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Objective: An objective and standardized assessment for assessing autism is

needed. This study aimed to develop and validate robotic detection technology

for assessing autism. The robot HUMANE, installed with computer vision and

linked with face and motion recognition technology, autonomously detected

atypical eye gaze and repetitive motor movements, two of the features of autism,

while narrating stories. It autonomously prompted the child if they did not

establish eye gaze with the robot or produced motor movements for five

seconds continuously.

Method: The study involved 119 children aged between three and six years old

(M=4.53, SD=1.89; 38 females) and included children confirmed or not

confirmed with autism. They all received the Autism Diagnostic Observation

Schedule—second edition (ADOS‑2), the standard diagnostic tool for autism.

HUMANE’s detection performance – the number of robot prompts and the

cumulative duration of inattentiveness/improper posture – was then evaluated

against the calibrated severity score of ADOS-2.

Results: Our results showed that the average sensitivity and specificity of the

detection reached 0.80, the Diagnostic Odds Ratio was beyond 30, and the AUC

was .85.

Discussion: These results indicate that the robotic detection technology of

atypical eye gaze and repetitive motor movements can contribute to the

diagnostic process to identify the presence or absence of autism.
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1 Introduction

Autism Spectrum Disorder (hereafter, autism) is a complex

neurological disorder. In the U.S. approximately one in 31 children

aged eight years has been diagnosed as being on the autism

spectrum (1). Early diagnosis is paramount for early intervention

and is also critical for successful inclusion of autistic individuals into

society. Clinicians diagnose autism based on criteria from the

Diagnostic and Statistical Manual of Mental Disorders - fifth

edition (DSM-5; 2), children’s behavior and social skills elicited in

the Autism Diagnostic Observation Schedule - second edition

(ADOS-2; 3), and/or interviews with the parents in the Autism

Diagnostic Interview - revised (ADI-R; 4). While significant

training is required for clinicians to become proficient in

diagnosing autism, it is inevitable that their decisions will be

based on subjective judgement. Different diagnoses can be made

by different clinicians (5). Given the heterogeneity of autism, only

60% to 70% of autism diagnoses made by licensed and experienced

clinicians are made with certainty (6, 7). Furthermore, there is

limited availability of experienced clinicians (8), often resulting in

long waiting times.

Given the challenges of human-based diagnosis, there is a

pioneering development of data-driven information and

communication technology (ICT) solutions including software

applications, wearable devices, robotics, augmented/virtual reality

help to screen or assess autism earlier than the current average age

of diagnosis (9, 10). Such techniques can improve objectivity and

quantify the diagnostic process, assessment, and evaluation of

learning outcomes. Moreover, they can automatically and

accurately detect impaired social interactions and repetitive and

stereotyped behavior that are the key features of autism. The present

study focused on the development of robotic technology in

assessing autism. Specifically, it aimed to validate a robotic

screening tool that detects the hallmark autism symptoms of

atypical eye movement patterns in autistic children (11) and

repetitive motor manners.

According to the empathizing-systemizing theory (12), robots

are operated on predictable and lawful systems, creating a favorable

learning environment for autistic children who may struggle to

learn in an unpredictable and distracting environment. Social

robots have been widely used in therapy for autistic people in

recent decades (see reviews in 13–15). As early as 2005, Scassellati

had proposed the idea of using social robots to address critical issues

in autism diagnosis. However, in comparison to empirical research

investigating the effectiveness of robot-based intervention, there has

been little examination as to whether social robots can be used for

screening and assessing or diagnosing autism (see reviews in 16).

A few studies have explored the supporting role of robots in

screening autism (11, 17–22), largely focusing on the detection of one

autism feature. Most of these studies adopted either the Wizard-of-Oz

(WoZ) paradigm or the semi-autonomous strategy. Under the WoZ

paradigm, the human experimenter commands the robot for actions to

be completed. In Arent et al et al, (17), a NAO robot was remotely

controlled by an experimenter using the standard NAO GUI when

engaging with children in interactive dyadic games (“Dance with me”
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and “Touch with me”). Children’s turn-taking behaviors were then

rated by human researchers. Their findings showed that autistic

children presented a deficient level of turn-taking behavior,

compared with the typically developing children. However, this result

was based on human ratings that might lack objectivity.

Also adopting the WoZ paradigm, a pilot study by Del Coco et al.

(18) had the therapist command the robot, Zeno, through a tablet when

engaging the child. This differed from Arent et al.’s study in that the

robot was installed with the tablet camera that processed the videos of

the child and generatedmultiple behavioral cues. Those behavioral data

were then objectively analyzed by algorithms for automatic detection

and computation of eye gaze, head pose, and facial expression. This

system could detect autism features in the most severely autistic child.

