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Introduction: Firefighters constitute a high-risk occupational cohort for alcohol
use disorder (AUD) due to chronic trauma exposure, yet traditional screening
methodologies relying on self-report instruments remain compromised by
systematic underreporting attributable to occupational stigma and career
preservation concerns. This cross-sectional investigation developed and
validated a multimodal deep learning framework integrating T1-weighted
structural magnetic resonance imaging with standardized neuropsychological
assessments to enable objective AUD risk stratification without necessitating
computationally intensive functional neuroimaging protocols.

Methods: Analysis of 689 active-duty firefighters (mean age 43.3+8.8 years; 93%
male) from a nationwide occupational cohort incorporated high-resolution
three-dimensional Tl-weighted structural MRI acquisition alongside
comprehensive neuropsychological evaluation utilizing the Grooved Pegboard
Test for visual-motor coordination assessment and Trail Making Test for
executive function quantification. The novel computational architecture
synergistically combined ResNet-50 convolutional neural networks for
hierarchical morphological feature extraction, Vision Transformer modules for
global neuroanatomical pattern recognition, and multilayer perceptron
integration of clinical variables, with model interpretability assessed through
Gradient-weighted Class Activation Mapping and SHapley Additive
exPlanations methodologies. Performance evaluation employed stratified
three-fold cross-validation with Delong's test for statistical comparison of
receiver operating characteristic curves.

Results: The multimodal framework achieved 79.88% classification accuracy
with area under the receiver operating characteristic curve of 79.65%,
representing statistically significant performance enhancement relative to
clinical-only (62.53%; p<0.001) and neuroimaging-only (61.53%; p<0.001)
models, demonstrating a 17.35 percentage-point improvement attributable to
synergistic cross-modal integration rather than simple feature concatenation.
Interpretability analyses revealed stochastic activation patterns in unimodal
neuroimaging models lacking neuroanatomically coherent feature localization,
while clinical feature importance hierarchically prioritized biological sex and
motor coordination metrics as primary predictive indicators. The framework
maintained robust calibration across probability thresholds, supporting
operational feasibility for clinical deployment.

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1643552/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1643552/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1643552/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1643552/full
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2025.1643552&domain=pdf&date_stamp=2025-11-03
mailto:sujungjyoon@ewha.ac.kr
mailto:hwamin@korea.ac.kr
https://doi.org/10.3389/fpsyt.2025.1643552
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2025.1643552
https://www.frontiersin.org/journals/psychiatry

Jang et al.

10.3389/fpsyt.2025.1643552

Discussion: This investigation establishes that structural neuroimaging combined
with targeted neuropsychological assessment achieves classification performance
comparable to complex multimodal protocols while substantially reducing
acquisition time and computational requirements, offering a pragmatic pathway for
implementing objective AUD screening in high-risk occupational populations with
broader implications for psychiatric risk stratification in trauma-exposed professions.

alcohol use disorder, firefighters, multimodal deep learning, structural MRI,
occupational psychiatry, neuroimaging biomarkers

1 Introduction

Firefighters constitute a distinct occupational group regularly
exposed to life-threatening emergencies and cumulative
psychological trauma including fire suppression, technical rescues,
hazardous material responses, and mass casualty incidents. This
continuous exposure imposes substantial psychological and
physiological burdens, placing firefighters at elevated risk for a
range of mental health disorders, most notably alcohol use disorder
(AUD) (1). Epidemiological studies have consistently reported
higher rates of problematic alcohol consumption among
firefighters compared to the general population, a disparity that
persists even after adjusting for demographic and socioeconomic
factors (2-4).

Beyond alcohol-specific outcomes, large-scale evidence from
Canadian public safety personnel (PSP) shows substantially elevated
screening rates for common mental disorders relative to the general
population. In a national survey of 5,813 PSP, Carleton et al. (5)
reported that 15.1% screened positive for at least one current disorder
and 26.7% for two or more, with meaningful differences across PSP
categories (5). These findings underscore the high and heterogeneous
mental health burden in firefighters’ broader occupational context and
help explain why coping-motivated alcohol use often emerges in this
workforce, reinforcing the need for objective, stigma-resistant risk
assessment beyond self-report. This pattern is consistent with
evidence that public safety personnel, including firefighters,
frequently engage in coping-motivated alcohol use in response to
trauma and chronic operational stress (6-9), further strengthening
the rationale for objective risk assessment methods. The etiology of
AUD within this population is multifaceted, reflecting interactions
among neurobiological predispositions, occupational stress, and
psychosocial dynamics. Alcohol is often utilized as a maladaptive
coping strategy to manage symptoms of hyperarousal, intrusive
memories, and emotional distress stemming from repeated trauma
exposure (7-9). Over time, this reliance on alcohol for emotional
regulation can lead to reinforcement cycles that escalate into habitual
and dependent use (10). These clinical risk pathways are further
compounded by occupational culture. Firefighting environments
frequently normalize post-shift drinking and valorize stoicism,
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creating a paradox in which alcohol use is both institutionally
sanctioned and individually stigmatized (2, 10). Consequently, many
firefighters refrain from help-seeking behaviors and underreport their
alcohol consumption due to fears of career-related repercussions.

The implications of AUD within firefighting populations extend
beyond individual health, impacting operational readiness,
decision-making under pressure, and public safety during
emergency response. Excessive alcohol use among first responders
in high-stakes environments is linked to increased risk-taking
behaviors, such as driving while intoxicated, thereby contributing
to significant occupational problems that can affect team
performance, and posing severe threats to personal safety,
including heightened suicidality and increased risk of traumatic
incidents (11). Despite these risks, early detection of alcohol misuse
remains challenging. Current screening protocols rely heavily on
self-reported questionnaires such as the Alcohol Use Disorder
Identification Test (AUDIT), which are vulnerable to social
desirability bias, impression management, and concerns regarding
occupational repercussions (12). Furthermore, cultural norms
emphasizing resilience and self-reliance may suppress disclosure
of substance use and deter engagement with support services (13).
Accordingly, there is a clear need for objective, stigma-resistant
screening approaches that integrate biological and behavioral
indicators rather than relying solely on self-report.

Recent advances in neuroimaging and machine learning have
opened new avenues for objective assessment of psychiatric
disorders. Structural MRI markers have been shown to correlate
with various psychiatric phenotypes, including those related to
substance use disorders (14). Machine learning techniques applied
to neuroimaging data have demonstrated promising diagnostic and
predictive accuracy across various psychiatric disorders (15, 16).
However, their application to alcohol use risk prediction within
occupational cohorts remains underexplored. Within high-risk
occupational cohorts such as firefighters, studies that objectively
predict AUD risk by integrating structural MRI with standardized
neuropsychological measures remain scarce.

To address this gap, the present study proposes a multimodal
deep learning approach that integrates neuroimaging features with
clinical and cognitive measures to predict AUD risk in a national
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sample of active-duty firefighters. This method aims to overcome
limitations of conventional self-report tools by leveraging
biologically informed, data-driven markers to enhance early
identification of high-risk individuals. Through this integration,
we seek to contribute to the development of precision screening
strategies tailored to the unique demands and vulnerabilities of
high-stress emergency response professionals.

2 Materials and methods
2.1 Study design and participants

This study utilized a cross-sectional design to develop and
evaluate a multimodal deep learning framework for predicting
alcohol use disorder (AUD) risk in an occupational cohort of
active-duty firefighters in the Republic of Korea. Participants were
recruited from multiple fire stations nationwide. Eligibility criteria
included: age 25-65 years, active employment as a firefighter, and
availability of both T1-weighted structural magnetic resonance
imaging (MRI) and complete clinical assessment data. Exclusion
criteria comprised a history of neurological disorders (e.g., epilepsy,
stroke, traumatic brain injury), major psychiatric conditions other
than AUD, current use of psychotropic medications, MRI-detected

10.3389/fpsyt.2025.1643552

structural brain abnormalities, or contraindications to MRI
scanning (e.g., metallic implants, claustrophobia).

