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A framework for safe estradiol
modulation in male bipolar
disorder: theoretical justification
for SERM-enabled adjunctive
therapy
John Carlson*

Montana State University, Bozeman, MT, United States
Treatment-resistant bipolar disorder (TR-BD) in males remains a significant

clinical challenge, often unresponsive to standard monoaminergic therapies.

This paper proposes a novel, sex- informed hypothesis: that adjunctive estradiol,

buffered by selective estrogen receptor modulators (SERMs), can therapeutically

engage estrogen receptor beta (ER-b) and G protein-coupled estrogen receptor

1 (GPER1) in the male brain, targeting core dysfunctions in TR-BD. Integrating

evidence from neuroendocrine, neuroimmune, and synaptic signaling research,

we posit that central estrogen receptor activation can restore neuroplasticity,

suppress pro- inflammatory cascades, and recalibrate stress responsivity without

inducing feminizing systemic effects. Preclinical and translational studies suggest

that ER-b and GPER1 activation enhances brain-derived neurotrophic factor

(BDNF) expression, modulates CREB and PI3K/Akt pathways, and attenuates

interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a) signaling—

mechanisms dysregulated in TR-BD. We hypothesize that co-therapy with

estradiol and a SERMin male TR-BD will reduce affective instability, cognitive

impairment, and stress sensitization via selective activation of ER-b/GPER1,
without inducing peripheral feminization. This receptor-targeted strategy offers

an endocrine-neutral alternative to existing treatments, with implications for

mood disorders, schizophrenia-spectrum illnesses, and trauma-related

psychopathology. This framework invites translational trials using biomarker-

enriched patient stratification. If validated, it could reshape the role of sex

hormones in male psychiatry—not as contraindications, but as precision

neuromodulators aligned with neurobiological pathology.
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Introduction

Bipolar disorder (BD) is a chronic, relapsing mood disorder

characterized by recurrent episodes of mania, depression, and

affective lability, often complicated by psychosis and circadian

disruption. Despite advances in pharmacotherapy—including

mood stabilizers, atypical antipsychotics, and adjunctive

antidepressants—approximately 30% to 50% of patients remain

pharmacoresistant across treatment trials (1, 2). This treatment

resistance is particularly prevalent among those with early-onset

illness, elevated proinflammatory cytokines, or executive

dysfunction (3).

Notably, male patients—who demonstrate higher rates of

psychosis, impulsivity, and pharmacologic nonresponse—are

persistently underrepresented in trials of novel adjunctive

interventions (4, 5). This gap is especially paradoxical given

increasing evidence that estrogenic signaling pathways, long

studied in female neurobiology, also exert significant regulatory

influence in the male brain. Historically, however, hormonal

interventions for men have faced cultural, clinical, and regulatory

resistance due to concerns about feminization and oncogenic risks.

These barriers have limited the development of male-specific

endocrine strategies, despite emerging neurobiological rationale.

Estrogen impacts multiple systems implicated in BD: enhancing

monoaminergic tone, upregulating brain-derived neurotrophic

factor (BDNF), suppressing microglial-mediated inflammation,

and recalibrating hypothalamic-pituitary-adrenal (HPA) axis

responsivity (6–10). These effects are mediated primarily via

estrogen receptor beta (ER-b) and G-protein-coupled estrogen

receptor 1 (GPER1), both of which are expressed at the protein

level in prefrontal, hippocampal, and limbic circuits critical for

emotion regulation and cognitive control, and are capable of

modulating gene transcription in response to ligand binding

(11, 12).

Here, we propose that co-administration of low-dose 17b-
estradiol with a selective estrogen receptor modulator (SERM),

such as raloxifene, constitutes a receptor-selective and sex-

conscious intervention for treatment-resistant BD in men. This

model aims to activate central ER-b and GPER1—enhancing

synaptic plasticity, attenuating neuroinflammation, and

recalibrating stress response—while peripheral estrogen receptor

alpha (ER-a) antagonism via the SERM minimizes feminizing and

oncogenic risks (13, 14). ER-b activation has also been implicated in

enhancing mitochondrial bioenergetic function and in the

transcriptional regulation of brain-enriched microRNAs (miRNA)

involved in stress buffering and synaptic adaptability (15, 16).

Our hypothesis reframes estradiol not as a feminizing hormone,

but as a receptor-specific neuromodulator capable of targeting

treatment-refractory dimensions of BD in men. Drawing from

endocrinology, psychiatry, and neuroimmunology, this paper

articulates a testable and mechanistically grounded intervention

that moves beyond monoamine-centric pharmacology. By

positioning estradiol plus SERM therapy as a precision-guided,

receptor-informed neuromodulatory approach, we lay a foundation

for hormone-informed psychiatric care that is both sex-conscious
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and biologically rigorous. We further explore its translational

potential across mood disorder subtypes, developmental risk

windows, and precision psychiatry frameworks defined by

immune, hormonal, and genetic biomarkers.
Neuroendocrine basis of estradiol in males

Although estrogen is traditionally conceptualized as a female

sex hormone, it performs critical neuromodulatory roles in the male

central nervous system (CNS), primarily via aromatase-mediated

intracrine conversion of testosterone to 17b-estradiol within limbic

and cortical regions. This locally synthesized estradiol transcends

reproductive function, acting as a potent modulator of affective

salience, synaptic metaplasticity, and neuroendocrine stress

responsivity. In males, estrogen receptor subtypes—most notably

ER-b and GPER1—are expressed at the protein level across

corticolimbic structures, including the hippocampus, amygdala,

nucleus accumbens, and medial prefrontal cortex (12).

Converging molecular and electrophysiological data indicate

that ER-b and GPER1 activation enhances BDNF transcription,

facilitates hippocampal long-term potentiation (LTP), and

calibrates monoaminergic tone across dopaminergic and

serotonergic (5-HT1A) circuits—systems frequently disrupted in

treatment-resistant BD (TR-BD) (13–15, 17, 18).

In parallel, ER-b signaling suppresses microglial activation and

downregulates transcription of pro-inflammatory cytokine genes

(e.g., interleukin-1 beta [IL-1b], tumor necrosis factor-alpha [TNF-

a]), highlighting estradiol’s role in neuroimmune regulation (10, 19).

GPER1 engages rapid non-genomic signaling cascades—such as

phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and

mitogen-activated protein kinase/extracellular signal-regulated

kinase (MAPK/ERK) cascades —to support synaptic homeostasis

and cellular resilience under chronic stress conditions (17, 20).

Additionally, ER-b and GPER1 interact functionally with group I

metabotropic glutamate receptors (e.g., mGluR1), linking estrogenic

activity to glutamatergic excitability and affect regulation (21).

Collectively, these findings reframe estradiol as a central

regulator of male affective circuitry. Mapping these receptor-

specific pathways opens a path toward sex-informed, circuit-

targeted therapeutics for mood disorders, with the potential for

biomarker-guided personalization (12, 22).
Broader psychiatric and neurobiological
contexts of estrogenic signaling

While this framework centers on TR-BD in males, the

neuromodulatory functions of ER-b and GPER1 are conserved

across psychiatric phenotypes. Their involvement in mood,

psychotic, and neurodevelopmental disorders suggests that

receptor-selective estrogenic strategies could offer cross-diagnostic

utility (10, 12, 23). Functional variants in estrogen-related genes

such as ESR2 and CYP19A1 have been associated with affective

instability, SSRI resistance, and sex-specific symptom clusters,
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supporting pharmacogenomic enrichment in future trials (14, 24).

