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Background: Reliable noninvasive tools for assessing substance abuse treatment

and predicting outcomes remain a challenge. We believe EEG-derived

complexity measures may have a direct link to clinical diagnosis. To this aim,

our study involved a psychological investigation of four groups of current and

former male opium addicts. Furthermore, we propose a machine learning (ML)

model incorporating fuzzy logic to analyze EEG data and identify neural

complexity changes associated with opium addiction.

Method: Male participants were categorized into four groups: active addicts,

those with less than three days of treatment, those treated for over two weeks,

and healthy controls. Psychological assessments evaluate mental health and

addiction status. EEG data were collected using standardized electrode

placement, preprocessed to remove noise, and analyzed using the Higuchi

Fractal Dimension(HFD) to quantify neural complexity. Feature selection

methods and ML classifiers were applied to identify key patterns distinguishing

addiction stages.

Results: Distress levels varied significantly across groups and persisted post-

quitting. Addicts exhibited poorer general health than controls, though treatment

led to improvements. Significant differences in neural complexity were observed

in brain regions linked to attention, memory, and executive function. The ML

model effectively classified addiction stages based on EEG-derived features.
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Conclusion: This study demonstrates the potential of ML and fuzzy logic in

assessing addiction-related neural dynamics, offering insights into opioid

addiction’s pathophysiology. The findings highlight the promise of brainwave-

based biomarkers for personalized addiction diagnosis and treatmentmonitoring.
KEYWORDS

EEG data analysis, fuzzy logic, neural activity patterns, opium addiction, substance
abuse treatment
GRAPHICAL ABSTRACT

The flowchart illustrates the analysis of EEG data during opium addiction treatment using fuzzy logic-based machine learning. It includes the collec-
tion of data from opioid-addicted and healthy males, psychological evaluations, EEG data analysis with noise removal, and feature extraction. A fuzzy
logic machine learning model is then developed for treatment management, which identifies levels of distress and differences in the complexity of
neural activity.
1 Introduction
Addiction can be defined as the loss of control over drug use or

the compulsive seeking and use of drugs despite adverse

consequences. It is a neuropsychiatric disorder caused by

substance abuse that is strongly influenced by a person’s genetic

structure and the psychological and social context in which drug use

occurs. The disease cycle of addiction mainly results from

dopaminergic dysfunction, particularly in dopamine (DA)

secreted from the mesencephalic ventral tegmentum area (VTA)

to the nucleus accumbens (NAcc), prefrontal cortex (PFC), and

amygdala. Substances of abuse affect the same neural circuitry as

primary biological rewards such as food, water, and sex, leading to

substance dependence (1, 2). The understanding of addiction has

evolved, from being viewed as a moral condition in DSM-II to being

considered more based on psychobiological constructs in DSM-III

and beyond. DSM-IV added cognitive factors to the contributing

factors of addiction, while DSM-V focused on the psychological

changes caused by substance abuse that lead to cognitive

impairment (3). Consumed substances have different effects on
02
neural processes, and substance use can lead to increased dopamine

consumption in the collecting systems, which becomes an

important element in goal-directed behavior and can ultimately

result in substance dependence (2).

Nonlinear dynamics methods are widely used to analyze

neurophysiological data due to the brain’s inherent complexity,

which spans multiple spatial and temporal scales. Higuchi Fractal

Dimension (HFD) specifically quantifies the self-similarity and

complexity of neural oscillations, offering insights into the

balance between stochasticity and determinism in brain

dynamics. In the context of addiction, altered neural complexity

may reflect disruptions in cognitive control, reward processing, and

executive function. Various complexity measures have been

developed, including those based on random fractal theory,

information theory, and chaos theory. Gao et al. distinguish

between chaos and random phenomena and found that the

variations of complexity measures with time are either similar or

reciprocal in their study on the relations among different

complexity measures for EEG (4, 5).

Emotion recognition and addiction detection using

electroencephalogram (EEG) signals have garnered increasing
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interest due to their potential applications in mental health

monitoring, affective computing, and neurorehabilitation (6–8).

Among various techniques applied to analyze EEG signals, fuzzy

logic has emerged as a powerful mathematical framework to

manage uncertainty and imprecision. Its inherent ability to model

nonlinear and complex systems makes it highly suitable for EEG

analysis, which often involves noisy, nonstationary, and high-

dimensional data (9–12).

Fuzzy logic has been employed in diverse EEG-related domains,

such as brain-computer interfaces (BCIs), neurological disorder

diagnosis, and cognitive state assessment. For instance, studies have

demonstrated the efficacy of fuzzy logic in classifying visual

perception-related EEG signals and diagnosing epilepsy through

fuzzy expert systems (13–16). The flexibility of fuzzy set theory has

also enhanced feature processing by enabling partial membership-

based selection, which improves the robustness of classification

tasks. Tools like partition generator functions have been leveraged

to filter and transform EEG feature vectors into sparse

representations, particularly valuable in multi-instance data

scenarios. The Partition generator function can be used in feature

processing methods that are based on fuzzy set theory. These

methods use the idea of partial set membership to identify

relevant features that have high membership degrees for a given

class or target variable. By using fuzzy set theory in feature selection,

these methods can provide more flexible and accurate results than

traditional binary-based methods. This filter supports multi-

instance data and can be applied to a given dataset and features

for any partition generator to obtain these filtered vectors for all

instances. As a result of this, filtered instances are composed of the

relevant values and the class attribute (if set in the input data) and

rendered as sparse instances (14, 15).

Recent advancements in BCI technologies have further

facilitated the integration of fuzzy logic with machine learning.