Of 746 initially enrolled firefighters, 35 were excluded due to
incomplete imaging data, 14 for missing clinical assessments, and 8
for MRI-detected structural anomalies, resulting in a final analytical
sample of 689 participants (mean age 43.3 + 8.8 years; 93% male).
Figure 1 illustrates the participant recruitment and data
preprocessing workflow. All participants provided written
informed consent, and the study protocol was approved by the
Institutional Review Board of Ewha Womans University. The
research adhered to the ethical principles of the Declaration
of Helsinki.

2.2 Clinical assessments

Cognitive and motor functions were evaluated using two
standardized neuropsychological tests: the Grooved Pegboard Test
and the Trail Making Test (TMT) (17, 18) (19, 20). The Grooved
Pegboard Test assessed visual-motor coordination and fine motor
control. Participants inserted 25 uniquely shaped pins into
corresponding grooves as quickly as possible, with completion times
(seconds) recorded for both dominant and non-dominant hands;
longer times indicated poorer performance (17, 18). The TMT
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FIGURE 1
Participant recruitment and data preprocessing workflow for the firefighter cohort.
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evaluated processing speed, cognitive flexibility, and executive
function. Part A required participants to connect numbered circles
sequentially, while Part B involved alternating between numbers and
letters in ascending order. Completion times were recorded, with
higher values reflecting lower cognitive efficiency (19, 20). Tests were
administered by trained personnel under standardized conditions.

Alcohol use risk was assessed using the Alcohol Use Disorder
Identification Test (AUDIT), a 10-item self-report questionnaire
developed by the World Health Organization to evaluate alcohol
consumption, dependence symptoms, and related harm (21). Scores
range from 0 to 40, with a cutoff of >8 indicating hazardous
drinking risk (22). The AUDIT was completed under supervised
conditions to ensure data integrity.

2.3 Demographic and neuropsychological
characteristics

To align comparisons with standard occupational screening
practice, we stratified the cohort using the established AUDIT cut-
off (=28 vs<8). Table 1 summarizes the demographic and
neuropsychological characteristics of the study cohort, stratified
by AUDIT-based alcohol risk status (=8: alcohol risk, n=392, 56.9%;
<8: non-alcohol risk, n=297, 43.1%). The alcohol risk group had a
mean age of 43.16 + 8.53 years, compared to 42.58 + 8.67 years for
the non-alcohol risk group, with no significant difference (p=0.380,
two-tailed independent samples t-test). We used two-tailed
independent-samples t-tests for continuous variables because the
groups are non-overlapping at the participant level, the t-test
provides an efficient test of mean differences, and with our
sample size it is reasonably robust to moderate deviations from
normality; a two-sided test also guards against effects in either
direction. A significant gender disparity was observed (p<0.001,
two-tailed Pearson Chi-square test), with the alcohol risk group
showing higher male predominance (380 males, 12 females)
compared to the non-alcohol risk group (257 males, 40 females).
The Pearson chi-square test was chosen for categorical comparisons

TABLE 1 Participant characteristics stratified by alcohol use risk status.

10.3389/fpsyt.2025.1643552

(e.g., sex distribution) because it assesses association between group
membership and categorical outcomes without requiring
distributional assumptions beyond adequate expected cell counts.

Neuropsychological performance was comparable between
groups. For the Grooved Pegboard Test, dominant hand
completion times were 66.27 + 8.45 seconds (alcohol risk) versus
67.27 + 9.46 seconds (non-alcohol risk; p=0.153), and non-
dominant hand times were 72.04 + 9.49 seconds versus 72.48 +
9.79 seconds (p=0.546). For the TMT, Part A completion times
were 29.65 + 7.78 seconds (alcohol risk) versus 28.71 + 7.50 seconds
(non-alcohol risk; p=0.110), and Part B times were 74.69 + 27.28
seconds versus 73.42 + 25.25 seconds (p=0.527). Interpreted under
these method choices, the absence of significant between-group
differences suggests that AUD risk, as defined by screening criteria,
may precede measurable neuropsychological deficits in this
occupational cohort.

2.4 MRI acquisition

Structural brain MRI scans were acquired using a 3.0 Tesla
Philips MRI system (Philips Healthcare, Best, The Netherlands)
equipped with a 32-channel head coil. High-resolution three-
dimensional T1-weighted images were obtained with the
following parameters: repetition time (TR) = 7.4 ms, echo time
(TE) = 3.4 ms, flip angle = 8°, voxel size =1 x 1 x 1 mm?, and 180
sagittal slices. All participants were instructed to maintain stillness
and neutral head positioning throughout the scanning session to
ensure image quality.

2.5 Data preprocessing

T1-weighted MRI data were preprocessed using the FMRIB
Software Library (FSL, version 6.0 (23) to ensure standardized
spatial normalization and artifact minimization. The
preprocessing pipeline included both linear and nonlinear

Variables Alcohol risk Non-alcohol risk p value
Sample size 392 297
Age (years) * 43.16 * 8.53 42.58 + 8.67 0.380 "
Gender (male/female) 380/12 257/40 <0.001 ©
Grooved pegboard test
Dominant * 66.27 + 8.45 67.27 + 9.46 0.153 °
Non-dominant * 72.04 £ 9.49 7248 £ 9.79 0.546 "
Trail making test
Test A * 29.65 + 7.78 2871 + 7.50 0.110 "
Test B * 74.69 + 27.28 73.42 + 2525 0.527 °

“Data are presented as mean + standard deviation.
®p by two-tailed independent samples t-test.
p by two-tailed Pearson Chi-square test.
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FIGURE 2

Multimodal deep learning architecture integrating neuroimaging and clinical data for alcohol use disorder risk prediction.

registration of each participant’s structural MRI to the Montreal
Neurological Institute (MNI152) standard space, followed by
resampling to a voxel resolution of 2 x 2 x 2 mm’. Following
normalization, skull stripping was performed using the High-
Definition Brain Extraction Tool (HD-BET), a deep learning-
based algorithm designed to enhance the accuracy of brain tissue
isolation from non-brain elements (24). This process improved
visualization of key anatomical regions, including gray matter,
white matter, and ventricular structures, while simultaneously
reducing noise and enhancing segmentation fidelity. After skull
stripping, the three-dimensional MRI volumes were segmented into
80 two-dimensional axial slices per participant, ensuring
standardized anatomical coverage. The use of axial slices provides
distinct spatial perspectives and clinically relevant information,
facilitating detailed neuroanatomical interpretation and enabling
precise detection of structural abnormalities or pathologies (25, 26).

To increase model generalizability, data augmentation
techniques were applied. RandomAffine transformations
introduced rotational variations (+ 10°) and translation shifts
(& 5%). ColorJitter transformations adjusted image brightness and
contrast (+ 20%), and RandomRotation transformations applied
further rotational variation (+ 15°) to simulate clinical variability.
Pixel intensity normalization was performed using standardized
mean and standard deviation values derived from large-scale
neuroimaging datasets to standardize input distributions prior to
model training (27-29).

Clinical assessment data underwent systematic preprocessing to
ensure data integrity and model compatibility. Missing value
analysis was conducted across all clinical variables, including
demographic parameters (age, sex), neuropsychological test scores
(Grooved Pegboard Test completion times for dominant and non-
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dominant hands, Trail Making Test Parts A and B), and alcohol use
risk indicators (AUDIT scores). Participants with incomplete
clinical assessments were excluded from the analytical cohort
through listwise deletion, maintaining the methodological rigor
requisite for multimodal integration. This conservative approach
to missing data management, while potentially reducing statistical
power, preserved the validity of cross-modal feature relationships
critical to the multimodal learning framework. No imputation
strategies were employed to avoid introducing artificial
correlations between neuroimaging and clinical features. All
continuous clinical variables were retained in their original scales
to preserve interpretability, with normalization performed
internally within the deep learning architecture through batch
normalization layers. Categorical variables, specifically biological

sex, were encoded using binary representation (0 = male, 1 =

female) consistent with standard practices in medical machine
learning applications.