Importantly, such strategies may also benefit gender-diverse

populations—including transgender individuals receiving

feminizing hormone therapy—where the long-term psychiatric

effects of exogenous estradiol remain poorly characterized (12, 14,

25). These intersections between receptor biology, inclusive trial

design, and gender-informed care reinforce the need for precision

psychiatric models that are both mechanistically grounded and

demographically inclusive.
Clinical translation: SERMs as a
buffering strategy

SERMs, such as raloxifene, offer a pharmacodynamically refined

approach to harnessing the neuromodulatory benefits of estradiol

while minimizing peripheral endocrine risks. These agents exhibit

tissue-selective activity: acting as ER-a antagonists in peripheral

sites—such as mammary and endometrial tissue—to reduce

feminizing and oncogenic risk, while functioning as partial

agonists at ER-b and GPER1 in the central nervous system (13).

This ligand-selective receptor modulation defines a

neuroendocrine therapeutic window through which central

pathways governing affective stability, executive function, and

neuroimmune regulation can be targeted without provoking

peripheral feminization (12, 22). Raloxifene, in particular,

demonstrates strong blood–brain barrier permeability, low

systemic estradiol burden when paired with microdosed estrogen,

and sufficient receptor occupancy to trigger gene-regulatory

(genomic) and rapid (non-genomic) signaling cascades linked to

synaptic plasticity, glial modulation, and neuroprotection—

domains central to the pathophysiology of BD (10, 14).

Randomized controlled trials in male schizophrenia cohorts—

who often share frontostriatal dopaminergic dysfunction and

chronic neuroinflammation with BD—report that adjunctive

raloxifene improves working memory, mitigates negative affect,

and reduces Positive and Negative Syndrome Scale (PANSS)

negative scores, all without significant adverse events (26, 27).
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These outcomes challenge the perception of estrogenic

neuromodulation as sex-limited and instead support its viability

as a cross-sex, circuit-specific therapeutic.

Raloxifene’s ER-a antagonism at peripheral sites directly

addresses key deterrents to estrogen-based therapies in males,

including gynecomastia, libido suppression, and cancer risk (23,

28). When co-administered with subthreshold estradiol doses, this

receptor-selective paradigm may redefine adjunctive strategies for

pharmacoresistant BD in men, establishing a mechanistically

grounded model of endocrine augmentation (14, 22).

To facilitate clinical translation, we outline a phased, biomarker-

informed protocol for testing estradiol + SERM co-therapy in male

TR-BD. This framework incorporates endocrine monitoring,

neurocognitive profiling, and stratified inclusion based on

inflammatory and genomic markers. See Table 1 for a summary of

receptor-mechanism-phenotype relationships and procedural design.
Preclinical models supporting the
hypothesis

An expanding body of animal and cellular research supports the

mechanistic plausibility of estradiol plus SERM co-therapy targeting

ER-b and GPER1 in treatment-resistant mood disorders.

Ovariectomized rodent models have consistently demonstrated

that estrogen enhances hippocampal synaptic plasticity and

modulates HPA axis responsivity via ER-b activation (15, 18, 29).

GPER1-selective agonists such as G-1 replicate these effects in male

rodents, indicating that estradiol’s neuroprotective signaling is not

sex-limited (17).

Chronic stress paradigms—including chronic unpredictable

stress (CUS) and restraint stress—reveal that central ER-b
activation reverses stress-induced reductions in BDNF gene

expression, enhances neurogenesis, and reduces transcription of

pro-inflammatory cytokines (15, 16). Additionally, ER-b knockout

models confirm that this receptor is necessary for the cognitive and

antidepressant effects of estradiol, providing critical genetic

validation for the receptor-specific framework (18).
TABLE 1 Protocol framework for estradiol + SERM clinical trial in male TR-BD.

Step Component Rationale

1. Screening
Identify TR-BD males (e.g., non-response to ≥2 pharmacological regimens) with
elevated inflammation markers, executive dysfunction, or ESR1/
ESR2 polymorphisms.

Stratification for neuroimmune, cognitive, and
genomic markers likely to respond to ER-
targeted therapy.

2. Baseline Assessment
Cognitive testing (e.g., N-back, Stroop), inflammatory panels (e.g., IL-6, CRP),
hormone levels (estradiol, testosterone), and QEEG.

Establish baseline for neuromodulatory and
immune biomarkers.

3. Intervention
Daily co-administration of low-dose 17b-estradiol (0.5–1.0 mg oral or transdermal) +
SERM (e.g., raloxifene 60 mg/day).

Selective central ER-b/GPER1 activation with
peripheral ER-a antagonism.

4. Monitoring
Biweekly endocrine and liver panels; monthly mood symptom scales (e.g., MADRS,
YMRS); side effect reporting.

Ensure safety, track efficacy and feminizing risk.

5. Endpoint Evaluation
Repeat biomarker and cognitive tests at 6–12 weeks; assess neuroendocrine,
cognitive, and mood changes.

Determine mechanistic engagement and
clinical relevance.
This table outlines a proposed schematic for a biomarker-informed clinical trial of co-administered low-dose estradiol and SERM therapy in TR-BD among males. The framework emphasizes
stratified enrollment based on neuroimmune, genomic, and cognitive biomarkers, with structured baseline and endpoint assessments. It integrates routine hormonal surveillance, mood symptom
monitoring, and mechanistic validation to ensure both safety and translational fidelity (14, 22).
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Together, these findings enable a translational framework in

which receptor-specific mechanisms can be mapped onto clinical

targets. This synthesis clarifies the therapeutic rationale and

reinforces the need for sex-conscious design in neuropsychiatric

intervention trials. Table 2 outlines this integrative model, aligning

estrogen receptor subtypes with their molecular pathways,

modifiable phenotypes, and male-specific preclinical evidence.
Detailed molecular pathways

Estrogen exerts its neuromodulatory effects via both genomic

and non-genomic signaling, predominantly through ER-b and

GPER1. Genomic signaling begins when ER-b dimerizes,

translocates to the nucleus, and binds estrogen response elements

(EREs), modulating the transcription of genes critical to

neuroplasticity and inflammation regulation—including BDNF,

neuregulin 1 (NRG1), and activity-regulated cytoskeleton-

associated protein (ARC) (14, 18). Non-genomic signaling via

GPER1 rapidly activates intracellular cascades such as PI3K/Akt

and MAPK/ERK, enhancing synaptic adaptability and

neuroprotection (17, 20).

