioned in Figure 1.

In Figure 1, MRI images undergo pre-processing through
resizing and normalization, followed by ROI extraction via center
cropping. The processed input is then passed through a quantum
circuit with 2-qubit random layers, generating a quantum feature
map that serves as input to convolutional layers. The CNN part of
the model includes multiple convolutional and max-pooling
operations that gradually extract high-level features, which are
then flattened and fed into fully connected dense layers. The final
layer applies softmax activation to provide classification results. To
further enhance performance, we employed knowledge distillation,
training the model both with and without a teacher-student setup,
where the teacher model guides the student network for improved
generalization and robustness. This hybrid framework
demonstrates the integration of quantum computing with deep
learning for effective medical image classification.

3.1 Proposed hybrid quantum-CNN model
for dementia classification

Quantum parameterized circuits (PQCs) and classical
convolutional neural networks (CNNs) are combined in the
proposed hybrid architecture. By combining the entanglement
and superposition capabilities of quantum systems with the
feature extraction power of CNNs, the model is better equipped
to identify intricate patterns in medical imaging applications. Each
part of the model is explained in detail. Input images in RGB or
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FIGURE 1
Proposed framework for dementia classification.

grayscale are fed into the model and are mathematically represented
as X € R™T*W*C where C is the number of channels (1 for grayscale,
3 for RGB), and H stands for image height and W for image width.
Pre-processing is done before the photos are sent into the model. To
ensure consistency among datasets, the photos are scaled to a fixed
resolution (e.g., 224x224). Normalization is used to lessen
fluctuations in pixel intensity X' = X%” where | and o are the
dataset’s mean and standard deviation, respectively. This promotes
stable training and helps to avoid gradient explosion. CNN layers
serve as the feature extractors of the hybrid system. Each
convolution layer applies filters to local regions of the image to
capture spatial features such as edges, textures, and shapes.
Mathematically, the convolution operation is defined as Fj; =
EﬁﬂEilZile.n,c,k .X{+m,j+n‘c + by where MxN is the kernel
size (commonly 3x3), k denotes the filter index, and by is the bias
term. After convolution, ReLU activation is applied to introduce
non-linearity: Fj;, = max(0,F;j,). This activation suppresses
negative values while retaining positive ones, allowing the
network to learn complex patterns. Pooling layers, typically max
pooling, are then employed to reduce the spatial resolution. P;j; =
( ﬂ?éQFIIm’I*"’k Q represents the pooling window. This operation
minimizes computational costs while also facilitating the extraction
of dominant features. Finally, the pooled features are flattened to a
vector: f = Flatten(P) € R4 It is then used as input into the
quantum circuit. It is then utilized as input for the function. The
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flattened feature vector from CNN layers is normalized and
incorporated in a quantum state. First, normalization guarantees
compatibility with quantum state representation. f = III_II The
normalized vector is then encoded into an n-qubit quantum state
via amplitude encoding. |v---%7i> This stage converts classical
features to quantum amplitude;u, which are then represented in a
high-dimensional Hilbert space. The advantage is that quantum
states can represent increasingly huge feature vectors using fewer

physical resources than classical systems.

3.2 Quantum convolution and
parameterized quantum circuit

Following encoding, the quantum state undergoes variational
transformations using quantum gates. The procedure starts with
rotation gates (RY), which inject classical feature values into qubits

cos3 —sin
RY(8) =

. Each feature is transferred into rotation parameters
6, whick Fésg%ulate qubit states. To capture feature dependencies,
entanglement gates (CNOTs) are implemented, which couple the
states of various qubits. The PQC, denoted as: |[q1,q2 >—|ql,q1 &
q2 > (6) represents a sequence of trainable unitary gates. These
parameters are tuned alongside the CNN weights during training,

resulting in a hybrid learning system.
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3.3 Quantum measurement and feature
extraction