In a different approach from the aforementioned studies,

Ramı ́rez-Duque and his team adopted a semi-autonomous

paradigm and designed a robot-assisted framework, where the

robot, ONO, interacted with the child and modified their

behavior (e.g., direction of eye gaze, facial expression, and

response to rewards) based on an algorithm (22). ONO was

equipped with a sensor that detected the child’s nonverbal

behaviors, including looking toward an object, toward the robot,

and toward the therapist, and pointing to or responding to a prompt

from the therapist. These behaviors were analyzed by a pipeline

algorithm implemented in the machine-learning neural models.

The findings showed that children at risk of an autism diagnosis

tended to be more interested in interacting with and looking at the

robot than those without risk. However, only six children, three

typically developing and three autistics, were involved. Given the

small sample size, it is difficult to draw implications from this that

the robot detection system can screen for autism.

In a recent exploratory cross-sectional case control study, So and

colleagues programmed the robot HUMANE, installed with computer

vision and linked with recognition technology, to screen autism based

on its detection of children’s direction of eye gaze toward the robot

(11). In their study, the Autism Care Windows application regulated

HUMANE’s activities, and upon the initiation of gaze detection, the

program extracted images from HUMANE at a rate of 8 frames per

second and consistently transmitted them to NeoFace®, which

operated in the cloud using a 5G mobile network. The technology

analyzed the incoming frames, stored the gaze findings in a database

for report generation, and transmitted metadata to HUMANE for

vocalization. Upon acquiring the metadata, HUMANE deciphered

each communication and evaluated subsequent actions. Should the

child sustain their eyes on HUMANE, the robot continued in narrating

the story. Nevertheless, the robot’s narration would cease and

HUMANE would prompt the child to refocus on it if the child

surpassed the 5-second threshold of not concentrating on it. Upon

the child’s gaze returning to HUMANE, the off-focus timer was reset,

and HUMANE commended the child before continuing the narration.

Children aged between three to eight (N = 199) participated in the

study. After receiving instruction from the human experimenter,

HUMANE narrated a story to a child and autonomously prompted

them to return their eye gaze to the robot if they looked away from the

robot and praised them when eye gaze was quickly re-established after

a prompt. Its detection of eye gaze toward the robot reached a reliability
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of 0.90. Additionally, using the pre-specified reference standard,

Autism Spectrum Quotient-10 items (Hong Kong Chinese Child

Version)–(AQ-10-Child-HK); 23), the sensitivity and specificity of

using the number of prompts made by the robot and the duration of

inattentiveness detected by the robot to discriminate autism from non-

autism reached 0.88 and 0.96 respectively, and the Diagnostic Odds

Ratios were 191.18 and 434.48 respectively. These results indicate that

social robots can screen autism based on the robot’s detection of

atypical eye patterns.

However, So et al (11) study used the pre-specified cut-off of a

parental self-report, AQ-10-Child-HK, that is considered as a screening

tool, but does not reach the diagnostic standard. To validate the robotic

screening tool, it is necessary to use the standard autism assessment

method adopted by clinicians, the Autism Diagnostic Observation

Schedule - second edition (ADOS-2; 3). Another limitation is that the

robotic screening tool invented in So et al.’s study focuses solely on

atypical eye gaze, which is only one of the impairments presenting in

autistic children in social communication and interaction. This limits

its clinical applicability as it is difficult or impossible to determine if a

child is on the autism spectrum based on one feature only (18).

Our study aimed to address these limitations by first adopting the

calibrated severity scores of ADOS-2 (3), considered to be the “gold

standard” in the assessment of autism, as the reference standard.

Second, we programed the same autonomous social robot to detect

more than one autism feature when engaging with children. In addition

to recognizing lack of eye gaze in social interaction and

communication, the system also detected specific kinds of restrictive

and repetitive behavior, another diagnostic criterion listed in the

Diagnostic and Statistical Manual of Mental Disorders (DSM-5; 2).

Since restrictive and repetitive behavior includes a broad category of

behaviors such as preoccupation with restricted patterns of interest,

adherence to specific, nonfunctional routines, repetitive motor

manners, and preoccupation with parts of objects, it is difficult for

the system to detect all these behaviors. Among different kinds of

restrictive and repetitive behaviors, this study focused on repetitive

motor manners, specifically hand mannerisms (e.g., hand flapping/

waving) and complex mannerisms (e.g., body rocking, pacing back and

forth, spinning circles) that could be manifested in improper sitting

postures. It is common that autistic children struggle to sit still, possibly

due to sensory-motor issues. Their problems in processing sensory

information are in turn translated into repetitive motor movements.

Repetitive movements are not unique to autistic children but

are also present in non-autistic children, such as those with

intellectual disabilities and language disorders (e.g., 24). However,

young children who are later diagnosed with autism are perceived

by their caregivers as having more prevalent and severe repetitive

movements than those who are not diagnosed with autism (25, 26).

The scores of repetitive and ritualistic behaviors in ADOS-2

also significantly enhanced the predictive power in classifying

young children with autism, developmental delays, and typical

development years later (27).