These dual pathways converge on limbic-prefrontal circuits

central to emotion regulation and executive control—regions

often disrupted in TR-BD (12, 13). ER-b activation upregulates

BDNF transcription via cAMP response element-binding protein

(CREB) phosphorylation and suppresses nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-kB)–mediated pro-

inflammatory gene expression by inhibiting inhibitor of kB kinase

(IkK), fostering a resilient, anti-inflammatory neural milieu

(18, 32).
Supplementary material (extended
mechanisms)

See Supplementary Appendix A for expanded descriptions of

co-activators, including steroid receptor coactivator-1 (SRC-1) and
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CREB-binding protein (CBP); CREB–BDNF feedforward loops;

and immune regulation via IKK/NF-kB pathways (21, 33, 34).
Detailed molecular pathways: estrogenic
modulation via ER-b and GPER1

Among estrogen receptors involved in estradiol’s neuromodulatory

effects, ER-b and GPER1, have emerged as primary targets for

neuropsychiatric intervention in the male brain. These receptors,

enriched in central regions governing affect—such as the prefrontal

cortex, hippocampus, hypothalamus, and amygdala—offer a non-

feminizing alternative to the peripherally dominant ER-a (12, 14).

ER-b, a nuclear receptor, modulates gene transcription upon

ligand binding, increasing BDNF gene expression and promoting

dendritic spine formation, adult neurogenesis, and synaptic

resilience—processes commonly impaired in BD, particularly

among patients with cognitive deficits or chronic mood

instability (18, 23). ER-b also inhibits NF-kB–mediated

inflammation and engages mammalian target of rapamycin

(mTOR) signaling pathways, supporting long-term synaptic

potentiation, oxidative stress tolerance, and mitochondrial

function (17).

In contrast, GPER1—a membrane-bound receptor mediating

the rapid, non-genomic effects of estradiol—initiates PI3K/Akt,

extracellular signal–regulated kinase 1/2 (ERK1/2), and CREB

phosphorylation cascades that modulate synaptic vesicle

mobilization, induce immediate early gene transcription, and

regulate glutamatergic tone (20, 35). These signaling events

extend to structural plasticity and cytoskeletal remodeling,

supporting dendritic integrity and neuronal survival.

GPER1 also influences monoaminergic systems by modulating

5-HT1A and D2 receptor function, as well as N-methyl-D-aspartate

(NMDA) receptor dynamics. This leads to enhanced prefrontal

serotonin availability, stabilized D2 tone, and improved cognitive

flexibility—features impaired in BD (26, 36). Crucially, these effects

bypass the liabilities of conventional monoaminergic drugs, such as

receptor desensitization or behavioral activation.
TABLE 2 Mechanism–target–phenotype summary for estradiol + SERM co-therapy in male TR-BD.

Receptor
target

Mechanistic action
Phenotype
modified

Male-specific evidence Reference(s)

ER-b (CNS)
Enhances BDNF expression and dendritic growth;
modulates HPA axis reactivity

Cognitive flexibility,
emotional resilience

ER-b knockout and chronic stress models
confirm antidepressant effect in males

(15, 18)

GPER1 (CNS)
Activates MAPK/ERK and PI3K/Akt signaling
pathways; suppresses proinflammatory cytokines

Affective stability,
reduced
neuroinflammation

G-1 agonist trials show preserved
hippocampal neurogenesis in male rodents

(16, 17)

ER-b + GPER1
(co-activation)

Recalibrates synaptic plasticity and
astroglial signaling

Executive dysfunction,
stress reactivity

Male rodents show improved cognition
without feminization under E2 + raloxifene

(30, 31)

ER-a (peripheral,
blocked by SERM)

Prevents gynecomastia, reduces estrogenic
oncogenic risk

Safety/acceptability
in males

Peripheral receptor blockade shown in male
endocrine cancer models

(14, 23)
This table synthesizes the mechanistic rationale for co-activating central ER-b and GPER1, while blocking peripheral ER-a, in the treatment of TR-BD in males. It maps each receptor target to its
downstream signaling pathway, the clinical phenotype potentially modified, and supporting evidence from male-specific preclinical studies. The table also highlights how peripheral ER-a
antagonism via SERMs mitigates feminizing and oncogenic risks, enhancing therapeutic acceptability.
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Both ER-b and GPER1 contribute to HPA axis regulation by

suppressing corticotropin-releasing hormone (CRH) drive and

increasing glucocorticoid receptor (GR) sensitivity, thereby

restoring adaptive stress responsivity and reducing allostatic load

(14, 21).

Taken together, these genomic and non-genomic pathways

provide a mechanistic foundation for combining estradiol with a

SERM to achieve CNS–specific modulation while minimizing

peripheral risks. Selective activation of ER-b and GPER1—via co-

administration of low-dose estradiol and a buffering SERM like

raloxifene—constitutes a receptor-specific therapeutic model that

delivers neurotrophic gene upregulation, inflammatory attenuation,

monoaminergic modulation, and HPA axis recalibration (14, 18, 21,

23, 26), targeting key pathophysiological domains in TR-BD.

Notably, this framework reconciles endocrine safety with

neuropsychiatric specificity, offering a mechanistically grounded,

sex-informed treatment strategy (22, 36). Figure 1 schematically

illustrates this model, mapping the converging pathways by which

estradiol and SERM co-therapy engage affective circuits while

avoiding peripheral feminization.
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Implications for clinical trials

The therapeutic hypothesis advanced herein offers a

mechanistically grounded foundation for a first-in-human, early-

phase clinical trial targeting TR-BD in males. Given the novelty of

hormone-based neuromodulation in psychiatry—and the sex-

specific complexities of neuroendocrine signaling—a hybrid Phase

0–1 design is warranted, emphasizing pharmacodynamic

validation, intensive safety monitoring, and biomarker-guided

dose titration (14).

The primary objective of this proof-of-concept study would be

to evaluate the safety, tolerability, and preliminary neuropsychiatric

efficacy of co-administered low-dose 17b-estradiol and a buffering

SERM, such as raloxifene. A dose-escalation schema, guided by

preclinical thresholds and endocrine parameters, is recommended

—preferably employing a sentinel cohort design to assess

pharmacokinetics and neurobehavioral responses prior to broader

enrollment (27, 28, 38).

Psychiatric outcomes should be measured using validated

instruments sensitive to bipolar symptomatology, such as the
FIGURE 1

Estradiol Signaling Mechanisms in the Male Brain. Schematic representation of estradiol signaling via ER-b and GPR30 in central nervous system
regions relevant to affect regulation. Pathways illustrated include BDNF upregulation (37), CREB phosphorylation (18), and activation of PI3K/Akt and
MAPK/ERK cascades (35), alongside modulation of inflammatory (36) and monoaminergic systems (28). The schematic models the proposed
mechanism by which co-administration of estradiol and a SERM may exert neuroprotective and mood-stabilizing effects in treatment-resistant
bipolar disorder (14).
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Montgomery–Åsberg Depression Rating Scale (MADRS), the

Young Mania Rating Scale (YMRS), and the Clinical Global

Impressions (CGI) scale, to capture both symptom-specific and

longitudinal trends (3).

Neuroendocrine safety monitoring should include serial

measurements of plasma 17b-estradiol, total and free testosterone,

sex hormone-binding globulin (SHBG), and prolactin. Thresholds

should be clearly defined to avoid feminizing or carcinogenic risks.

