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Introduction: Firefighters constitute a high-risk occupational cohort for alcohol

use disorder (AUD) due to chronic trauma exposure, yet traditional screening

methodologies relying on self-report instruments remain compromised by

systematic underreporting attributable to occupational stigma and career

preservation concerns. This cross-sectional investigation developed and

validated a multimodal deep learning framework integrating T1-weighted

structural magnetic resonance imaging with standardized neuropsychological

assessments to enable objective AUD risk stratification without necessitating

computationally intensive functional neuroimaging protocols.

Methods: Analysis of 689 active-duty firefighters (mean age 43.3±8.8 years; 93%

male) from a nationwide occupational cohort incorporated high-resolution

three-dimensional T1-weighted structural MRI acquisition alongside

comprehensive neuropsychological evaluation utilizing the Grooved Pegboard

Test for visual-motor coordination assessment and Trail Making Test for

executive function quantification. The novel computational architecture

synergistically combined ResNet-50 convolutional neural networks for

hierarchical morphological feature extraction, Vision Transformer modules for

global neuroanatomical pattern recognition, and multilayer perceptron

integration of clinical variables, with model interpretability assessed through

Gradient-weighted Class Activation Mapping and SHapley Additive

exPlanations methodologies. Performance evaluation employed stratified

three-fold cross-validation with DeLong's test for statistical comparison of

receiver operating characteristic curves.

Results: The multimodal framework achieved 79.88% classification accuracy

with area under the receiver operating characteristic curve of 79.65%,

representing statistically significant performance enhancement relative to

clinical-only (62.53%; p<0.001) and neuroimaging-only (61.53%; p<0.001)

models, demonstrating a 17.35 percentage-point improvement attributable to

synergistic cross-modal integration rather than simple feature concatenation.

Interpretability analyses revealed stochastic activation patterns in unimodal

neuroimaging models lacking neuroanatomically coherent feature localization,

while clinical feature importance hierarchically prioritized biological sex and

motor coordination metrics as primary predictive indicators. The framework

maintained robust calibration across probability thresholds, supporting

operational feasibility for clinical deployment.
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Discussion: This investigation establishes that structural neuroimaging combined

with targeted neuropsychological assessment achieves classification performance

comparable to complex multimodal protocols while substantially reducing

acquisition time and computational requirements, offering a pragmatic pathway for

implementing objective AUD screening in high-risk occupational populations with

broader implications for psychiatric risk stratification in trauma-exposed professions.
KEYWORDS

alcohol use disorder, firefighters, multimodal deep learning, structural MRI,
occupational psychiatry, neuroimaging biomarkers
1 Introduction

Firefighters constitute a distinct occupational group regularly

exposed to life-threatening emergencies and cumulative

psychological trauma including fire suppression, technical rescues,

hazardous material responses, and mass casualty incidents. This

continuous exposure imposes substantial psychological and

physiological burdens, placing firefighters at elevated risk for a

range of mental health disorders, most notably alcohol use disorder

(AUD) (1). Epidemiological studies have consistently reported

higher rates of problematic alcohol consumption among

firefighters compared to the general population, a disparity that

persists even after adjusting for demographic and socioeconomic

factors (2–4).

Beyond alcohol-specific outcomes, large-scale evidence from

Canadian public safety personnel (PSP) shows substantially elevated

screening rates for common mental disorders relative to the general

population. In a national survey of 5,813 PSP, Carleton et al. (5)

reported that 15.1% screened positive for at least one current disorder

and 26.7% for two or more, with meaningful differences across PSP

categories (5). These findings underscore the high and heterogeneous

mental health burden in firefighters’ broader occupational context and

help explain why coping-motivated alcohol use often emerges in this

workforce, reinforcing the need for objective, stigma-resistant risk

assessment beyond self-report. This pattern is consistent with

evidence that public safety personnel, including firefighters,

frequently engage in coping-motivated alcohol use in response to

trauma and chronic operational stress (6–9), further strengthening

the rationale for objective risk assessment methods. The etiology of

AUD within this population is multifaceted, reflecting interactions

among neurobiological predispositions, occupational stress, and

psychosocial dynamics. Alcohol is often utilized as a maladaptive

coping strategy to manage symptoms of hyperarousal, intrusive

memories, and emotional distress stemming from repeated trauma

exposure (7–9). Over time, this reliance on alcohol for emotional

regulation can lead to reinforcement cycles that escalate into habitual

and dependent use (10). These clinical risk pathways are further

compounded by occupational culture. Firefighting environments

frequently normalize post-shift drinking and valorize stoicism,
02
creating a paradox in which alcohol use is both institutionally

sanctioned and individually stigmatized (2, 10). Consequently, many

firefighters refrain from help-seeking behaviors and underreport their

alcohol consumption due to fears of career-related repercussions.

The implications of AUD within firefighting populations extend

beyond individual health, impacting operational readiness,

decision-making under pressure, and public safety during

emergency response. Excessive alcohol use among first responders

in high-stakes environments is linked to increased risk-taking

behaviors, such as driving while intoxicated, thereby contributing

to significant occupational problems that can affect team

performance, and posing severe threats to personal safety,

including heightened suicidality and increased risk of traumatic

incidents (11). Despite these risks, early detection of alcohol misuse

remains challenging. Current screening protocols rely heavily on

self-reported questionnaires such as the Alcohol Use Disorder

Identification Test (AUDIT), which are vulnerable to social

desirability bias, impression management, and concerns regarding

occupational repercussions (12). Furthermore, cultural norms

emphasizing resilience and self-reliance may suppress disclosure

of substance use and deter engagement with support services (13).

Accordingly, there is a clear need for objective, stigma-resistant

screening approaches that integrate biological and behavioral

indicators rather than relying solely on self-report.

Recent advances in neuroimaging and machine learning have

opened new avenues for objective assessment of psychiatric

disorders. Structural MRI markers have been shown to correlate

with various psychiatric phenotypes, including those related to

substance use disorders (14). Machine learning techniques applied

to neuroimaging data have demonstrated promising diagnostic and

predictive accuracy across various psychiatric disorders (15, 16).

However, their application to alcohol use risk prediction within

occupational cohorts remains underexplored. Within high-risk

occupational cohorts such as firefighters, studies that objectively

predict AUD risk by integrating structural MRI with standardized

neuropsychological measures remain scarce.

To address this gap, the present study proposes a multimodal

deep learning approach that integrates neuroimaging features with

clinical and cognitive measures to predict AUD risk in a national
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sample of active-duty firefighters. This method aims to overcome

limitations of conventional self-report tools by leveraging

biologically informed, data-driven markers to enhance early

identification of high-risk individuals. Through this integration,

we seek to contribute to the development of precision screening

strategies tailored to the unique demands and vulnerabilities of

high-stress emergency response professionals.
2 Materials and methods

2.1 Study design and participants

This study utilized a cross-sectional design to develop and

evaluate a multimodal deep learning framework for predicting

alcohol use disorder (AUD) risk in an occupational cohort of

active-duty firefighters in the Republic of Korea. Participants were

recruited from multiple fire stations nationwide. Eligibility criteria

included: age 25–65 years, active employment as a firefighter, and

availability of both T1-weighted structural magnetic resonance

imaging (MRI) and complete clinical assessment data. Exclusion

criteria comprised a history of neurological disorders (e.g., epilepsy,

stroke, traumatic brain injury), major psychiatric conditions other

than AUD, current use of psychotropic medications, MRI-detected
Frontiers in Psychiatry 03
structural brain abnormalities, or contraindications to MRI

scanning (e.g., metallic implants, claustrophobia).

Of 746 initially enrolled firefighters, 35 were excluded due to

incomplete imaging data, 14 for missing clinical assessments, and 8

for MRI-detected structural anomalies, resulting in a final analytical

sample of 689 participants (mean age 43.3 ± 8.8 years; 93% male).