2.6 Multimodal deep learning framework

To predict alcohol use disorder (AUD) risk in firefighters, we
developed a multimodal deep learning framework that integrates
structural magnetic resonance imaging (MRI) with clinical and
neuropsychological data. The framework comprised three parallel
processing branches: a convolutional neural network (CNN) based
on ResNet-50 for local morphological feature extraction from MRI
images (30), a Vision Transformer (ViT) module for global
contextual representation of neuroanatomical structures (31), and
a multilayer perceptron (MLP) for incorporating clinical and
neuropsychological variables (32). Figure 2 provides a schematic
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overview of the deep learning architecture, illustrating the parallel
processing of MRI images and clinical variables through the
ResNet-50, Vision Transformer, and MLP modules, the
subsequent feature concatenation, and the final classification layer.

For the MRI input stream, 80 axial two-dimensional slices per
participant were fed into a pretrained ResNet-50 model to derive
hierarchical local features. The resulting feature maps underwent
average pooling and flattening operations to produce compact
representations. In parallel, the same MRI slices were input into
the ViT module via patch-based linear embedding. The ViT
extracted long-range spatial dependencies and global structural
context across brain regions (33). This dual-path design allowed
for the concurrent extraction of both local and global
representations from the neuroimaging data.

Simultaneously, clinical and neuropsychological features
comprising age, sex, AUDIT score, Grooved Pegboard Test
completion times (dominant and non-dominant hand), and Trail
Making Test A and B durations were input into an MLP consisting of
two fully connected layers with ReLU activations, yielding latent
clinical representations. The outputs from the ResNet-50, ViT, and
MLP branches were concatenated into a unified feature vector, which
was passed through a fully connected layer with a sigmoid activation
function to generate a binary prediction of AUD risk. Model training
was conducted using the Adam optimizer with an initial learning rate
of 0.001, a batch size of 32, and a maximum of 100 training epochs.
Early stopping was applied with a patience threshold of 10 epochs
based on validation loss. To mitigate overfitting and improve
generalizability, dropout regularization (dropout rate = 0.5) was
applied to fully connected layers, and batch normalization was
incorporated after each convolutional block.

Model evaluation was performed using stratified three-fold
cross-validation with participant-level data partitioning to ensure
independence between training and validation sets. Performance
was assessed based on accuracy, area under the receiver operating
characteristic curve (AUROC), sensitivity, and specificity. Statistical
differences in AUROC between model configurations were
evaluated using DeLong’s test (34). All models were implemented
in PyTorch (v1.10) and trained on an NVIDIA RTX A6000 GPU.

2.7 Model evaluation and statistical analysis

Model performance was evaluated using stratified threefold
cross-validation with participant-level data partitioning to ensure
independence between training and validation sets. Performance
metrics included accuracy, area under the receiver operating
characteristic curve (AUROC), precision, and recall. The AUROC
was the primary metric due to its robustness to class imbalance.
Confidence intervals (95% CI) for AUROC were estimated via
bootstrapping (1,000 iterations).

Comparative analyses assessed the multimodal model against
unimodal models (MRI-only, clinical-only). Between-model
differences in AUROC were tested using DeLong’s method, which
accounts for the correlation inherent to paired ROC curves evaluated
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on the same cases (34). Calibration was evaluated with reliability
(calibration) curves to assess agreement between predicted
probabilities and observed outcomes, and decision curve analysis
was used to quantify net clinical benefit across threshold
probabilities relevant to occupational screening. All preprocessing
statistics, any calibration fits, and threshold selection were
performed within training folds only and applied to the
corresponding validation folds to avoid information leakage. Feature
importance was analyzed using integrated gradients to enhance
interpretability by identifying influential neuroanatomical and
clinical inputs contributing to predictions (35). Statistical analyses
were conducted using Python (version 3.9), Scikit-learn (version 1.0),
and SciPy (version 1.7).

2.8 SHapley Additive exPlanations

Feature importance analysis of clinical variables was conducted
using SHAP methodology with an XGBoost classifier (36) trained
on clinical features comprising age, sex, AUDIT scores, Grooved
Pegboard Test completion times, and Trail Making Test durations.
SHAP values were computed using TreeExplainer, which leverages
the tree structure for efficient Shapley value calculation (37). Global
feature importance was quantified through mean absolute SHAP
values across the cohort, providing interpretable measures of each
variable’s contribution to risk prediction. Statistical significance of
feature contributions was evaluated using permutation-based null
hypothesis testing with multiple comparison correction.

2.9 Gradient-weighted class activation
mapping

Gradient-weighted Class Activation Mapping (Grad-CAM) was
employed to elucidate the spatial localization of discriminative
neuroanatomical features contributing to alcohol use disorder risk
classification (38). This interpretability methodology generates
visual explanations by computing the gradient of the predicted
class score with respect to the final convolutional layer activations,
thereby identifying brain regions that maximally influence the
classification decision. The analysis targeted the terminal
convolutional layers of each architecture, which preserve spatial
resolution while encoding high-level semantic features. The
importance weights oy for each feature map k with respect to
target class ¢ were computed through gradient backpropagation:

c_ (1 9y
i-(3)535%

where y© denotes the class score, Akij represents the activation at

spatial location (i,j) in feature map k, and Z normalizes by spatial
dimensions. The final class-discriminative localization map was
generated through weighted combination of forward activation
maps:
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LGraa-cam = ReLU EaiAk
k

The resulting coarse-grained heatmaps underwent bilinear
interpolation to match the original image resolution (224x224
pixels) and were superimposed on the corresponding MRI slices
with a transparency coefficient of 0.6 to facilitate anatomical
interpretation. Visualizations were generated for a randomly selected
subset of 50 participants per risk category to assess spatial consistency
of learned features. Dice similarity coefficients quantified the spatial
overlap of activation patterns across participants, while occlusion
sensitivity analysis validated the causal importance of identified
regions by measuring classification confidence degradation upon
masking the upper quintile of activation intensities. Given these
implementation details, we briefly justify our choice of localization
method. We selected Grad-CAM after considering alternative feature-
localization techniques because it is class-discriminative, CNN-
architecture agnostic, and computationally efficient for 2D multi-
slice MRI. Unlike vanilla saliency, which is high-variance and visually
noisy, Grad-CAM vyields stable, coarse-to-mid-scale heatmaps aligned
with the target class. Integrated Gradients requires a baseline and path
integral whose choice is non-trivial for T1 intensity scales and can

10.3389/fpsyt.2025.1643552

introduce baseline-dependent artifacts, whereas Grad-CAM avoids a
baseline choice while remaining faithful to score-gradient
information. Occlusion/perturbation and LIME/SHAP image
explanations impose heavy sampling costs and design choices (e.g.,
patch size, superpixels) that scale poorly to ~80 slices per subject (37,
39). Transformer attention maps are not inherently class-specific and
may not reflect decision-critical evidence, whereas Grad-CAM is
explicitly class-discriminative. In medical imaging, Grad-CAM’s
regional localization aligns with radiological reading practices,
enabling transparent overlays on axial slices and cohort-level
aggregation without re-training. To address known limitations
(resolution tied to the last conv layer), we performed sanity checks
(parameter randomization and slice-wise ablation) and report both
representative and aggregated maps (40).

3 Results

Table 2 summarizes the comparative performance of multiple
predictive models for alcohol use disorder (AUD) risk classification,
including clinical-only, neuroimaging-only, multi-scale image
integration, and multimodal models integrating neuroimaging

TABLE 2 Performance comparison of alcohol use disorder risk prediction models.