Notably, Dhara et al. (2023) introduced a fuzzy ensemble-based

deep learning model that attained over 97% accuracy on the DEAP

dataset and 95% on AMIGOS, showcasing the synergy between

fuzzy logic and deep learning in refining model predictions (11). In

parallel, deep learning has gained significant momentum in EEG-

based emotion recognition. Hassouneh et al. (2020) developed a

real-time system combining facial expressions and EEG signals

using machine learning and neural networks, highlighting the

feasibility of accurate multimodal emotion classification (17). A

comprehensive review by Chutia and Baruah (2024) emphasized

the impact of convolutional and recurrent neural networks in

capturing spatiotemporal dynamics of EEG data (6). Similarly,

Khare et al. (2024) systematically reviewed a decade of emotion

recognition studies, underlining the increasing shift toward hybrid

models that integrate EEG with other physiological signals for

improved contextualization (7). This trend is echoed in the

review by Computers in Biology and Medicine (2023), which

notes the growing importance of transfer learning, attention

mechanisms, and multimodal fusion techniques in advancing

EEG-based emotion detection (8).

Beyond emotion recognition, fuzzy logic and EEG complexity

metrics have also proven useful in addiction research. For example,
Frontiers in Psychiatry 03
Marvi et al. (2023) applied recurrence quantification analysis and

entropy indices to distinguish multidrug users from healthy

individuals with 90% accuracy using support vector machines

(18). Zhou et al. (2024) further extended these findings by

employing wavelet-transformed P300 components and BiLSTM

networks to detect methamphetamine abuse with 83.85%

accuracy (19). Additionally, Crane et al. (2021) revealed altered

neural reward processing in cannabis users via EEG event-related

potentials, suggesting that EEG-based measures may serve as

biomarkers for addiction-related dysfunctions (20). Finally,

Hosseini et al. examined the effects of computer gaming on brain

function, offering insights using quantitative EEG (QEEG)

complexity analysis (21).

Collectively, these findings confirm that fuzzy logic approaches

—whether standalone or hybridized with deep learning—and EEG-

based signal complexity analysis substantially enhance both the

accuracy and interpretability of brain activity monitoring in

emotional and addiction-related research domains.

As mentioned previously, despite the widespread use of EEG in

clinical neuroscience, there remains a critical need for reliable,

noninvasive tools to assess substance addiction and monitor

treatment progression. We introduce a novel EEG dataset

comprising recordings from four distinct groups of male

participants: active opium addicts, individuals undergoing early

treatment (≤3 days), individuals in extended treatment (>2 weeks),

and healthy controls. EEG signals were recorded from frontal and

parietal regions, preprocessed to remove artifacts, and analyzed using

the Higuchi Fractal Dimension to quantify EEG complexity.

Additionally, fuzzy logic-enhanced machine learning model was

applied to classify subjects based on their addiction stage. Addicted

individuals exhibited reduced EEG complexity in regions associated

with attention, memory, and executive function. These differences

were partially reversed in long-term treated subjects. Fuzzy approach

to HFD features of EEG complexity led to high classification accuracy

across groups. This study advances the field by addressing limitations

in previous works, refining EEG-based complexity analysis with fuzzy

logic, and moving toward practical applications in addiction

diagnosis and treatment monitoring.
2 Materials and methods

2.1 Participant selection

The research sample consisted of male participants selected from

the Ahang De-Addiction Institute, a treatment center located in the

15th district of Tehran. Established in 1992, the institute provides

addiction treatment services. Ethical authorization for research was

received through letter No. IR.UT.IRICSS.REC.1403.021 from the

Ethics Committee of the Institute for Cognitive Science Studies on

March 12, 2024.

To reduce confounding effects and obtain a homogeneous

sample, we restricted recruitment to male participants aged 18–40

years. This decision was based on evidence that EEG signals and

brain complexity measures are influenced by both sex and age, with
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prior studies showing clear sex-related differences in brain activity

and addiction patterns, as well as age-dependent changes in EEG

complexity. Epidemiological surveys in Iran further support this

choice, indicating that more than 90% of substance users are male

and that opium use is most prevalent in young adults, with a mean

age of initiation around 22 years and mean current ages in the early

30s (22, 23). While these studies are relatively old and addiction

trends may have evolved, our clinical experience with referrals to

addiction treatment centers continues to align with these statistics.

Therefore, in this study we focused on 18–40-year-old males to

capture the demographic group at highest risk, while minimizing

variability unrelated to addiction status.

The participants were categorized into four groups based on

their addiction status and treatment abstinence period. The first

group comprised actively addicted individuals who had not yet

started the treatment process. The second group consisted of

individuals with less than three days of treatment. The third

group included individuals who had undergone treatment for

more than two weeks. The fourth group consisted of healthy

individuals with no history of drug use.

The research was conducted over four consecutive days at a

camp, with a psychologist from the research team present. Written

consent was obtained from each participant before the study. The

initial assessment process involved collecting a range of

information, including basic demographics, substance abuse

history (first-time drug use, duration of drug use, primary

substance used, and expenditure on drugs), treatment history

(number of quit attempts, longest period of abstinence,

participation in Narcotics Anonymous meetings), history of risky

behaviors (injection drug use, risky sexual behaviors, involvement

with drug dealers, physical conflicts), medical and psychiatric

information (chronic medical conditions, physical problems,

depression, anxiety, hallucinations, delusions, suicide attempts or

self-mutilation, history of mental health hospitalizations, HIV

status), and family and social status (living conditions,

employment status, monthly income, family history of addiction,

number of children in the family, family’s emotional support).

