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Objective: An objective and standardized assessment for assessing autism is
needed. This study aimed to develop and validate robotic detection technology
for assessing autism. The robot HUMANE, installed with computer vision and
linked with face and motion recognition technology, autonomously detected
atypical eye gaze and repetitive motor movements, two of the features of autism,
while narrating stories. It autonomously prompted the child if they did not
establish eye gaze with the robot or produced motor movements for five
seconds continuously.

Method: The study involved 119 children aged between three and six years old
(M=4.53, SD=1.89; 38 females) and included children confirmed or not
confirmed with autism. They all received the Autism Diagnostic Observation
Schedule—second edition (ADOS-2), the standard diagnostic tool for autism.
HUMANE's detection performance — the number of robot prompts and the
cumulative duration of inattentiveness/improper posture — was then evaluated
against the calibrated severity score of ADOS-2.

Results: Our results showed that the average sensitivity and specificity of the
detection reached 0.80, the Diagnostic Odds Ratio was beyond 30, and the AUC
was .85.

Discussion: These results indicate that the robotic detection technology of
atypical eye gaze and repetitive motor movements can contribute to the
diagnostic process to identify the presence or absence of autism.
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1 Introduction

Autism Spectrum Disorder (hereafter, autism) is a complex
neurological disorder. In the U.S. approximately one in 31 children
aged eight years has been diagnosed as being on the autism
spectrum (1). Early diagnosis is paramount for early intervention
and is also critical for successful inclusion of autistic individuals into
society. Clinicians diagnose autism based on criteria from the
Diagnostic and Statistical Manual of Mental Disorders - fifth
edition (DSM-5; 2), children’s behavior and social skills elicited in
the Autism Diagnostic Observation Schedule - second edition
(ADOS-2; 3), and/or interviews with the parents in the Autism
Diagnostic Interview - revised (ADI-R; 4). While significant
training is required for clinicians to become proficient in
diagnosing autism, it is inevitable that their decisions will be
based on subjective judgement. Different diagnoses can be made
by different clinicians (5). Given the heterogeneity of autism, only
60% to 70% of autism diagnoses made by licensed and experienced
clinicians are made with certainty (6, 7). Furthermore, there is
limited availability of experienced clinicians (8), often resulting in
long waiting times.

Given the challenges of human-based diagnosis, there is a
pioneering development of data-driven information and
communication technology (ICT) solutions including software
applications, wearable devices, robotics, augmented/virtual reality
help to screen or assess autism earlier than the current average age
of diagnosis (9, 10). Such techniques can improve objectivity and
quantify the diagnostic process, assessment, and evaluation of
learning outcomes. Moreover, they can automatically and
accurately detect impaired social interactions and repetitive and
stereotyped behavior that are the key features of autism. The present
study focused on the development of robotic technology in
assessing autism. Specifically, it aimed to validate a robotic
screening tool that detects the hallmark autism symptoms of
atypical eye movement patterns in autistic children (11) and
repetitive motor manners.

According to the empathizing-systemizing theory (12), robots
are operated on predictable and lawful systems, creating a favorable
learning environment for autistic children who may struggle to
learn in an unpredictable and distracting environment. Social
robots have been widely used in therapy for autistic people in
recent decades (see reviews in 13-15). As early as 2005, Scassellati
had proposed the idea of using social robots to address critical issues
in autism diagnosis. However, in comparison to empirical research
investigating the effectiveness of robot-based intervention, there has
been little examination as to whether social robots can be used for
screening and assessing or diagnosing autism (see reviews in 16).

A few studies have explored the supporting role of robots in
screening autism (11, 17-22), largely focusing on the detection of one
autism feature. Most of these studies adopted either the Wizard-of-Oz
(WoZ) paradigm or the semi-autonomous strategy. Under the WoZ
paradigm, the human experimenter commands the robot for actions to
be completed. In Arent et al et al, (17), a NAO robot was remotely
controlled by an experimenter using the standard NAO GUI when
engaging with children in interactive dyadic games (“Dance with me”
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and “Touch with me”). Children’s turn-taking behaviors were then
rated by human researchers. Their findings showed that autistic
children presented a deficient level of turn-taking behavior,
compared with the typically developing children. However, this result
was based on human ratings that might lack objectivity.

Also adopting the WoZ paradigm, a pilot study by Del Coco et al.
(18) had the therapist command the robot, Zeno, through a tablet when
engaging the child. This differed from Arent et al’s study in that the
robot was installed with the tablet camera that processed the videos of
the child and generated multiple behavioral cues. Those behavioral data
were then objectively analyzed by algorithms for automatic detection
and computation of eye gaze, head pose, and facial expression. This
system could detect autism features in the most severely autistic child.

