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Background: Reliable noninvasive tools for assessing substance abuse treatment
and predicting outcomes remain a challenge. We believe EEG-derived
complexity measures may have a direct link to clinical diagnosis. To this aim,
our study involved a psychological investigation of four groups of current and
former male opium addicts. Furthermore, we propose a machine learning (ML)
model incorporating fuzzy logic to analyze EEG data and identify neural
complexity changes associated with opium addiction.

Method: Male participants were categorized into four groups: active addicts,
those with less than three days of treatment, those treated for over two weeks,
and healthy controls. Psychological assessments evaluate mental health and
addiction status. EEG data were collected using standardized electrode
placement, preprocessed to remove noise, and analyzed using the Higuchi
Fractal Dimension(HFD) to quantify neural complexity. Feature selection
methods and ML classifiers were applied to identify key patterns distinguishing
addiction stages.

Results: Distress levels varied significantly across groups and persisted post-
quitting. Addicts exhibited poorer general health than controls, though treatment
led to improvements. Significant differences in neural complexity were observed
in brain regions linked to attention, memory, and executive function. The ML
model effectively classified addiction stages based on EEG-derived features.
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Conclusion: This study demonstrates the potential of ML and fuzzy logic in
assessing addiction-related neural dynamics, offering insights into opioid
addiction’s pathophysiology. The findings highlight the promise of brainwave-
based biomarkers for personalized addiction diagnosis and treatment monitoring.

EEG data analysis, fuzzy logic, neural activity patterns, opium addiction, substance

abuse treatment

Analyzing EEG Data During Opium Addiction Treatment
Using a Fuzzy Logic-Based Machine Learning Model
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The flowchart illustrates the analysis of EEG data during opium addiction treatment using fuzzy logic-based machine learning. It includes the collec-
tion of data from opioid-addicted and healthy males, psychological evaluations, EEG data analysis with noise removal, and feature extraction. A fuzzy
logic machine learning model is then developed for treatment management, which identifies levels of distress and differences in the complexity of

neural activity.

1 Introduction

Addiction can be defined as the loss of control over drug use or
the compulsive seeking and use of drugs despite adverse
consequences. It is a neuropsychiatric disorder caused by
substance abuse that is strongly influenced by a person’s genetic
structure and the psychological and social context in which drug use
occurs. The disease cycle of addiction mainly results from
dopaminergic dysfunction, particularly in dopamine (DA)
secreted from the mesencephalic ventral tegmentum area (VTA)
to the nucleus accumbens (NAcc), prefrontal cortex (PFC), and
amygdala. Substances of abuse affect the same neural circuitry as
primary biological rewards such as food, water, and sex, leading to
substance dependence (1, 2). The understanding of addiction has
evolved, from being viewed as a moral condition in DSM-II to being
considered more based on psychobiological constructs in DSM-III
and beyond. DSM-IV added cognitive factors to the contributing
factors of addiction, while DSM-V focused on the psychological
changes caused by substance abuse that lead to cognitive
impairment (3). Consumed substances have different effects on
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neural processes, and substance use can lead to increased dopamine
consumption in the collecting systems, which becomes an
important element in goal-directed behavior and can ultimately
result in substance dependence (2).

Nonlinear dynamics methods are widely used to analyze
neurophysiological data due to the brain’s inherent complexity,
which spans multiple spatial and temporal scales. Higuchi Fractal
Dimension (HEFD) specifically quantifies the self-similarity and
complexity of neural oscillations, offering insights into the
balance between stochasticity and determinism in brain
dynamics. In the context of addiction, altered neural complexity
may reflect disruptions in cognitive control, reward processing, and
executive function. Various complexity measures have been
developed, including those based on random fractal theory,
information theory, and chaos theory. Gao et al. distinguish
between chaos and random phenomena and found that the
variations of complexity measures with time are either similar or
reciprocal in their study on the relations among different
complexity measures for EEG (4, 5).

Emotion recognition and addiction detection using
electroencephalogram (EEG) signals have garnered increasing
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interest due to their potential applications in mental health
monitoring, affective computing, and neurorehabilitation (6-8).
Among various techniques applied to analyze EEG signals, fuzzy
logic has emerged as a powerful mathematical framework to
manage uncertainty and imprecision. Its inherent ability to model
nonlinear and complex systems makes it highly suitable for EEG
analysis, which often involves noisy, nonstationary, and high-
dimensional data (9-12).