Figure 1 illustrates the participant recruitment and data

preprocessing workflow. All participants provided written

informed consent, and the study protocol was approved by the

Institutional Review Board of Ewha Womans University. The

research adhered to the ethical principles of the Declaration

of Helsinki.
2.2 Clinical assessments

Cognitive and motor functions were evaluated using two

standardized neuropsychological tests: the Grooved Pegboard Test

and the Trail Making Test (TMT) (17, 18) (19, 20). The Grooved

Pegboard Test assessed visual-motor coordination and fine motor

control. Participants inserted 25 uniquely shaped pins into

corresponding grooves as quickly as possible, with completion times

(seconds) recorded for both dominant and non-dominant hands;

longer times indicated poorer performance (17, 18). The TMT
FIGURE 1

Participant recruitment and data preprocessing workflow for the firefighter cohort.
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evaluated processing speed, cognitive flexibility, and executive

function. Part A required participants to connect numbered circles

sequentially, while Part B involved alternating between numbers and

letters in ascending order. Completion times were recorded, with

higher values reflecting lower cognitive efficiency (19, 20). Tests were

administered by trained personnel under standardized conditions.

Alcohol use risk was assessed using the Alcohol Use Disorder

Identification Test (AUDIT), a 10-item self-report questionnaire

developed by the World Health Organization to evaluate alcohol

consumption, dependence symptoms, and related harm (21). Scores

range from 0 to 40, with a cutoff of ≥8 indicating hazardous

drinking risk (22). The AUDIT was completed under supervised

conditions to ensure data integrity.
2.3 Demographic and neuropsychological
characteristics

To align comparisons with standard occupational screening

practice, we stratified the cohort using the established AUDIT cut-

off (≥8 vs<8). Table 1 summarizes the demographic and

neuropsychological characteristics of the study cohort, stratified

by AUDIT-based alcohol risk status (≥8: alcohol risk, n=392, 56.9%;

<8: non-alcohol risk, n=297, 43.1%). The alcohol risk group had a

mean age of 43.16 ± 8.53 years, compared to 42.58 ± 8.67 years for

the non-alcohol risk group, with no significant difference (p=0.380,

two-tailed independent samples t-test). We used two-tailed

independent-samples t-tests for continuous variables because the

groups are non-overlapping at the participant level, the t-test

provides an efficient test of mean differences, and with our

sample size it is reasonably robust to moderate deviations from

normality; a two-sided test also guards against effects in either

direction. A significant gender disparity was observed (p<0.001,

two-tailed Pearson Chi-square test), with the alcohol risk group

showing higher male predominance (380 males, 12 females)

compared to the non-alcohol risk group (257 males, 40 females).

The Pearson chi-square test was chosen for categorical comparisons
Frontiers in Psychiatry 04
(e.g., sex distribution) because it assesses association between group

membership and categorical outcomes without requiring

distributional assumptions beyond adequate expected cell counts.

Neuropsychological performance was comparable between

groups. For the Grooved Pegboard Test, dominant hand

completion times were 66.27 ± 8.45 seconds (alcohol risk) versus

67.27 ± 9.46 seconds (non-alcohol risk; p=0.153), and non-

dominant hand times were 72.04 ± 9.49 seconds versus 72.48 ±

9.79 seconds (p=0.546). For the TMT, Part A completion times

were 29.65 ± 7.78 seconds (alcohol risk) versus 28.71 ± 7.50 seconds

(non-alcohol risk; p=0.110), and Part B times were 74.69 ± 27.28

seconds versus 73.42 ± 25.25 seconds (p=0.527). Interpreted under

these method choices, the absence of significant between-group

differences suggests that AUD risk, as defined by screening criteria,

may precede measurable neuropsychological deficits in this

occupational cohort.
2.4 MRI acquisition

Structural brain MRI scans were acquired using a 3.0 Tesla

Philips MRI system (Philips Healthcare, Best, The Netherlands)

equipped with a 32-channel head coil. High-resolution three-

dimensional T1-weighted images were obtained with the

following parameters: repetition time (TR) = 7.4 ms, echo time

(TE) = 3.4 ms, flip angle = 8°, voxel size = 1 × 1 × 1 mm³, and 180

sagittal slices. All participants were instructed to maintain stillness

and neutral head positioning throughout the scanning session to

ensure image quality.
2.5 Data preprocessing

T1-weighted MRI data were preprocessed using the FMRIB

Software Library (FSL, version 6.0 (23) to ensure standardized

spatial normalization and artifact minimization. The

preprocessing pipeline included both linear and nonlinear
TABLE 1 Participant characteristics stratified by alcohol use risk status.

Variables Alcohol risk Non-alcohol risk p value

Sample size 392 297

Age (years) a 43.16 ± 8.53 42.58 ± 8.67 0.380 b

Gender (male/female) 380/12 257/40 < 0.001 c

Grooved pegboard test

Dominant a 66.27 ± 8.45 67.27 ± 9.46 0.153 b

Non-dominant a 72.04 ± 9.49 72.48 ± 9.79 0.546 b

Trail making test

Test A a 29.65 ± 7.78 28.71 ± 7.50 0.110 b

Test B a 74.69 ± 27.28 73.42 ± 25.25 0.527 b
aData are presented as mean ± standard deviation.
bp by two-tailed independent samples t-test.
cp by two-tailed Pearson Chi-square test.
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registration of each participant’s structural MRI to the Montreal

Neurological Institute (MNI152) standard space, followed by

resampling to a voxel resolution of 2 × 2 × 2 mm³. Following

normalization, skull stripping was performed using the High-

Definition Brain Extraction Tool (HD-BET), a deep learning–

based algorithm designed to enhance the accuracy of brain tissue

isolation from non-brain elements (24). This process improved

visualization of key anatomical regions, including gray matter,

white matter, and ventricular structures, while simultaneously

reducing noise and enhancing segmentation fidelity. After skull

stripping, the three-dimensional MRI volumes were segmented into

80 two-dimensional axial slices per participant, ensuring

standardized anatomical coverage. The use of axial slices provides

distinct spatial perspectives and clinically relevant information,

facilitating detailed neuroanatomical interpretation and enabling

precise detection of structural abnormalities or pathologies (25, 26).

To increase model generalizability, data augmentation

techniques were applied. RandomAffine transformations

introduced rotational variations (± 10°) and translation shifts

(± 5%). ColorJitter transformations adjusted image brightness and

contrast (± 20%), and RandomRotation transformations applied

further rotational variation (± 15°) to simulate clinical variability.

Pixel intensity normalization was performed using standardized

mean and standard deviation values derived from large-scale

neuroimaging datasets to standardize input distributions prior to

model training (27–29).

Clinical assessment data underwent systematic preprocessing to

ensure data integrity and model compatibility. Missing value

analysis was conducted across all clinical variables, including

demographic parameters (age, sex), neuropsychological test scores

(Grooved Pegboard Test completion times for dominant and non-
Frontiers in Psychiatry 05
dominant hands, Trail Making Test Parts A and B), and alcohol use

risk indicators (AUDIT scores). Participants with incomplete

clinical assessments were excluded from the analytical cohort

through listwise deletion, maintaining the methodological rigor

requisite for multimodal integration. This conservative approach

to missing data management, while potentially reducing statistical

power, preserved the validity of cross-modal feature relationships

critical to the multimodal learning framework. No imputation

strategies were employed to avoid introducing artificial

correlations between neuroimaging and clinical features. All

continuous clinical variables were retained in their original scales

to preserve interpretability, with normalization performed

internally within the deep learning architecture through batch

normalization layers. Categorical variables, specifically biological

sex, were encoded using binary representation (0 = male, 1 =

female) consistent with standard practices in medical machine

learning applications.
2.6 Multimodal deep learning framework

To predict alcohol use disorder (AUD) risk in firefighters, we

developed a multimodal deep learning framework that integrates

structural magnetic resonance imaging (MRI) with clinical and

neuropsychological data. The framework comprised three parallel

processing branches: a convolutional neural network (CNN) based

on ResNet-50 for local morphological feature extraction from MRI

images (30), a Vision Transformer (ViT) module for global

contextual representation of neuroanatomical structures (31), and

a multilayer perceptron (MLP) for incorporating clinical and

neuropsychological variables (32). Figure 2 provides a schematic
FIGURE 2

Multimodal deep learning architecture integrating neuroimaging and clinical data for alcohol use disorder risk prediction.
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overview of the deep learning architecture, illustrating the parallel

processing of MRI images and clinical variables through the

ResNet-50, Vision Transformer, and MLP modules, the

subsequent feature concatenation, and the final classification layer.