To sum up, this study will advance the development of robotic

screening tools by detecting two features: atypical eye gaze and

repetitive motor movements. Our robotic detection system processes

these two features independently based on their corresponding rules of
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recognition and scoring algorithms. Individual indexes for each feature

and composite indexes across both features were generated to facilitate

a comprehensive and objective screening process. For the detection of

atypical eye gaze, we followed the individual indexes generated in So

et al (11) study: the number of times the robot prompted the child

when not establishing eye contact with the robot for a certain period

and the cumulative duration of inattentiveness (in seconds). For the

detection of repetitive motor manners we generated similar individual

indexes, of how often the robot prompted the child when not sitting

properly for a certain period and the cumulative duration of improper

sitting posture (in seconds). The composite indexes were the total

number of promptsmade by the robot when detecting atypical eye gaze

and improper sitting posture as well as the total duration of

inattentiveness and improper sitting posture. The indexes, at

individual and composite levels, were then evaluated using ADOS-2

as the reference standard. We hypothesized that the composite indexes

would identify the presence or absence of autism, with the sensitivity

and specificity reaching at least 0.8 and the Area under the Curve

reaching at least 0.7. We also hypothesized that the composite indexes

would have a greater discriminative power than the individual indexes.
2 Methods

2.1 Participants

A total of 119 children participated, aged between three and six

years (M = 4.53, SD = 1.89; 38 females). We recruited the sample

from this age range because most children suspected of being

autistic are referred to pediatricians or psychologists at

assessment centers at around age four in Hong Kong. The study

aimed to validate a screening tool for autism using a social robot to

identify autistic children at a younger age than is currently the case,

hence we recruited children aged three to six. Table 1 shows the

demographics of the participating children, 36.13% of whom had

been diagnosed with autism, 29.41% of whom were suspected to

have autism, and the remainder of whom (34.46%) were not

thought by their parents to have autism. Participants were

recruited from autism treatment centers, kindergartens, and

primary schools in Hong Kong. Children with known vision or

hearing deficits and those who did not know Cantonese (Chinese),

were excluded. All parents or legal guardians of the participants

gave written informed consent, and the study protocol was

approved by the Survey and Behavioral Research Ethics (SBRE)

Institutional Review Board at the first author’s institution.
2.2 Reference standard

2.2.1 Autism diagnostic observation schedule—
second edition

The ADOS-2 assesses and diagnoses autism across a spectrum

of age, developmental level, and language skills (3). In this study,

Module 2 was administered by a trained professional with seven

years’ experience of conducting ADOS-2 in schools and private
frontiersin.org
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practice, and with formal ADOS-2 training for clinical purposes.

She conducted ADOS-2 under the supervision of another trained

professional who had completed ADOS-2 advanced research

training. The overall calibrated severity score (ADOS-CSS) of

each child was reported based on the revised algorithms created

by Hus et al. (28) for analyses. In comparison to the raw scores, the

calibrated severity scores were less influenced by child

characteristics (29), hence increasing their utility as indicators of

social communication and repetitive behavior severity (28).
2.3 Stimuli and procedures

Same as So et al (11), HUMANE was programmed to detect the

eye gaze toward the robot and repetitive motor manners.

HUMANE, standing at a height of 25 cm and weighing 3.2 kg,

possesses human-like attributes, including a baby-face appearance

and voice vocalizations (see Figure 1). It has previously been

employed in both autism and eldercare contexts (30, 31). Using

the text-to-speech program, Murf AI, all six written story scripts

were subsequently vocalized in Cantonese. Their sound clips were

then uploaded to HUMANE.

HUMANE was installed with facial and movement recognition

technologies developed by the IT corporation NEC (an

international technology company) in the early 1990s. Its face

recognition engine, empowered by NeoFace® face recognition

technology, can autonomously detect the focus of a child’s gaze

through the camera installed on the robot. Detection is based on a

unique algorithm that combines feature extraction, pattern

recognition, and matching techniques to accurately identify and

verify individuals. The NeoFace® technology is used in a wide range

of applications, including law enforcement, immigration control,

access control, and retail activities in both indoor and outdoor

settings. In 2021 NEC ranked first in the world in the most recent

face recognition technology benchmarking test (FRVT Ongoing, *1)

conducted by the U.S. National Institute of Standards and

Technology (NIST). The system was evaluated with an accuracy

rate of 99.78% for still images among 12 million people (*2). In

NIST benchmark testing, NEC also ranked first following the face

recognition benchmark in 2018 (FRVT2018, *3). Recently, NEC has

also developed a posture engine that can autonomously detect the
Frontiers in Psychiatry 04
position of the child’s body based on another unique algorithm that

extracts body landmarks.