In a different approach from the aforementioned studies,
Ramirez-Duque and his team adopted a semi-autonomous
paradigm and designed a robot-assisted framework, where the
robot, ONO, interacted with the child and modified their
behavior (e.g., direction of eye gaze, facial expression, and
response to rewards) based on an algorithm (22). ONO was
equipped with a sensor that detected the child’s nonverbal
behaviors, including looking toward an object, toward the robot,
and toward the therapist, and pointing to or responding to a prompt
from the therapist. These behaviors were analyzed by a pipeline
algorithm implemented in the machine-learning neural models.
The findings showed that children at risk of an autism diagnosis
tended to be more interested in interacting with and looking at the
robot than those without risk. However, only six children, three
typically developing and three autistics, were involved. Given the
small sample size, it is difficult to draw implications from this that
the robot detection system can screen for autism.

In a recent exploratory cross-sectional case control study, So and
colleagues programmed the robot HUMANE, installed with computer
vision and linked with recognition technology, to screen autism based
on its detection of children’s direction of eye gaze toward the robot
(11). In their study, the Autism Care Windows application regulated
HUMANE’s activities, and upon the initiation of gaze detection, the
program extracted images from HUMANE at a rate of 8 frames per
second and consistently transmitted them to NeoFace®, which
operated in the cloud using a 5G mobile network. The technology
analyzed the incoming frames, stored the gaze findings in a database
for report generation, and transmitted metadata to HUMANE for
vocalization. Upon acquiring the metadata, HUMANE deciphered
each communication and evaluated subsequent actions. Should the
child sustain their eyes on HUMANE, the robot continued in narrating
the story. Nevertheless, the robot’s narration would cease and
HUMANE would prompt the child to refocus on it if the child
surpassed the 5-second threshold of not concentrating on it. Upon
the child’s gaze returning to HUMANE, the off-focus timer was reset,
and HUMANE commended the child before continuing the narration.
Children aged between three to eight (N = 199) participated in the
study. After receiving instruction from the human experimenter,
HUMANE narrated a story to a child and autonomously prompted
them to return their eye gaze to the robot if they looked away from the
robot and praised them when eye gaze was quickly re-established after
a prompt. Its detection of eye gaze toward the robot reached a reliability
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of 0.90. Additionally, using the pre-specified reference standard,
Autism Spectrum Quotient-10 items (Hong Kong Chinese Child
Version)-(AQ-10-Child-HK); 23), the sensitivity and specificity of
using the number of prompts made by the robot and the duration of
inattentiveness detected by the robot to discriminate autism from non-
autism reached 0.88 and 0.96 respectively, and the Diagnostic Odds
Ratios were 191.18 and 434.48 respectively. These results indicate that
social robots can screen autism based on the robot’s detection of
atypical eye patterns.

However, So et al (11) study used the pre-specified cut-off of a
parental self-report, AQ-10-Child-HK, that is considered as a screening
tool, but does not reach the diagnostic standard. To validate the robotic
screening tool, it is necessary to use the standard autism assessment
method adopted by clinicians, the Autism Diagnostic Observation
Schedule - second edition (ADOS-2; 3). Another limitation is that the
robotic screening tool invented in So et al.’s study focuses solely on
atypical eye gaze, which is only one of the impairments presenting in
autistic children in social communication and interaction. This limits
its clinical applicability as it is difficult or impossible to determine if a
child is on the autism spectrum based on one feature only (18).

Our study aimed to address these limitations by first adopting the
calibrated severity scores of ADOS-2 (3), considered to be the “gold
standard” in the assessment of autism, as the reference standard.
Second, we programed the same autonomous social robot to detect
more than one autism feature when engaging with children. In addition
to recognizing lack of eye gaze in social interaction and
communication, the system also detected specific kinds of restrictive
and repetitive behavior, another diagnostic criterion listed in the
Diagnostic and Statistical Manual of Mental Disorders (DSM-5; 2).
Since restrictive and repetitive behavior includes a broad category of
behaviors such as preoccupation with restricted patterns of interest,
adherence to specific, nonfunctional routines, repetitive motor
manners, and preoccupation with parts of objects, it is difficult for
the system to detect all these behaviors. Among different kinds of
restrictive and repetitive behaviors, this study focused on repetitive
motor manners, specifically hand mannerisms (e.g., hand flapping/
waving) and complex mannerisms (e.g., body rocking, pacing back and
forth, spinning circles) that could be manifested in improper sitting
postures. It is common that autistic children struggle to sit still, possibly
due to sensory-motor issues. Their problems in processing sensory
information are in turn translated into repetitive motor movements.

Repetitive movements are not unique to autistic children but
are also present in non-autistic children, such as those with
intellectual disabilities and language disorders (e.g., 24). However,
young children who are later diagnosed with autism are perceived
by their caregivers as having more prevalent and severe repetitive
movements than those who are not diagnosed with autism (25, 26).
The scores of repetitive and ritualistic behaviors in ADOS-2
also significantly enhanced the predictive power in classifying
young children with autism, developmental delays, and typical
development years later (27).