For the MRI input stream, 80 axial two-dimensional slices per

participant were fed into a pretrained ResNet-50 model to derive

hierarchical local features. The resulting feature maps underwent

average pooling and flattening operations to produce compact

representations. In parallel, the same MRI slices were input into

the ViT module via patch-based linear embedding. The ViT

extracted long-range spatial dependencies and global structural

context across brain regions (33). This dual-path design allowed

for the concurrent extraction of both local and global

representations from the neuroimaging data.

Simultaneously, clinical and neuropsychological features

comprising age, sex, AUDIT score, Grooved Pegboard Test

completion times (dominant and non-dominant hand), and Trail

Making Test A and B durations were input into an MLP consisting of

two fully connected layers with ReLU activations, yielding latent

clinical representations. The outputs from the ResNet-50, ViT, and

MLP branches were concatenated into a unified feature vector, which

was passed through a fully connected layer with a sigmoid activation

function to generate a binary prediction of AUD risk. Model training

was conducted using the Adam optimizer with an initial learning rate

of 0.001, a batch size of 32, and a maximum of 100 training epochs.

Early stopping was applied with a patience threshold of 10 epochs

based on validation loss. To mitigate overfitting and improve

generalizability, dropout regularization (dropout rate = 0.5) was

applied to fully connected layers, and batch normalization was

incorporated after each convolutional block.

Model evaluation was performed using stratified three-fold

cross-validation with participant-level data partitioning to ensure

independence between training and validation sets. Performance

was assessed based on accuracy, area under the receiver operating

characteristic curve (AUROC), sensitivity, and specificity. Statistical

differences in AUROC between model configurations were

evaluated using DeLong’s test (34). All models were implemented

in PyTorch (v1.10) and trained on an NVIDIA RTX A6000 GPU.
2.7 Model evaluation and statistical analysis

Model performance was evaluated using stratified threefold

cross-validation with participant-level data partitioning to ensure

independence between training and validation sets. Performance

metrics included accuracy, area under the receiver operating

characteristic curve (AUROC), precision, and recall. The AUROC

was the primary metric due to its robustness to class imbalance.

Confidence intervals (95% CI) for AUROC were estimated via

bootstrapping (1,000 iterations).

Comparative analyses assessed the multimodal model against

unimodal models (MRI-only, clinical-only). Between-model

differences in AUROC were tested using DeLong’s method, which

accounts for the correlation inherent to paired ROC curves evaluated
Frontiers in Psychiatry
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on the same cases (34). Calibration was evaluated with reliability

(calibration) curves to assess agreement between predicted

probabilities and observed outcomes, and decision curve analysis

was used to quantify net clinical benefit across threshold

probabilities relevant to occupational screening. All preprocessing

statistics, any calibration fits, and threshold selection were

performed within training folds only and applied to the

corresponding validation folds to avoid information leakage. Feature

importance was analyzed using integrated gradients to enhance

interpretability by identifying influential neuroanatomical and

clinical inputs contributing to predictions (35). Statistical analyses

were conducted using Python (version 3.9), Scikit-learn (version 1.0),

and SciPy (version 1.7).
2.8 SHapley Additive exPlanations

Feature importance analysis of clinical variables was conducted

using SHAP methodology with an XGBoost classifier (36) trained

on clinical features comprising age, sex, AUDIT scores, Grooved

Pegboard Test completion times, and Trail Making Test durations.

SHAP values were computed using TreeExplainer, which leverages

the tree structure for efficient Shapley value calculation (37). Global

feature importance was quantified through mean absolute SHAP

values across the cohort, providing interpretable measures of each

variable’s contribution to risk prediction. Statistical significance of

feature contributions was evaluated using permutation-based null

hypothesis testing with multiple comparison correction.
2.9 Gradient-weighted class activation
mapping

Gradient-weighted Class Activation Mapping (Grad-CAM) was

employed to elucidate the spatial localization of discriminative

neuroanatomical features contributing to alcohol use disorder risk

classification (38). This interpretability methodology generates

visual explanations by computing the gradient of the predicted

class score with respect to the final convolutional layer activations,

thereby identifying brain regions that maximally influence the

classification decision. The analysis targeted the terminal

convolutional layers of each architecture, which preserve spatial

resolution while encoding high-level semantic features. The

importance weights ak
c for each feature map k with respect to

target class c were computed through gradient backpropagation:

ack =
1
Z

� �
o
i
o
j

∂ yc

∂Ak
ij

where yc denotes the class score, Ak
ij represents the activation at

spatial location (i,j) in feature map k, and Z normalizes by spatial

dimensions. The final class-discriminative localization map was

generated through weighted combination of forward activation

maps:
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1643552
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Jang et al. 10.3389/fpsyt.2025.1643552
LcGrad−CAM = ReLU o
k

ackA
k

 !

The resulting coarse-grained heatmaps underwent bilinear

interpolation to match the original image resolution (224×224

pixels) and were superimposed on the corresponding MRI slices

with a transparency coefficient of 0.6 to facilitate anatomical

interpretation. Visualizations were generated for a randomly selected

subset of 50 participants per risk category to assess spatial consistency

of learned features. Dice similarity coefficients quantified the spatial

overlap of activation patterns across participants, while occlusion

sensitivity analysis validated the causal importance of identified

regions by measuring classification confidence degradation upon

masking the upper quintile of activation intensities. Given these

implementation details, we briefly justify our choice of localization

method. We selected Grad-CAM after considering alternative feature-

localization techniques because it is class-discriminative, CNN-

architecture agnostic, and computationally efficient for 2D multi-

slice MRI. Unlike vanilla saliency, which is high-variance and visually

noisy, Grad-CAM yields stable, coarse-to-mid-scale heatmaps aligned

with the target class. Integrated Gradients requires a baseline and path

integral whose choice is non-trivial for T1 intensity scales and can
Frontiers in Psychiatry 07
introduce baseline-dependent artifacts, whereas Grad-CAM avoids a

baseline choice while remaining faithful to score–gradient

information. Occlusion/perturbation and LIME/SHAP image

explanations impose heavy sampling costs and design choices (e.g.,

patch size, superpixels) that scale poorly to ~80 slices per subject (37,

39). Transformer attention maps are not inherently class-specific and

may not reflect decision-critical evidence, whereas Grad-CAM is

explicitly class-discriminative. In medical imaging, Grad-CAM’s

regional localization aligns with radiological reading practices,

enabling transparent overlays on axial slices and cohort-level

aggregation without re-training. To address known limitations

(resolution tied to the last conv layer), we performed sanity checks

(parameter randomization and slice-wise ablation) and report both

representative and aggregated maps (40).
3 Results

Table 2 summarizes the comparative performance of multiple

predictive models for alcohol use disorder (AUD) risk classification,

including clinical-only, neuroimaging-only, multi-scale image

integration, and multimodal models integrating neuroimaging
TABLE 2 Performance comparison of alcohol use disorder risk prediction models.