HUMANE was programmed to narrate six stories, which were

similar to those narrated in So et al (11) study, with each story

composed of 15 to 20 sentences, and each clip lasting for six to seven

seconds. The contents were similar across the six stories, which

featured the daily life of Alan, a three-year-old boy. In one of the

stories, Alan dined with his parents in a restaurant and learnt how

to order food. HUMANE narrated three stories during the session

of eye gaze detection and another three stories, with similar length

and contents, during the session of repetitive motor manners
TABLE 1 Demographic statistics of the participants in this study.

Variables Confirmed diagnosis of autism Suspected to have autism No concerns of having autism Total

N 43 35 41 119

Mean age in months
(SD) 55.28 (12.87) 51.36 (16.54) 53.29 (14.21) –

Range in months 40-68 36-70 38-69 –

N of males 36 32 22 90

ADOS-2 CSS
Mean
SD
Range

7.66
1.40
6-10

4.56
.91
1-6

1.5
.91
0-3 –
fronti
FIGURE 1

The social robot, HUMANE. A camera was installed on HUMANE to
take frames of the child’s image and motor movements when it was
talking to the child.
ersin.org

https://doi.org/10.3389/fpsyt.2025.1636560
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


So et al. 10.3389/fpsyt.2025.1636560
detection. The order of eye gaze and repetitive movement detection

programs was counterbalanced across participants.

The detection sessions were conducted in a treatment room in

the affiliated university of the first author. The room was designed

for the purposes of intervention and assessment of children. Prior to

the start of each session in this study, the human experimenter

would seat the child in a chair in front of HUMANE. The child was

sitting 1.2 meters in front of HUMANE in the eye gaze detection

program and 2 meters in front of HUMANE in the repetitive

movement detection program. Before session began, the child was

instructed to sit properly in front of HUMANE, with eyes looking at

the robot and both hands resting at both sides of the body and both

feet resting them on the floor. The experimenter was present

together with the robot and the child, but she was standing at a

distance from the child in order not to be captured by the robot.

Then the experimenter initiated the program, named the

Autism Care Windows program, on a computer tablet. The

program would then prompt HUMANE to begin the session,

either the detection of atypical eye gaze or that of repetitive

motor manners. After choosing the detection program,

HUMANE operated autonomously without the involvement of

the human experimenter. To begin the session, HUMANE

commenced with a salutation and self-introduction, “Hi, (child’s

name), I am Skype.” Then HUMANE would inquire whether the

child would like to listen to a story narration by asking “Would you

like to listen to a story?” Following confirmation, HUMANE would

proceed to narrate the story while simultaneously monitoring the

child’s gaze or repetitive motor manners.

During the eye gaze detection session, the camera captured

images of each child participant during the robot’s narration and

the program retrieved images from HUMANE at eight frames per

second and continually relayed them back to NeoFace®, which was

running in the cloud via a 5G mobile network. The technology

processed the incoming frames, recorded the gaze results in a

database for report generation, and sent metadata to HUMANE for

vocalizing. Upon receiving the metadata, HUMANE decoded each

message and analyzed what to do next. If the child discontinued eye

contact with HUMANE for a predetermined interval of five seconds,

HUMANE would stop the story narration and prompt the child with

statements such as “Child, eyes on me, please!” or “Child, please look

at me!” If the child re-established eye contact within one second of the

prompt, HUMANE would provide positive feedback, with praises

such as “Good looking! Well done!” or “You have done a good job!

Thanks for looking at me!”. The off-focus timer was cleared, and

HUMANE resumed narration. However, if the child failed to re-

establish eye contact after the initial prompt, HUMANE would issue

another prompt a second later. If this persisted for five minutes (for

instance, if the child walked away or continued to gaze at something

other than HUMANE), HUMANE would terminate the training

session and bid the child farewell. On average, each session lasted for

10 minutes.

During the session of repetitive motor manners detection, the

robot, equipped with a high-resolution camera and vision system,

captured the child’s body position and assessed children’s body
Frontiers in Psychiatry 05
movements in real time. The detection program retrieved images

from HUMANE at eight frames per second and continually relayed

them back to the posture engine, which was running in the cloud via

a 5G mobile network. The engine was trained to analyze hand

mannerisms (e.g., hand flapping/waving) and complex mannerisms

(e.g., body rocking, pacing back and forth, spinning circles). Then

the engine sent metadata to HUMANE for vocalizing. HUMANE

would prompt the child, “Child, please sit properly!”, when it

detected improper postures, such as body rocking and spinning,

for a predetermined interval of five seconds. If the child responded

appropriately within a second, the robot provided positive feedback,

“You have sat properly, well done!” and continued the narration.

However, if the child did not correct their posture, the robot

continued to prompt them.