Measurements are used to convert quantum information back to
the classical domain. Each qubit is measured using the Pauli-Z basis
z = [y(0)|Z >}\|1’(6) > . The result is a classical feature vector. Z =
21,25, ...
processed via quantum superposition and entanglement, yielding

z,]. This measurement output includes information

richer feature representations than classical-only approaches.
Quantum characteristics are fed into fully connected layers for
categorization. A dense layer performs a linear transformation h =
wyZ + by ReLU activation is then used to introduce nonlinearity h" =
max(0, h). Finally, the Softmax layer calculates the class probabilities

p(y = ilx) = Ef:’eh:. The projected label is picked y =argmax p(y = i|x).
The network generates a probability distribution for K classes,
enabling multi-class classification. The model is trained by cross-
entropy loss, which penalizes wrong predictions 2 = —21;1}’110% (p(
y = i|x) yi represents the ground-truth one-hot label. Training entails
updating CNN weights via backpropagation and PQC parameters via
the parameter-shift method, which enables gradient computation for
quantum circuits. This hybrid optimization allows for efficient joint
learning of classical and quantum components. The Distiller class is
implemented, where during training, the teacher model is kept frozen
to generate soft probability outputs for each input. The model’s
outputs are smoother than one-hot labels because the temperature
parameter is computed. The model of the student is trained using the
combined loss function, such as 1) categorical cross entropy loss with
respect to true labels (2) distillation loss, which is Kullback-Leibler
(KL) divergence among student softened predictions and the teacher’s
softened predictions. The final training loss is a weighted combination
of these two components, controlled by the parameter o= 0.5. This
way, the student learns from both the correct class labels and the
teacher’s knowledge of inter-class relationships, leading to better
generalization and performance than training the student with
labels alone. The detailed steps of the proposed model are described
in the Algorithm 1.

1. Setup & Initialization
a. Define constants:
IMG-SIZE = (28, 28)
ROI-SIZE = (14, 14)
TEST-SPLIT=0.2
N-WIRES =2
N-LAYERS =1
b. Create OUTPUT-DIR and specify DATASET-DIRS.
c. Initialize Pennylane quantum device with N-
WIRES qubits.
d. Generate random parameters rand-params € [0, 2n]?
(N-LAYERS, N-WIRES).
2. Dataset Loading
For each dataset folder in DATASET-DIRS:
a. Read all class subfolders and create a class map.
b. For every image:
Load and resize to IMG SIZE (grayscale).
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Normalize pixel values to (0, 1).
c. Return arrays: images, labels, class names.
3. Quantum Feature Extraction
a. For each input image:
i. Crop a centered Region of Interest (ROI) of size
ROI SIZE.
ii. Apply quantum_convolution:
- Slide a 2x2 kernel across the ROIL.
- For each 2x2 patch:
W Prepare a 4-element vector of pixel values.
W Pass through quantum_circuit:
o Encode inputs with RY rotations.
o Apply RandomLayers(rand-params) .
o Measure PauliZ expectation for each wire.
- Store the 2-qubit measurement results as a
featuremap.
b. Theresult isafeature tensor of shape (ROI-SIZE/2,
ROI-SIZE/2, N-WIRES).
4. Data Split
a. Train/test split of images and labels with TEST-
SPLIT proportion.
b. Apply quantum feature extraction to produce g-
train images and q-test images.
5. Teacher Network (High-Capacity CNN)
Architecture (input shape: (ROI-SIZE/2, ROI-SIZE/2,
N-WIRES)):
1. Conv2D(128 filters, 3x3 kernel, padding="same’,
activation=None)
2. BatchNormalization()
3. ReLU()
4. MaxPooling2D(pool_size=2x2, padding="same’)
5. Conv2D(256 filters, 3x3 kernel, padding="'same’,
activation=None)
6. BatchNormalization()
7. RelLU()
8. GlobalAveragePooling2D()
9. Dropout(rate=0.5)
10. Dense(512 units, activation="relu’)
11. Dropout(rate=0.3)
12. Dense(num_classes, activation="'softmax")
Training:
- Optimizer: Adam(1lr=1e-4)
- Loss: SparseCategoricalCrossentropy
- Metric: Accuracy
- Epochs: 100
Output: teacher.h5
6. Student Network (Lightweight CNN)
Architecture (input shape: (ROI-SIZE/2, ROI-SIZE/2,
N-WIRES)):
1. Conv2D(64 filters, 3x3 kernel, padding='same’,
activation='relu’)
2. MaxPooling2D(pool_size=2x2, padding="same’)
3. Conv2D(128 filters, 3x3 kernel, padding="same’,
activation="relu’)
4. GlobalAveragePooling2D()
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5. Dense(128 units, activation="relu’)
6. Dense(num_classes, activation="softmax’)
7. Knowledge Distillation Training
a. Distiller model combines Teacher and Student:
- Temperature T =5
- Alpha=0.5
- Loss = o * student_loss + (1 —a) * distillation_loss
student_loss = SparseCategoricalCrossentropy
(y, student_preds)
distillation_loss = KLDivergence(
softmax(teacher_preds/T),
softmax(student_preds/T))
b. Compile:
optimizer = Adam(1e-4), metrics = [ “accuracy”]
c. Train on gtrainimages for 100 epochs with
validation on gqtestimages.
d. Save trained student_kd.h5.
8. Evaluation & Visualization
a. Predict yprob on gtestimages with student model.
b. Compute predicted labelsy pred = argmax(yprob).
c. Generate and save:
- Confusion matrix heatmap (confusionmatrix.png)
- Classification report (classification report.json)
- ROC curve:
+ Binary: AUC curve.
+ Multi-class: one-vs-rest AUC per class.
- Training curves (accuracy.png and loss.png) .
9. Repeat Steps 2-8
Repeat the entire training and evaluation for each
dataset in DATASET-DIRS.
End of Algorithm