Model Accuracy AUROC Precision Recall

Clinical only

Logistic Regression 0.6253 0.5773 0.6117 0.6432

MLP 0.5637 0.5436 0.5521 0.5748

Random Forest 0.5487 0.5388 0.5294 0.5562

XGBoost 0.4857 0.4795 0.4783 0.4620

Image only

ResNet50 0.6153 0.5773 0.6089 0.6241

EfficientNet-B0 0.5967 0.5648 0.5891 0.6034

ViT 0.5457 0.5395 0.5412 0.5480

DeiT 0.5037 0.5236 0.5001 0.5076

Multi-scale image

ResNet50 + ViT 0.6354 0.6187 0.6213 0.6495

ResNet50 + DeiT 0.5833 0.5325 0.5702 0.5894

EfficientNet-B0 + ViT 0.5902 0.5869 0.5820 0.5981

EfficientNet-B0+ DeiT 0.5627 0.5398 0.5514 0.5739

Multimodal (image + clinical)

ResNet50 + ViT + MLP 0.7988 0.7965 0.7836 0.8124

ResNet50 + ViT + LR 0.6887 0.6726 0.6752 0.6989

ResNet50 + DeiT + MLP 0.7726 0.7563 0.7590 0.7852

EfficientNet-B0+ DeiT + LR 0.6429 0.6854 0.6381 0.6587
Performance metrics (Accuracy, AUROC, Precision, Recall) for alcohol use disorder risk prediction models across four architectural categories: clinical data only models, neuroimaging only
architectures, multi scale image integration approaches, and multimodal frameworks combining neuroimaging with clinical variables. Bold values indicate the highest performance metrics across
all evaluated models.
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and clinical data. Metrics include accuracy, area under the receiver

operating characteristic curve (AUROC), precision, and recall were

evaluated using stratified threefold cross-validation to ensure

robust estimates.

Among clinical-only models, logistic regression yielded the best

performance, achieving an accuracy of 62.53%, AUROC of 57.73%,

precision of 61.17%, and recall of 64.32%. Other clinical models,

including multilayer perceptron (MLP), random forest, and

XGBoost, demonstrated lower classification accuracy and area

under the curve (AUC), with AUROCs ranging from 47.95%

to 54.36%.

In the neuroimaging-only condition, the ResNet-50 model

outperformed other architectures such as EfficientNet-B0, Vision

Transformer (ViT), and Data-efficient Image Transformer (DeiT),

achieving an AUROC of 57.73% and an accuracy of 61.53%. The

ViT and DeiT models yielded AUROCs of 53.95% and 52.36%,

respectively, suggesting that these transformer-based models did

not surpass the convolutional baseline in unimodal imaging tasks.

Combining multiple image architectures slightly improved

performance. The ResNet-50 + ViT hybrid configuration achieved

the highest AUROC (61.87%) and accuracy (63.54%) within the

multi-scale image category. Nonetheless, performance remained

suboptimal compared to multimodal approaches.

The multimodal frameworks that integrated both neuroimaging

and clinical data demonstrated significant improvements in

predictive performance. The optimal configuration consisted of a

fusion architecture incorporating ResNet-50, ViT, and an MLP for

clinical variables, which achieved an accuracy of 79.88%, AUROC of

79.65%, precision of 78.36%, and recall of 81.24%. This

performance represents a 17.35 percentage point improvement in

accuracy and a 21.92 percentage gain in AUROC over the best

clinical-only model (logistic regression), thereby providing

compelling evidence for the additive benefit of multimodal

integration. Other multimodal variants such as ResNet-50 + DeiT

+ MLP and ResNet-50 + ViT + logistic regression also showed

superior performance relative to unimodal baselines but did not

match the top-performing model.

Statistical comparison of AUROC values using DeLong’s test

confirmed that the multimodal ResNet-50 + ViT + MLP model

significantly outperformed both clinical-only and image-only

models (p< 0.001).

Figure 3 provides a visual representation of model performance

across three complementary dimensions. The ROC curves

(Figure 3A) demonstrate a clear separation between the

multimodal architecture and other modeling approaches, with the

multimodal curve exhibiting a substantially greater area under the

curve (AUC). The multi-scale image model shows intermediate

discriminative capacity, positioned between the multimodal

framework and the unimodal approaches, which demonstrate

comparable but less robust discriminative performance.

Calibration curves (Figure 3B) reveal that the multimodal

approach aligns more closely with the ideal calibration line

compared to alternative models. Clinical-only and neuroimaging-

only approaches exhibit noticeable deviations from optimal
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calibration, particularly in lower probability regions where

systematic overestimation is visually apparent.

Decision curve analysis (Figure 3C) illustrates that the

multimodal framework provides a consistently positive net benefit

across a broader range of threshold probabilities relative to other

modeling strategies. In contrast, clinical-only and neuroimaging-

only approaches show diminished clinical utility at higher threshold

values, whereas the multimodal approach maintains its net benefit

across the full probability spectrum. These visual assessments

corroborate the quantitative findings presented in Table 2, further

supporting the enhanced predictive capability achieved through

multimodal integration.

Figure 4 shows confusion matrices for representative models

(clinical-only Logistic Regression; image-only ResNet-50; multi-

scale image ResNet-50 + ViT; multimodal ResNet-50 + ViT +

MLP). The multimodal model yielded TN = 55, FP = 15, FN = 13,

TP = 54. The clinical-only model produced TN = 44, FP = 26, FN =

25, TP = 42. The image-only model produced TN = 43, FP = 27,

FN = 25, TP = 42. The multi-scale image model produced TN = 43,

FP = 27, FN = 23, TP = 44. Overall, the multimodal configuration

simultaneously reduced both FP and FN relative to the other

approaches, indicating a more favorable error profile for

occupational screening.

To examine the feature extraction patterns of neuroimaging-

only models, we performed gradient-weighted class activation

mapping (Grad-CAM) analysis on both ResNet-50 and

EfficientNet-B0 architectures. Supplementary Figure S1 displays

representative Grad-CAM visualizations of axial brain slices from

randomly selected participants processed through these

convolutional neural network models. The Grad-CAM activations

from both architectures exhibited substantial spatial heterogeneity

across slices. Activation intensities showed irregular distributions,

with discrete focal hotspots in some regions and diffuse low-

intensity patterns across broader anatomical areas. Both ResNet-

50 and EfficientNet-B0 revealed no systematic concentration within

specific neuroanatomical structures, with high-intensity regions

appearing stochastically distributed across cortical and subcortical

territories. Peak activation values varied markedly across slices and

architectures, ranging from isolated punctate foci to broad

activation zones encompassing multiple anatomical regions.

To further justify the use of Grad-CAM over alternative feature

localization methods, we additionally applied Vanilla Saliency

(Supplementary Figure S2), Integrated Gradients (Supplementary

Figure S3), and Occlusion Sensitivity (Supplementary Figure S4).

Compared with Grad-CAM, Vanilla Saliency and Integrated

Gradients produced noisy, low-contrast attribution maps with

limited anatomical interpretability, consistent with known

limitations of these gradient-based approaches when applied to

structural MRI data. Occlusion Sensitivity yielded block-like

activation patterns resulting from the perturbation grid but failed

to delineate neuroanatomically meaningful regions in a stable

manner. In contrast, Grad-CAM consistently generated smoother

and more interpretable overlays, aligning with prior reports

demonstrating its robustness and clinical plausibility in
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neuroimaging. These supplementary comparisons underscore the

suitability of Grad-CAM as the primary visualization approach in

this study.

These visualization outputs corroborate the quantitative

performance metrics observed for the neuroimaging-only models

(ResNet-50 AUROC: 57.73%, accuracy: 61.53%; EfficientNet-B0

AUROC: 56.54%, accuracy: 60.82%). The absence of consistent

activation patterns across the randomly sampled cases in both

architectures provides empirical evidence for the limited feature

extraction capability of image-only models in this AUD risk

prediction task.

Feature importance analysis of the clinical variables was

conducted using SHapley Additive exPlanations (SHAP) to

quantify individual feature contributions to the multimodal

model predictions. Supplementary Figure S2 presents the SHAP

value distributions for six clinical features incorporated in the

optimal multimodal framework.
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The SHAP analysis revealed differential feature contributions

across the clinical variable set. Sex demonstrated the most

pronounced positive impact on model predictions, with SHAP

values ranging from approximately -0.05 to +0.45, exhibiting a

strong rightward skew. Non-dominant hand Grooved Pegboard

completion times (GP_nondom_sec_adj) displayed bidirectional

effects with SHAP values distributed between -0.30 and +0.25,

indicating variable contributions to risk prediction depending on

individual performance levels.