Clinical assessments should include screening for gynecomastia,

affective destabilization, and hypothalamic–pituitary–gonadal

(HPG) axis perturbations, given the endocrine activity of both

agents (28).
Clinical trials: biomarkers, eligibility,
and stratification

Target engagement should be evaluated via serial inflammatory

biomarkers—interleukin-6 (IL-6), TNF-a, and high-sensitivity C-

react ive prote in (hsCRP)— l everaging 17b-es tradio l ’s
immunomodulatory properties (32, 35, 39). Exploratory

endpoints may include cognitive performance assessments (e.g.,

Cambridge Neuropsychological Test Automated Battery

[CANTAB], Wisconsin Card Sorting Test), actigraphy and the

Pittsburgh Sleep Quality Index (PSQI) for sleep architecture, and

stress-reactivity assays such as the cortisol awakening response or

Trier Social Stress Test. Additionally, resting-state functional

magnetic resonance imaging (fMRI) could be used to assess

connectivity changes in salience, default mode, and frontolimbic

networks (9, 14).

Participant eligibility must be tightly controlled to minimize

risk. Exclusion criteria should include estrogen-sensitive

malignancies, thromboembolic disorders, hepatic impairment,

hypogonadism, thyroid dysfunction, substance abuse, or

traumatic brain injury—conditions that may modulate

inflammation, receptor expression, or drug responsivity (14, 28, 36).

All investigational activities should comply with International

Council for Harmonisation–Good Clinical Practice (ICH-GCP)

standards and involve interdisciplinary oversight spanning

psychiatry, endocrinology, neuroimmunology, and pharmacology

(24, 35).

This trial also presents a key opportunity to pilot biomarker-

enriched recruitment strategies. Participants with low endogenous

17b-estradiol, elevated inflammatory load, or functional

polymorphisms in genes encoding ER-b (ESR2) or aromatase

(CYP19A1) may represent optimal responders (14, 24). Adaptive

designs—such as N-of-1 crossovers or stratified randomization—

could enhance precision in capturing therapeutic effects.

Real-world data reinforce the need for personalized

augmentation strategies. For instance, long-acting injectable (LAI)

formulations of aripiprazole and paliperidone have shown promise

in BD patients with comorbidities such as obsessive–compulsive

disorder (OCD), while cariprazine augmentation in both unipolar

and bipolar depression has demonstrated efficacy where standard

treatments failed (40–42). These trends suggest that receptor-
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specific adjuncts may rescue treatment resistance when

personalized to neurobiological profiles. Furthermore, the

persistence of reduced circulating BDNF protein even during

euthymia in BD (43) underscores the potential of ER-b/GPER1-
targeted therapy to directly address neuroplastic deficits.

By integrating sex-informed and mechanistically anchored

methodologies into psychiatric trial design, this paradigm

advances a novel form of endocrine augmentation—one that is

neurobiologically rigorous, clinically tractable, and ethically

progressive (24, 25, 36).
Integration with monoaminergic systems

Both ER-b and GPR30 signaling pathways converge on the

modulation of central monoaminergic circuits, positioning estradiol

as a potent upstream regulator of 5-HT1A, D3, and noradrenergic

tone. Estradiol enhances serotonin biosynthesis by upregulating

tryptophan hydroxylase-2 (TPH2)—the rate-limiting enzyme in 5-

HT production—and concurrently increases postsynaptic receptor

sensitivity at 5-HT1A and 5-HT2A subtypes. These actions

collectively augment synaptic 5-HT availability and receptor

responsiveness, mechanisms particularly relevant in the

depressive phases of BD, especially among patients exhibiting

SSRI nonresponse (9, 36).

Concurrently, estradiol modulates catecholaminergic tone by

downregulating monoamine oxidase A (MAO-A) and monoamine

oxidase B (MAO-B) gene expression, thereby reducing synaptic

monoamine catabolism (43). This cascade results in enhanced

dopaminergic signaling within mesocorticolimbic circuits and

increased norepinephrine transmission along the locus coeruleus–

prefrontal cortex axis—neural pathways central to motivational

drive, executive functioning, and affective salience. These domains

are frequently disrupted in TR-BD, particularly in mixed or rapid-

cycling subtypes (14).
Epigenetic modulation

Emerging evidence indicates that estrogen signaling exerts

chromatin-level control over neuropsychiatric phenotypes through

epigenetic mechanisms. Activation of ER-b modulates both histone

acetylation and DNA methylation at gene loci central to affect

regulation, synaptic remodeling, and neurotrophic support (20).

Estradiol has been shown to upregulate histone acetyltransferases

(HATs) such as CBP/E1A-binding protein p300 (p300), while

concurrently inhibiting histone deacetylases (HDACs)—thereby

inducing a transcriptionally permissive chromatin environment

(19). This epigenomic shift facilitates transcriptional activation of

key resilience-related genes, including BDNF, binding protein 5

(FKBP5), and nuclear receptor subfamily 3 group C member 1

(NR3C1), which mediate neuroplasticity, glucocorticoid regulation,

and adaptive stress responsivity.

Simultaneously, estradiol modulates miRNA networks—

particularly those that regulate synaptic scaffolding proteins (e.g.,
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postsynaptic density protein 95 (PSD-95)) and intracellular stress

regulators (e.g., sirtuin 1 (SIRT1)), GR contributing to a broader

epigenomic imprint on affective stability (16). These pathways

support the evolving view of BD as a plasticity disorder,

characterized by experience-dependent transcriptional

dysregulation. Within this framework, targeted neuromodulation

via ER-b and GPR30 offers the potential to restore adaptive gene

expression and synaptic architecture.
Cross-talk with HPA axis and immune
signaling

Estrogen signaling interfaces intricately with both the HPA axis

and peripheral immune circuitry, reinforcing its relevance across

neuropsychiatric systems. Within the paraventricular nucleus

(PVN) of the hypothalamus, ER-b activation suppresses CRH

gene transcription, attenuating downstream adrenocorticotropic

hormone (ACTH) and cortisol release. This recalibrated

neuroendocrine feedback loop promotes adaptive stress

responsivity—a key determinant of episode recurrence, mood

instability, and treatment refractoriness in BD (8, 35).

Simultaneously, both ER-b and GPR30 exert anti-inflammatory

effects by downregulating transcription of pro-inflammatory

cytokines—including IL-6, TNF-a, and IL-1b—via antagonism of

the NF-kB pathway and modulation of MAPK/ERK signaling (20,

35, 39). These immunoregulatory actions reduce excitatory

cytokine-driven feedback on the HPA axis, restoring

neuroimmune equilibrium under conditions of chronic stress,

psychosocial adversity, or low-grade systemic inflammation.
Sex-informed neurobiology and psychiatric
vulnerability

Sex differences in psychiatric illness extend beyond epidemiology

to reflect divergent neurobiological trajectories, shaped by genomic

architecture, hormonal milieu, and receptor-specific signaling

dynamics. In BD, these distinctions are particularly pronounced:

women more often present with Bipolar II disorder (BD-II) is

characterized by recurrent depressive episodes and at least one

hypomanic episode, without the full-blown manic episodes seen in

bipolar I disorder (BD-I), rapid cycling, and atypical depression,

whereas men show increased rates of early onset, psychotic features,

and pharmacologic refractoriness (3). Male-biased comorbidities—

such as Attention-deficit/hyperactivity disorder (ADHD), substance

use disorders, and externalizing syndromes—underscore differences

in neurodevelopmental trajectories and executive function profiles

(9, 14).