Model Accuracy AUROC Precision Recall
Clinical only
Logistic Regression 0.6253 0.5773 0.6117 0.6432
MLP 0.5637 0.5436 0.5521 0.5748
Random Forest 0.5487 0.5388 0.5294 0.5562
XGBoost 0.4857 0.4795 0.4783 0.4620
Image only
ResNet50 0.6153 0.5773 0.6089 0.6241
EfficientNet-B0 0.5967 0.5648 0.5891 0.6034
ViT 0.5457 0.5395 0.5412 0.5480
DeiT 0.5037 0.5236 0.5001 0.5076
Multi-scale image
ResNet50 + ViT 0.6354 0.6187 0.6213 0.6495
ResNet50 + DeiT 0.5833 0.5325 0.5702 0.5894
EfficientNet-B0 + ViT 0.5902 0.5869 0.5820 0.5981
EfficientNet-B0+ DeiT 0.5627 0.5398 0.5514 0.5739
Multimodal (image + clinical)
ResNet50 + ViT + MLP 0.7988 0.7965 0.7836 0.8124
ResNet50 + ViT + LR 0.6887 0.6726 0.6752 0.6989
ResNet50 + DeiT + MLP 0.7726 0.7563 0.7590 0.7852
EfficientNet-BO+ DeiT + LR | 0.6429 0.6854 0.6381 0.6587

Performance metrics (Accuracy, AUROC, Precision, Recall) for alcohol use disorder risk prediction models across four architectural categories: clinical data only models, neuroimaging only
architectures, multi scale image integration approaches, and multimodal frameworks combining neuroimaging with clinical variables. Bold values indicate the highest performance metrics across

all evaluated models.
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and clinical data. Metrics include accuracy, area under the receiver
operating characteristic curve (AUROC), precision, and recall were
evaluated using stratified threefold cross-validation to ensure
robust estimates.

Among clinical-only models, logistic regression yielded the best
performance, achieving an accuracy of 62.53%, AUROC of 57.73%,
precision of 61.17%, and recall of 64.32%. Other clinical models,
including multilayer perceptron (MLP), random forest, and
XGBoost, demonstrated lower classification accuracy and area
under the curve (AUC), with AUROCs ranging from 47.95%
to 54.36%.

In the neuroimaging-only condition, the ResNet-50 model
outperformed other architectures such as EfficientNet-B0, Vision
Transformer (ViT), and Data-efficient Image Transformer (DeiT),
achieving an AUROC of 57.73% and an accuracy of 61.53%. The
ViT and DeiT models yielded AUROCs of 53.95% and 52.36%,
respectively, suggesting that these transformer-based models did
not surpass the convolutional baseline in unimodal imaging tasks.

Combining multiple image architectures slightly improved
performance. The ResNet-50 + ViT hybrid configuration achieved
the highest AUROC (61.87%) and accuracy (63.54%) within the
multi-scale image category. Nonetheless, performance remained
suboptimal compared to multimodal approaches.

The multimodal frameworks that integrated both neuroimaging
and clinical data demonstrated significant improvements in
predictive performance. The optimal configuration consisted of a
fusion architecture incorporating ResNet-50, ViT, and an MLP for
clinical variables, which achieved an accuracy of 79.88%, AUROC of
79.65%, precision of 78.36%, and recall of 81.24%. This
performance represents a 17.35 percentage point improvement in
accuracy and a 21.92 percentage gain in AUROC over the best
clinical-only model (logistic regression), thereby providing
compelling evidence for the additive benefit of multimodal
integration. Other multimodal variants such as ResNet-50 + DeiT
+ MLP and ResNet-50 + ViT + logistic regression also showed
superior performance relative to unimodal baselines but did not
match the top-performing model.

Statistical comparison of AUROC values using DeLong’s test
confirmed that the multimodal ResNet-50 + ViT + MLP model
significantly outperformed both clinical-only and image-only
models (p< 0.001).

Figure 3 provides a visual representation of model performance
across three complementary dimensions. The ROC curves
(Figure 3A) demonstrate a clear separation between the
multimodal architecture and other modeling approaches, with the
multimodal curve exhibiting a substantially greater area under the
curve (AUC). The multi-scale image model shows intermediate
discriminative capacity, positioned between the multimodal
framework and the unimodal approaches, which demonstrate
comparable but less robust discriminative performance.

Calibration curves (Figure 3B) reveal that the multimodal
approach aligns more closely with the ideal calibration line
compared to alternative models. Clinical-only and neuroimaging-
only approaches exhibit noticeable deviations from optimal
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calibration, particularly in lower probability regions where
systematic overestimation is visually apparent.

Decision curve analysis (Figure 3C) illustrates that the
multimodal framework provides a consistently positive net benefit
across a broader range of threshold probabilities relative to other
modeling strategies. In contrast, clinical-only and neuroimaging-
only approaches show diminished clinical utility at higher threshold
values, whereas the multimodal approach maintains its net benefit
across the full probability spectrum. These visual assessments
corroborate the quantitative findings presented in Table 2, further
supporting the enhanced predictive capability achieved through
multimodal integration.

Figure 4 shows confusion matrices for representative models
(clinical-only Logistic Regression; image-only ResNet-50; multi-
scale image ResNet-50 + ViT; multimodal ResNet-50 + ViT +
MLP). The multimodal model yielded TN = 55, FP = 15, FN = 13,
TP = 54. The clinical-only model produced TN = 44, FP = 26, FN =
25, TP = 42. The image-only model produced TN = 43, FP = 27,
FN = 25, TP = 42. The multi-scale image model produced TN = 43,
FP =27, FN = 23, TP = 44. Overall, the multimodal configuration
simultaneously reduced both FP and FN relative to the other
approaches, indicating a more favorable error profile for
occupational screening.

To examine the feature extraction patterns of neuroimaging-
only models, we performed gradient-weighted class activation
mapping (Grad-CAM) analysis on both ResNet-50 and
EfficientNet-B0O architectures. Supplementary Figure S1 displays
representative Grad-CAM visualizations of axial brain slices from
randomly selected participants processed through these
convolutional neural network models. The Grad-CAM activations
from both architectures exhibited substantial spatial heterogeneity
across slices. Activation intensities showed irregular distributions,
with discrete focal hotspots in some regions and diffuse low-
intensity patterns across broader anatomical areas. Both ResNet-
50 and EfficientNet-B0 revealed no systematic concentration within
specific neuroanatomical structures, with high-intensity regions
appearing stochastically distributed across cortical and subcortical
territories. Peak activation values varied markedly across slices and
architectures, ranging from isolated punctate foci to broad
activation zones encompassing multiple anatomical regions.

To further justify the use of Grad-CAM over alternative feature
localization methods, we additionally applied Vanilla Saliency
(Supplementary Figure S2), Integrated Gradients (Supplementary
Figure S3), and Occlusion Sensitivity (Supplementary Figure S4).
Compared with Grad-CAM, Vanilla Saliency and Integrated
Gradients produced noisy, low-contrast attribution maps with
limited anatomical interpretability, consistent with known
limitations of these gradient-based approaches when applied to
structural MRI data. Occlusion Sensitivity yielded block-like
activation patterns resulting from the perturbation grid but failed
to delineate neuroanatomically meaningful regions in a stable
manner. In contrast, Grad-CAM consistently generated smoother
and more interpretable overlays, aligning with prior reports
demonstrating its robustness and clinical plausibility in
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FIGURE 3

Comparison of model performance for alcohol use disorder risk prediction across data modalities. (A) Receiver operating characteristic (ROC) curves
illustrate the discriminative performance of clinical-only, image-only, multi-scale image, and multimodal models, with the multimodal model
showing the highest area under the curve (AUC). (B) Calibration curves compare predicted versus observed probabilities, demonstrating superior
calibration in the multimodal model. (C) Decision curve analysis indicates that the multimodal model provides the greatest net clinical benefit across

a range of threshold probabilities.

neuroimaging. These supplementary comparisons underscore the
suitability of Grad-CAM as the primary visualization approach in
this study.