Age exhibited a balanced distribution of SHAP values spanning

-0.25 to +0.20, with the majority of instances clustering near zero.

D om i n a n t h a n d G r o o v e d P e g b o a r d p e r f o rman c e

(GP_dom_sec_adj) showed similar bidirectional patterns with

values ranging from -0.20 to +0.15. Trail Making Test Part A

completion times (TrailA_time_adj) demonstrated moderate

feature importance with SHAP values between -0.15 and +0.15.

Trail Making Test Part B completion times (TrailB_time_adj)
FIGURE 3

Comparison of model performance for alcohol use disorder risk prediction across data modalities. (A) Receiver operating characteristic (ROC) curves
illustrate the discriminative performance of clinical-only, image-only, multi-scale image, and multimodal models, with the multimodal model
showing the highest area under the curve (AUC). (B) Calibration curves compare predicted versus observed probabilities, demonstrating superior
calibration in the multimodal model. (C) Decision curve analysis indicates that the multimodal model provides the greatest net clinical benefit across
a range of threshold probabilities.
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yielded the most concentrated distribution around zero, with

limited outliers extending to ±0.20, suggesting minimal direct

contribution to prediction outcomes in the multimodal context.

These quantitative feature attribution results complement the

multimodal model performance metrics, providing mechanistic

insights into the relative contributions of individual clinical

variables within the integrated predictive framework.
4 Discussion

The multimodal deep learning framework demonstrated superior

classification performance, validating the synergistic integration of

structural neuroimaging with clinical assessments for AUD risk

stratification in firefighters. The principal findings encompass: (1)

The synergistic combination of ResNet-50 and Vision Transformer

architectures facilitates complementary extraction of local

morphological features and global spatial dependencies from

structural MRI data, obviating computationally intensive functional

connectivity analyses; (2) Integration of standardized

neuropsychological assessments, specifically the Grooved Pegboard
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Test and Trail Making Test, provides functional neurological proxies

that partially compensate for the absence of task-based or resting-state

functional MRI data; (3) The multimodal framework demonstrates a

17.35 percentage point improvement in classification accuracy relative

to clinical-only models, substantiating the discriminative value of

structural neuroimaging when appropriately integrated with

behavioral metrics; (4) Feature importance analysis identifies sex as

the predominant clinical predictor, followed by motor coordination

measures, elucidating potential sex-specific vulnerability patterns

within this occupational cohort; (5) The model maintains robust

calibration across probability thresholds, suggesting clinical

applicability for risk stratification without the operational

complexity inherent to functional neuroimaging protocols.
4.1 Comparative analysis with extant
literature

Table 3 provides a comprehensive summary of recent

multimodal deep learning approaches for psychiatric disorder

prediction, contextualizing our findings within the broader
FIGURE 4

Confusion matrices comparing classification performance across model architectures for alcohol use disorder risk prediction. (A) Clinical-only model
using logistic regression. (B) Image-only model using ResNet-50. (C) Multi-scale image model combining ResNet-50 and Vision Transformer.
(D) Multimodal model integrating ResNet-50, Vision Transformer, and clinical variables through MLP. Values represent the number of participants
classified in each category from stratified 3-fold cross-validation.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1643552
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Jang et al. 10.3389/fpsyt.2025.1643552
landscape of neuroimaging-based classification studies.

Contemporary neuroimaging investigations have consistently

demonstrated the superiority of multimodal approaches combining

structural MRI, functional task-based MRI, and resting-state

functional connectivity in psychiatric classification tasks (46).

However, the multimodal framework presented herein, achieving

79.88% accuracy (AUROC: 0.795) through structural MRI and

clinical assessment integration alone, demonstrates competitive

performance relative to architectures incorporating functional

neuroimaging. A recent triple-modality integration study (42)

(sMRI + fMRI + SNP) yielded 79.01% accuracy in schizophrenia

classification (n=492), with individual modalities contributing

differentially (sMRI: 66.33%, fMRI: 75.29%, SNP: 57.06%). The

marginal improvement from sMRI baseline to multimodal

integration (13.68 percentage points) must be contextualized

against substantially increased acquisition complexity and

computational burden. A comprehensive investigation utilizing an

extensive neuroimaging battery comprising 119 alcohol-dependent

patients and 97 controls revealed that while multimodal integration

yielded optimal classification performance, the investigators

concluded that “in terms of direct clinical applicability, currently

the most realistic neuroimaging-based classifier for AD may be

unimodal based on structural MRI and grey-matter density

specifically” (46), citing the temporal demands and analytical

complexity of functional MRI protocols. This empirical observation

corroborates our methodological decision to prioritize T1-weighted

structural MRI as the primary neuroimaging modality.

Previous investigations employing resting-state functional

connectivity have reported classification accuracies ranging from

61.53% to 76.67% for discriminating alcohol-dependent individuals
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from controls (43, 44). Direct comparison with AUD-focused

investigations reveals our framework’s competitive performance

despite methodological parsimony. A recent study (44)reported

resting-state fMRI yielding AUROC 0.79 (n=102), comparable to

our 0.795 despite utilizing computationally intensive connectivity

analyses. This equivalence challenges assumptions regarding the

superior discriminative capacity of functional imaging for AUD

detection. Similarly, another investigation (46) demonstrated that

dual neuroimaging modality integration (sMRI + fMRI) achieved

79.3% accuracy in AUD classification (n=216), representing merely

2.7 percentage points improvement over single modality (76.6%)

which represents a limited enhancement that raises critical

questions regarding the cost-effectiveness of functional imaging

protocols in occupational screening contexts. Random Forest

classification leveraging functional connectivity within the Default

Mode Network combined with neuropsychological measures

achieved 76.67% accuracy (45), necessitating extensive

preprocessing pipelines and network-level analytical frameworks.

Recent work (45) reported fMRI-based classification achieving

76.67% accuracy (AUROC: 0.93) in a male-exclusive cohort

(n=60). Our superior accuracy (79.88%) in a substantially larger

sample (n=689) with mixed-gender composition suggests that

structural alterations combined with behavioral assessments may

provide greater discriminative capacity than functional connectivity

alone in occupational populations. Resting-state connectivity

features have demonstrated capacity to explain 33% of variance in

Alcohol Use Disorders Identification Test (AUDIT) scores (47),

though such models required acquisition of multiple functional

MRI sequences including monetary incentive delay and face-

matching paradigms alongside resting-state protocols.
TABLE 3 Comparative summary of multimodal deep learning approaches for psychiatric disorder prediction.