Participants for the recently quit group and the control group

were selected through the quit addiction camp and direct

interviews. The active user group was recruited in collaboration

with Ahang addiction treatment clinics, and EEG registrations were

conducted with the consent of the patients. The study included 90

individuals undergoing treatment of opioid addiction and 22

healthy individuals with no history of drug abuse. All participants

were males aged between 18 and 40 years. Opioid-addicted

individuals were recruited from the AHANG drug rehabilitation

center, including both active users and those who had recently

sought treatment at the center. Psychological tests, such as the Drug

Use Disorders Identification Test (DUDIT) and the Depression,

Anxiety, and Stress Scale (DASS), were administered to all addicted

individuals. Additionally, information regarding basic

demographics, treatment history, history of risky behaviors,

history of drug abuse, medical status, and family and social

support was collected for the addicted group.
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2.2 Psychological tests

Psychological assessments were conducted to evaluate the

mental health and addiction status of participants. For the healthy

group, a clinical interview, SCL-90 questionnaire, and urine test

were administered to confirm mental health and the absence of

addiction. The SCL-90 is a widely used psychiatric tool consisting of

90 items scored on a 5-point scale, assessing nine symptom

dimensions including somatization, obsessive-compulsive

behavior, interpersonal sensitivity, depression, anxiety, hostility,

phobic anxiety, paranoid ideation, and psychoticism. In Iran, the

SCL-90 has been standardized and validated in multiple studies.

The following psychological questionnaires were completed for

each candidate:

Depression, Anxiety, and Stress Scale (DASS): The DASS

questionnaire consists of three subscales designed to measure

negative emotional states related to depression, anxiety, and

tension. Each subscale contains 7 items that assess various aspects

of these emotional states. From these 21 items, 8 items are related to

depression, 7 items are related to anxiety and 6 items are related

to stress.

General Health Questionnaire (GHQ): The GHQ is a self-

administered test used to investigate non-psychotic disorders. It is

a screening tool to identify individuals experiencing acute

conditions or disturbances in functioning (24).

Desires for Drug Questionnaire (DDQ): The DDQ assesses

craving for drugs and consists of 13 questions that measure three

main craving components: desire and intention to use drugs,

negative reinforcement, and control.

Obsessive Compulsive Drug Use Scale (OCDUS): The OCDUS

questionnaire measures three components related to heroin use:

heroin thoughts and interference, intention to use heroin and

control of consumption and resistance against thoughts and

decisions to use heroin.

Each questionnaire was completed using a Likert-scale answer

sheet, with participants rating their experiences or feelings based on

the provided options (25).

Note: The original versions of the DASS (26, 27), DDQ and

OCDUS (28) questionnaires were modified to improve internal

consistency by including additional questions.
2.3 EEG recording and data gathering

EEG data was collected from participants using a standardized

electrode placement scheme. The EEG signals were obtained from

19 active electrodes using the MEDICOM MTD device, following

the standard 10–20 system electrode placement. The electrode

locations included Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4,

T4, T5, P3, Pz, P4, T6, O1, and O2; using a Linked Ears reference.

The sampling frequency of the EEG signals was 250 Hz. In line with

our previous studies and to keep the approach simple and decrease

the computation steps, we calculated the HFD for the total EEG

signals (without focusing on any specific frequency band) was
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calculated (29). Except for the addict group, we recorded two EEG

signals in closed eye and one signal in open eye states (Figure 1).
2.4 Signal preprocessing and data cleaning

Signal preprocessing was conducted on the recordings obtained

from all 19 channels for each participant using EEGLAB v.2019.

The following steps were followed:
Fron
I. Artifact detection and removal: EEGLAB’s “Remove

baseline” and “Reject data using Clean Raw data and

ASR” options were utilized to eliminate artifacts from the

recorded EEG signals.

II. Out-of-band noise removal: A Finite Impulse Response

(FIR) filter was applied to filter the EEG time series

within a range of 1–70 Hz, effectively removing noise

outside this frequency range.

III. EEG re-referencing: Common average referencing was

employed, which involved calculating the average of all

channels and using it as the reference for each channel.

IV. Line noise suppression: A notch filter at 50 Hz was

utilized to suppress line noise interference.

V. Repairing bad or missing channels: Any channels that

were deemed bad or missing were repaired through

interpolation, which involved replacing them with the

average value of their neighboring channels.
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VI. Independent Component Analysis (ICA): ICA was

applied to detect components within each signal in

every channel.

VII. Removal of undesired components: Components

orig inat ing from undesired sources , such as

electrocardiography (ECG) and electromyography

(EMG), were removed to obtain artifact-free EEG signals.
These preprocessing steps enhance the quality of the EEG data

and minimize the impact of artifacts and noise, ensuring more

reliable and accurate analysis in subsequent stages of the study.

It is noteworthy that only closed-eye EEG segments were

analyzed, as the open-eye recordings did not provide sufficiently

reliable results. This approach minimizes the influence of ocular

artifacts and ensures that the analyzed EEG signals reflect neural

activity relevant to the study.
2.5 Higuchi algorithm and feature
extraction

Feature extraction is the process of transforming original data to

remove redundant or irrelevant information and producing a much

smaller and more manageable data set of more discriminator

variables. Fractal theory can be used to extract features from a

series. The Higuchi Fractal Dimension (HFD) algorithm is a

method for measuring the fractal dimension of discrete-time
FIGURE 1

Electrode positions for the 19-channel EEG apparatus. EEG data were collected using a standardized 19-channel electrode placement scheme with
the MEDICOM MTD device, following the international 10–20 system. The electrode locations included Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4,
T4, T5, P3, Pz, P4, T6, O1, and O2, using a Linked Ears reference.
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sequences. Here, fractal dimensions were extracted as features using

the Higuchi Fractal Dimension (HFD) algorithm (30, 31) (21).
2.6 Partition membership method and
feature processing

The fuzzy function maps the membership degree of an element for

a given set to a real value in between [0,1]. There are some feature

processing methods based on the Partition generator function that

come from the fuzzy set idea. To calculate these feature vectors for all

instances, WEKA’s PartitionMembershipFilter was employed, which

can apply any partition generator to a given dataset. The extracted

features were filtered through propositionalization and partitioning

using the PartitionMembership filter. WEKA (Waikato Environment

for Knowledge Analysis) (32, 33), a non-commercial and open-source

data mining system was utilized for this purpose.