These visualization outputs corroborate the quantitative
performance metrics observed for the neuroimaging-only models
(ResNet-50 AUROC: 57.73%, accuracy: 61.53%; EfficientNet-B0O
AUROC: 56.54%, accuracy: 60.82%). The absence of consistent
activation patterns across the randomly sampled cases in both
architectures provides empirical evidence for the limited feature
extraction capability of image-only models in this AUD risk
prediction task.

Feature importance analysis of the clinical variables was
conducted using SHapley Additive exPlanations (SHAP) to
quantify individual feature contributions to the multimodal
model predictions. Supplementary Figure S2 presents the SHAP
value distributions for six clinical features incorporated in the
optimal multimodal framework.
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The SHAP analysis revealed differential feature contributions
across the clinical variable set. Sex demonstrated the most
pronounced positive impact on model predictions, with SHAP
values ranging from approximately -0.05 to +0.45, exhibiting a
strong rightward skew. Non-dominant hand Grooved Pegboard
completion times (GP_nondom_sec_adj) displayed bidirectional
effects with SHAP values distributed between -0.30 and +0.25,
indicating variable contributions to risk prediction depending on
individual performance levels.

Age exhibited a balanced distribution of SHAP values spanning
-0.25 to +0.20, with the majority of instances clustering near zero.
Dominant hand Grooved Pegboard performance
(GP_dom_sec_adj) showed similar bidirectional patterns with
values ranging from -0.20 to +0.15. Trail Making Test Part A
completion times (TrailA_time_adj) demonstrated moderate
feature importance with SHAP values between -0.15 and +0.15.
Trail Making Test Part B completion times (TrailB_time_adj)
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Confusion matrices comparing classification performance across model architectures for alcohol use disorder risk prediction. (A) Clinical-only model
using logistic regression. (B) Image-only model using ResNet-50. (C) Multi-scale image model combining ResNet-50 and Vision Transformer.
(D) Multimodal model integrating ResNet-50, Vision Transformer, and clinical variables through MLP. Values represent the number of participants

classified in each category from stratified 3-fold cross-validation

yielded the most concentrated distribution around zero, with
limited outliers extending to +0.20, suggesting minimal direct
contribution to prediction outcomes in the multimodal context.

These quantitative feature attribution results complement the
multimodal model performance metrics, providing mechanistic
insights into the relative contributions of individual clinical
variables within the integrated predictive framework.

4 Discussion

The multimodal deep learning framework demonstrated superior
classification performance, validating the synergistic integration of
structural neuroimaging with clinical assessments for AUD risk
stratification in firefighters. The principal findings encompass: (1)
The synergistic combination of ResNet-50 and Vision Transformer
architectures facilitates complementary extraction of local
morphological features and global spatial dependencies from
structural MRI data, obviating computationally intensive functional
connectivity analyses; (2) Integration of standardized
neuropsychological assessments, specifically the Grooved Pegboard
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Test and Trail Making Test, provides functional neurological proxies
that partially compensate for the absence of task-based or resting-state
functional MRI data; (3) The multimodal framework demonstrates a
17.35 percentage point improvement in classification accuracy relative
to clinical-only models, substantiating the discriminative value of
structural neuroimaging when appropriately integrated with
behavioral metrics; (4) Feature importance analysis identifies sex as
the predominant clinical predictor, followed by motor coordination
measures, elucidating potential sex-specific vulnerability patterns
within this occupational cohort; (5) The model maintains robust
calibration across probability thresholds, suggesting clinical
applicability for risk stratification without the operational
complexity inherent to functional neuroimaging protocols.

4.1 Comparative analysis with extant
literature

Table 3 provides a comprehensive summary of recent
multimodal deep learning approaches for psychiatric disorder
prediction, contextualizing our findings within the broader
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TABLE 3 Comparative summary of multimodal deep learning approaches for psychiatric disorder prediction.

10.3389/fpsyt.2025.1643552

Modalities Target disease = Accuracy AUROC Sample size Sample characteristic

Control

Zheng et al. (41) sMRI + fMRI MDD 75.2% 0.808 2319
MDD
Control

Kanyal et al. (42) sMRI + fMRI + SNP SZ 79.01% - 492 sz
Control

Zhu et al. (43) sMRI (3D) + fMRI AUD 67.4% -90.5% - 92 AUD
Control

. (44 - :

Vergara et al. (44) fMRI AUD 0.79 102 AUD
Control

Kamarajan et al. (45) fMRI AUD 76.67% 0.93 60 AUD
Male participants only
Control

Guggenmos et al. (46) | sMRI + fMRI AUD 79.3% - 216
AUD

Ours sMRI (2D) + Clinical AUD 79.88% 0.795 689 Occupational (Firefighters)

Reported values are taken from the cited papers; numbers are not directly comparable across studies because of differences in datasets, label definitions (diagnosis vs. risk), cohort composition,
scanners/protocols, and evaluation procedures (cross-validation vs. held-out tests). When a study reported multiple results, we list a representative value or a range; “-” indicates the metric was
not reported.

Modalities: sSMRI, T1-weighted structural MRI; fMRI, functional MRI (resting or task-based as reported); SNP, single-nucleotide polymorphisms.

Target disease: MDD, major depressive disorder; SZ, schizophrenia; AUD, alcohol use disorder.

Sample size is the total N analyzed in each study; Sample characteristic summarizes comparison groups (e.g., control vs. disorder, sex restrictions).

Ours denotes an occupational firefighter cohort and a multimodal model using sMRI (2D axial slices) + clinical variables without fMRI; results are averaged over stratified 3-fold, subject-wise
cross-validation.

Bold values represent results from the current study.

landscape of neuroimaging-based classification studies. from controls (43, 44). Direct comparison with AUD-focused
Contemporary neuroimaging investigations have consistently  investigations reveals our framework’s competitive performance
demonstrated the superiority of multimodal approaches combining  despite methodological parsimony. A recent study (44)reported
resting-state fMRI yielding AUROC 0.79 (n=102), comparable to

our 0.795 despite utilizing computationally intensive connectivity

structural MRI, functional task-based MRI, and resting-state
functional connectivity in psychiatric classification tasks (46).
However, the multimodal framework presented herein, achieving
79.88% accuracy (AUROC: 0.795) through structural MRI and
clinical assessment integration alone, demonstrates competitive

analyses. This equivalence challenges assumptions regarding the
superior discriminative capacity of functional imaging for AUD
detection. Similarly, another investigation (46) demonstrated that
performance relative to architectures incorporating functional ~ dual neuroimaging modality integration (sMRI + fMRI) achieved
neuroimaging. A recent triple-modality integration study (42)
(SMRI + fMRI + SNP) yielded 79.01% accuracy in schizophrenia
classification (n=492), with individual modalities contributing
differentially (sMRI: 66.33%, fMRI: 75.29%, SNP: 57.06%). The

marginal improvement from sMRI baseline to multimodal

79.3% accuracy in AUD classification (n=216), representing merely
2.7 percentage points improvement over single modality (76.6%)
which represents a limited enhancement that raises critical
questions regarding the cost-effectiveness of functional imaging
protocols in occupational screening contexts. Random Forest
integration (13.68 percentage points) must be contextualized  classification leveraging functional connectivity within the Default
against substantially increased acquisition complexity and  Mode Network combined with neuropsychological measures
computational burden. A comprehensive investigation utilizing an  achieved 76.67% accuracy (45), necessitating extensive
extensive neuroimaging battery comprising 119 alcohol-dependent  preprocessing pipelines and network-level analytical frameworks.
patients and 97 controls revealed that while multimodal integration =~ Recent work (45) reported fMRI-based classification achieving
76.67% accuracy (AUROC: 0.93) in a male-exclusive cohort

(n=60). Our superior accuracy (79.88%) in a substantially larger

yielded optimal classification performance, the investigators
concluded that “in terms of direct clinical applicability, currently
the most realistic neuroimaging-based classifier for AD may be  sample (n=689) with mixed-gender composition suggests that
unimodal based on structural MRI and grey-matter density  structural alterations combined with behavioral assessments may
specifically” (46), citing the temporal demands and analytical  provide greater discriminative capacity than functional connectivity
complexity of functional MRI protocols. This empirical observation  alone in occupational populations. Resting-state connectivity
corroborates our methodological decision to prioritize T1-weighted ~ features have demonstrated capacity to explain 33% of variance in
Alcohol Use Disorders Identification Test (AUDIT) scores (47),

though such models required acquisition of multiple functional

structural MRI as the primary neuroimaging modality.