Study Modalities Target disease Accuracy AUROC Sample size Sample characteristic

Zheng et al. (41) sMRI + fMRI MDD 75.2% 0.808 2319
Control
MDD

Kanyal et al. (42) sMRI + fMRI + SNP SZ 79.01% – 492
Control
SZ

Zhu et al. (43) sMRI (3D) + fMRI AUD 67.4% -90.5% – 92
Control
AUD

Vergara et al. (44) fMRI AUD – 0.79 102
Control
AUD

Kamarajan et al. (45) fMRI AUD 76.67% 0.93 60
Control
AUD
Male participants only

Guggenmos et al. (46) sMRI + fMRI AUD 79.3% – 216
Control
AUD

Ours sMRI (2D) + Clinical AUD 79.88% 0.795 689 Occupational (Firefighters)
Reported values are taken from the cited papers; numbers are not directly comparable across studies because of differences in datasets, label definitions (diagnosis vs. risk), cohort composition,
scanners/protocols, and evaluation procedures (cross-validation vs. held-out tests). When a study reported multiple results, we list a representative value or a range; “-” indicates the metric was
not reported.
Modalities: sMRI, T1-weighted structural MRI; fMRI, functional MRI (resting or task-based as reported); SNP, single-nucleotide polymorphisms.
Target disease: MDD, major depressive disorder; SZ, schizophrenia; AUD, alcohol use disorder.
Sample size is the total N analyzed in each study; Sample characteristic summarizes comparison groups (e.g., control vs. disorder, sex restrictions).
Ours denotes an occupational firefighter cohort and a multimodal model using sMRI (2D axial slices) + clinical variables without fMRI; results are averaged over stratified 3-fold, subject-wise
cross-validation.
Bold values represent results from the current study.
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Multimodal data integration approaches in psychiatric research

demonstrate methodological advantages comparable to our

neuroimaging-clinical framework. A recent VR-based study (48)

developed machine learning models utilizing acoustic and

physiological features VR exposure sessions for social anxiety

disorder, achieving an AUROC of 0.852 with CatBoost for Social

Phobia Scale prediction using multimodal features (n=132 samples

from 25 participants). Notably, their analysis revealed that acoustic

features (AUROC: 0.788) substantially outperformed physiological

features alone (AUROC: 0.626) for anxiety symptom prediction, with

multimodal integration yielding superior classification performance

across multiple anxiety domains. While their VR-based approach

differs methodologically from our structural neuroimaging

framework, the 7.26 percentage point improvement from

physiological to multimodal features (compared to our 17.35

percentage point improvement from clinical to multimodal)

highlights the consistent benefit of cross-modal integration in

psychiatric risk stratification. Their findings that acoustic

biomarkers captured more discriminative information than

physiological responses during anxiety-inducing scenarios parallels

our observation that targeted neuropsychological assessments provide

critical functional anchoring for structural alterations.

The classification performance of our T1-weighted structural MRI

multimodal approach (79.88% accuracy) demonstrates favorable

comparison with functional connectivity-based methodologies while

offering considerable practical advantages regarding acquisition

efficiency and computational parsimony. Our framework’s 17.35

percentage point improvement from clinical-only baseline (62.53%)

substantially exceeds the incremental gains observed when adding

neuroimaging to clinical data reported previously (46), suggesting that

targeted neuropsychological assessments may capture variance

typically attributed to functional connectivity measures. A

systematic review examining machine learning applications in AUD

reported neuroimaging-based algorithms achieving sensitivity ranging

from 90-99.99% and specificity from 82-99.97% (14); however, these

exceptional performance metrics were predominantly observed in

investigations combining multiple imaging modalities. One study

(43)reported 3D sMRI + fMRI combination achieving accuracy

ranging from 67.4% to 90.5% (n=92). The substantial variability

suggests potential overfitting in small samples, emphasizing the

importance of our larger cohort (n=689) for robust generalization

estimates. Beyond structural neuroimaging approaches, recent

advances in machine learning applications for mental health

monitoring in first responders provide complementary perspectives

on psychological distress prediction. A proof-of-concept investigation

(49) developed predictive models for posttraumatic stress injuries

(PTSI) utilizing intensive longitudinal data from 274 Montreal

firefighters monitored biweekly across 12 weeks. The study

implemented four distinct machine learning algorithms (logistic

regression, support vector classifier, extreme gradient boosting)

trained on temporal sequences of standardized psychological

assessments (PHQ-9, GAD-7, PCL-5) and psychosocial variables

(occupational stress, social support, coping strategies). The optimal

model configuration, employing extreme gradient boosting with three

lagged measurement timepoints and comprehensive feature sets,
Frontiers in Psychiatry 12
achieved 94% classification accuracy (AUC = 0.93, sensitivity = 0.61,

specificity = 0.97). Several methodological contrasts with the present

investigation merit consideration. The documented PTSI prevalence,

fluctuating between 6.9% and 10.6% across assessment intervals with

cumulative incidence of 19.7%, represents substantially lower

psychopathology rates than our observed AUD risk prevalence of

56.9%, potentially attributable to differential diagnostic thresholds

between acute stress-related symptomatology and chronic alcohol

use vulnerability. Feature importance analyses identified lagged

PHQ-9 scores collected 2 and 6 weeks prior to target assessment as

dominant predictors (19% and 10% relative importance respectively),

with GAD-7 and PCL-5 scores contributing secondarily, while

demographic variables (age >46 years, work experience >21 years)

demonstrated minimal predictive value. This hierarchical pattern

corresponds with our SHAP-derived feature attributions wherein

neuropsychological performance metrics superseded demographic

characteristics. The temporal dependency of predictive accuracy,

wherein model performance systematically improved from single-

timepoint (accuracy range: 0.81-0.91) to three-timepoint

configurations (accuracy range: 0.82-0.94), underscores the critical

importance of longitudinal symptom trajectories in psychiatric risk

modeling. These convergent findings across distinct methodological

paradigms substantiate the superiority of multimodal, temporally-

informed approaches over cross-sectional univariate assessments.

Integration of periodic structural neuroimaging for baseline

vulnerability characterization with continuous smartphone-based

symptom monitoring could potentially optimize early intervention

strategies through synthesis of stable neurobiological markers and

dynamic clinical trajectories. Our approach achieves minimal sacrifice

in predictive accuracy while greatly reducing acquisition time,

computational burden, and technical expertise requirements (49).

Previous investigations utilizing isolated structural MRI

modalities have provided valuable performance benchmarks, with

grey matter density analysis achieving 65% classification accuracy in

comprehensive multimodal comparisons (46). The present study

builds upon these findings by demonstrating that augmenting

structural neuroimaging with targeted neuropsychological

assessments yields enhanced discriminative capacity (79.88%

accuracy), consistent with theoretical frameworks positing

synergistic information capture across neurobiological and

behavioral domains. The 17.35 percentage point improvement

from clinical baseline reflects fundamental complementarity rather

than simple feature concatenation: structural neuroimaging captures

cumulative morphological alterations reflecting chronic alcohol

exposure, providing stable biomarkers of neurotoxic burden, while

neuropsychological performance offers dynamic functional readouts

of neural system integrity sensitive to subclinical impairments. This

performance differential underscores the critical importance of

incorporating standardized neuropsychological assessments to

compensate for the absence of functional connectivity information.

Recent investigations have emphasized that machine learning

algorithms provide valuable tools for quantifying large-scale

network differences in AUD (44); however, our results suggest that

morphological features combined with targeted clinical assessments

achieve comparable discriminative capacity.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1643552
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Jang et al. 10.3389/fpsyt.2025.1643552
The firefighter population presents unique challenges for AUD

prediction modeling. While general population studies have examined

heterogeneous samples characterized by varied substance use histories

and psychiatric comorbidities (43), our cohort’s occupational

homogeneity and elevated baseline risk necessitated tailored

analytical approaches. With n=689, our investigation represents the

second-largest cohort among reviewed studies [following a recent

MDD study (41): n=2319], providing robust statistical power while

maintaining occupational homogeneity. While T1-weighted structural

sequences and fMRI share similar acquisition times (5–10 minutes

each), the critical distinction lies in post-processing complexity.

Functional MRI necessitates sophisticated preprocessing pipelines

encompassing motion correction, temporal filtering, spatial

smoothing, and connectivity analysis, extending analysis time from

hours to days. Additionally, fMRI’s heightened motion sensitivity

increases data attrition rates, compromising practicality for large-scale

screening initiatives. Previous occupational cohort investigations

remain limited, constraining direct performance comparisons.