For more details on the mathematical principles and

applications of Higuchi’s Fractal Dimension (HFD) and fuzzy

logic in our study, please refer to Supplementary File 1, which

provides an in-depth explanation of the methods and their

integration into the analysis of EEG data.
2.7 Feature selection

We are interested in the feature subset containing the minimum

number of features that contribute to accuracy the most (29). Here

we used CorrelationAttributeEval, ChiSquaredAttributeEval,

SignificanceAttributeEval, and PrincipalComponents as the

attribute evaluator and “Ranker” as the search method to find the

most important attribute in discrimination between different

groups. For three methods, WEKA outputs are a ranked list of

attributes; however, to determine the priority of features using

PrincipalComponents, we follow these steps: 1- Computing the

correlation matrix; 2- Obtaining the eigenvalues and eigenvectors;

3- Sorting eigenvalues; eigenvalues represent the amount of

variance explained by each principal component. Higher

eigenvalues indicate more important principal components. 4-

Selecting first principal components; 5- Determining feature

importance; The coefficients within the eigenvectors indicate the

importance of the original features in the respective principal

component. Larger coefficients suggest higher importance (34).
2.8 Classification

Finally, supervised machine-learning classification using a

Support Vector Machine (SVM) (35), MLPClassifier (Trains a

multilayer perceptron with one hidden layer) and Multilayer

Perceptron (A classifier that uses backpropagation to learn a

multi-layer perceptron) were employed for feature selection. The

calculations were done using WEKA default parameters.
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2.9 Statistical analysis of features

A parallel analysis of machine learning (ML) was conducted to

assess the statistical significance of Higuchi features using

appropriate statistical methods. The objective was to identify

which channels exhibited significantly different complexities

between different groups. Firstly, the Kolmogorov-Smirnov test

was employed to assess the normality of the data, revealing that

the data satisfied the normality assumption (P > 0.05).

Subsequently, the One-way ANOVA test was utilized to compare

the four groups across 38 Higuchi variables. Tukey’s test is a single-

step multiple comparison procedure and statistical test. It can be

used to find means that are significantly different from each other. it

compares all possible pairs of means and applies simultaneously to

the set of all pairwise comparisons.

The same method was used to analyze the results of

psychological assessments of participants. Here, we take together

all participants who had undergone treatment (second and

third groups).
3 Results

During the preprocessing steps, some records were detected as

being corrupted or disturbed; therefore, the final numbers of

analyzed participants of different groups were displayed in Table 1.
3.1 Psychological tests

The results of the psychological assessments of participants are

presented in Table 2 and Supplementary Table S1. Here, we take

together all participants who had undergone treatment (second and

third groups).

For more details on the psychological assessments of the

participants, please refer to Supplementary File 2.
3.2 Classification

In this study, we utilized HFD algorithms to convert the series

of EEG data into scalar values, generating a set of features specific to

each participant. The HFD algorithms processed the signals from

each EEG channel, resulting in a total of 38 features for every

participant. These features were derived from EEG channels, with

pairs like Higu_1 and Higu_2 originating from channel 1, and the

third and fourth Higuchi features originating from channel 2.

Initially, the machine learning methods struggled to distinguish

between different classes without applying the fuzzy approach. To

improve classification performance, we utilized the Partition

Membership method in WEKA to filter and combine the

extracted features. We then conducted classification experiments

on both the raw (unprocessed) and filtered feature sets using three
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TABLE 1 The final numbers of analyzed participants.

Groups
EEG recording

state
Number of
participants

Number of EEG data
after preprocessing

Age Male

Addict
Eye close 19 19 40.5 ± 7.9 100%

Eye open 19 19 40.5 ± 7.9 100%

First Group
Eye close 24 48 35.5 ± 6.6 100%

Eye open 24 24 35.5 ± 6.6 100%

Second Group
Eye close 23 46 38. ± 9.2 100%

Eye open 23 23 38. ± 9.2 100%

Normal
Eye close 20 36 37.1 ± 3.8 100%

Eye open 20 18 37.1 ± 3.8 100%
F
rontiers in Psychiatry
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TABLE 2 Results of the psychological assessments of the participants. Here, we take together all participants who had undergone treatment (second
and third groups).

Description
Healthy group

Control (actively
addicted) group

All participants
who had

undergone
treatment

P value

Mean ± SD

DASS

Depression 4.18 ± 5.14 11.67 ± 6.41 12.3 ± 5.93 0.001

Anxiety 3.76 ± 3.36 9.29 ± 5.27 11.61 ± 5.19 0.001

Stress 6.53 ± 5.17 12.9 ± 5.77 14.65 ± 7.3 0.001

Total 14.47 ± 12.07 33.86 ± 16.33 38.48 ± 16.14 0.001

Number 17 21 23 –

GHQ

Physical 4.17 ± 2.6 4.76 ± 4.36 8.26 ± 4.26 0.002

Sleep Anxiety 5.17 ± 3.49 6.19 ± 3.5 9.3 ± 4.99 0.005

Social Interaction 7.17 ± 3.94 7 ± 4.99 8.57 ± 3.38 0.396

Depression 3 ± 2.09 6.71 ± 5.15 6.78 ± 4.9 0.013

Total 19.61 ± 10.16 24.67 ± 14.04 32.91 ± 13.51 0.006

Number 18 21 23 –

OCDUS

Craving For Consumption And
Mental Occupation Of Substances

–

9 ± 5.07 11.09 ± 4.59 0.159

The Impact Of Drug Use On The
Work And Life Of Consumers

4.24 ± 3 6.91 ± 2.61 0.003

Motivation And Excitement Of
Violation Of Control

8.19 ± 3.83 12.83 ± 4.48 0.001

Resistance To Drug Use 4.05 ± 2.44 4.7 ± 2.22 0.362

Total 25.1 ± 12.61 35.91 ± 11.9 0.006

Number 21 23 –

DDQ

Craving And Intention To Consume 13.67 ± 5.79 17.13 ± 13.33 0.278

Negative Reinforcement 9.19 ± 6.24 10.35 ± 7.29 0.576

Consumption Control 3.86 ± 3.18 2.61 ± 1.53 0.1

Total 26.33 ± 9.87 30.09 ± 20.17 0.444

Number 21 23 –
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1635933
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


DehAbadi et al. 10.3389/fpsyt.2025.1635933
c lass ifica t ion methods : MLPClass ifier , L ibSVM, and

MultilayerPerceptron. This comparison allowed us to evaluate

whether feature selection and transformation via Partition

Membership improved classification accuracy and model

robustness in differentiating addiction stages.