To sum up, this study will advance the development of robotic
screening tools by detecting two features: atypical eye gaze and
repetitive motor movements. Our robotic detection system processes
these two features independently based on their corresponding rules of
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recognition and scoring algorithms. Individual indexes for each feature
and composite indexes across both features were generated to facilitate
a comprehensive and objective screening process. For the detection of
atypical eye gaze, we followed the individual indexes generated in So
et al (11) study: the number of times the robot prompted the child
when not establishing eye contact with the robot for a certain period
and the cumulative duration of inattentiveness (in seconds). For the
detection of repetitive motor manners we generated similar individual
indexes, of how often the robot prompted the child when not sitting
properly for a certain period and the cumulative duration of improper
sitting posture (in seconds). The composite indexes were the total
number of prompts made by the robot when detecting atypical eye gaze
and improper sitting posture as well as the total duration of
inattentiveness and improper sitting posture. The indexes, at
individual and composite levels, were then evaluated using ADOS-2
as the reference standard. We hypothesized that the composite indexes
would identify the presence or absence of autism, with the sensitivity
and specificity reaching at least 0.8 and the Area under the Curve
reaching at least 0.7. We also hypothesized that the composite indexes
would have a greater discriminative power than the individual indexes.

2 Methods
2.1 Participants

A total of 119 children participated, aged between three and six
years (M = 4.53, SD = 1.89; 38 females). We recruited the sample
from this age range because most children suspected of being
autistic are referred to pediatricians or psychologists at
assessment centers at around age four in Hong Kong. The study
aimed to validate a screening tool for autism using a social robot to
identify autistic children at a younger age than is currently the case,
hence we recruited children aged three to six. Table 1 shows the
demographics of the participating children, 36.13% of whom had
been diagnosed with autism, 29.41% of whom were suspected to
have autism, and the remainder of whom (34.46%) were not
thought by their parents to have autism. Participants were
recruited from autism treatment centers, kindergartens, and
primary schools in Hong Kong. Children with known vision or
hearing deficits and those who did not know Cantonese (Chinese),
were excluded. All parents or legal guardians of the participants
gave written informed consent, and the study protocol was
approved by the Survey and Behavioral Research Ethics (SBRE)
Institutional Review Board at the first author’s institution.

2.2 Reference standard

2.2.1 Autism diagnostic observation schedule—
second edition

The ADOS-2 assesses and diagnoses autism across a spectrum
of age, developmental level, and language skills (3). In this study,
Module 2 was administered by a trained professional with seven
years’ experience of conducting ADOS-2 in schools and private
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TABLE 1 Demographic statistics of the participants in this study.

Variables

10.3389/fpsyt.2025.1636560

Confirmed diagnosis of autism
N 43

Mean age in months

(SD) 55.28 (12.87)
Range in months 40-68

N of males 36
ADOS-2 CSS

Mean 7.66

SD 1.40
Range 6-10

Suspected to have autism

No concerns of having autism Total

35 41 119

51.36 (16.54) 53.29 (14.21) -

36-70 38-69 -
32 22 90
4.56 1.5
91 91
1-6 0-3 -

practice, and with formal ADOS-2 training for clinical purposes.
She conducted ADOS-2 under the supervision of another trained
professional who had completed ADOS-2 advanced research
training. The overall calibrated severity score (ADOS-CSS) of
each child was reported based on the revised algorithms created
by Hus et al. (28) for analyses. In comparison to the raw scores, the
calibrated severity scores were less influenced by child
characteristics (29), hence increasing their utility as indicators of
social communication and repetitive behavior severity (28).

2.3 Stimuli and procedures

Same as So et al (11), HUMANE was programmed to detect the
eye gaze toward the robot and repetitive motor manners.
HUMANE, standing at a height of 25 cm and weighing 3.2 kg,
possesses human-like attributes, including a baby-face appearance
and voice vocalizations (see Figure 1). It has previously been
employed in both autism and eldercare contexts (30, 31). Using
the text-to-speech program, Murf Al all six written story scripts
were subsequently vocalized in Cantonese. Their sound clips were
then uploaded to HUMANE.

HUMANE was installed with facial and movement recognition
technologies developed by the IT corporation NEC (an
international technology company) in the early 1990s. Its face
recognition engine, empowered by NeoFace® face recognition
technology, can autonomously detect the focus of a child’s gaze
through the camera installed on the robot. Detection is based on a
unique algorithm that combines feature extraction, pattern
recognition, and matching techniques to accurately identify and
verify individuals. The NeoFace®
of applications, including law enforcement, immigration control,

technology is used in a wide range

access control, and retail activities in both indoor and outdoor
settings. In 2021 NEC ranked first in the world in the most recent
face recognition technology benchmarking test (FRVT Ongoing, *1)
conducted by the U.S. National Institute of Standards and
Technology (NIST). The system was evaluated with an accuracy
rate of 99.78% for still images among 12 million people (*2). In
NIST benchmark testing, NEC also ranked first following the face
recognition benchmark in 2018 (FRVT2018, *3). Recently, NEC has
also developed a posture engine that can autonomously detect the
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position of the child’s body based on another unique algorithm that
extracts body landmarks.