Nevertheless, the effective classification achieved without functional

MRI suggests that structural alterations and behavioral manifestations

may exhibit enhanced discriminability in high-risk occupational

groups, potentially attributable to chronic stress exposure and

cultural factors influencing alcohol consumption patterns. The

elimination of fMRI-specific infrastructure requirements (stimulus

presentation systems, synchronization hardware, specialized

preprocessing software) substantially reduces implementation

barriers in clinical settings, supporting the translational feasibility of

our approach for occupational health surveillance.
4.2 Mechanistic considerations

The efficacy of our multimodal approach necessitates examination

through complementary interpretability methodologies to elucidate

differential contributions of neuroimaging and clinical features. Recent

advances in multimodal explainable AI have demonstrated the critical

importance of understanding feature interactions across modalities. A

recent study achieved 94.81% accuracy using an Ensemble

Optimization-enabled Explainable CNN (EO-ECNN) with

multimodal data integration, highlighting the significance of

interpretability in clinical applications (50). Recent comparative

studies have systematically evaluated various explainability

approaches for multimodal medical imaging. A large-scale

experiment across four medical imaging datasets found that while

attention maps from Vision Transformers generally surpass Grad-

CAM in explainability, transformer-specific interpretability methods

demonstrate superior performance (51). This finding underscores the

importance of selecting architecture-appropriate interpretability

techniques rather than applying traditional CNN-based methods to

transformer architecture. Gradient-weighted Class Activation

Mapping (Grad-CAM) analysis applied to unimodal neuroimaging

models revealed critical insights regarding the limitations of structural

MRI-only approaches. As illustrated in Supplementary Figure S1,

Grad-CAM visualizations from both ResNet-50 (Panel A) and

EfficientNet-B0 (Panel B) architectures demonstrated stochastic
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activation patterns across randomly selected axial brain slices. The

activation maps exhibited no systematic concentration within

anatomically relevant regions associated with alcohol-related

neurodegeneration, instead displaying diffuse, heterogeneous

patterns with focal hotspots appearing randomly across cortical and

subcortical territories. The stochastic activation patterns observed

through Grad-CAM analysis provide empirical evidence for the

fundamental limitations of structural MRI-only approaches in

detecting subtle, distributed alterations associated with AUD risk.

This finding aligns with previous neuroimaging studies showing that

morphological changes in early-stage AUD are often diffuse and

heterogeneous, requiring behavioral anchoring for meaningful

interpretation (46, 52).

This absence of neuroanatomically coherent feature extraction in

image-only models provides mechanistic validation for observed

performance limitations (ResNet-50: 57.73% AUROC; EfficientNet-

B0: 56.54% AUROC). A comprehensive survey of explainable

multimodal learning methods confirmed that such random

activation patterns indicate insufficient discriminative capacity

when structural alterations are subtle and distributed (53). Recent

advances in transformer architecture have introduced attention

visualization as a complementary interpretability approach. Studies

on multimodal foundation models for anomaly detection have

demonstrated that combining SHAP, Grad-CAM, and attention

visualization provides more comprehensive insights than any single

approach, particularly when dealing with heterogeneous medical data

sources (54). These findings suggest that different XAI techniques

capture complementary aspects of model behavior: spatial

localization through Grad-CAM, feature importance through

SHAP, and hierarchical relationships through attention

mechanisms. Grad-CAM heatmaps revealed that convolutional

neural networks, when constrained to structural MRI data alone,

failed to converge on consistent morphological markers despite well-

established volumetric alterations in alcohol-dependent populations.

Peak activation intensities varied markedly between slices without

correspondence to regions of established vulnerability including

prefrontal cortex, hippocampus, or cerebellar structures. This

stochastic behavior suggests that structural alterations alone, while

present, may be insufficiently discriminative for effective classification

without complementary functional or behavioral indicators.

Conversely, SHapley Additive exPlanations (SHAP) analysis of

clinical variables within the optimal multimodal framework

revealed hierarchical feature importance with clear mechanistic

interpretability (Supplementary Figure S2). Sex emerged as the

predominant contributor with SHAP values ranging from -0.05 to

+0.45, exhibiting pronounced rightward skew indicative of male sex

as a risk amplifier. This finding aligns with established sex

differences in alcohol metabolism, neurotoxic vulnerability, and

addiction trajectories. The prominence of biological sex as a

predictor (SHAP values: -0.05 to +0.45) aligns with established

epidemiological evidence showing higher AUD prevalence in male

firefighters and known sex differences in alcohol metabolism and

neurotoxic vulnerability (55). Non-dominant hand Grooved

Pegboard performance demonstrated bidirectional effects (SHAP

values: -0.30 to +0.25), suggesting that motor coordination
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impairments serve as sensitive indicators of subclinical

neurological compromise.

The substantial performance differential between the multimodal

framework (79.88% accuracy) and both clinical-only (62.53%) and

imaging-only (61.53%) approaches cannot be attributed to simple

additive effects of feature concatenation. Rather, this performance

enhancement reflects fundamental principles of multimodal machine

learning wherein complementary information sources capture distinct

aspects of underlying pathophysiology (56, 57). Recent theoretical

frameworks in multimodal neuroimaging emphasize that different

data modalities provide non-redundant views of complex biological

phenomena, with optimal integration strategies exploiting this

complementarity to achieve superior discriminative power (58, 59).

The integration of neuroimaging and clinical features within

our multimodal architecture leverages what has been termed

“cooperative fusion” in the multimodal learning literature,

wherein modalities interact synergistically to reveal patterns

invisible to either modality in isolation (60). This approach aligns

with recent comprehensive reviews demonstrating that transformer

and CNN architectures require tailored interpretability methods to

effectively capture their distinct feature extraction patterns (61, 62).

Structural MRI captures static morphological alterations reflecting

cumulative neurotoxic effects, while neuropsychological

assessments provide dynamic functional readouts of neural

system integrity. The Vision Transformer component, designed to

capture global spatial dependencies, may identify distributed

patterns of subtle atrophy that achieve diagnostic relevance only

when contextualized by concurrent functional deficits captured

through clinical assessments. This synergistic relationship aligns

with recent findings demonstrating that multimodal approaches

consistently outperform unimodal methods in neuropsychiatric

classification tasks by capitalizing on the complementary nature

of structural and functional information (63, 64).

Critically, observed performance gains cannot be explained by

overfitting to clinical features or trivial demographic correlations.

SHAP analysis reveals that while sex contributes significantly,

motor coordination measures and other neuropsychological

indicators provide substantial independent predictive value.

Moreover, the failure of clinical-only models to exceed 62.53%

accuracy demonstrates that behavioral assessments alone lack

sufficient discriminative capacity. Similarly, poor performance of

imaging-only models indicates that structural alterations, though

present, require behavioral anchoring for meaningful interpretation

in this at-risk but pre-clinical population.

Mechanistic insights derived from interpretability analyses have

profound implications for understanding AUD vulnerability in

occupational cohorts. The failure of image-only models to

identify consistent neuroanatomical markers suggests that

structural alterations in early-stage or at-risk individuals may be

subtle, distributed, and heterogeneous, requiring behavioral

anchors for meaningful interpretation. The prominence of sex

and motor coordination measures in feature importance rankings

indicates that integrative models capturing both biological

predisposition and functional manifestation provide superior

discriminative capacity. These findings support a multifactorial
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conceptualization of AUD risk wherein neurobiological

alterations interact with demographic vulnerabilities and manifest

through measurable performance deficits before clinical thresholds

are reached.
4.3 Methodological limitations

This investigation presents several methodological constraints

warranting comprehensive examination. First, the cross-sectional

design fundamentally precludes causal inference regarding

temporal evolution of structural brain alterations and their

relationship to AUD risk. Longitudinal investigations tracking

firefighters from recruitment through career progression would be

essential to establish whether observed neuroanatomical variations

represent predisposing vulnerabilities, consequences of

occupational stress exposure, early markers of problematic

alcohol use, or complex interactions among these factors. The

absence of temporal data particularly limits our ability to

determine whether structural alterations precede behavioral

manifestations or emerge concurrently with escalating

alcohol consumption.