These patterns likely emerge from sex-specific estrogen receptor

gene and protein expression gradients, and differential sensitivity to

neurosteroids. While ER-b is enriched in the female hippocampus,

it remains functionally robust in male corticolimbic structures,

particularly the prefrontal cortex, amygdala, and anterior

cingulate cortex—regions governing affect regulation, stress
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responsivity, and synaptic remodeling (11, 36). In males,

activation of ER-b and GPR30 produces neurotrophic, anxiolytic,

and anti-inflammatory effects that mirror estradiol’s therapeutic

actions in female populations (10, 35).

Parallel sex differences are evident in HPA axis responsivity:

males often exhibit blunted cortisol reactivity but more pronounced

dopaminergic dysregulation, contributing to impulsivity, mood

lability, and executive dysfunction (24). Yet despite these

divergences, shared molecular nodes—including ER-b–induced
BDNF transcription and PI3K/Akt engagement—remain

accessible across sexes. This supports a sex-informed but not sex-

exclusive framework for estrogenic modulation in mood disorders.

Importantly, these receptor-function disparities may originate

in early neurodevelopment, and developmentally programmed

transcriptional responsiveness. Estradiol plays a central role in

fetal brain development, directing neuronal migration, synaptic

pruning, and epigenetic patterning—processes foundational to

later-life emotional regulation, cognitive function, and stress

resilience (16, 44).
Proposed mechanism of action—integrative
model

Animal and human studies suggest that male fetuses exhibit

reduced ER-b gene expression, particularly during critical

developmental windows sensitive to inflammatory insults (22, 25).

As demonstrated by (44), ER-b suppresses neuroinflammatory gene

expression via C-terminal binding protein (CtBP)– HDAC

corepressor complexes. In states of ER-b insufficiency, this

suppression is compromised, permitting exaggerated maternal

immune activation (MIA)-induced cytokine cascades.

These developmental disruptions impair microglial maturation,

epigenetic programming, and dopaminergic tract development,

collectively priming the brain for later affective dysregulation,

executive dysfunction, and treatment refractoriness (11, 45).

Notably, Polycomb Repressive Complexes (PRCs)—which

temporally regulate neurodevelopmental gene silencing—are also

hormonally modulated. Bölicke and Albert (2022) demonstrated

that early estrogen signaling stabilizes Polycomb repressive complex

2 (PRC2) architecture in cortical and limbic regions; its absence may

contribute to aberrant prefrontal morphology and dopaminergic

disarray observed in male ADHD–BD comorbidity (37).

Experimental models corroborate this vulnerability. Cao et al.,

2014 found that ER-b suppresses neuroinflammatory gene

expression via CtBP–HDAC corepressor complexes (13). Wright

et al., 2019 reported atypical estrogen biosynthesis in the cerebellum

of children with neurodevelopmental disorders—suggesting a

compensatory response to perinatal hormonal deficiency (14).

Together, these data support the hypothesis that insufficient

ER-b signaling constitutes a developmentally rooted susceptibility

factor for psychiatric phenotypes characterized by impulsivity,

affective lability, and treatment resistance (13, 44). Estradiol–

SERM co-therapy in adult males thus represents more than

symptomatic modulation; it offers a means to recalibrate
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dysregulated neurocircuitry shaped by early-life hormonal

imbalance (14, 37). This framework positions estrogenic

neuromodulation as both sex-informed and developmentally

integrative, targeting age-specific windows of plasticity, receptor

availability, and circuit remodeling.

Mechanistically, this model proposes that low-dose estradiol,

delivered alongside a buffering SERM (e.g., raloxifene), selectively

activates ER-b and GPR30 in the male brain while antagonizing ER-

a in peripheral tissues. This configuration preserves estradiol’s

central neuroprotective and anti-inflammatory effects while

avoiding feminizing or tumorigenic sequelae traditionally

associated with systemic estrogen exposure (9, 14).

Upon ligand engagement, ER-b promotes BDNF transcription

and enhances CREB phosphorylation—critical regulators of

synaptic plasticity and emotional regulation (9, 35). In parallel,

GPR30 triggers non-genomic cascades (e.g., PI3K/Akt, ERK1/2),

rapidly promoting cellular adaptation to neuroinflammatory stress

and HPA axis dysregulation (32, 35). These dual pathways converge

to suppress transcription of IL-6 and TNF-a genes while restoring

monoaminergic tone via serotonin biosynthesis, D2 modulation,

and glutamatergic homeostasis (35, 36).

Importantly, this mechanism is conserved across sexes. While

receptor distribution and baseline hormone levels differ, ER-b and

GPR30 signaling architectures remain functionally intact in both

male and female brains (19, 22, 25). In women, estradiol–SERM

regimens have shown efficacy in ameliorating negative symptoms in

schizophrenia and mood instability in perimenopause (26). The same

neurotrophic and anti-inflammatory signaling dynamics that

underlie these outcomes are operative in male neural circuits (14, 21).

Thus, this framework is not merely a sex-based extrapolation,

but a mechanistic continuation—proposing precision receptor-

targeted neuromodulation based on pathophysiology, not

presumed contraindications (14, 28). It reframes estrogenic agents

as multi-modal psychiatric adjuncts, capable of realigning disrupted

neural systems in treatment-resistant mood disorders, especially in

males with developmental endocrine vulnerability (27, 35).
Translational models and preclinical
evidence

The mechanistic plausibility of estradiol-based adjunctive

therapy for male BD is strongly supported by an expanding body

of preclinical research, spanning rodent models and in vitro neural

systems. Across these paradigms, selective activation of ER-b and

GPR30 consistently modulates key pathophysiological domains

relevant to BD—namely, neurotrophic support, inflammatory

regulation, HPA axis responsivity, and monoaminergic

homeostasis (9, 14, 35, 36).

In rodent studies, ER-b stimulation enhances hippocampal

BDNF gene expression, dendritic spine density, and synaptic

resilience within stress-sensitive corticolimbic circuits (9).

Estradiol administration in gonadally intact male rats improves

spatial learning and affective memory, correlating with elevated 5-
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HT1A tone and attenuated HPA axis activity—two systems

frequently disrupted in chronic BD (35, 36, 38).

Neuroimmune modulation is another conserved feature across

translational models. For example (46), demonstrated that co-

activation of ER-b and GPR30 reduced LPS-induced IL-6 and

TNF-a expression in cultured hippocampal neurons—supporting

the anti-inflammatory role of estrogenic signaling. In immune-

primed in vivo paradigms, estradiol reliably downregulates pro-

inflammatory cytokines and suppresses microglial activation—both

of which are implicated in treatment resistance and mood

destabilization (9, 36).

The non-genomic signaling pathways engaged by GPR30—

notably PI3K/Akt, MAPK/ERK, and CREB phosphorylation—

have been validated in transgenic mouse lines and immortalized

neuronal cultures, indicating its role in mitochondrial resilience,

oxidative buffering, and neurotransmitter stabilization (35).

Electrophysiological data further show that estradiol, via ERK1/2,

enhances prefrontal cortical throughput, a pathway central to

executive function and affective regulation (27).

Importantly, these models also clarify the safety profile of

estradiol + SERM co-therapy. In ovariectomized female rodents,

raloxifene effectively blocked peripheral estrogenic effects (e.g.,

uterine hypertrophy) while preserving central receptor engagement.