Figure 2 depicts the procedures by which HUMANE

autonomously detected the child’s eye gaze and repetitive motor

movements, prompted the child, and reinforced the child in this

study. All images were stored on the cloud server. Upon completion

of each session, the Autism Care Program produced a record of the

number of prompts and positive feedback that HUMANE had

delivered to the child and the cumulative duration of their

inattention (in seconds) during the session. Community members

were not involved in the study.
2.4 Reliability

Previous research has shown the reliability of eye gaze detection

across all pairs of human raters and HUMANE reached 0.90,

indicating excellent interrater agreement (11). This study

evaluated the reliability of the detection of repetitive motor

movements by following the same procedures as So et al. (11).

We recruited a group of four human raters, who were unaware of

the research hypotheses. These raters were then trained by the first

author to code the body posture of the child participants for each

stored frame, with a total of 52,540 frames. The coding scheme was

binary, with raters indicating whether the posture of the child was

deviating from the starting position. Each time we picked a pair of

coding completed by any of the two raters (e.g., Rater 1’s coding vs.

Rater 2’s coding) on all stored frames and computed inter-rate

reliability, named Cohen’s kappa coefficient (k; 32). As there were
four raters, there were six pairs of coding on all stored frames. The

average Cohen’s k across all pairs was.82 (SD = .06, ranging from.78

to.85). An average kappa score greater than 0.8 is usually considered

to be sufficient to establish reliability for each pair of coding. We

then measured the inter-rater reliability between the technology and

each of the human raters, with the technology treated as an

additional rater. We used the technology’s output as a threshold

and then computed the inter-rater reliability between the

technology and each of the human raters using Cohen’s k. The
average Cohen’s k of all pairs between the technology and human

raters was.85 (SD = .07; ranging from.82 to.88), usually considered

to be almost perfect agreement. There was no significant difference

between both sets of comparisons, with t (58) = 1.32, and p <.19.
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2.5 Indexes and their discriminative power

The study aimed to validate the two individual indexes in each

of the detection programs and composite indexes in both programs.

For atypical eye gaze detection, the two individual indexes were the

number of prompts made by the robot and cumulative duration of

inattentiveness (in seconds). For repetitive motor movement

detection, the two individual indexes were the number of

prompts made by the robot and the cumulative duration of

improper posture (in seconds). The two composite indexes were

the robot prompts (i.e., the total number of prompts made by the

robot in both detection programs) and duration (i.e., the total

cumulative durations of inattentiveness and improper sitting

posture). Analyses were conducted for both individual and

composite indexes.

Separate Mann-Whitney U tests were conducted to examine

whether children with ADOS-CSS scores below the cut-off point

had a greater number of robot prompts and a longer cumulative

duration at individual and composite levels than did the children

with ADOS-CSS scores above the cut-off point. The cut-off point

was pre-specified at four (29). In other words, those with ADOS-

CSS scores of three or below are not likely to be on the

autistic spectrum.

Additionally, we conducted separate diagnostic accuracy

analyses, sensitivity and specificity tests for each of the individual

and composite indexes. Their cut-offs, which intersected with the

pre-specified cut-off of AQ-10-Child-HK (i.e., a score of 5), were

derived from So et al (11) study. At the individual level, the cut-off

for the number of prompts made by the robot in the atypical eye

gaze detection was three and that for the cumulative duration of

inattentiveness was 25 seconds. The cut-offs for the individual
Frontiers in Psychiatry 06
indexes in the detection of repetitive motor movements were the

same. At the composite level, the cut-off for the number of robot

prompts was six (the sum of the cut-offs for the number of prompts

made by the robot in both detection programs) and the cut-off for

the cumulative duration was 50 seconds (the sum of the cut-offs for

the duration of inattentiveness and that of improper

sitting posture).

For each index at the individual and composite level, sensitivity

(its ability to detect autism when it is truly present) was calculated

by the number of true positives divided by the total number of true

positives and false positives. Similarly, for each index, specificity (its

probability to exclude the disorder status in individuals who do not

have autism) was calculated by the number of true negatives divided

by the total number of true negatives and false positives. A goal of

80% sensitivity and specificity across autistic and non-autistic

groups was set for each index, respectively. The Diagnostic Odds

Ratios (DORs) for each of the indexes were also calculated (true

positives x true negatives)/(false positives x false negatives). In

respective indexes, we conducted the receiver operating

characteristic (ROC) analysis to compute the Area under the

Curve (AUC) to examine their validity or the discriminative

power. A goal of AUC 0.7 to 0.8, considered acceptable, was set

for each index at the individual and composite levels.
3 Results

All children completed listening to the narrations by the robot

and they did not show any problems interacting with the robot.