To evaluate the performance, we considered four distinct

groups and examined a total of 11 combinations. These

combinations included a category that encompassed all groups,

four categories representing each group, one category where a single

group was compared against a merged group of the remaining

three, and six categories involving pairwise comparisons between

groups. Before using the Partition Membership method in WEKA

without a fuzzy approach, the machine learning methods failed to

distinguish between different classes (data has been not shown). The

results obtained from fuzzy analyses are presented in Table 3.

It is noteworthy that the MultilayerPerceptron method yielded

the most favorable outcomes for the majority of categories when the

filtered attributes were utilized. However, in two categories, the

Partition Membership filter only produced one partition and failed

to effectively classify the participants. Additionally, in two categories,

the LibSVM method outperformed the MultilayerPerceptron

method. The results obtained from the MultilayerPerceptron

method are also provided for these two categories.
3.3 Feature priority

To evaluate the effectiveness of the feature processing, the

study assessed the output of four different feature selection

methods. CorrelationAttributeEval, Principal Components,

ChiSquaredAttributeEval, and SignificanceAttributeEval are the

employed methods. However, the last two methods did not find

any difference between the features except two; higu_29 for First vs

Others and higu_9 Normal vs Second; interestingly, these attributes

were also proposed by the CorrelationAttributeEva methods. For

the other two methods, we select the 5 high-ranked attributes and

present them in Supplementary Table S2. By analyzing the

eigenvalues and eigenvectors, you can identify the most

influential features in your dataset. Features with high coefficients

in the principal components associated with large eigenvalues

contribute significantly to the variability and can be considered

high-priority features. For more details on the Feature priority,

please refer to Supplementary File 2.

The statistical analysis revealed significant differences among

the four groups in terms of Higuchi variables. Specifically, the

variables higu_7, higu_9, higu_11, and higu_29 exhibited

statistically significant variations (P value < 0.05). These variables

were derived from channels 4, 5, 6, and 15, respectively. To further

investigate the differences within the groups, post hoc analysis was

performed using Tukey’s test. The results of the post hoc analysis are

summarized in Supplementary Table S3, which presents the

variables that showed a statistically significant difference between

at least two different groups.

Table 3 presents classification performance across the analyzed

groups. Each comparison is explicitly labeled, e.g., “First Group vs.
Frontiers in Psychiatry 08
Second Group,” to avoid ambiguity. The table is formatted in the

standard three-line style (top line, header-body separator, and

bottom line) for clarity. Key features contributing to group

differentiation are mapped to their corresponding EEG channels,

and anatomical regions (e.g., prefrontal cortex, limbic system) are

indicated. This allows linking changes in neural complexity to

cognitive processes associated with addiction, such as executive

control, decision-making, and reward processing.
4 Discussion

This study aims to propose a machine learning (ML) model based

on fuzzy logic for analyzing EEG data in order to enhance the

understanding of the biological mechanisms underlying opium

addiction and enable personalized diagnostics based on individual

neural activity patterns. We analyzed EEG data from four groups

based on their addiction status and treatment abstinence period by

using of extracted complexity features that serve as indicators of neural

dynamics in the brain. Classification experiments using different

methods and attribute sets showed that MultilayerPerceptron

function in combination with WEKA partition membership

preprocessing resulted in outstanding results. All participants in this

study were male and between 18–40 years of age. While this

demographic restriction limits the generalizability of our findings to

young adult male opioid users, it also provides an advantage in terms

of methodological rigor. By studying a relatively homogeneous group,

we were able to partially offset the limitations of a small sample size

and reduce the influence of confounding factors such as sex, age, and

ethnicity. This approach increases the internal validity of our findings,

although future studies with larger and more diverse populations will

be needed to confirm their broader applicability.

Table 2 and Supplementary Table S1 present the results of

psychological assessments that were conducted to evaluate the

mental health and addiction status of the participants.

The DASS questionnaire revealed that despite addiction

treatment, the depression factor remained unchanged and did not

differ between the control and addiction groups, but it decreased in

the healthy group. In terms of anxiety, there was no significant

difference between the recently quit group and the control group,

but both differed significantly from the healthy group. The stress

factor showed no significant difference between the recently quit

group and the control group, but both significantly differed from

the healthy group. Overall, the DASS questionnaire indicated that

distress levels were significantly different between the groups, and

even after quitting, the difference persisted.

Regarding the GHQ questionnaire, individuals who had

recently quit exhibited higher levels of physical symptoms, which

resolved immediately after quitting. The control group, who had

quit more recently, showed similarities to the healthy group. The

sleep factor also significantly differed between the recently quit

group and both the control and healthy groups. Social interaction

did not significantly differ between the three groups and did not

change after quitting. The depression factor in the GHQ

questionnaire aligned with the findings from the DASS
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TABLE 3 The obtained results from the classifiers.