Algorithm 1. Algorithm of hybrid quantum-CNN model for
dementia classification.

The proposed model is trained using the hyperparameters
specified in Table 1.

The proposed framework was trained using carefully selected
hyperparameters to ensure robust performance. A batch size of 8 and
100 training epochs with early stopping were used to strike a balance
between computational efficiency and model convergence. The model
was optimized with the Adam optimizer at a learning rate of le-3,
with regularization via a dropout rate of 0.5. To enhance
generalization, data augmentation techniques such as rotation,
flipping, zooming, and shifting were applied. Knowledge distillation
was employed with a temperature of 5 and o = 0.5, combining cross-
entropy and KL-divergence losses. The architecture leveraged a high-
capacity CNN teacher (Conv2D 128/256 filters) and a lightweight
CNN student (Conv2D 64/128 filters), with quantum convolutional
layers (2x2 patches, RY rotations, and entanglement) integrated for
advanced feature extraction. This combination ensured that both
local and global features were effectively captured while maintaining
training efficiency.
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TABLE 1 Model hyperparameter configuration.

Batch Size 8

Epoch 100 (Early stopping)
Learning Rate le-3

Optimizer Adam

Loss Function o-CE (y, S) + (1-0)-KL(T/T, S/T)

Distillation Temperature (T) 5

Distillation o 0.5

Dropout 0.5

Augmentation Rotation, Flip, Zoom, Shift

Teacher Model CNN with Conv2D (128/256) layers

Student Model CNN with Conv2D (64/128) layers

. 2x2 patches, RY rotations,
Quantum Convolution
Entanglement

4 Results and discussion

MRI imaging data for AD, comprising 6400 MRI slices with
dimensions 256 x 256, can be retrieved from the Kaggle website
(30). Before augmentation, the dataset was highly imbalanced:
mild = 896, moderate = 64, non-dementia = 3200, and very
mild = 2240 images, which could bias the model toward the
majority classes and reduce its generalization. After