Previous investigations employing resting-state functional
connectivity have reported classification accuracies ranging from
61.53% to 76.67% for discriminating alcohol-dependent individuals

MRI sequences including monetary incentive delay and face-
matching paradigms alongside resting-state protocols.
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Multimodal data integration approaches in psychiatric research
demonstrate methodological advantages comparable to our
neuroimaging-clinical framework. A recent VR-based study (48)
developed machine learning models utilizing acoustic and
physiological features VR exposure sessions for social anxiety
disorder, achieving an AUROC of 0.852 with CatBoost for Social
Phobia Scale prediction using multimodal features (n=132 samples
from 25 participants). Notably, their analysis revealed that acoustic
features (AUROC: 0.788) substantially outperformed physiological
features alone (AUROC: 0.626) for anxiety symptom prediction, with
multimodal integration yielding superior classification performance
across multiple anxiety domains. While their VR-based approach
differs methodologically from our structural neuroimaging
framework, the 7.26 percentage point improvement from
physiological to multimodal features (compared to our 17.35
percentage point improvement from clinical to multimodal)
highlights the consistent benefit of cross-modal integration in
psychiatric risk stratification. Their findings that acoustic
biomarkers captured more discriminative information than
physiological responses during anxiety-inducing scenarios parallels
our observation that targeted neuropsychological assessments provide
critical functional anchoring for structural alterations.

The classification performance of our T1-weighted structural MRI
multimodal approach (79.88% accuracy) demonstrates favorable
comparison with functional connectivity-based methodologies while
offering considerable practical advantages regarding acquisition
efficiency and computational parsimony. Our framework’s 17.35
percentage point improvement from clinical-only baseline (62.53%)
substantially exceeds the incremental gains observed when adding
neuroimaging to clinical data reported previously (46), suggesting that
targeted neuropsychological assessments may capture variance
typically attributed to functional connectivity measures. A
systematic review examining machine learning applications in AUD
reported neuroimaging-based algorithms achieving sensitivity ranging
from 90-99.99% and specificity from 82-99.97% (14); however, these
exceptional performance metrics were predominantly observed in
investigations combining multiple imaging modalities. One study
(43)reported 3D sMRI + fMRI combination achieving accuracy
ranging from 67.4% to 90.5% (n=92). The substantial variability
suggests potential overfitting in small samples, emphasizing the
importance of our larger cohort (n=689) for robust generalization
estimates. Beyond structural neuroimaging approaches, recent
advances in machine learning applications for mental health
monitoring in first responders provide complementary perspectives
on psychological distress prediction. A proof-of-concept investigation
(49) developed predictive models for posttraumatic stress injuries
(PTSI) utilizing intensive longitudinal data from 274 Montreal
firefighters monitored biweekly across 12 weeks. The study
implemented four distinct machine learning algorithms (logistic
regression, support vector classifier, extreme gradient boosting)
trained on temporal sequences of standardized psychological
assessments (PHQ-9, GAD-7, PCL-5) and psychosocial variables
(occupational stress, social support, coping strategies). The optimal
model configuration, employing extreme gradient boosting with three
lagged measurement timepoints and comprehensive feature sets,
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achieved 94% classification accuracy (AUC = 0.93, sensitivity = 0.61,
specificity = 0.97). Several methodological contrasts with the present
investigation merit consideration. The documented PTSI prevalence,
fluctuating between 6.9% and 10.6% across assessment intervals with
cumulative incidence of 19.7%, represents substantially lower
psychopathology rates than our observed AUD risk prevalence of
56.9%, potentially attributable to differential diagnostic thresholds
between acute stress-related symptomatology and chronic alcohol
use vulnerability. Feature importance analyses identified lagged
PHQ-9 scores collected 2 and 6 weeks prior to target assessment as
dominant predictors (19% and 10% relative importance respectively),
with GAD-7 and PCL-5 scores contributing secondarily, while
demographic variables (age >46 years, work experience >21 years)
demonstrated minimal predictive value. This hierarchical pattern
corresponds with our SHAP-derived feature attributions wherein
neuropsychological performance metrics superseded demographic
characteristics. The temporal dependency of predictive accuracy,
wherein model performance systematically improved from single-
timepoint (accuracy range: 0.81-0.91) to three-timepoint
configurations (accuracy range: 0.82-0.94), underscores the critical
importance of longitudinal symptom trajectories in psychiatric risk
modeling. These convergent findings across distinct methodological
paradigms substantiate the superiority of multimodal, temporally-
informed approaches over cross-sectional univariate assessments.
Integration of periodic structural neuroimaging for baseline
vulnerability characterization with continuous smartphone-based
symptom monitoring could potentially optimize early intervention
strategies through synthesis of stable neurobiological markers and
dynamic clinical trajectories. Our approach achieves minimal sacrifice
in predictive accuracy while greatly reducing acquisition time,
computational burden, and technical expertise requirements (49).

Previous investigations utilizing isolated structural MRI
modalities have provided valuable performance benchmarks, with
grey matter density analysis achieving 65% classification accuracy in
comprehensive multimodal comparisons (46). The present study
builds upon these findings by demonstrating that augmenting
structural neuroimaging with targeted neuropsychological
assessments yields enhanced discriminative capacity (79.88%
accuracy), consistent with theoretical frameworks positing
synergistic information capture across neurobiological and
behavioral domains. The 17.35 percentage point improvement
from clinical baseline reflects fundamental complementarity rather
than simple feature concatenation: structural neuroimaging captures
cumulative morphological alterations reflecting chronic alcohol
exposure, providing stable biomarkers of neurotoxic burden, while
neuropsychological performance offers dynamic functional readouts
of neural system integrity sensitive to subclinical impairments. This
performance differential underscores the critical importance of
incorporating standardized neuropsychological assessments to
compensate for the absence of functional connectivity information.
Recent investigations have emphasized that machine learning
algorithms provide valuable tools for quantifying large-scale
network differences in AUD (44); however, our results suggest that
morphological features combined with targeted clinical assessments
achieve comparable discriminative capacity.
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The firefighter population presents unique challenges for AUD
prediction modeling. While general population studies have examined
heterogeneous samples characterized by varied substance use histories
and psychiatric comorbidities (43), our cohort’s occupational
homogeneity and elevated baseline risk necessitated tailored
analytical approaches. With n=689, our investigation represents the
second-largest cohort among reviewed studies [following a recent
MDD study (41): n=2319], providing robust statistical power while
maintaining occupational homogeneity. While T1-weighted structural
sequences and fMRI share similar acquisition times (5-10 minutes
each), the critical distinction lies in post-processing complexity.
Functional MRI necessitates sophisticated preprocessing pipelines
encompassing motion correction, temporal filtering, spatial
smoothing, and connectivity analysis, extending analysis time from
hours to days. Additionally, fMRI’s heightened motion sensitivity
increases data attrition rates, compromising practicality for large-scale
screening initiatives. Previous occupational cohort investigations
remain limited, constraining direct performance comparisons.
Nevertheless, the effective classification achieved without functional
MRI suggests that structural alterations and behavioral manifestations
may exhibit enhanced discriminability in high-risk occupational
groups, potentially attributable to chronic stress exposure and
cultural factors influencing alcohol consumption patterns. The
elimination of fMRI-specific infrastructure requirements (stimulus
presentation systems, synchronization hardware, specialized
preprocessing software) substantially reduces implementation
barriers in clinical settings, supporting the translational feasibility of
our approach for occupational health surveillance.