Additionally, exclusive reliance on T1-weighted structural MRI,

while strategically chosen for clinical feasibility, imposes inherent

constraints on the comprehensiveness of neurobiological

characterization. Resting-state functional MRI investigations have

identified specific functional connectivity alterations in reward,

salience, and executive control networks that differentiate

individuals with AUD from controls (43, 44, 47). Our structural-

only approach cannot capture these dynamic network-level

disruptions, potentially missing critical neurophysiological

markers of addiction vulnerability. Future iterations incorporating

abbreviated resting-state protocols or task-based functional MRI

targeting reward processing could enhance predictive accuracy

while maintaining reasonable clinical practicality. Additionally,

advanced structural imaging techniques such as diffusion tensor

imaging could provide microstructural integrity measures

complementing volumetric assessments.

Furthermore, the computational decision to segment three-

dimensional brain volumes into two-dimensional axial slices,

while reducing computational complexity and memory

requirements, sacrifices spatial continuity information. Three-

dimensional convolutional architectures or graph neural networks

operating on whole-brain volumes could potentially capture long-

range anatomical relationships and improve feature extraction,

though at substantially increased computational cost. The trade-

off between model sophistication and practical deployability

remains a critical consideration for clinical translation.

Moreover, generalizability of our findings faces multiple

constraints. The sample comprised exclusively Korean firefighters,

introducing both cultural and occupational specificity that may limit

applicability to other populations. Cultural variations in alcohol

consumption patterns, stigma associated with help-seeking, and

occupational stress exposure could influence both structural brain

alterations and model performance. The marked sex imbalance (93%
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male) reflects firefighting workforce demographics but severely limits

conclusions about female firefighters, particularly given sex differences

in alcohol metabolism, vulnerability to neurotoxic effects, and

addiction trajectories. Validation in diverse cultural contexts,

occupational groups, and sex-balanced samples remains essential

before broader implementation.

Concomitantly, several technical limitations merit consideration.

The AUDIT threshold of 8 for defining at-risk status, while

internationally validated, may not optimally discriminate

problematic drinking patterns in high-functioning occupational

cohorts where normative drinking levels differ from general

populations. The relatively modest sample size (n=689), while

substantial for neuroimaging studies, may limit detection of subtle

subgroup differences or complex interaction effects. The absence of

genetic data precludes investigation of gene-environment interactions

known to influence AUD vulnerability. Missing longitudinal follow-

up data prevents validation of the model’s actual predictive utility for

incident AUD diagnosis or occupational impairment.

Beyond these methodological considerations, clinical

implementation faces practical challenges beyond model

performance. The requirement for high-resolution structural MRI

limits deployment to settings with advanced imaging facilities,

potentially excluding rural or resource-limited fire departments.

The need for standardized neuropsychological testing by trained

personnel adds operational complexity. Privacy concerns regarding

neuroimaging-based occupational screening require careful ethical

consideration and policy development. The potential for

algorithmic bias, particularly given the homogeneous training

sample, necessitates ongoing monitoring and recalibration in

diverse deployment contexts.

Finally, performance ceiling effects warrant critical

consideration. While the achieved 79.88% accuracy represents

competitive performance relative to existing multimodal

approaches, it nonetheless implies a 20.12% misclassification rate

with asymmetric consequences: false positives potentially triggering

unwarranted career interventions versus false negatives resulting in

missed opportunities for early therapeutic engagement.

Furthermore, the absence of longitudinal follow-up data

fundamentally constrains clinical interpretation; the model’s

capacity to predict incident AUD diagnoses, trajectory of

symptom progression, or subsequent occupational impairment

remains empirically undefined. This temporal limitation restricts

current applicability to cross-sectional risk stratification rather than

prospective prediction, highlighting the imperative for longitudinal

validation studies to establish true predictive validity and optimal

screening intervals.
4.4 Implications for occupational health
screening

The demonstrated feasibility of achieving robust AUD risk

classification using structural MRI represents a significant

advancement for occupational health surveillance in high-risk
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professions. Traditional screening paradigms relying on self-

report instruments face systematic limitations in emergency

response populations where cultural valorization of stoicism,

occupational stigma, and career preservation concerns suppress

accurate disclosure of alcohol-related problems (2, 12). The

integration of objective neurobiological markers derived from

structural neuroimaging circumvents these reporting biases while

maintaining classification performance comparable to more

complex multimodal approaches.

Implementation within existing occupational health frameworks

requires consideration of both technical infrastructure and

organizational factors. Fire departments conducting periodic

comprehensive medical evaluations could incorporate T1-weighted

structural MRI protocols, though the total examination time of 30–60

minutes represents a substantial logistical consideration. While the

T1-weighted sequence itself requires only 5–10 minutes of actual

acquisition time, the complete imaging protocol including patient

preparation, positioning, and safety procedures necessitates dedicated

scheduling within occupational health assessments. The demonstrated

predictive value of combining neuroimaging with standardized

neuropsychological assessments suggests that brief cognitive testing

batteries could enhance screening accuracy without requiring

specialized neuropsychological expertise. Automated analysis

pipelines utilizing the validated deep learning architecture could

provide rapid risk stratification post-acquisition, enabling

occupational health physicians to prioritize intervention resources

toward highest-risk individuals.

To address feasibility concerns, a tiered implementation

strategy could optimize resource utilization while maintaining

screening effectiveness. Initial deployment could target high-risk

subpopulations identified through traditional screening tools

(AUDIT scores ≥ 15) or those with documented occupational

incidents, thereby concentrating MRI resources on individuals

with greatest clinical need. As infrastructure develops and costs

decrease, screening criteria could progressively expand to

encompass broader firefighter populations. This phased approach

aligns with successful precedents in occupational health screening,

where targeted protocols for high-risk workers preceded universal

implementation (65).

Critical ethical considerationsmust guide translation from research

findings to occupational screening practices. Clear delineation between

probabilistic risk assessment and clinical diagnosis remains essential to

prevent discriminatory practices while maximizing preventive

potential. Screening protocols should emphasize early intervention

and support rather than punitive measures, with explicit protections

ensuring that neuroimaging findings cannot adversely impact

employment status without corroborating clinical evidence.

Longitudinal monitoring frameworks tracking predictive validity of

initial risk assessments against subsequent clinical outcomes would

enable continuous algorithm refinement while building evidence for

screening effectiveness.

Economic implications of neuroimaging-based screening

warrant careful analysis within resource allocation frameworks.

Recent economic modeling of MRI-based screening programs
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provides relevant benchmarks. The UK Biobank’s population

neuroimaging initiative achieved per-scan costs of £264 ($330

USD) through high-volume standardization (66). Considering

firefighters’ elevated AUD risk (56.9% in our cohort vs. 6.2%

general population) (67) and associated costs of untreated AUD

(estimated $249 billion annually in the US) (68), targeted

neuroimaging screening may prove cost-effective despite initial

infrastructure investments. A threshold analysis suggests that

preventing one severe occupational incident per 150 screenings

would offset implementation costs. Furthermore, downstream

savings from prevented occupational injuries, reduced

absenteeism, decreased liability exposure, and maintained

operational readiness strengthen the economic justification.

Insurance frameworks may require modification to recognize

preventive neuroimaging in high-risk occupational cohorts as

medically necessary, particularly given these demonstrated cost-

benefit ratios. Future development priorities should address current

limitations while enhancing clinical utility. Multicenter validation

studies incorporating diverse geographical regions, departmental

cultures, and demographic compositions would establish

generalizability boundaries and identify population-specific

calibration requirements. Integration with emerging digital

biomarkers from wearable devices, sleep monitoring, and stress

physiology could create comprehensive risk profiles extending

beyond cross-sectional neuroimaging snapshots. Development of

abbreviated screening protocols optimized for rapid deployment

during routine medical evaluations could enhance feasibility while

maintaining predictive accuracy.

The broader implications extend beyond firefighting to

encompass other high-stress occupations with elevated substance

use risk, including law enforcement, emergency medical services,

and military personnel. Establishing standardized neuroimaging

protocols and classification algorithms across these populations

would enable comparative effectiveness research while building

robust normative databases. International collaboration through

occupational health networks could accelerate validation efforts

while ensuring equitable access to advanced screening

technologies across resource-varied settings.
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