HUMANE was programmed to narrate six stories, which were
similar to those narrated in So et al (11) study, with each story
composed of 15 to 20 sentences, and each clip lasting for six to seven
seconds. The contents were similar across the six stories, which
featured the daily life of Alan, a three-year-old boy. In one of the
stories, Alan dined with his parents in a restaurant and learnt how
to order food. HUMANE narrated three stories during the session
of eye gaze detection and another three stories, with similar length
and contents, during the session of repetitive motor manners

FIGURE 1

The social robot, HUMANE. A camera was installed on HUMANE to
take frames of the child’s image and motor movements when it was
talking to the child.
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detection. The order of eye gaze and repetitive movement detection
programs was counterbalanced across participants.

The detection sessions were conducted in a treatment room in
the affiliated university of the first author. The room was designed
for the purposes of intervention and assessment of children. Prior to
the start of each session in this study, the human experimenter
would seat the child in a chair in front of HUMANE. The child was
sitting 1.2 meters in front of HUMANE in the eye gaze detection
program and 2 meters in front of HUMANE in the repetitive
movement detection program. Before session began, the child was
instructed to sit properly in front of HUMANE, with eyes looking at
the robot and both hands resting at both sides of the body and both
feet resting them on the floor. The experimenter was present
together with the robot and the child, but she was standing at a
distance from the child in order not to be captured by the robot.

Then the experimenter initiated the program, named the
Autism Care Windows program, on a computer tablet. The
program would then prompt HUMANE to begin the session,
either the detection of atypical eye gaze or that of repetitive
motor manners. After choosing the detection program,
HUMANE operated autonomously without the involvement of
the human experimenter. To begin the session, HUMANE
commenced with a salutation and self-introduction, “Hi, (child’s
name), I am Skype.” Then HUMANE would inquire whether the
child would like to listen to a story narration by asking “Would you
like to listen to a story?” Following confirmation, HUMANE would
proceed to narrate the story while simultaneously monitoring the
child’s gaze or repetitive motor manners.

During the eye gaze detection session, the camera captured
images of each child participant during the robot’s narration and
the program retrieved images from HUMANE at eight frames per
second and continually relayed them back to NeoFace®, which was
running in the cloud via a 5G mobile network. The technology
processed the incoming frames, recorded the gaze results in a
database for report generation, and sent metadata to HUMANE for
vocalizing. Upon receiving the metadata, HUMANE decoded each
message and analyzed what to do next. If the child discontinued eye
contact with HUMANE for a predetermined interval of five seconds,
HUMANE would stop the story narration and prompt the child with
statements such as “Child, eyes on me, please!” or “Child, please look
at me!” If the child re-established eye contact within one second of the
prompt, HUMANE would provide positive feedback, with praises
such as “Good looking! Well done!” or “You have done a good job!
Thanks for looking at me!”. The off-focus timer was cleared, and
HUMANE resumed narration. However, if the child failed to re-
establish eye contact after the initial prompt, HUMANE would issue
another prompt a second later. If this persisted for five minutes (for
instance, if the child walked away or continued to gaze at something
other than HUMANE), HUMANE would terminate the training
session and bid the child farewell. On average, each session lasted for
10 minutes.

During the session of repetitive motor manners detection, the
robot, equipped with a high-resolution camera and vision system,
captured the child’s body position and assessed children’s body
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movements in real time. The detection program retrieved images
from HUMANE at eight frames per second and continually relayed
them back to the posture engine, which was running in the cloud via
a 5G mobile network. The engine was trained to analyze hand
mannerisms (e.g., hand flapping/waving) and complex mannerisms
(e.g., body rocking, pacing back and forth, spinning circles). Then
the engine sent metadata to HUMANE for vocalizing. HUMANE
would prompt the child, “Child, please sit properly!”, when it
detected improper postures, such as body rocking and spinning,
for a predetermined interval of five seconds. If the child responded
appropriately within a second, the robot provided positive feedback,
“You have sat properly, well done!” and continued the narration.
However, if the child did not correct their posture, the robot
continued to prompt them.

Figure 2 depicts the procedures by which HUMANE
autonomously detected the child’s eye gaze and repetitive motor
movements, prompted the child, and reinforced the child in this
study. All images were stored on the cloud server. Upon completion
of each session, the Autism Care Program produced a record of the
number of prompts and positive feedback that HUMANE had
delivered to the child and the cumulative duration of their
inattention (in seconds) during the session. Community members
were not involved in the study.