augmentation, the class distribution shifted to mild (m) = 2318,
moderate (mo) = 33,024, non-dementia (ND) = 20,800, and very
mild (VD) = 33,920 images. This large increase is due to the
application of augmentation transformations (e.g., flips, rotations,
shifts, zooms), which generated many synthetic variations for both
minority and majority classes. While augmentation successfully
increased the dataset size and intra-class diversity, the applied
strategy appears to over-amplify moderate and very mild Classes
relative to mild Class, leading to a new imbalance pattern. Thus,
augmentation improved data richness but requires careful
calibration to ensure balanced class representation and prevent
the model from becoming biased toward the newly overrepresented
classes. Augmentation is performed on the ADNI-2 dataset (31),
which consists of the five classes where each AD class =120,328,
cognitively normal (CN) =123,600, early mild cognitive impairment
(EMCI) = 120,880, late mild cognitive impairment (LMCI) =
119,536, moderate cognitive impairment (MCI) =120,824. The
OASIS-2 dataset is categorized into demented and non-demented
groups (32). OASIS-2 contains two classes, such as dementia/non-
dementia, with 110,000/104,730 images. For classification, the data
were split based on a 0.2 hold-out validation, in which all data were
divided into 80% for training and 20% for testing. This process was
repeated ten times. The results of the proposed method were
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evaluated using Visual Studio (VS) CODE on a Windows 11
operating system with a 4060 Ti RTX NVIDIA Graphic Card.
The classification results are computed with and without knowledge
distillation are mentioned in Tables 2-5.

On the ADNI-1 dataset (Table 2), the model achieved almost
perfect class-wise performance. Specifically, the (m) class attained a
(P) of 0.9974, R of 1.0, and FS of 0.9987, indicating the model’s
ability to identify this group without false negatives. For the MD
class, the precision reached 0.9995, while recall was slightly lower
(1.0 vs. 0.9889 FS), indicating excellent recognition with a minimal
trade-off in recall. The ND class exhibited the highest stability, with
perfect precision (1.0) and a very high FS (0.9997), demonstrating
minimal false positives. Finally, the VD class achieved a precision of
0.9953 and a recall of 0.9998, yielding a strong FS of 0.9975. These
class-wise performances contributed to an overall average accuracy
of 98.36%, with both macro- and weighted averages closely aligned,
indicating that the model handled all classes in a balanced manner.

In Table 3, on the ADNI-2 dataset, the performance was further
enhanced across all dementia categories. The AD class showed high
P (0.9881) and R (0.9868), with an FS of 0.9875. The CN Cognitively
Normal class showed a slightly lower (P) value of 0.9678 but
compensated with a strong (R) value of 0.9817, ensuring the
correct detection of most non-dementia cases. For the EMCI
class, precision peaked at 0.9895, although recall was slightly
reduced to 0.9731, resulting in an Fl-score of 0.9812. The LMCI
class showed the best overall balance, with R of 0.9962 and FS of
0.9915, confirming its robust detectability. Finally, the MCI group
maintained a consistently strong performance with P values of
0.9865, R values of 0.9805, and F values of 0.9835. Collectively, these
results pushed the average performance to 99.78% accuracy, with
macro- and weighted-averages reaching 0.9976 and above,
indicating exceptional consistency and reliability across all classes
in ADNI-2.

In Table 4, using the OASIS-2 dataset for its binary classification
task (Dementia vs. Non-Dementia), we reported slightly lower but
still competitive results. The Dementia class achieved (P) of 0.9608
and (R) of 0.9679, yielding an FS of 0.9643, which reflects a stronger
tendency to avoid false negatives. The Non-Dementia class
produced a P of 0.9660 and R of 0.9586, with an FS of 0.9623,
slightly favoring precision over recall. The overall average for this
dataset was 96.33% accuracy, with balanced macro- and weighted-
average accuracies, demonstrating stable performance despite its
relative difficulty and limited class diversity compared to ADNI
datasets. The average classification results are mentioned in Table 5.

TABLE 2 Classification results on the ADNI-1 dataset without knowledge
distillation.

Classes Precision (P)  Recall (R) F1-score (FS)
m ‘ 09974 1.0 ‘ 0.9987
mo ‘ 0.9995 1.0 ‘ 0.9889
ND ‘ 1.0 0.9889 ‘ 0.9997
VD 09953 0.9998 ‘ 09975

M, mild; mo, moderate; ND, non-dementia, and VD, very mild.
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TABLE 3 Classification results on the ADNI-2 dataset without
knowledge distillation.