Fuzzy logic has been employed in diverse EEG-related domains,
such as brain-computer interfaces (BCIs), neurological disorder
diagnosis, and cognitive state assessment. For instance, studies have
demonstrated the efficacy of fuzzy logic in classifying visual
perception-related EEG signals and diagnosing epilepsy through
fuzzy expert systems (13-16). The flexibility of fuzzy set theory has
also enhanced feature processing by enabling partial membership-
based selection, which improves the robustness of classification
tasks. Tools like partition generator functions have been leveraged
to filter and transform EEG feature vectors into sparse
representations, particularly valuable in multi-instance data
scenarios. The Partition generator function can be used in feature
processing methods that are based on fuzzy set theory. These
methods use the idea of partial set membership to identify
relevant features that have high membership degrees for a given
class or target variable. By using fuzzy set theory in feature selection,
these methods can provide more flexible and accurate results than
traditional binary-based methods. This filter supports multi-
instance data and can be applied to a given dataset and features
for any partition generator to obtain these filtered vectors for all
instances. As a result of this, filtered instances are composed of the
relevant values and the class attribute (if set in the input data) and
rendered as sparse instances (14, 15).

Recent advancements in BCI technologies have further
facilitated the integration of fuzzy logic with machine learning.
Notably, Dhara et al. (2023) introduced a fuzzy ensemble-based
deep learning model that attained over 97% accuracy on the DEAP
dataset and 95% on AMIGOS, showcasing the synergy between
fuzzy logic and deep learning in refining model predictions (11). In
parallel, deep learning has gained significant momentum in EEG-
based emotion recognition. Hassouneh et al. (2020) developed a
real-time system combining facial expressions and EEG signals
using machine learning and neural networks, highlighting the
feasibility of accurate multimodal emotion classification (17). A
comprehensive review by Chutia and Baruah (2024) emphasized
the impact of convolutional and recurrent neural networks in
capturing spatiotemporal dynamics of EEG data (6). Similarly,
Khare et al. (2024) systematically reviewed a decade of emotion
recognition studies, underlining the increasing shift toward hybrid
models that integrate EEG with other physiological signals for
improved contextualization (7). This trend is echoed in the
review by Computers in Biology and Medicine (2023), which
notes the growing importance of transfer learning, attention
mechanisms, and multimodal fusion techniques in advancing
EEG-based emotion detection (8).

Beyond emotion recognition, fuzzy logic and EEG complexity
metrics have also proven useful in addiction research. For example,
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Marvi et al. (2023) applied recurrence quantification analysis and
entropy indices to distinguish multidrug users from healthy
individuals with 90% accuracy using support vector machines
(18). Zhou et al. (2024) further extended these findings by
employing wavelet-transformed P300 components and BiLSTM
networks to detect methamphetamine abuse with 83.85%
accuracy (19). Additionally, Crane et al. (2021) revealed altered
neural reward processing in cannabis users via EEG event-related
potentials, suggesting that EEG-based measures may serve as
biomarkers for addiction-related dysfunctions (20). Finally,
Hosseini et al. examined the effects of computer gaming on brain
function, offering insights using quantitative EEG (QEEG)
complexity analysis (21).

Collectively, these findings confirm that fuzzy logic approaches
—whether standalone or hybridized with deep learning—and EEG-
based signal complexity analysis substantially enhance both the
accuracy and interpretability of brain activity monitoring in
emotional and addiction-related research domains.

As mentioned previously, despite the widespread use of EEG in
clinical neuroscience, there remains a critical need for reliable,
noninvasive tools to assess substance addiction and monitor
treatment progression. We introduce a novel EEG dataset
comprising recordings from four distinct groups of male
participants: active opium addicts, individuals undergoing early
treatment (<3 days), individuals in extended treatment (>2 weeks),
and healthy controls. EEG signals were recorded from frontal and
parietal regions, preprocessed to remove artifacts, and analyzed using
the Higuchi Fractal Dimension to quantify EEG complexity.
Additionally, fuzzy logic-enhanced machine learning model was
applied to classify subjects based on their addiction stage. Addicted
individuals exhibited reduced EEG complexity in regions associated
with attention, memory, and executive function. These differences
were partially reversed in long-term treated subjects. Fuzzy approach
to HFD features of EEG complexity led to high classification accuracy
across groups. This study advances the field by addressing limitations
in previous works, refining EEG-based complexity analysis with fuzzy
logic, and moving toward practical applications in addiction
diagnosis and treatment monitoring.

2 Materials and methods
2.1 Participant selection

The research sample consisted of male participants selected from
the Ahang De-Addiction Institute, a treatment center located in the
15th district of Tehran. Established in 1992, the institute provides
addiction treatment services. Ethical authorization for research was
received through letter No. IR.UT.IRICSS.REC.1403.021 from the
Ethics Committee of the Institute for Cognitive Science Studies on
March 12, 2024.