Area PRC area Class

Confusion
matrix

a b c d

0.86 a = addict 15 1 2 1

0.78 b = Second 1 26 1 1

0.82 c = first 2 0 28 1

0.84 d = normal 1 3 2 29

0.82 Weighted Avg

0.22 a = addict 2 17

0.81 b = Others 10 85

0.71 Weighted Avg

0.88 a = addict 18 1

0.90 b = first 1 30

0.89 Weighted Avg

0.91 a = Others 81 2

0.76 b = first 6 25

0.87 Weighted Avg

0.73 a = Second 14 15

0.72 b = first 1 30

0.73 Weighted Avg

0.90 a = addict 19 0

0.97 b = normal 5 30

0.95 Weighted Avg

0.86 a = first 26 5

0.85 b = normal 2 33

0.85 Weighted Avg

0.99 a = others 78 1

0.91 b = normal 1 34

(Continued)
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Groups Instances Classifiers TP rate FP rate Precision Recall F-measure MCC ROC

All 114

Mlp 0.79 0.04 0.79 0.79 0.79 0.75 0.90

0.90 0.05 0.87 0.90 0.88 0.84 0.93

0.90 0.06 0.85 0.90 0.88 0.83 0.95

0.83 0.04 0.91 0.83 0.87 0.81 0.95

0.86 0.05 0.86 0.86 0.86 0.81 0.93

Addict vs Others 114

Mlp 0.11 0.11 0.17 0.11 0.13 0.00 0.48

0.90 0.90 0.83 0.90 0.86 0.00 0.48

0.76 0.76 0.72 0.76 0.74 0.00 0.48

First vs Addict 50

Mlp 0.95 0.03 0.95 0.95 0.95 0.92 0.92

0.97 0.05 0.97 0.97 0.97 0.92 0.92

0.96 0.05 0.96 0.96 0.96 0.92 0.92

First vs Others 114

Mlp 0.98 0.19 0.93 0.98 0.95 0.82 0.87

0.81 0.02 0.93 0.81 0.86 0.82 0.87

0.93 0.15 0.93 0.93 0.93 0.82 0.87

First vs Second 60

Mlp 0.48 0.03 0.93 0.48 0.64 0.52 0.75

0.97 0.52 0.67 0.97 0.79 0.52 0.75

0.73 0.28 0.80 0.73 0.72 0.52 0.75

Normal vs
Addict

54

Mlp 1.00 0.14 0.79 1.00 0.88 0.82 0.95

0.86 0.00 1.00 0.86 0.92 0.82 0.95

0.91 0.05 0.93 0.91 0.91 0.82 0.95

Normal vs First 66

LibSVM 0.84 0.06 0.93 0.84 0.88 0.79 0.89

0.94 0.16 0.87 0.94 0.90 0.79 0.89

0.89 0.11 0.90 0.89 0.89 0.79 0.89

Normal vs
Others

114
Mlp 0.99 0.03 0.99 0.99 0.99 0.96 0.98

0.97 0.01 0.97 0.97 0.97 0.96 0.98
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TABLE 3 Continued

Recall F-measure MCC ROC Area PRC area Class

Confusion
matrix

a b c d

0.98 0.98 0.96 0.98 0.97 Weighted Avg

0.97 0.93 0.88 0.94 0.86 a = Second 28 1

0.91 0.94 0.88 0.94 0.97 b = normal 3 32

0.94 0.94 0.88 0.94 0.92 Weighted Avg

0.90 0.90 0.83 0.91 0.84 a = addict 17 2

0.93 0.93 0.83 0.91 0.91 b = Second 2 27

0.92 0.92 0.83 0.91 0.88 Weighted Avg

0.74 0.74 -0.05 0.48 0.76 a = Others 62 23

0.21 0.21 -0.05 0.48 0.27 b = Second 21 8

0.61 0.60 -0.05 0.48 0.63 Weighted Avg

0.58 0.59 0.24 0.63 0.62 a = first 18 13

0.66 0.65 0.24 0.63 0.61 b = normal 12 23

0.62 0.62 0.24 0.63 0.62 Weighted Avg

0.74 0.85 0.79 0.98 0.97 a = addict 14 5

1.00 0.92 0.79 0.98 0.99 b = Second 0 29

0.90 0.89 0.79 0.98 0.98 Weighted Avg
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Groups Instances Classifiers TP rate FP rate Precision

0.98 0.02 0.98

Normal vs
Second

64

Mlp 0.97 0.09 0.90

0.91 0.03 0.97

0.94 0.06 0.94

Second vs Addict 48

LibSVM 0.90 0.07 0.90

0.93 0.11 0.93

0.92 0.09 0.92

Second vs Others 114

Mlp 0.74 0.79 0.73

0.21 0.26 0.21

0.61 0.66 0.60

Normal vs First 66

Mlp 0.58 0.34 0.60

0.66 0.42 0.64

0.62 0.38 0.62

Second vs Addict 48

Mlp 0.74 0.00 1.00

1.00 0.26 0.85

0.90 0.16 0.91
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questionnaire. In general, the total factors of the GHQ

questionnaire demonstrated that addicted individuals had lower

general health compared to healthy individuals. Treatment

improved general health but still posed challenges compared to

the healthy group.

Regarding the OCDUS questionnaire, cravings, and mental

preoccupation did not show significance or differences between

the recently quit group and the control group. However, the impact

of drug use on work and life significantly differed between the

recently quit group and the control group. Significant differences

were also found in motivation, excitement, and violation of control

between the recently quit group and the control group, indicating

that emotional experiences were more consciously regulated in

different situations. There was no significant difference in

resistance to drug use between the two groups. Overall, the

OCDUS questionnaire showed a significant difference in factors

between the two groups, indicating a decrease in the urge to

consume in the past week for both compared groups. However,

intention and desire to consume were not significant, and there was

high variability in dispersion and standard deviation.

Finally, the DDQ questionnaire did not yield any significant

differences between the two groups in all factors.