Table 2 shows the descriptive statistics for the severity of the

children’s autism and the responses of the robot to the children’s
FIGURE 2

The mechanism shows how HUMANE autonomously detected the child’s eye gaze and motor movements and how it prompted and reinforced the
child.
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eye gaze. Using a score of four as the cut-off point in the ADOS-CSS

scores (29), 61.30% of the participating children scored on or above

the cut-off point. Separate Mann-Whitney U tests were conducted

to examine whether the participating children who scored on or

above the ADOS-CSS cut-off point had more robot prompts and

longer inattentive/improper posture duration than those below the

cut-off point at both individual and composite levels. Figure 3

presents the distribution for each of the indexes in the autistic and

non-autistic groups. At the individual level, our results show that

the number of prompts made by the robot in the atypical eye gaze

detection program was significantly greater in the autistic group

(mean rank = 74.63) than in the non-autistic group (mean rank =

36.78), U = 2747, z = 5.91, p <.001, r = .54. The duration of

inattentiveness (in seconds) was significantly longer in the autistic

group (mean rank = 72.99) than in the non-autistic group (mean

rank = 39.38), U = 2627.50, z = 5.19, p <.001, r = .48. Regarding the

detection of repetitive motor movements, the number of prompts

made by the robot was significantly greater in the autistic group

(mean rank = 73.18) than in the non-autistic group (mean rank =

39.08), U = 2641.50, z = 5.32, p <.001, r = .49. The duration of

improper posture (in seconds) was significantly longer in the

autistic group (mean rank = 71.61) than in the non-autistic group

(mean rank = 41.58), U = 2526.50, z = 4.65, p <.001, r = .42. The

effect sizes of the indexes at the individual level were medium.

Similar patterns were found at the composite level. The total

number of prompts made by the robot in both detection

programs was significantly greater in the autistic group (mean

rank = 76.75) than in the non-autistic group, (mean rank =

33.42), U = 2901.50, z = 6.69, p <.001, r = .61. The inattentive

and improper posture duration detected by the robot was

significantly longer in the autistic group (mean rank = 75.49)

than in the non-autistic group, (mean rank = 35.42), U =

2809.50, z = 6.17, p <.001, r = .57. Both effect sizes were large.

We then calculated the sensitivity and specificity and Diagnostic

Odds Ratios (DORs) of the indexes at the individual and composite

levels (see Table 3). At the individual level, the number of prompts

made by the robot in the atypical eye gaze and repetitive motor
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movements detection was test positive at three or above, and the

cumulative inattentive/improper sitting posture was test positive at

25 seconds or above (11). The sensitivity of all four indexes at the

individual level was low (.58,.62,.68, and.66), suggesting that the

false negatives were high. Different results were found in specificity

among all four indexes. The specificity of the indexes generated in

the atypical eye gaze detection was high (.85 and.80) whereas that of

the indexes in the detection of repetitive movements was low (.72

and.65). This suggests that false positives were higher in the

detection of repetitive movements than in the atypical eye gaze

detection. All DORs were greater than one, meaning that the

autistic group had more robot prompts and a longer duration of

inattentiveness/improper posture than the non-autistic group.

DORs of the indexes generated in the atypical eye gaze detection

program were higher than those of the indexes in the repetitive

motor movements detection program.

Sensitivity and specificity and DORs of indexes at the composite

level performed better than those at the individual level. At the

composite level, the number of robot prompts was test positive at

six or above, and the cumulative inattentiveness and improper

sitting posture was test positive at 50 seconds or above. The

sensitivity of the number of robot prompts and duration was

close to.80 while the specificity of these two indexes was.89, both

of which were greater than those at the individual level. The DORs

of the indexes were at least 29, also higher than those at the

individual level.

Similar results were found in the ROC curve analyses (see

Figure 4). The total number of robot prompts and the total

inattentiveness and improper posture duration were competent in

differentiating between the autistic and non-autistic groups with

large AUCs of 0.86 (SE = .03; p <.001; 95% CI:.80-.93) and.84 (SE =

.04, p <.001; 95% CI:.76-.91). The AUCs of individual indexes were

lower, yet still higher than 0.7. Number of robot prompts in the

atypical eye gaze detection: AUC = .82; SE = .04; p <.001; 95%

CI:.74-.89; inattentive duration in the atypical eye gaze detection:

AUC = .78; SE = .04; p <.001; 95% CI:.70-.86; number of robot

prompts in the repetitive motor movements detection: AUC = .79;

SE = .04; p <.001; 95% CI:.70-.87; improper posture duration in the

repetitive motor movements detection: AUC = .75; SE = .04; p

<.001; 95% CI:.67-.84.

To summarize, the indexes at the composite level generated by

our robotic detection technology – the total number of robot

prompts and cumulative inattentiveness and improper posture

duration (in seconds) – could identify the presence or absence of

autism. These indexes had a greater discriminative power than

those at the individual level.
4 Discussion

This study aimed to develop and validate robotic technology for

assessing autism. It was built upon previous research that developed

a screening tool for autism using a social robot (11). Using standard

diagnostic tool, ADOS-2, as a reference standard and the index tests

previously established, our findings show that the total number of
TABLE 2 Means and SDs of autism assessment and various kinds of
robot’s responses.