In male rodents, this same dual-receptor approach prevented

feminizing sequelae—gynecomastia, testicular atrophy, and

androgen suppression—without compromising CNS efficacy (9, 28).

Supportive data also arise from schizophrenia, post-traumatic

stress disorder (PTSD), and chronic stress models, which share

endophenotypic overlap with BD. For example, in ketamine-

induced psychosis and early life stress paradigms, estradiol

restored protein expression of synaptic scaffolding markers and

normalized behavioral phenotypes (35, 36).

Collectively, these converging findings provide a robust

translational scaffold for estradiol + SERM co-therapy in male

affective disorders. Mechanisms validated across preclinical models—

including BDNF upregulation, neuroimmune suppression, and

monoaminergic recalibration—mirror the core circuit dysfunctions

observed in treatment-resistant BD (13, 47, 48). Given their favorable

receptor selectivity, tolerability, and neural specificity, these compounds

offer a developmentally informed, sex-conscious, and mechanistically

grounded platform for psychiatric intervention (35, 36).
Alternative therapeutic pathways:
comparative and convergent interventions

While estradiol–SERM co-therapy offers a sex-conscious,

receptor-targeted strategy for TR-BD, its clinical utility is best

contextualized within the broader domain of emerging psychiatric

adjuncts. Several non-traditional agents—including tamoxifen, a

protein kinase C (PKC) inhibitor with established anti-manic

efficacy (49); ketamine, a glutamatergic modulator approved for

treatment-resistant depression (50); brexanolone, a GABAergic

neurosteroid used in postpartum depression (51); and
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minocyc l ine , an immunomodula tory ant ib iot ic wi th

neuroprotective properties (52)—similarly target neuroplasticity,

inflammatory regulation, and cellular stress pathways as central

therapeutic domains.

Tamoxifen, though originally developed for estrogen-sensitive

cancers, has demonstrated robust anti-manic effects in clinical trials

through PKC inhibition, a signaling cascade tightly linked to

affective instability and manic excitability (53, 54). However, its

broad-spectrum estrogen antagonism, particularly at central ER

subtypes, and its elevated thromboembolic risk significantly limit its

long-term use in psychiatric populations. In contrast, raloxifene—

used in estradiol–SERM co-therapy—selectively preserves ER-b and
GPR30 agonism within the central nervous system while blocking

ER-a in peripheral tissues. This selectivity permits mood

stabilization and neuroprotection without the feminizing or

oncogenic liabilities associated with broader estrogenic agents (27).

Ketamine has redefined rapid-acting antidepressant

interventions via NMDA receptor antagonism, inducing

glutamatergic disinhibition and triggering BDNF protein release

via post-transcriptional mTOR signaling (55). Its efficacy in bipolar

depression is well documented, yet its short duration of action,

psychotomimetic side effects, and unclear long-term safety profile

constrain its scalability and routine clinical deployment (56). While

some mechanistic overlap exists—particularly regarding mTOR,

PI3K/Akt, and synaptic plasticity—estradiol offers a more

sustained, receptor-specific neuromodulation with fewer

dissociative and abuse-related liabilities (34).

Brexanolone, a synthetic analog of the endogenous neurosteroid

allopregnanolone, functions as a positive allosteric modulator of

extrasynaptic GABA-A receptors. Its effectiveness in postpartum

depression, a condition defined by neurosteroid withdrawal and

GABAergic dysregulation, has been repeatedly validated in large-

scale trials (57–59). However, unlike estradiol—which influences

nuclear transcription (ER-b), non-genomic signaling (GPR30),

BDNF regulation, cytokine suppression, and monoaminergic tone

—brexanolone’s mechanism is confined to GABAergic potentiation.

Furthermore, its clinical utility is constrained by intravenous

administration requirements, sedative side effects, and high

treatment costs. In contrast, estradiol’s broader receptor profile and

feasibility for oral or transdermal delivery enhance its translational

accessibility (14, 19, 36, 38).

Minocycline, an antibiotic with anti-inflammatory and

glutamatergic-modulating properties, has shown some efficacy in

inflammation-associated subtypes of affective and psychotic

disorders. Its mechanism involves inhibition of microglial activation

and suppression of pro-inflammatory cytokines such as IL-6, TNF-a,
andMatrix metallopeptidase 9 (MMP-9) (48, 60, 61). However, results

across trials remain inconsistent, and long-term use raises concerns

regarding antibiotic resistance and microbiome disruption (62, 63).

Unlike estradiol, minocycline lacks neuroendocrine specificity and

does not engage sex-differentiated receptor systems, making it a less

targeted intervention for disorders like BD, where receptor

modulation may confer significant therapeutic precision (19, 22, 25).

Collectively, these agents represent a paradigm shift in psychiatric

therapeutics, moving beyondmonoaminergic modulation to focus on
Frontiers in Psychiatry 09
plasticity, immune regulation, and cellular resilience (34, 64, 65).

Within this evolving landscape, estradiol–SERM co-therapy

distinguishes itself by unifying these mechanisms through sex-

differentiated receptor pharmacodynamics and mimicking

endogenous neurohormonal signaling. It provides a low-abuse,

developmentally anchored, biomarker-compatible framework for

circuit-based modulation of treatment-resistant affective disorders

(8, 13, 21, 22, 66). Future trials should adopt biotype-stratified,

mechanistically comparative designs that incorporate sex as a

biological variable, allowing for rigorous evaluation of estradiol–

SERM therapy alongside convergent interventions such as

ketamine, brexanolone, and PKC inhibitors (10, 26, 67).
Neurosteroid crosstalk and comparative
therapeutics: estradiol within a broader
pharmacological framework

The receptor-specific model advanced herein reframes estradiol

as a precision neuromodulator—rather than a feminizing hormone

—whose neuropsychiatric effects are mediated primarily through

ER-b and GPR30 activation within limbic-prefrontal circuits (19,

21, 66). This conceptual shift aligns with recent advancements in

sex-informed neurobiology and receptor pharmacodynamics (9, 14,

22), distinguishing estrogenic strategies from classical

monoaminergic or broad-spectrum psychiatric agents (18, 68).

Important ly , es t rad io l–SERM co-therapy offers a

pharmacodynamically selective approach to male psychiatric care,

particularly in treatment-resistant BD. Unlike agents such as

tamoxifen—which broadly antagonize estrogen receptors—

raloxifene preserves CNS-targeted ER-b and GPR30 signaling

while neutralizing peripheral ER-a activation, minimizing

feminizing or oncogenic sequelae (26, 27). This receptor bias

renders it uniquely suitable for sex-conscious neuromodulation

without endocrine burden.

Other neuroactive compounds reinforce the validity of pathway-

based augmentation. For instance, the rapid antidepressant effects of

brexanolone (57, 58) and ketamine (55) converge with estradiol’s

intracellular signaling at nodes such as mTOR, PI3K/Akt, and BDNF,

despite acting through distinct receptor classes (34, 56). However,

estradiol’s transcriptional reach and receptor-selective stability afford

broader neuromodulatory control and reduced abuse liability—

particularly relevant in chronic BD (14, 19).

Similarly, NSAIDs such as celecoxib have demonstrated

antidepressant efficacy in inflammation-biased subtypes,

supporting the rationale for biomarker-guided adjuncts (60, 61).