The fuzzy-rough feature selection method involves using fuzzy

logic to calculate the relevance of each feature and then using rough

set theory to select the most relevant features. The method was

shown to outperform other feature selection methods in terms of

accuracy and efficiency (36–38). However, here we used WEKA

partition membership as a filter based on fuzzy logic. It is clear from

Table 3 that Classification experiments using different methods and

attribute sets were conducted, revealing the varying performance of

the MultilayerPerceptron, LibSVM, and MLPClassifier methods

across different categories. In consistence with our previous

finding (21), the performance of MultilayerPerceptron function in

combination with WEKA partition membership preprocessing

shows outstanding results (Table 3).

The pattern of brain function in people who are using can be

different from those who are quitting and healthy people, also the

function of the brain can change under the influence of the type of

substance consumed (39) For example, by comparing the EEG of

alcoholics with the normal control group, an increase in beta power

and a decrease in alpha power, as well as a decrease in the ratio of

delta to theta, were confirmed (40). Marijuana consumption also

leads to instability of the alpha frequency band (41, 42). According

to the EEG recorded from people who have recently quit heroin a

decrease in alpha, an increase in beta and an increase in Delta and

Theta have been encountered in the central areas (43, 44). As a

result, the people in this research were divided into four groups, the

Addicted group included people who had just visited and the

treatment process had not yet started for them, in other words,

they were addicted, the First group included people who had less

than three days of treatment. The second group included people

who had been treated for more than two weeks, and finally the

Normal group, who were healthy people who had no history of drug

use. Using fuzzy logic techniques, the extracted features were

processed to develop an ML model. Thus, we employed HFD
Frontiers in Psychiatry 11
algorithms to convert EEG data into scalar values, resulting in a

set of features for each participant. These features were then filtered

and combined using the Partition Membership method.

To evaluate the ability of different Higuchi variables(features) in

discriminating different groups the output of four different feature

selection methods is presented in Supplementary Table S2.

Additionally, the study used a statistical analysis with the same

aim (Supplementary Table S3). According to these results, we find

out that different channels are responsible for the segregation of

different groups.

The comparison between the Addict group and the other

groups identified significant differences in Higuchi variables

across channels 2, 4, 6, 8, 9, 10, 12, 16, and 17. These channels

likely correspond to brain regions associated with addictive

behaviors and related cognitive processes. Addiction involves

complex interactions between several brain regions, including the

prefrontal cortex, limbic system, and reward pathways. The

observed differences in Higuchi variables within these channels

may reflect altered neurophysiological activity linked to

addictive tendencies.

The comparison of all groups against each other revealed

significant differences in Higuchi variables across channels 2, 4, 5,

8, 9, 10, 16, 17, and 18. These channels potentially correspond to

brain regions involved in various neurocognitive functions shared

among the groups, such as attention, memory, and executive

control. The observed differences in Higuchi variables within

these channels suggest variations in the complexity of neural

activity, reflecting the diversity of cognitive processes exhibited

across the groups.

Comparisons of the First group with other groups revealed

distinct sets of EEG channels exhibiting significant differences in

Higuchi Fractal Dimension (HFD) variables, reflecting variations in

neural complexity. For instance, when comparing the First group

with the Addict group, channels 1, 4, 6, 9, 10, 15, 16, 17, and 19

showed significant differences, which may correspond to brain

regions implicated in substance use disorders and associated

cognitive impairments, such as executive control, reward

processing, and attention regulation (45). Similarly, comparisons

between the First group and the Other groups (channels 4, 5, 8, 9,

10, 15, 16, 17, and 19), and between the First and Second groups

(channels 2, 3, 4, 5, 6, 13, 16, 17, and 19) revealed significant HFD

differences, suggesting variations in neurophysiological activity that

may underlie the unique cognitive and behavioral profiles of the

First group (31).

Additional group comparisons also demonstrated channel-

specific differences in HFD values: Normal vs. Addict (channels 2,

6, 9, 11, 12, 13, 17, 18), Normal vs. First (channels 3, 4, 5, 9, 11, 15,

17, 19), Normal vs. Others (channels 4, 8, 9, 10, 11, 16, 17, 18),

Normal vs. Second (channels 2, 3, 4, 5, 8, 9, 11, 14, 18), Second vs.

Addict (channels 2, 3, 4, 5, 8, 9, 10, 12, 16, 17), and Second vs.

Others (channels 2, 3, 5, 8, 9, 10, 14, 16, 17, 18). These results

indicate group-specific variations in neural complexity, potentially

reflecting differential engagement of brain regions involved in

addiction-related cognitive processes, including decision-making,

inhibitory control, and reward sensitivity (46). Overall, these
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findings highlight the utility of HFD-based EEG analysis for

capturing subtle neurophysiological differences across addiction

stages and treatment groups.

The very high classification performance reported in Table 3

(e.g., Normal vs. Others, F1 = 0.98; Normal vs. Addict, F1 = 0.91)

should be interpreted with caution. Although we employed strict

10-fold cross-validation, evaluation on a held-out independent test

set, and dimensionality reduction via the Partition Membership

filter, the possibility of overfitting cannot be entirely excluded. One

potential risk is that the model may have captured non-neural

artifacts (e.g., head movements, muscle activity, or subtle recording

differences) that coincidentally distinguished the groups. At the

same time, the application of fuzzy logic to EEG feature processing

constitutes a key methodological innovation of this study. Unlike

traditional feature selection methods (e.g., correlation-based or chi-

square) that operate on binary inclusion–exclusion rules, fuzzy logic

allows for partial membership of features to classes, offering a more

flexible and realistic way to address the inherent variability and

uncertainty of EEG data. This approach not only enhances

classification accuracy by retaining weak but informative signals

that would otherwise be discarded under strict thresholding, but

also improves interpretability: membership degrees provide an

intuitive measure of the relative importance of each feature for

group separation. Furthermore, the Partition Membership filter

generates sparse feature representations that effectively reduce

dimensionality while preserving subtle discriminative patterns,

thereby improving robustness to noise. Taken together, these

theoretical advantages (Supplementary Table S1 of Supplementary

File 1) highlight fuzzy logic as a promising framework for

uncovering latent neural patterns that may be overlooked by

conventional methods, while also underscoring the need for

careful validation to ensure that observed performance reflects

genuine brain signal differences rather than overfitting artifacts. It

is important to consider that the functional interpretations of these

EEG channels and their relationships with neurocognitive and

neurophysiological activities may require further investigation.