2.4 Reliability

Previous research has shown the reliability of eye gaze detection
across all pairs of human raters and HUMANE reached 0.90,
indicating excellent interrater agreement (11). This study
evaluated the reliability of the detection of repetitive motor
movements by following the same procedures as So et al. (11).
We recruited a group of four human raters, who were unaware of
the research hypotheses. These raters were then trained by the first
author to code the body posture of the child participants for each
stored frame, with a total of 52,540 frames. The coding scheme was
binary, with raters indicating whether the posture of the child was
deviating from the starting position. Each time we picked a pair of
coding completed by any of the two raters (e.g., Rater 1’s coding vs.
Rater 2’s coding) on all stored frames and computed inter-rate
reliability, named Cohen’s kappa coefficient (i 32). As there were
four raters, there were six pairs of coding on all stored frames. The
average Cohen’s K across all pairs was.82 (SD = .06, ranging from.78
t0.85). An average kappa score greater than 0.8 is usually considered
to be sufficient to establish reliability for each pair of coding. We
then measured the inter-rater reliability between the technology and
each of the human raters, with the technology treated as an
additional rater. We used the technology’s output as a threshold
and then computed the inter-rater reliability between the
technology and each of the human raters using Cohen’s k. The
average Cohen’s Kk of all pairs between the technology and human
raters was.85 (SD = .07; ranging from.82 t0.88), usually considered
to be almost perfect agreement. There was no significant difference
between both sets of comparisons, with ¢ (58) = 1.32, and p <.19.
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The mechanism shows how HUMANE autonomously detected the child’s eye gaze and motor movements and how it prompted and reinforced the

child.

2.5 Indexes and their discriminative power

The study aimed to validate the two individual indexes in each
of the detection programs and composite indexes in both programs.
For atypical eye gaze detection, the two individual indexes were the
number of prompts made by the robot and cumulative duration of
inattentiveness (in seconds). For repetitive motor movement
detection, the two individual indexes were the number of
prompts made by the robot and the cumulative duration of
improper posture (in seconds). The two composite indexes were
the robot prompts (i.e., the total number of prompts made by the
robot in both detection programs) and duration (i.e., the total
cumulative durations of inattentiveness and improper sitting
posture). Analyses were conducted for both individual and
composite indexes.

Separate Mann-Whitney U tests were conducted to examine
whether children with ADOS-CSS scores below the cut-off point
had a greater number of robot prompts and a longer cumulative
duration at individual and composite levels than did the children
with ADOS-CSS scores above the cut-off point. The cut-oft point
was pre-specified at four (29). In other words, those with ADOS-
CSS scores of three or below are not likely to be on the
autistic spectrum.

Additionally, we conducted separate diagnostic accuracy
analyses, sensitivity and specificity tests for each of the individual
and composite indexes. Their cut-offs, which intersected with the
pre-specified cut-oft of AQ-10-Child-HK (i.e., a score of 5), were
derived from So et al (11) study. At the individual level, the cut-oft
for the number of prompts made by the robot in the atypical eye
gaze detection was three and that for the cumulative duration of
inattentiveness was 25 seconds. The cut-offs for the individual
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indexes in the detection of repetitive motor movements were the
same. At the composite level, the cut-off for the number of robot
prompts was six (the sum of the cut-offs for the number of prompts
made by the robot in both detection programs) and the cut-off for
the cumulative duration was 50 seconds (the sum of the cut-offs for
the duration of inattentiveness and that of improper
sitting posture).

For each index at the individual and composite level, sensitivity
(its ability to detect autism when it is truly present) was calculated
by the number of true positives divided by the total number of true
positives and false positives. Similarly, for each index, specificity (its
probability to exclude the disorder status in individuals who do not
have autism) was calculated by the number of true negatives divided
by the total number of true negatives and false positives. A goal of
80% sensitivity and specificity across autistic and non-autistic
groups was set for each index, respectively. The Diagnostic Odds
Ratios (DORs) for each of the indexes were also calculated (true
positives x true negatives)/(false positives x false negatives). In
respective indexes, we conducted the receiver operating
characteristic (ROC) analysis to compute the Area under the
Curve (AUC) to examine their validity or the discriminative
power. A goal of AUC 0.7 to 0.8, considered acceptable, was set
for each index at the individual and composite levels.

3 Results

All children completed listening to the narrations by the robot
and they did not show any problems interacting with the robot.
Table 2 shows the descriptive statistics for the severity of the
children’s autism and the responses of the robot to the children’s
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TABLE 2 Means and SDs of autism assessment and various kinds of
robot’s responses.