Variables Mean SD Min Max

ADOS- CSS 4.53 2.91 0 10

Detection of atypical eye gaze

Number of prompts by HUMANE 3.32 4.12 0 21

Cumulative duration of inattention (in
seconds) 38.52 48.61 0 286.60

Detection of repetitive motor movements

Number of prompts by HUMANE 4.52 4.91 0 18

Cumulative duration of improper sitting
posture (in seconds) 43.19 48.17 0 261.60

Composite number of prompts 7.82 7.57 0 34

Composite duration 81.58 80.07 0 384.90
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robot prompts and cumulative duration of inattentiveness/

improper posture generated in the detection of atypical eye gaze

and improper posture systems could identify the presence or

absence of autism in 119 children aged three to six, with
Frontiers in Psychiatry 08
sensitivity and specificity of at least.80 and AUCs of at least.84.

AUC above 0.8 is considered good for discrimination (33).

In So et al (11) study the robot HUMANE, installed with

computer vision and linked with recognition technology,
FIGURE 3

Mann-Whitney U test generated graphs used to visually inspect distributions of different indexes at the individual [(A) detection of atypical eye gaze;
(B) detection of improper posture] and composite levels (C). Frequency refers to the number of children obtaining a score in the corresponding
number of prompts or duration of inattentiveness / improper posture in the individual and composite levels.
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autonomously detected atypical eye gaze in children aged three to

eight, which is one of the social communication and interaction

impairments among autistic children. When the child looked away

from HUMANE for a period, HUMANE prompted the child and

praised them if they re-established eye gaze quickly after a prompt.

The indexes of the number of robot prompts and duration of

inattentiveness (in seconds) were tested against the reference

standard, which was the score of a parental self-report, the Autism
Frontiers in Psychiatry 09
SpectrumQuotient. The sensitivity and specificity were high, showing

that HUMANE may be able to screen for autism in the future.

This study has advanced the robotic screening tool developed in

So et al.’s study in various ways. First, HUMANEwas programmed to

autonomously detect an additional autism feature of repetitive motor

movements, a type of restrictive and repetitive behavior. In addition

to the detection of atypical eye gaze, this study has autonomously

captured autism features in the categories of social communication
TABLE 3 The decision matrix tables for the number of prompts made by the robot and the cumulative inattentive duration (in seconds) in the atypical
eye gaze detection program (a); the number of prompts made by the robot and the cumulative duration of improper posture (in seconds) in the
repetitive motor movements detection program (b); and the total number of prompts made by the robot and the cumulative inattentive/improper
posture in both detection programs (c).

3a) Number of prompts made by the robot

NTest outcome positive Test outcome negative

ADOS-CSS
Condition positive True positive (43) False negative (30) 73

Condition negative False positive (7) True negative (39) 46

Sensitivity = .58 Specificity = .85 DOR = 7.99

Inattentive duration (in seconds)

NTest outcome positive Test outcome negative

ADOS-CSS
Condition positive True positive (45) False negative (28) 73

Condition negative False positive (9) True negative (37) 46

Sensitivity = .62 Specificity = .80 DOR = 6.61

3b) Number of prompts made by the robot

NTest outcome positive Test outcome negative

ADOS-CSS
Condition positive True positive (50) False negative (23) 73

Condition negative False positive (13) True negative (33) 46

Sensitivity = .68 Specificity = .72 DOR = 5.52

Improper posture duration (in seconds)

NTest outcome positive Test outcome negative

ADOS-CSS
Condition positive True positive (48) False negative (25) 73

Condition negative False positive (16) True negative (30) 46

Sensitivity = .66 Specificity = .65 DOR = 3.6

3c) Total number of prompts made by the robot

NTest outcome positive Test outcome negative

ADOS-CSS
Condition positive True positive (59) False negative (14) 73

Condition negative False positive (5) True negative (41) 46

Sensitivity = .81 Specificity = .89 DOR = 34.56

Total Inattentive/improper posture duration (in seconds)

NTest outcome positive Test outcome negative

ADOS-CSS
Condition positive True positive (57) False negative (16) 73

Condition negative False positive (5) True negative (41) 46

Sensitivity = .78 Specificity = .89 DOR = 29.21
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deficits and interaction as well as restricted and repetitive behavior

listed in DSM-5 (2). The accuracy of detecting repetitive motor

movement reached an excellent interrater agreement (>.80)

between each pair of human raters and between the human rater

and the technology. As an additional autism feature was detected, the

present study was able to generate indexes at the composite level,

which were the total number of prompts made by HUMANE and the

cumulative duration of inattentiveness and improper posture.

The second advancement lies in the evaluation of the robotic

detection technology for autism by testing the indexes at the

composite level against the calibrated severity score of ADOS-2, one

of the standard diagnostic tools for autism, in 119 children aged three

to six. Two composite indexes – the number of prompts made by the

robot and the cumulative inattentiveness and improper posture

duration – were generated from the two detection programs. Our

results show that the detection technology can identify the presence or

absence of autism, with the average sensitivity close to 0.8, specificity

reaching 0.89, and the average AUC reaching 0.85. This supports our

first hypothesis. The sensitivity and specificity of composite indexes

were higher than those of the individual indexes generated from

atypical eye gaze or repetitive motor movement detection, indicating

the composite indexes might have a greater discriminative power than

indexes generated at the individual level. This supports our

second hypothesis.