Classes P R FS

AD 0.9881 0.9868 0.9875
CN 0.9678 0.9817 0.9747
EMCI 0.9895 0.9731 0.9812
LMCI 0.9869 0.9962 0.9915
MCI 0.9865 0.9805 0.9835

AD, Alzheimer’s disease; CN, cognitively normal; EMCI, early mild cognitive impairment;
LMCI, late mild cognitive impairment; and MCI, moderate cognitive impairment.

In Table 5, the results show that the proposed model achieves
outstanding classification performance across different datasets and
dementia stages, with ADNI-1 delivering the highest accuracy and
stability due to its richer class structure and balanced data
representation. ADNI-2 results also approach perfection across all
categories, reflecting strong generalization. Meanwhile, OSAIS-2,
although slightly lower, still demonstrates reliable classification in
binary clinical settings. This class-wise and dataset-wise analysis
confirms the model’s scalability and adaptability to diverse medical
imaging datasets. The classification results using knowledge
distillation are presented in Tables 6-9.

The classification results highlight notable variations across the
four classes (Table 6). For mild, the model achieved strong results
with a (P) of 0.9741, (R) of 0.9844, and FS of 0.9792, indicating
consistent and reliable detection of this class. MD showed almost
perfect performance, with P of 0.9968, R of 1.0, and FS of 0.9984,
demonstrating the model’s high confidence and accuracy in
identifying such cases. For ND, however, performance dropped
significantly, with (R) 0.7701, despite a high (P) 0.9937, resulting in
a comparatively lower FS of 0.8678. This suggests that while the
model correctly identifies most positive ND predictions, it misses a
substantial proportion of actual cases. Lastly, the VD class achieved
a (P) of 0.8828, R of 0.9955, and FS of 0.9358, reflecting strong
sensitivity but slightly lower (P), indicating that some
misclassifications still occur. Overall, the model shows excellent
performance in the m and md categories and good sensitivity for
VD, but requires improvement in recall for ND cases.

The classification results on the ADNI-2 dataset (Table 7) with
knowledge distillation demonstrate strong overall performance but
with variations across classes. For AD, the model achieved a P of
0.9843, an R of 0.9776, and an FS of 0.9809, demonstrating high

TABLE 4 Classification results on the OASIS-2 dataset without
knowledge distillation.

Classes P R FS

Dementia 0.9608 ‘ 0.9679 0.9643

Non-dementia 0.9660 ‘ 0.9586 0.9623
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TABLE 5 Average classification results in terms of mean/weighted
average (Mavg/Wavg) on the dataset without knowledge distillation.

10.3389/fpsyt.2025.1648060

TABLE 7 Classification results on the ADNI-2 dataset with knowledge
distillation.

Datasets  Accuracy P R FS Classes P R FS
OASIS-2 0.9633 0.9634 0.9632 0.9633 AD 0.9843 0.9776 0.9809
0.9633 0.9633 0.9633 CN 0.8726 0.9757 0.9213
ADNI-2 0.9836 0.9838 0.9837 0.9837 EMCI 0.9800 0.9609 0.9704
0.9837 0.9836 0.9836 LMCI 0.9994 0.9877 0.9935
ADNI-1 0.9978 0.9980 0.9971 0.9976 MCI 0.9852 0.9036 0.9427
0.9978 0.9978 0.9978 AD, Alzheimer’s disease; CN, cognitively normal; EMCI, early mild cognitive impairment;
LMCI, late mild cognitive impairment; and MCI, moderate cognitive impairment.

accuracy and balanced detection. The CN class, although having a
good R of 0.9757, showed relatively lower P of 0.8726 and an FS of
0.9213, suggesting that the model successfully identifies most true
CN cases but at the cost of more false positives. For EMCI, the
results were consistent, with a P-value of 0.9800, an R-value of
0.9609, and an FS-value of 0.9704, indicating a strong detection
capability with minimal trade-offs. The LMCI class stood out with
near-perfect results, achieving precision of 0.9994, R of 0.9877, and
FS of 0.9935, highlighting the model’s robustness and reliability in
this category. Finally, the MCI class showed good P (0.9852) but
lower recall (0.9036), resulting in an FS of 0.9427, indicating that
while predictions are mostly correct, some actual MCI cases remain
undetected. Overall, the model performs exceptionally well for AD,
EMCI, and LMCI, shows balanced but slightly weaker performance
for MCI, and requires improvement in precision for CN to
minimize misclassifications.