Yet unlike estradiol, these agents lack transcriptional specificity and

circuit-level plasticity, reinforcing the advantage of ER-targeted

signaling in modifying disease architecture. Clinical trials of these

comparators, while promising, remain limited by narrow

mechanistic scope or delivery constraints.

What distinguishes estradiol–SERM co-therapy is not just its

intersection with these established interventions, but its capacity to

integrate multiple domains—neuroplasticity, monoaminergic

calibration, immune suppression, and stress-axis modulation—
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through receptor-specific, sex-informed pharmacology. This

convergence allows for a precision framework that is both

translationally grounded and developmentally attuned (14, 25, 66).

As such, estradiol-based neuromodulation does not operate in

isolation but belongs to a broader post-monoaminergic ecosystem

of therapeutics aimed at restoring neural system integrity in

affective illness. By embedding it within this comparative

landscape, its clinical promise becomes both biologically coherent

and strategically differentiated (10, 24, 67).
Precision psychiatry and biomarker
stratification in male bipolar disorder

Emerging from the confluence of psychiatric genomics,

immunopsychiatry, and computational phenotyping is a precision

psychiatry paradigm—one that seeks to define mental illness

through neurobiological signatures rather than symptom-based

syndromic categories (24). Within BD, this shift is especially

salient: treatment-resistant presentations increasingly appear to

represent distinct neurobiological subtypes rather than extremes

on a continuum of severity (1). Estradiol–SERM co-therapy, long

excluded from male psychiatric frameworks, may in fact align with

this biologically defined stratification, particularly within

inflammation- and hormone-responsive biotypes (36).

Mounting evidence supports the validity of inflammatory

endophenotypes in BD, especially in males. For instance (69),

utilized a machine learning classifier integrating CRP with cognitive

and behavioral markers to discriminate BD from schizophrenia and

healthy controls with an AUC of 0.86, underscoring the

discriminative potential of immune-cognitive signatures.

Additionally, elevated IL-6, TNF-a, and hsCRP levels have been

correlated with poorer treatment response and higher chronicity risk

—characteristics that may mark estradiol-sensitive subsets.

Genomic insights further reinforce this model. Polymorphisms

in SLC1A2, which encodes the excitatory amino acid transporter 2

(EAAT2), have been associated with rapid cycling and lithium

nonresponse in BD (70). Decreased EAAT2 expression has also

been confirmed in postmortem BD brain tissue (71), suggesting a

glutamate-driven immune dysregulation. Parallel transcriptomic

studies in BD-derived induced pluripotent stem cells (iPSCs)

identified Cluster of differentiation 44 (CD44) overexpression at

the mRNA level, an immune marker linked to microglial activation

—as a molecular correlate of mood instability (72). These findings

converge mechanistically on pathways regulated by ER-b and

GPER1, which influence glutamatergic homeostasis, microglial

tone, and cytokine signaling.

Hormonal stratification adds a complementary lens. In a large

retrospective cohort of >8,000 BD patients, Lyu et al. (2023)

reported that combined hormonal and inflammatory markers—

including testosterone, estradiol, ACTH, and CRP—showed phase-

specific variation across manic and depressive states (28, 73).

Among men over 45, this endocrine-inflammatory panel

predicted mood polarity with an AUC of 0.70, demonstrating its

diagnostic and stratification utility.
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Mechanistic underpinnings for such stratification are found in

studies like Dubey et al. (2017), which demonstrated that

lymphoblastoid cell lines from women with PMDD exhibited

altered expression of ESC/E(Z)-regulated genes—implicating

chromatin-level hormone sensitivity even in the absence of

peripheral hormonal abnormalities (11). This model is

translatable to male BD cases with disrupted ER-b and GPER1

signaling (8, 74, 75), pointing to receptor sensitivity rather than

hormone concentration as a key risk factor.

Collectively, these findings advocate for biomarker-informed

stratification in future trials. Candidate criteria include

inflammatory biomarkers (e.g., IL-6, CRP) (69), estradiol/

testosterone ratios (28), and receptor genotypes (e.g., ESR1, ESR2,

GPER1 polymorphisms) (70). Within such a framework, estradiol–

SERM therapy can be rigorously evaluated not as a universal

adjunct, but as a precision-fit intervention for biologically defined

subpopulations. This approach moves beyond pharmacologic

generalization, anchoring treatment design in neuroendocrine

systems biology and re-centering male BD within the scope of

hormone-informed psychiatry.
Cross-diagnostic relevance of ER-b/GPER1
modulation

Although this manuscript foregrounds estradiol + SERM co-

therapy within the male BD context, the receptor systems it engages

—ER-b and G protein–coupled estrogen receptor 1 (GPER1/

GPR30)—function as conserved neuromodulatory hubs

implicated across diagnostic categories. Their centrality in

dopaminergic modulation, neuroimmune resolution, and

glutamatergic homeostasis supports a transdiagnostic framework

for hormone-informed psychiatric intervention (21, 28, 36).

In schizophrenia, ER-b and GPER1 play key roles in cognitive

and affective symptomatology. Preclinical and postmortem studies

demonstrate that ER-b activation upregulates BDNF expression

and promotes neuron–glia crosstalk, while GPER1 stimulation

enhances dendritic spine architecture and prefrontal synaptic

resilience (35, 36). These effects mirror the mechanisms required

for mood stabilization in BD, suggesting that estrogenic

dysregulation may constitute a shared vulnerability mechanism

across psychotic-spectrum disorders. Furthermore, GPER1’s

synaptic localization at glutamatergic terminals modulates

cognitive throughput and executive control—targeting core

deficits in both schizophrenia and BD (21, 76).

In PTSD, ER-b engagement facilitates fear extinction

consolidation and modulates HPA axis tone within amygdalo-

prefrontal circuits. Preclinical models show that ER-b agonism

enhances extinction learning and reduces stress reactivity—

features mechanistically relevant to trauma-linked BD

presentations (76). Similarly, GPER1 activation in hippocampal

neurons triggers rapid intracellular responses that reduce

hyperarousal and improve contextual fear discrimination (35, 77).

Neurodegenerative disorders, particularly Alzheimer’s disease

(AD), further substantiate ER-b and GPER1’s neuroprotective roles.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1644175
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Carlson 10.3389/fpsyt.2025.1644175
Data from Baez-Jurado and Rincón-Benavides (2019) and others

reveal that ER-b activation reduces amyloidogenic processing,

dampens microglial priming, and improves mitochondrial

efficiency—mechanisms that align with inflammation-associated

treatment resistance in chronic mood disorders (77–79). This

convergence across neuroinflammatory, synaptic, and endocrine

axes illustrates the cross-system relevance of estrogenic modulation

beyond mood alone.

Notably, clinical trials have demonstrated the psychiatric

efficacy of selective estrogen receptor modulators in non-female

populations. In schizophrenia, raloxifene reduced negative

symptoms and cognitive rigidity in both pre- and post-

menopausal women without feminizing side effects or endocrine

compromise (27, 80). These findings confirm that centrally selective

ER-b and GPER1 modulation retains efficacy across sexes under

appropriate pharmacological conditions.

By situating male BD within this shared receptor ecology, the

proposed model gains both mechanistic and translational robustness.