4.2 Mechanistic considerations

The efficacy of our multimodal approach necessitates examination
through complementary interpretability methodologies to elucidate
differential contributions of neuroimaging and clinical features. Recent
advances in multimodal explainable AT have demonstrated the critical
importance of understanding feature interactions across modalities. A
recent study achieved 94.81% accuracy using an Ensemble
Optimization-enabled Explainable CNN (EO-ECNN) with
multimodal data integration, highlighting the significance of
interpretability in clinical applications (50). Recent comparative
studies have systematically evaluated various explainability
approaches for multimodal medical imaging. A large-scale
experiment across four medical imaging datasets found that while
attention maps from Vision Transformers generally surpass Grad-
CAM in explainability, transformer-specific interpretability methods
demonstrate superior performance (51). This finding underscores the
importance of selecting architecture-appropriate interpretability
techniques rather than applying traditional CNN-based methods to
transformer architecture. Gradient-weighted Class Activation
Mapping (Grad-CAM) analysis applied to unimodal neuroimaging
models revealed critical insights regarding the limitations of structural
MRI-only approaches. As illustrated in Supplementary Figure SI,
Grad-CAM visualizations from both ResNet-50 (Panel A) and
EfficientNet-BO (Panel B) architectures demonstrated stochastic
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activation patterns across randomly selected axial brain slices. The
activation maps exhibited no systematic concentration within
anatomically relevant regions associated with alcohol-related
neurodegeneration, instead displaying diffuse, heterogeneous
patterns with focal hotspots appearing randomly across cortical and
subcortical territories. The stochastic activation patterns observed
through Grad-CAM analysis provide empirical evidence for the
fundamental limitations of structural MRI-only approaches in
detecting subtle, distributed alterations associated with AUD risk.
This finding aligns with previous neuroimaging studies showing that
morphological changes in early-stage AUD are often diffuse and
heterogeneous, requiring behavioral anchoring for meaningful
interpretation (46, 52).

This absence of neuroanatomically coherent feature extraction in
image-only models provides mechanistic validation for observed
performance limitations (ResNet-50: 57.73% AUROC; EfficientNet-
BO: 56.54% AUROC). A comprehensive survey of explainable
multimodal learning methods confirmed that such random
activation patterns indicate insufficient discriminative capacity
when structural alterations are subtle and distributed (53). Recent
advances in transformer architecture have introduced attention
visualization as a complementary interpretability approach. Studies
on multimodal foundation models for anomaly detection have
demonstrated that combining SHAP, Grad-CAM, and attention
visualization provides more comprehensive insights than any single
approach, particularly when dealing with heterogeneous medical data
sources (54). These findings suggest that different XAI techniques
capture complementary aspects of model behavior: spatial
localization through Grad-CAM, feature importance through
SHAP, and hierarchical relationships through attention
mechanisms. Grad-CAM heatmaps revealed that convolutional
neural networks, when constrained to structural MRI data alone,
failed to converge on consistent morphological markers despite well-
established volumetric alterations in alcohol-dependent populations.
Peak activation intensities varied markedly between slices without
correspondence to regions of established vulnerability including
prefrontal cortex, hippocampus, or cerebellar structures. This
stochastic behavior suggests that structural alterations alone, while
present, may be insufficiently discriminative for effective classification
without complementary functional or behavioral indicators.

Conversely, SHapley Additive exPlanations (SHAP) analysis of
clinical variables within the optimal multimodal framework
revealed hierarchical feature importance with clear mechanistic
interpretability (Supplementary Figure S2). Sex emerged as the
predominant contributor with SHAP values ranging from -0.05 to
+0.45, exhibiting pronounced rightward skew indicative of male sex
as a risk amplifier. This finding aligns with established sex
differences in alcohol metabolism, neurotoxic vulnerability, and
addiction trajectories. The prominence of biological sex as a
predictor (SHAP values: -0.05 to +0.45) aligns with established
epidemiological evidence showing higher AUD prevalence in male
firefighters and known sex differences in alcohol metabolism and
neurotoxic vulnerability (55). Non-dominant hand Grooved
Pegboard performance demonstrated bidirectional effects (SHAP
values: -0.30 to +0.25), suggesting that motor coordination
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impairments serve as sensitive indicators of subclinical
neurological compromise.

The substantial performance differential between the multimodal
framework (79.88% accuracy) and both clinical-only (62.53%) and
imaging-only (61.53%) approaches cannot be attributed to simple
additive effects of feature concatenation. Rather, this performance
enhancement reflects fundamental principles of multimodal machine
learning wherein complementary information sources capture distinct
aspects of underlying pathophysiology (56, 57). Recent theoretical
frameworks in multimodal neuroimaging emphasize that different
data modalities provide non-redundant views of complex biological
phenomena, with optimal integration strategies exploiting this
complementarity to achieve superior discriminative power (58, 59).

The integration of neuroimaging and clinical features within
our multimodal architecture leverages what has been termed
“cooperative fusion” in the multimodal learning literature,
wherein modalities interact synergistically to reveal patterns
invisible to either modality in isolation (60). This approach aligns
with recent comprehensive reviews demonstrating that transformer
and CNN architectures require tailored interpretability methods to
effectively capture their distinct feature extraction patterns (61, 62).
Structural MRI captures static morphological alterations reflecting
cumulative neurotoxic effects, while neuropsychological
assessments provide dynamic functional readouts of neural
system integrity. The Vision Transformer component, designed to
capture global spatial dependencies, may identify distributed
patterns of subtle atrophy that achieve diagnostic relevance only
when contextualized by concurrent functional deficits captured
through clinical assessments. This synergistic relationship aligns
with recent findings demonstrating that multimodal approaches
consistently outperform unimodal methods in neuropsychiatric
classification tasks by capitalizing on the complementary nature
of structural and functional information (63, 64).

Critically, observed performance gains cannot be explained by
overfitting to clinical features or trivial demographic correlations.
SHAP analysis reveals that while sex contributes significantly,
motor coordination measures and other neuropsychological
indicators provide substantial independent predictive value.
Moreover, the failure of clinical-only models to exceed 62.53%
accuracy demonstrates that behavioral assessments alone lack
sufficient discriminative capacity. Similarly, poor performance of
imaging-only models indicates that structural alterations, though
present, require behavioral anchoring for meaningful interpretation
in this at-risk but pre-clinical population.

Mechanistic insights derived from interpretability analyses have
profound implications for understanding AUD vulnerability in
occupational cohorts. The failure of image-only models to
identify consistent neuroanatomical markers suggests that
structural alterations in early-stage or at-risk individuals may be
subtle, distributed, and heterogeneous, requiring behavioral
anchors for meaningful interpretation. The prominence of sex
and motor coordination measures in feature importance rankings
indicates that integrative models capturing both biological
predisposition and functional manifestation provide superior
discriminative capacity. These findings support a multifactorial
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conceptualization of AUD risk wherein neurobiological
alterations interact with demographic vulnerabilities and manifest
through measurable performance deficits before clinical thresholds
are reached.

4.3 Methodological limitations

This investigation presents several methodological constraints
warranting comprehensive examination. First, the cross-sectional
design fundamentally precludes causal inference regarding
temporal evolution of structural brain alterations and their
relationship to AUD risk. Longitudinal investigations tracking
firefighters from recruitment through career progression would be
essential to establish whether observed neuroanatomical variations
represent predisposing vulnerabilities, consequences of
occupational stress exposure, early markers of problematic
alcohol use, or complex interactions among these factors. The
absence of temporal data particularly limits our ability to
determine whether structural alterations precede behavioral
manifestations or emerge concurrently with escalating
alcohol consumption.