Variables Mean SD Min Max
ADOS- CSS ‘ 4.53 291 0 10
Detection of atypical eye gaze
Number of prompts by HUMANE 332 | 412 0 21
Cumulative duration of inattention (in
seconds) 38.52  48.61 0 286.60
Detection of repetitive motor movements
Number of prompts by HUMANE 452 491 0 18
Cumulative duration of improper sitting
posture (in seconds) 43.19 | 48.17 0 261.60
Composite number of prompts 7.82 7.57 0 34
Composite duration 81.58 | 80.07 0 | 384.90

eye gaze. Using a score of four as the cut-off point in the ADOS-CSS
scores (29), 61.30% of the participating children scored on or above
the cut-off point. Separate Mann-Whitney U tests were conducted
to examine whether the participating children who scored on or
above the ADOS-CSS cut-off point had more robot prompts and
longer inattentive/improper posture duration than those below the
cut-off point at both individual and composite levels. Figure 3
presents the distribution for each of the indexes in the autistic and
non-autistic groups. At the individual level, our results show that
the number of prompts made by the robot in the atypical eye gaze
detection program was significantly greater in the autistic group
(mean rank = 74.63) than in the non-autistic group (mean rank =
36.78), U = 2747, z = 591, p <.001, r = .54. The duration of
inattentiveness (in seconds) was significantly longer in the autistic
group (mean rank = 72.99) than in the non-autistic group (mean
rank = 39.38), U = 2627.50, z = 5.19, p <.001, r = .48. Regarding the
detection of repetitive motor movements, the number of prompts
made by the robot was significantly greater in the autistic group
(mean rank = 73.18) than in the non-autistic group (mean rank =
39.08), U = 2641.50, z = 5.32, p <.001, r = .49. The duration of
improper posture (in seconds) was significantly longer in the
autistic group (mean rank = 71.61) than in the non-autistic group
(mean rank = 41.58), U = 2526.50, z = 4.65, p <.001, r = .42. The
effect sizes of the indexes at the individual level were medium.
Similar patterns were found at the composite level. The total
number of prompts made by the robot in both detection
programs was significantly greater in the autistic group (mean
rank = 76.75) than in the non-autistic group, (mean rank =
33.42), U = 2901.50, z = 6.69, p <.001, r = .61. The inattentive
and improper posture duration detected by the robot was
significantly longer in the autistic group (mean rank = 75.49)
than in the non-autistic group, (mean rank = 35.42), U =
2809.50, z = 6.17, p <.001, r = .57. Both effect sizes were large.
We then calculated the sensitivity and specificity and Diagnostic
Odds Ratios (DORs) of the indexes at the individual and composite
levels (see Table 3). At the individual level, the number of prompts
made by the robot in the atypical eye gaze and repetitive motor
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movements detection was test positive at three or above, and the
cumulative inattentive/improper sitting posture was test positive at
25 seconds or above (11). The sensitivity of all four indexes at the
individual level was low (.58,.62,.68, and.66), suggesting that the
false negatives were high. Different results were found in specificity
among all four indexes. The specificity of the indexes generated in
the atypical eye gaze detection was high (.85 and.80) whereas that of
the indexes in the detection of repetitive movements was low (.72
and.65). This suggests that false positives were higher in the
detection of repetitive movements than in the atypical eye gaze
detection. All DORs were greater than one, meaning that the
autistic group had more robot prompts and a longer duration of
inattentiveness/improper posture than the non-autistic group.
DORs of the indexes generated in the atypical eye gaze detection
program were higher than those of the indexes in the repetitive
motor movements detection program.

Sensitivity and specificity and DORs of indexes at the composite
level performed better than those at the individual level. At the
composite level, the number of robot prompts was test positive at
six or above, and the cumulative inattentiveness and improper
sitting posture was test positive at 50 seconds or above. The
sensitivity of the number of robot prompts and duration was
close t0.80 while the specificity of these two indexes was.89, both
of which were greater than those at the individual level. The DORs
of the indexes were at least 29, also higher than those at the
individual level.

Similar results were found in the ROC curve analyses (see
Figure 4). The total number of robot prompts and the total
inattentiveness and improper posture duration were competent in
differentiating between the autistic and non-autistic groups with
large AUCs of 0.86 (SE =.03; p <.001; 95% CI:.80-.93) and.84 (SE =
.04, p <.001; 95% CI..76-.91). The AUCs of individual indexes were
lower, yet still higher than 0.7. Number of robot prompts in the
atypical eye gaze detection: AUC = .82; SE = .04; p <.001; 95%
CI..74-.89; inattentive duration in the atypical eye gaze detection:
AUC = .78; SE = .04; p <.001; 95% CI..70-.86; number of robot
prompts in the repetitive motor movements detection: AUC = .79;
SE = .04; p <.001; 95% CI..70-.87; improper posture duration in the
repetitive motor movements detection: AUC = .75; SE = .04; p
<.001; 95% CI:.67-.84.