The classification results on the OASIS-2 dataset (Table 8) with
knowledge distillation show strong yet slightly imbalanced
performance across the two classes. For the Dementia class, the
model achieved a P of 0.900, R of 0.9883, and FS of 0.9425,
indicating that the model is highly sensitive in detecting dementia
cases, correctly identifying the vast majority of true positives, but
with a moderate drop in precision due to some false positives. On
the other hand, the Non-dementia class exhibited the opposite
trend, with a very high (P) of 0.9877 but a lower recall of 0.8964,
leading to an FS of 0.9398. This means the model is highly reliable at
predicting non-dementia, but it misses a small proportion of actual
non-dementia cases. Overall, the results suggest that knowledge
distillation improves sensitivity for dementia detection while
maintaining high precision for non-dementia cases, striking a
balance between the two classes. However, further fine-tuning
could help reduce the trade-off between recall and precision.

TABLE 6 Classification results on the ADNI-1 dataset with knowledge
distillation.

Classes P R FS

M 0.9741 0.9844 0.9792
Md 0.9968 1.0 0.9984
ND 0.9937 0.7701 0.8678
VD 0.8828 0.9955 0.9358

m, mild; mo, moderate; ND, non-dementia, and VD, very mild.
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The average classification results without knowledge distillation
across the three datasets (OASIS-2, ADNI-1, and ADNI-2)
consistently demonstrate strong performance (Table 9), albeit
with some dataset-specific variations. On the OASIS-2 dataset, the
model achieved an overall accuracy of 0.9412, with macro-averaged
P, R, and FS of 0.9443, 0.9423, and 0.9412, respectively, and slightly
higher weighted averages, reflecting balanced yet robust
performance across both dementia and non-dementia classes. For
the ADNI-1 dataset, accuracy improved to 0.9523, with a higher
macro-precision of 0.9619 but a slightly lower macro-recall of
0.9375, resulting in an FS of 0.9453. This suggests the model is
highly precise but sacrifices some sensitivity. Weighted averages
remained consistently high, confirming reliable classification even
with class imbalances. The ADNI-2 dataset achieved the best
results, with an overall accuracy of 0.9611, balanced macro-
precision of 0.9643, R of 0.9611, and FS of 0.9617, along with
similarly strong weighted averages. These findings indicate that,
without knowledge distillation, the model performs well across all
datasets, but its performance is dataset-dependent: it achieves the
highest accuracy and consistency on ADNI-2, strong precision on
ADNI-1, and stable, balanced results on OASIS-2. The ROC curves
are plotted on the benchmark datasets shown in Figure 2.

The ROC curves presented provide a strong validation of the
proposed model’s classification performance across different
datasets and classes. In Figure 2A, the ROC curves for the ADNI-
2 dataset show almost perfect separability across all five classes (AD,
CN, EMCI, LMCI, and MCI), with each achieving an AUC of 1.00,
confirming that the model can distinguish disease stages with
extremely high reliability. Figure 2B shows the ROC curves for
the ADNI-1 dataset, where md, MD, and VD classes reach an AUC
of 1.00. In contrast, the ND class achieves a near-perfect AUC of
0.99, indicating only a slight margin of error in differentiation but

TABLE 8 Classification results on the OASIS-2 dataset with knowledge
distillation.

Classes P R FS
Dementia 0.900 ‘ 0.9883 ‘ 0.9425
Non-dementia 0.9877 ‘ 0.8964 ‘ 0.9398
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TABLE 9 Average classification results in terms of mean/weighted
average with knowledge distillation.