To reduce confounding effects and obtain a homogeneous
sample, we restricted recruitment to male participants aged 18-40
years. This decision was based on evidence that EEG signals and
brain complexity measures are influenced by both sex and age, with
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prior studies showing clear sex-related differences in brain activity
and addiction patterns, as well as age-dependent changes in EEG
complexity. Epidemiological surveys in Iran further support this
choice, indicating that more than 90% of substance users are male
and that opium use is most prevalent in young adults, with a mean
age of initiation around 22 years and mean current ages in the early
30s (22, 23). While these studies are relatively old and addiction
trends may have evolved, our clinical experience with referrals to
addiction treatment centers continues to align with these statistics.
Therefore, in this study we focused on 18-40-year-old males to
capture the demographic group at highest risk, while minimizing
variability unrelated to addiction status.

The participants were categorized into four groups based on
their addiction status and treatment abstinence period. The first
group comprised actively addicted individuals who had not yet
started the treatment process. The second group consisted of
individuals with less than three days of treatment. The third
group included individuals who had undergone treatment for
more than two weeks. The fourth group consisted of healthy
individuals with no history of drug use.

The research was conducted over four consecutive days at a
camp, with a psychologist from the research team present. Written
consent was obtained from each participant before the study. The
initial assessment process involved collecting a range of
information, including basic demographics, substance abuse
history (first-time drug use, duration of drug use, primary
substance used, and expenditure on drugs), treatment history
(number of quit attempts, longest period of abstinence,
participation in Narcotics Anonymous meetings), history of risky
behaviors (injection drug use, risky sexual behaviors, involvement
with drug dealers, physical conflicts), medical and psychiatric
information (chronic medical conditions, physical problems,
depression, anxiety, hallucinations, delusions, suicide attempts or
self-mutilation, history of mental health hospitalizations, HIV
status), and family and social status (living conditions,
employment status, monthly income, family history of addiction,
number of children in the family, family’s emotional support).

Participants for the recently quit group and the control group
were selected through the quit addiction camp and direct
interviews. The active user group was recruited in collaboration
with Ahang addiction treatment clinics, and EEG registrations were
conducted with the consent of the patients. The study included 90
individuals undergoing treatment of opioid addiction and 22
healthy individuals with no history of drug abuse. All participants
were males aged between 18 and 40 years. Opioid-addicted
individuals were recruited from the AHANG drug rehabilitation
center, including both active users and those who had recently
sought treatment at the center. Psychological tests, such as the Drug
Use Disorders Identification Test (DUDIT) and the Depression,
Anxiety, and Stress Scale (DASS), were administered to all addicted
individuals. Additionally, information regarding basic
demographics, treatment history, history of risky behaviors,
history of drug abuse, medical status, and family and social
support was collected for the addicted group.
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2.2 Psychological tests

Psychological assessments were conducted to evaluate the
mental health and addiction status of participants. For the healthy
group, a clinical interview, SCL-90 questionnaire, and urine test
were administered to confirm mental health and the absence of
addiction. The SCL-90 is a widely used psychiatric tool consisting of
90 items scored on a 5-point scale, assessing nine symptom
dimensions including somatization, obsessive-compulsive
behavior, interpersonal sensitivity, depression, anxiety, hostility,
phobic anxiety, paranoid ideation, and psychoticism. In Iran, the
SCL-90 has been standardized and validated in multiple studies.

The following psychological questionnaires were completed for
each candidate:

Depression, Anxiety, and Stress Scale (DASS): The DASS
questionnaire consists of three subscales designed to measure
negative emotional states related to depression, anxiety, and
tension. Each subscale contains 7 items that assess various aspects
of these emotional states. From these 21 items, 8 items are related to
depression, 7 items are related to anxiety and 6 items are related
to stress.

General Health Questionnaire (GHQ): The GHQ is a self-
administered test used to investigate non-psychotic disorders. It is
a screening tool to identify individuals experiencing acute
conditions or disturbances in functioning (24).

Desires for Drug Questionnaire (DDQ): The DDQ assesses
craving for drugs and consists of 13 questions that measure three
main craving components: desire and intention to use drugs,
negative reinforcement, and control.

Obsessive Compulsive Drug Use Scale (OCDUS): The OCDUS
questionnaire measures three components related to heroin use:
heroin thoughts and interference, intention to use heroin and
control of consumption and resistance against thoughts and
decisions to use heroin.