To summarize, the indexes at the composite level generated by
our robotic detection technology - the total number of robot
prompts and cumulative inattentiveness and improper posture
duration (in seconds) - could identify the presence or absence of
autism. These indexes had a greater discriminative power than
those at the individual level.

4 Discussion

This study aimed to develop and validate robotic technology for
assessing autism. It was built upon previous research that developed
a screening tool for autism using a social robot (11). Using standard
diagnostic tool, ADOS-2, as a reference standard and the index tests
previously established, our findings show that the total number of
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Mann-Whitney U test generated graphs used to visually inspect distributions of different indexes at the individual [(A) detection of atypical eye gaze;
(B) detection of improper posture] and composite levels (C). Frequency refers to the number of children obtaining a score in the corresponding
number of prompts or duration of inattentiveness / improper posture in the individual and composite levels.

robot prompts and cumulative duration of inattentiveness/
improper posture generated in the detection of atypical eye gaze
and improper posture systems could identify the presence or
absence of autism in 119 children aged three to six, with

Frontiers in Psychiatry

sensitivity and specificity of at least.80 and AUCs of at least.84.

AUC above 0.8 is considered good for discrimination (33).
In So et al (11) study the robot HUMANE, installed with
computer vision and linked with recognition technology,
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TABLE 3 The decision matrix tables for the number of prompts made by the robot and the cumulative inattentive duration (in seconds) in the atypical
eye gaze detection program (a); the number of prompts made by the robot and the cumulative duration of improper posture (in seconds) in the
repetitive motor movements detection program (b); and the total number of prompts made by the robot and the cumulative inattentive/improper

posture in both detection programs (c).

Number of prompts made by the robot

Test outcome positive

Test outcome negative

Condition positive

‘ True positive (43)

False negative (30)

73

ADOS-CSS
Condition negative

Sensitivity = .58 Specificity = .85

False positive (7)

DOR =7.99

True negative (39)

Inattentive duration (in seconds)

46

Test outcome positive

Test outcome negative

Condition positive True positive (45) False negative (28) 73
ADOS-CSS
Condition negative False positive (9) True negative (37) 46
Sensitivity = .62 Specificity = .80 DOR = 6.61

Number of prompts made by the robot

Test outcome positive

Test outcome negative

Condition positive True positive (50) False negative (23) 73
ADOS-CSS
Condition negative False positive (13) True negative (33) 46
Sensitivity = .68 Specificity = .72 DOR = 5.52

Condition positive
ADOS-CSS
Condition negative

Specificity = .65

Sensitivity = .66

Condition positive

Test outcome positive

True positive (48)
False positive (16)

DOR = 3.6

Improper posture duration (in seconds)

Test outcome negative
False negative (25)

True negative (30)

Total number of prompts made by the robot

Test outcome positive

True positive (59)

Test outcome negative

False negative (14)

73

ADOS-CSS
Condition negative

Sensitivity = .81 Specificity = .89

False positive (5)

DOR = 34.56

Test outcome positive

True negative (41)

Total Inattentive/improper posture duration (in seconds)

Test outcome negative

46

Condition positive True positive (57) False negative (16) 73
ADOS-CSS
Condition negative False positive (5) True negative (41) 46
Sensitivity = .78 Specificity = .89 DOR =29.21

autonomously detected atypical eye gaze in children aged three to
eight, which is one of the social communication and interaction
impairments among autistic children. When the child looked away
from HUMANE for a period, HUMANE prompted the child and
praised them if they re-established eye gaze quickly after a prompt.
The indexes of the number of robot prompts and duration of
inattentiveness (in seconds) were tested against the reference
standard, which was the score of a parental self-report, the Autism
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Spectrum Quotient. The sensitivity and specificity were high, showing
that HUMANE may be able to screen for autism in the future.

This study has advanced the robotic screening tool developed in
So et al’s study in various ways. First, HUMANE was programmed to
autonomously detect an additional autism feature of repetitive motor
movements, a type of restrictive and repetitive behavior. In addition
to the detection of atypical eye gaze, this study has autonomously
captured autism features in the categories of social communication
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ROC curves of the number of prompts made by the robot in the atypical eye gaze detection (blue solid line); the cumulative duration of
inattentiveness (dotted purple line); the number of robot prompts in the repetitive motor movements detection (dotted light blue line); the
cumulative duration of improper posture (solid purple line); the total number of robot prompts in both detection systems (solid black line); and the
total cumulative duration of inattentiveness and improper posture (solid yellow line).

deficits and interaction as well as restricted and repetitive behavior
listed in DSM-5 (2). The accuracy of detecting repetitive motor
movement reached an excellent interrater agreement (>.80)
between each pair of human raters and between the human rater
and the technology. As an additional autism feature was detected, the
present study was able to generate indexes at the composite level,
which were the total number of prompts made by HUMANE and the
cumulative duration of inattentiveness and improper posture.