To meet the diagnostic criteria for autism according to DSM-5,

a child must have persistent deficits in social communication and

interaction as well as producing restricted and repetitive behavior.

Therefore, assessing autism based on a single deficit (e.g., atypical

eye gaze) limits the clinical applicability (18). This study showed

that the discriminative power of indexes generated from one

detection system is low. Our findings show the sensitivity of the

number of robot prompts in identifying the presence or absence of

autism based on the detection of one feature to be on average
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only.63, indicating high false negatives. Similar results were

reported in the average sensitivity of the duration of

inattentiveness/improper posture (.64). Merely looking at the

number of prompts or duration of either atypical eye gaze

detection or repetitive motor movements detection would miss a

great number of children who were indeed diagnosed as being on

the autism spectrum. Even more problematic, both detection

systems made different decisions on autism assessment. For

example, among the 119 participating children, only 72 of them

received the same decision on autism assessment from both

detection systems. There were 30 children who were considered

non-autistic in the atypical eye gaze detection but were considered

autistic in the repetitive motor movements detection. This might be

attributable to the fact that children are easily engaged with social

robots (34) and social robots may look less threatening and

stimulating than a human (35), giving children less difficulty in

establishing eye contact with the robot. However, these children

might still display repetitive motor movements during the sessions,

triggering HUMANE to prompt them. As a result, it is necessary to

include the indexes generated from both detection systems. Our

findings show that the average sensitivity across the two detection

systems increased to.81.

In addition to advancing and validating the robotic detection

technology for assessing autism, this study also overcomes the

limitations of previous studies, including overreliance on humans

in assessment and coding of children’s behaviors and the use of small

sample sizes (e.g., 17, 22). The WoZ approach, where the human

experimenter instructs the robot what to say and how to behave, is

largely prevalent in the literature (e.g., 17, 18); however, autonomy is

necessary and required when moving robotic technology forward

(16). Social robots that operate autonomously might provide

assessment and therapy at home or in school settings where neither

researchers nor physicians are likely to be present, if validated by the
FIGURE 4

ROC curves of the number of prompts made by the robot in the atypical eye gaze detection (blue solid line); the cumulative duration of
inattentiveness (dotted purple line); the number of robot prompts in the repetitive motor movements detection (dotted light blue line); the
cumulative duration of improper posture (solid purple line); the total number of robot prompts in both detection systems (solid black line); and the
total cumulative duration of inattentiveness and improper posture (solid yellow line).
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1636560
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


So et al. 10.3389/fpsyt.2025.1636560
proper institutions. In this study HUMANE was programmed to

autonomously detect atypical eye gaze and repetitive motor

movements and compute the cumulative duration with minimal

involvement of humans administering the assessment. The detection

data was coded and analyzed according to the algorithms.

Additionally, HUMANE was programmed to interact with the

child through giving prompts and praising them autonomously.

The only duty assigned to the human experimenter was to start the

Autism Care Windows program, while the detection, analyses, and

interaction were accomplished by robotic technology.

The current robotic detection technology was evaluated in 119

children, including those diagnosed and not diagnosed to be on the

autism spectrum and those suspected of having autism. To date,

such a sample size is the largest among previous studies that have

used a standard diagnostic tool as the reference standard. Given the

heterogeneity of autism, future studies should enlarge the sample

size and conduct repeated assessment on this group of samples in

order to ensure the stability of the assessment.

Despite our promising findings, this study had a few limitations.

First, the study devised a robotic technology that assesses autism by

detecting atypical eye gaze and repetitive motor movements.

Inclusion of various other autism features could provide a more

accurate and comprehensive assessment of autism. We are in the

process of programming an autonomous social robot to interact

with the child while analyzing stereotypical speech behavior.

Second, the procedure in which HUMANE narrated stories to

children may be difficult to apply to children below the age of

three who find it challenging to listen to stories. Different protocols

need to be developed to cater for younger children. Third, during

the session of detecting repetitive motor manners, the child was

sitting 2 meters away from HUMANE, which was much further

than the personal space intended for effective communication. Such

long distance might influence the child’s attention to HUMANE.

Future technological advancement is needed to shorten the distance

between the child and HUMANE while ensuring the robot could

detect the child’s body posture.
5 Conclusion

This study developed and evaluated robotic technology for

assessing autism focusing on the autonomous detection of two

features, atypical eye gaze and repetitive motor movements. The

sensitivity and specificity of the indexes generated from such

technology were tested against the standard diagnostic instrument

in a large sample size and the findings show the discriminative

power to be high.
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