Datasets  Accuracy P R FS
OASIS-2 0.9412 0.9443 0.9423 0.9412
0.9453 0.9412 0.9411
ADNI-1 0.9523 0.9619 0.9375 0.9453
0.9566 0.9523 0.9507
ADNI-2 0.9611 0.9643 0.9611 0.9617
0.9638 0.9611 0.9615

still showcasing excellent predictive power. Finally, the ROC curve
for the OSAIS-2 dataset shown in Figure 2C demonstrates strong
overall classification performance with an AUC of 0.99, highlighting
the robustness of the proposed hybrid QCNN framework across
external datasets. Collectively, these ROC results reinforce that the
model not only generalizes effectively across different datasets but
also achieves state-of-the-art precision in distinguishing between
dementia stages and non-dementia cases. The classification results
are compared to those of existing methods, as mentioned
in Table 10.

The ML methods are used for dementia classification (33). The
CNN model is applied to classify dementia using MRI images (34).
Pre-trained models, such as ResNet-50, InceptionV3, and VGG16,
are applied to dementia classification, achieving an accuracy of

10.3389/fpsyt.2025.1648060

97.31% (35). The ResNet50 model is trained with different
optimizers, such as Adam, SGD, RMSProp, and AdaGrad, to
classify different types of dementia (36). The variant of VGG is
applied for dementia classification (37). Data augmentation is used
to expand the dataset, and then DenseNet-201 is applied to classify
dementia (38). The ensemble classifier is used to classify dementia
(39). The Bayesian nonlinear mixed-effects model is used to classify
dementia using MRI images (40). The joint conditional-estimate-
based distributional random forest is applied to dementia
classification (41). The CQ-CNN model is used for dementia
classification (42).

5 Conclusion

This study presents a hybrid quantum-classical convolutional
neural network (QCNN) framework for dementia classification
using MRI data, integrating parameterized quantum circuits with
a classical CNN to enhance feature extraction. The model was
systematically evaluated both with and without knowledge
distillation across three benchmark datasets (ADNI-1, ADNI-2,
and OSAIS-2). Without KD, the proposed framework achieved
exceptionally high accuracy, with results of 0.9836 on ADNI-1,
0.9978 on ADNI-2, and 0.9633 on OSAIS-2, along with strong
precision, recall, and F1-scores. These findings clearly demonstrate
the inherent strength of the QCNN in extracting discriminative
features and achieving robust performance, particularly on large-
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FIGURE 2

ROC curve on benchmark datasets, (A) ADNI-2, (B) ADNI-1, and (C) OSAIS-2.
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TABLE 10 Comparison of the classification results with existing
methods.

Ref Year Datasets Accuracy

(33) 2024 95%

(34) 2023 86%

(35) 2025 ADNI-I 97%

(36) 2025 97%
Proposed Model 99%

(37) 2024 97%

(38) 2024 98%

(39) 2024 ADNI-II 94%

(40) 2025 95%
Proposed Model 98%, 1.00 AUC

(41) 2025 93%

(42) 2025 OASIS-2 97%

Proposed Model 96%, 0.98 AUC

Bold text represents the results of the proposed model.

scale datasets such as ADNI-2, where the model nearly reached
perfect classification.

In contrast, the student-teacher strategy, combined with knowledge
distillation, yielded a more balanced performance but resulted in
comparatively lower scores across the datasets, achieving accuracies of
0.9523 on ADNI-1, 0.9611 on ADNI-2, and 0.9412 on OSAIS-2. While
KD helped in regularization and model compression, it introduced a
performance trade-off in terms of accuracy and recall, especially on
ADNI-1 and OSAIS-2. These results suggest that the hybrid QCNN is
already highly optimized in its standalone form, and additional KD may
not always guarantee accuracy gains in medical imaging tasks.
Nevertheless, the study establishes a solid foundation for quantum-
inspired deep learning frameworks in dementia diagnosis, providing
valuable insights into the interplay between hybrid architectures and
knowledge distillation strategies. Future research can further refine KD
techniques or explore adaptive quantum-classical transfer learning to
balance efficiency and performance in clinical deployment.
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