The second advancement lies in the evaluation of the robotic
detection technology for autism by testing the indexes at the
composite level against the calibrated severity score of ADOS-2, one
of the standard diagnostic tools for autism, in 119 children aged three
to six. Two composite indexes — the number of prompts made by the
robot and the cumulative inattentiveness and improper posture
duration — were generated from the two detection programs. Our
results show that the detection technology can identify the presence or
absence of autism, with the average sensitivity close to 0.8, specificity
reaching 0.89, and the average AUC reaching 0.85. This supports our
first hypothesis. The sensitivity and specificity of composite indexes
were higher than those of the individual indexes generated from
atypical eye gaze or repetitive motor movement detection, indicating
the composite indexes might have a greater discriminative power than
indexes generated at the individual level. This supports our
second hypothesis.

To meet the diagnostic criteria for autism according to DSM-5,
a child must have persistent deficits in social communication and
interaction as well as producing restricted and repetitive behavior.
Therefore, assessing autism based on a single deficit (e.g., atypical
eye gaze) limits the clinical applicability (18). This study showed
that the discriminative power of indexes generated from one
detection system is low. Our findings show the sensitivity of the
number of robot prompts in identifying the presence or absence of
autism based on the detection of one feature to be on average
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only.63, indicating high false negatives. Similar results were
reported in the average sensitivity of the duration of
inattentiveness/improper posture (.64). Merely looking at the
number of prompts or duration of either atypical eye gaze
detection or repetitive motor movements detection would miss a
great number of children who were indeed diagnosed as being on
the autism spectrum. Even more problematic, both detection
systems made different decisions on autism assessment. For
example, among the 119 participating children, only 72 of them
received the same decision on autism assessment from both
detection systems. There were 30 children who were considered
non-autistic in the atypical eye gaze detection but were considered
autistic in the repetitive motor movements detection. This might be
attributable to the fact that children are easily engaged with social
robots (34) and social robots may look less threatening and
stimulating than a human (35), giving children less difficulty in
establishing eye contact with the robot. However, these children
might still display repetitive motor movements during the sessions,
triggering HUMANE to prompt them. As a result, it is necessary to
include the indexes generated from both detection systems. Our
findings show that the average sensitivity across the two detection
systems increased to.81.

In addition to advancing and validating the robotic detection
technology for assessing autism, this study also overcomes the
limitations of previous studies, including overreliance on humans
in assessment and coding of children’s behaviors and the use of small
sample sizes (e.g., 17, 22). The WoZ approach, where the human
experimenter instructs the robot what to say and how to behave, is
largely prevalent in the literature (e.g., 17, 18); however, autonomy is
necessary and required when moving robotic technology forward
(16). Social robots that operate autonomously might provide
assessment and therapy at home or in school settings where neither
researchers nor physicians are likely to be present, if validated by the
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proper institutions. In this study HUMANE was programmed to
autonomously detect atypical eye gaze and repetitive motor
movements and compute the cumulative duration with minimal
involvement of humans administering the assessment. The detection
data was coded and analyzed according to the algorithms.
Additionally, HUMANE was programmed to interact with the
child through giving prompts and praising them autonomously.
The only duty assigned to the human experimenter was to start the
Autism Care Windows program, while the detection, analyses, and
interaction were accomplished by robotic technology.

The current robotic detection technology was evaluated in 119
children, including those diagnosed and not diagnosed to be on the
autism spectrum and those suspected of having autism. To date,
such a sample size is the largest among previous studies that have
used a standard diagnostic tool as the reference standard. Given the
heterogeneity of autism, future studies should enlarge the sample
size and conduct repeated assessment on this group of samples in
order to ensure the stability of the assessment.

Despite our promising findings, this study had a few limitations.
First, the study devised a robotic technology that assesses autism by
detecting atypical eye gaze and repetitive motor movements.
Inclusion of various other autism features could provide a more
accurate and comprehensive assessment of autism. We are in the
process of programming an autonomous social robot to interact
with the child while analyzing stereotypical speech behavior.
Second, the procedure in which HUMANE narrated stories to
children may be difficult to apply to children below the age of
three who find it challenging to listen to stories. Different protocols
need to be developed to cater for younger children. Third, during
the session of detecting repetitive motor manners, the child was
sitting 2 meters away from HUMANE, which was much further
than the personal space intended for effective communication. Such
long distance might influence the child’s attention to HUMANE.
Future technological advancement is needed to shorten the distance
between the child and HUMANE while ensuring the robot could
detect the child’s body posture.

5 Conclusion

This study developed and evaluated robotic technology for
assessing autism focusing on the autonomous detection of two
features, atypical eye gaze and repetitive motor movements. The
sensitivity and specificity of the indexes generated from such
technology were tested against the standard diagnostic instrument
in a large sample size and the findings show the discriminative
power to be high.
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