Additionally, exclusive reliance on T1-weighted structural MRI,
while strategically chosen for clinical feasibility, imposes inherent
constraints on the comprehensiveness of neurobiological
characterization. Resting-state functional MRI investigations have
identified specific functional connectivity alterations in reward,
salience, and executive control networks that differentiate
individuals with AUD from controls (43, 44, 47). Our structural-
only approach cannot capture these dynamic network-level
disruptions, potentially missing critical neurophysiological
markers of addiction vulnerability. Future iterations incorporating
abbreviated resting-state protocols or task-based functional MRI
targeting reward processing could enhance predictive accuracy
while maintaining reasonable clinical practicality. Additionally,
advanced structural imaging techniques such as diffusion tensor
imaging could provide microstructural integrity measures
complementing volumetric assessments.

Furthermore, the computational decision to segment three-
dimensional brain volumes into two-dimensional axial slices,
while reducing computational complexity and memory
requirements, sacrifices spatial continuity information. Three-
dimensional convolutional architectures or graph neural networks
operating on whole-brain volumes could potentially capture long-
range anatomical relationships and improve feature extraction,
though at substantially increased computational cost. The trade-
off between model sophistication and practical deployability
remains a critical consideration for clinical translation.

Moreover, generalizability of our findings faces multiple
constraints. The sample comprised exclusively Korean firefighters,
introducing both cultural and occupational specificity that may limit
applicability to other populations. Cultural variations in alcohol
consumption patterns, stigma associated with help-seeking, and
occupational stress exposure could influence both structural brain
alterations and model performance. The marked sex imbalance (93%
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male) reflects firefighting workforce demographics but severely limits
conclusions about female firefighters, particularly given sex differences
in alcohol metabolism, vulnerability to neurotoxic effects, and
addiction trajectories. Validation in diverse cultural contexts,
occupational groups, and sex-balanced samples remains essential
before broader implementation.

Concomitantly, several technical limitations merit consideration.
The AUDIT threshold of 8 for defining at-risk status, while
internationally validated, may not optimally discriminate
problematic drinking patterns in high-functioning occupational
cohorts where normative drinking levels differ from general
populations. The relatively modest sample size (n=689), while
substantial for neuroimaging studies, may limit detection of subtle
subgroup differences or complex interaction effects. The absence of
genetic data precludes investigation of gene-environment interactions
known to influence AUD vulnerability. Missing longitudinal follow-
up data prevents validation of the model’s actual predictive utility for
incident AUD diagnosis or occupational impairment.

Beyond these methodological considerations, clinical
implementation faces practical challenges beyond model
performance. The requirement for high-resolution structural MRI
limits deployment to settings with advanced imaging facilities,
potentially excluding rural or resource-limited fire departments.
The need for standardized neuropsychological testing by trained
personnel adds operational complexity. Privacy concerns regarding
neuroimaging-based occupational screening require careful ethical
consideration and policy development. The potential for
algorithmic bias, particularly given the homogeneous training
sample, necessitates ongoing monitoring and recalibration in
diverse deployment contexts.

Finally, performance ceiling effects warrant critical
consideration. While the achieved 79.88% accuracy represents
competitive performance relative to existing multimodal
approaches, it nonetheless implies a 20.12% misclassification rate
with asymmetric consequences: false positives potentially triggering
unwarranted career interventions versus false negatives resulting in
missed opportunities for early therapeutic engagement.
Furthermore, the absence of longitudinal follow-up data
fundamentally constrains clinical interpretation; the model’s
capacity to predict incident AUD diagnoses, trajectory of
symptom progression, or subsequent occupational impairment
remains empirically undefined. This temporal limitation restricts
current applicability to cross-sectional risk stratification rather than
prospective prediction, highlighting the imperative for longitudinal
validation studies to establish true predictive validity and optimal

screening intervals.

4.4 Implications for occupational health
screening

The demonstrated feasibility of achieving robust AUD risk

classification using structural MRI represents a significant
advancement for occupational health surveillance in high-risk
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professions. Traditional screening paradigms relying on self-
report instruments face systematic limitations in emergency
response populations where cultural valorization of stoicism,
occupational stigma, and career preservation concerns suppress
accurate disclosure of alcohol-related problems (2, 12). The
integration of objective neurobiological markers derived from
structural neuroimaging circumvents these reporting biases while
maintaining classification performance comparable to more
complex multimodal approaches.

Implementation within existing occupational health frameworks
requires consideration of both technical infrastructure and
organizational factors. Fire departments conducting periodic
comprehensive medical evaluations could incorporate T1-weighted
structural MRI protocols, though the total examination time of 30-60
minutes represents a substantial logistical consideration. While the
T1-weighted sequence itself requires only 5-10 minutes of actual
acquisition time, the complete imaging protocol including patient
preparation, positioning, and safety procedures necessitates dedicated
scheduling within occupational health assessments. The demonstrated
predictive value of combining neuroimaging with standardized
neuropsychological assessments suggests that brief cognitive testing
batteries could enhance screening accuracy without requiring
specialized neuropsychological expertise. Automated analysis
pipelines utilizing the validated deep learning architecture could
provide rapid risk stratification post-acquisition, enabling
occupational health physicians to prioritize intervention resources
toward highest-risk individuals.

To address feasibility concerns, a tiered implementation
strategy could optimize resource utilization while maintaining
screening effectiveness. Initial deployment could target high-risk
subpopulations identified through traditional screening tools
(AUDIT scores = 15) or those with documented occupational
incidents, thereby concentrating MRI resources on individuals
with greatest clinical need. As infrastructure develops and costs
decrease, screening criteria could progressively expand to
encompass broader firefighter populations. This phased approach
aligns with successful precedents in occupational health screening,
where targeted protocols for high-risk workers preceded universal
implementation (65).

Critical ethical considerations must guide translation from research
findings to occupational screening practices. Clear delineation between
probabilistic risk assessment and clinical diagnosis remains essential to
prevent discriminatory practices while maximizing preventive
potential. Screening protocols should emphasize early intervention
and support rather than punitive measures, with explicit protections
ensuring that neuroimaging findings cannot adversely impact
employment status without corroborating clinical evidence.
Longitudinal monitoring frameworks tracking predictive validity of
initial risk assessments against subsequent clinical outcomes would
enable continuous algorithm refinement while building evidence for
screening effectiveness.

Economic implications of neuroimaging-based screening
warrant careful analysis within resource allocation frameworks.
Recent economic modeling of MRI-based screening programs
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provides relevant benchmarks. The UK Biobank’s population
neuroimaging initiative achieved per-scan costs of £264 ($330
USD) through high-volume standardization (66). Considering
firefighters’ elevated AUD risk (56.9% in our cohort vs. 6.2%
general population) (67) and associated costs of untreated AUD
(estimated $249 billion annually in the US) (68), targeted
neuroimaging screening may prove cost-effective despite initial
infrastructure investments. A threshold analysis suggests that
preventing one severe occupational incident per 150 screenings
would offset implementation costs. Furthermore, downstream
savings from prevented occupational injuries, reduced
absenteeism, decreased liability exposure, and maintained
operational readiness strengthen the economic justification.
Insurance frameworks may require modification to recognize
preventive neuroimaging in high-risk occupational cohorts as
medically necessary, particularly given these demonstrated cost-
benefit ratios. Future development priorities should address current
limitations while enhancing clinical utility. Multicenter validation
studies incorporating diverse geographical regions, departmental
cultures, and demographic compositions would establish
generalizability boundaries and identify population-specific
calibration requirements. Integration with emerging digital
biomarkers from wearable devices, sleep monitoring, and stress
physiology could create comprehensive risk profiles extending
beyond cross-sectional neuroimaging snapshots. Development of
abbreviated screening protocols optimized for rapid deployment
during routine medical evaluations could enhance feasibility while
maintaining predictive accuracy.

The broader implications extend beyond firefighting to
encompass other high-stress occupations with elevated substance
use risk, including law enforcement, emergency medical services,
and military personnel. Establishing standardized neuroimaging
protocols and classification algorithms across these populations
would enable comparative effectiveness research while building
robust normative databases. International collaboration through
occupational health networks could accelerate validation efforts
while ensuring equitable access to advanced screening
technologies across resource-varied settings.
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