Rather than representing a sex-specific anomaly, estrogenic

neuromodulation reflects a conserved psychiatric mechanism

adaptable across disorders. This positions ER-b/GPER1 agonism as

a viable intervention not only for BD, but also for schizophrenia,

PTSD, and neurodegenerative conditions—particularly within male

subgroups marked by chronic inflammation or monoaminergic

instability. Future clinical trial designs should therefore explore

these receptor axes across diagnostic boundaries using biomarker-

guided stratification (27, 36).
Limitations, ethical considerations, and
future directions

While the proposed estradiol–SERM strategy is biologically

plausible and mechanistically grounded, several unresolved

challenges remain regarding its long-term application in male

psychiatric populations. Chief among these is the potential for

neuroendocrine disruption due to chronic estrogen receptor

modulation. Extended activation of ER-b and GPER1 may induce

feedback alterations in the HPG axis, affect androgen–estrogen

balance, or generate downstream effects on spermatogenesis,

pituitary signaling, and reproductive hormone cascades (7, 24,

81). As such, rigorous endocrine surveillance protocols must be

embedded in all clinical trials. These should include serial

assessments of serum estradiol, total and free testosterone, SHBG,

follicle-stimulating hormone (FSH) and luteinizing hormone (LH),

and inflammatory markers such as CRP and IL-6 to evaluate safety,

target engagement, and dynamic hormonal shifts (82).

Additionally, therapeutic stigma represents a key ethical and

practical challenge. Hormonal interventions, particularly those

involving estrogen, may elicit concern or resistance among male

participants due to gendered associations with feminization. To

mitigate these risks, informed consent processes must be both

transparent and demystifying—emphasizing the central nervous

system–specific, receptor-targeted intent of estradiol–SERM

therapy. Incorporating perspectives from clinicians, ethicists, and
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patient advocacy groups will be essential in defining tolerable risk-

benefit thresholds, refining language around treatment framing, and

improving enrollment acceptability (83, 84).

Looking forward, future clinical trials should adopt biomarker-

enriched, stratified designs to optimize therapeutic yield and

mitigate off-target risk. Recruitment should prioritize individuals

with molecular or physiological profiles predictive of estrogenic

responsiveness. Candidate stratification variables may include

estrogen receptor polymorphisms—such as estrogen receptor 1

(ESR1) rs9340817 and estrogen receptor 2 (ESR2) rs1256049—

which have been associated with differential receptor sensitivity,

stimulant reactivity, and antidepressant response (73, 85).

Dopaminergic tone may serve as another key moderator: for

instance, catechol-O-methyltransferase (COMT) Val/Val genotype

carriers, known to exhibit prefrontal dopamine hypofunction, may

benefit disproportionately from GPER1-mediated catecholamine

stabilization (86, 87).

Neurophys io log i ca l ind ices such as quant i t a t i ve

electroencephalography (QEEG) patterns or mismatch negativity

(MMN) amplitudes, alongside peripheral markers like BDNF, can

further refine subgroup identification—capturing individuals whose

underlying pathology reflects synaptic dysregulation, neurotrophic

insufficiency, or HPA axis dysfunction (88, 89). By embedding these

endophenotypic indicators into trial methodology, estradiol–SERM

interventions may be precisely targeted to those most likely to

benefit (88–90), enhancing both efficacy and ethical justifiability.

While precise estradiol dosing for male psychiatric populations

remains understudied, converging data from related clinical

contexts support a plausible physiological range. Trials in women

with schizophrenia have employed transdermal 17b-estradiol at
100–200 mg/day, improving mood and cognitive outcomes without

significant feminization (67). Preclinical studies in male rodents

demonstrate neuromodulatory effects at low estradiol doses,

particularly within the 25–100 mg/kg range, with selective ER-b
and GPER1 activation (38, 91). A recent meta-analysis confirms

that estrogenic modulation within this window can impact

dopaminergic, 5-HT1A, and glutamatergic pathways central to

neuropsychiatric disorders (92). These findings collectively

support the feasibility of initiating low-dose estradiol protocols in

sentinel male cohorts, titrated conservatively based on endocrine

monitoring, mood stabilization, and cognitive endpoints.

Ultimately, the safe translation of receptor-targeted hormone

therapy into male BD care will depend on the convergence of

endocrine monitoring, patient-centered trial design, and

mechanistically informed biomarker stratification. This paradigm

embodies the next step in operationalizing precision psychiatry—

not as an aspirational concept but as a practical framework

grounded in molecular pathology and therapeutic selectivity

(30, 31).
Conclusion

The clinical impasse posed by TR-BD—particularly in male

cohorts—demands a paradigmatic shift away from symptom-
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targeted polypharmacy toward sex-informed, receptor-specific

neuromodulation. This manuscript proposes a mechanistically

grounded, dual-axis intervention strategy: the co-administration of

low-dose estradiol with SERMs such as raloxifene. This approach is

designed to selectively engage central estrogenic receptors—ER-b and
GPER1—while antagonizing peripheral ER-a–mediated effects (27,

28). These targets converge on neuroplastic, inflammatory, and

monoaminergic pathways implicated in affective destabilization and

pharmacoresistance, providing a precision-guided adjunctive

framework for male BD care. This therapeutic model is anchored

in molecular evidence linking estradiol signaling to neurotrophic

induction (e.g., BDNF), inflammatory attenuation (via IL-6 and

TNF-a suppression), and HPA axis recalibration—core pathways

dysregulated across affective, cognitive, and stress-responsive

domains in male BD (9, 32, 35). Rather than repurposing a female-

centric endocrinology, this model advances a male-vulnerability

hypothesis—one that locates affective lability and treatment

refractoriness in sex-specific receptor distributions, dopaminergic

instability, and developmental neuroimmune priming.

Importantly, this strategy draws precedent from schizophrenia-

spectrum interventions, where SERM–estradiol combinations have

improved negative symptoms and cognitive processing without

inducing feminizing sequelae (14). The incorporation of a SERM

buffer ensures receptor-specific CNS engagement while preserving

peripheral hormonal homeostasis—rendering the approach not

only mechanistically plausible but clinically viable within male

endocrine profiles (27, 28).

The implications are scalable: this receptor-based framework

extends naturally to other inflammation-linked, plasticity-

deficient conditions, including treatment-resistant depression,

schizoaffective disorder, and complex PTSD. In these disorders—

where monoaminergic strategies yield diminishing returns—

neuroendocrine-circuit targeting may restore regulatory control

and affective integration (9, 24).

As precision psychiatry matures into a biologically stratified

discipline, the strategic reintroduction of sex hormones as

therapeutic agents—selectively channeled, molecularly buffered, and

translationally informed—maymark a pivotal advance in male-focused

psychiatric innovation (14). Estradiol is not merely an exogenous

supplement; it is a potent neuromodulator whose receptor-level

dynamics intersect directly with the neuroarchitecture of emotional

regulation (9, 36, 93).

Moving forward, early-phase clinical trials in male cohorts

must adopt biomarker-enriched designs, integrating cytokine

profiling, receptor polymorphism screening, and dynamic

hormone assays to validate not only clinical efficacy but also

neural target engagement and downstream transcriptional shifts

(35, 36, 38). This is not hormonal repurposing—it is a rational

reclassification of estradiol as a circuit-specific neuromodulator in

male psychiatric care (11).
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