Incorporating additional techniques, such as neuroimaging and

comprehensive cognitive assessments, would contribute to a more

comprehensive understanding of the brain regions involved and the

specific neurocognitive and neurophysiological activities underlying

the observed differences in Higuchi variables across these EEG

channels. One of the main goals underlying this study is to focus on

and interpret the issue from various dimensions, as it is a social

problem that can expand to a large-scale social level. In this regard,

as is evident in the study, an interdisciplinary study has been carried

out by making use of both social sciences and engineering. As a

result of the study, it would be a good idea and useful if the artificial

intelligence-based model in this study could be connected to online

tools that can evaluate the effectiveness of addiction treatment

institutions and government spending. In this way, both public

and private institutions can be managed effectively, and more

accurate and rapid steps can be taken for patients. Therefore,
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policy development and implementation principles can be

presented on the public side. The findings of the study provide

important information for better understanding the

pathophysiology of opioid addiction and personalizing individual

diagnoses. This information can be used in the field of public

administration to develop programs to combat substance addiction

and to take and implement preventive measures. In particular, new

substance addiction policies can be developed to increase the

effectiveness of treatment programs and to take individual

differences into account in addiction treatment. In addition, this

study can make significant contributions for improving health

services in public administration, increasing social welfare and

security, and activating educational programs.

The second activity in the public administration dimension is

the efficient management of health services. With the right plans for

this, both the management of treatment centers and resource

allocation and planning will become easier. As the third activity,

education and awareness raising can be emphasized. In this regard,

public awareness programs can be organized about the causes,

effects, and treatment methods of addiction. The content of such

training programs can be updated and made more effective in light

of the findings of the study.

The last activity in public administration is social welfare and

security. This may be among the issues that politicians need to deal

with directly and put forward solutions. Of course, it may vary from

country to country. In this context, the relationship between

addiction and crime needs to be evaluated. Considering the

impact of substance abuse on crime rates, effective management

of addiction treatment can increase social safety. Public

administration can develop effective policies for the rehabilitation

and reintegration of individuals struggling with addiction. Social

services and support programs can be developed to ensure the

integration of individuals receiving addiction treatment into society.

In this context, the results of the study can be used to increase the

effectiveness of social service models used in the fight against

addiction. Also, dependent people will not be excluded.

Therefore , with these four basic act ivi t ies in public

administration, important steps will be taken towards the United

Nations Sustainable Development Goals.
4.1 Limitation

The relatively small sample size of this study, particularly in

relation to the number of pairwise (up to 11) and four-group

comparisons, limits the statistical power to detect smaller effects.

This may increase the likelihood of false negatives and, conversely,

may also result in overestimation of significant effects. We also note

that our study was designed as a proof-of-concept exploratory

analysis to assess the feasibility of nonlinear EEG dynamics and

fuzzy logic–based machine learning in the context of opioid

addiction. We believe the promising preliminary results support
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further investigation in larger cohorts, and we have highlighted this

as an important future direction.
4.2 Future directions

In the present study, we restricted our analyses to closed-eye

resting-state EEG recordings. However, the nonlinear measures

applied here—including Higuchi’s fractal dimension, entropy, and

fuzzy entropy—have also been shown to be effective in task-based or

functional EEG paradigms, where they capture task-specific brain

dynamics and cognitive load (23, 47–51). This suggests that our

framework could be readily extended to functional EEG experiments,

such as during memory, attention, or decision-making tasks.

Consequently, we propose that the Partition Membership filtering

and fuzzy-based feature processing described in this work are suitable

for task-based EEG analyses and could be used in follow-up studies to

probe stimulus- or task-specific signatures of addiction. Exploring

this avenue in future work may help to clarify whether the observed

differences in brain complexity generalize beyond resting-state

conditions and provide richer insights into the neurophysiological

mechanisms under study.

In future studies, it would be valuable to extend our

methodology beyond eyes-closed resting-state EEG to include

task-related or stimulus-evoked EEG paradigms, and to examine

joint complexity with other physiological signals such as

electrocardiography (ECG) or respiration. Prior work has shown

that EEG and ECG complexity correlate via multiscale entropy (52)

and that complexity synchronization across organ systems may

reveal deeper insights into neurophysiological regulation (53).
5 Conclusion

This study presents a machine learning framework integrating

fuzzy logic to analyze EEG data, offering an objective tool for

assessing addiction severity and treatment progress. By extracting

Higuchi Fractal Dimension features, refining them with the

Partition Membership method, and applying classifiers, we

identified Multilayer Perceptron as the most effective model for

distinguishing addiction stages. Traditional addiction assessments

rely heavily on self-reported data, which can be incomplete, biased,

or unreliable. The challenge of obtaining accurate treatment

histories underscores the value of our approach: EEG-based

complexity measures combined with fuzzy logic provide an

objective and data-driven complement to traditional demographic

and clinical assessments, helping to reduce dependence on self-

explanation by addicted individuals. The findings highlight

persistent brain function disruptions even after treatment

initiation, emphasizing the need for objective, brain-based

biomarkers. Overall, this work demonstrates the potential of AI-

driven neurophysiological analysis to strengthen addiction research.

Future efforts should prioritize broader validation and explore real-

time monitoring applications, paving the way toward more

personalized and effective treatment strategies.
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