Each questionnaire was completed using a Likert-scale answer
sheet, with participants rating their experiences or feelings based on
the provided options (25).

Note: The original versions of the DASS (26, 27), DDQ and
OCDUS (28) questionnaires were modified to improve internal
consistency by including additional questions.

2.3 EEG recording and data gathering

EEG data was collected from participants using a standardized
electrode placement scheme. The EEG signals were obtained from
19 active electrodes using the MEDICOM MTD device, following
the standard 10-20 system electrode placement. The electrode
locations included Fpl, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4,
T4, T5, P3, Pz, P4, T6, O1, and O2; using a Linked Ears reference.
The sampling frequency of the EEG signals was 250 Hz. In line with
our previous studies and to keep the approach simple and decrease
the computation steps, we calculated the HFD for the total EEG
signals (without focusing on any specific frequency band) was
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calculated (29). Except for the addict group, we recorded two EEG
signals in closed eye and one signal in open eye states (Figure 1).

2.4 Signal preprocessing and data cleaning

Signal preprocessing was conducted on the recordings obtained
from all 19 channels for each participant using EEGLAB v.2019.
The following steps were followed:

I. Artifact detection and removal: EEGLAB’s “Remove
baseline” and “Reject data using Clean Raw data and
ASR” options were utilized to eliminate artifacts from the
recorded EEG signals.

II. Out-of-band noise removal: A Finite Impulse Response

(FIR) filter was applied to filter the EEG time series

within a range of 1-70 Hz, effectively removing noise

outside this frequency range.

III. EEG re-referencing: Common average referencing was

employed, which involved calculating the average of all

channels and using it as the reference for each channel.

IV. Line noise suppression: A notch filter at 50 Hz was

utilized to suppress line noise interference.

. Repairing bad or missing channels: Any channels that

were deemed bad or missing were repaired through
interpolation, which involved replacing them with the

average value of their neighboring channels.

10.3389/fpsyt.2025.1635933

VI. Independent Component Analysis (ICA): ICA was
applied to detect components within each signal in
every channel.

VII. Removal of undesired components: Components
originating from undesired sources, such as
electrocardiography (ECG) and electromyography

(EMG), were removed to obtain artifact-free EEG signals.

These preprocessing steps enhance the quality of the EEG data
and minimize the impact of artifacts and noise, ensuring more
reliable and accurate analysis in subsequent stages of the study.

It is noteworthy that only closed-eye EEG segments were
analyzed, as the open-eye recordings did not provide sufficiently
reliable results. This approach minimizes the influence of ocular
artifacts and ensures that the analyzed EEG signals reflect neural
activity relevant to the study.

2.5 Higuchi algorithm and feature
extraction

Feature extraction is the process of transforming original data to
remove redundant or irrelevant information and producing a much
smaller and more manageable data set of more discriminator
variables. Fractal theory can be used to extract features from a
series. The Higuchi Fractal Dimension (HFD) algorithm is a
method for measuring the fractal dimension of discrete-time

FIGURE 1

Electrode positions for the 19-channel EEG apparatus. EEG data were collected using a standardized 19-channel electrode placement scheme with
the MEDICOM MTD device, following the international 10-20 system. The electrode locations included Fpl, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4,

T4, T5, P3, Pz, P4, T6, O1, and O2, using a Linked Ears reference.
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sequences. Here, fractal dimensions were extracted as features using
the Higuchi Fractal Dimension (HFD) algorithm (30, 31) (21).

2.6 Partition membership method and
feature processing

The fuzzy function maps the membership degree of an element for
a given set to a real value in between [0,1]. There are some feature
processing methods based on the Partition generator function that
come from the fuzzy set idea. To calculate these feature vectors for all
instances, WEKA’s PartitionMembershipFilter was employed, which
can apply any partition generator to a given dataset. The extracted
features were filtered through propositionalization and partitioning
using the PartitionMembership filter. WEKA (Waikato Environment
for Knowledge Analysis) (32, 33), a non-commercial and open-source
data mining system was utilized for this purpose.

For more details on the mathematical principles and
applications of Higuchi’s Fractal Dimension (HFD) and fuzzy
logic in our study, please refer to Supplementary File 1, which
provides an in-depth explanation of the methods and their
integration into the analysis of EEG data.

2.7 Feature selection

We are interested in the feature subset containing the minimum
number of features that contribute to accuracy the most (29). Here
we used CorrelationAttributeEval, ChiSquaredAttributeEval,
SignificanceAttributeEval, and PrincipalComponents as the
attribute evaluator and “Ranker” as the search method to find the
most important attribute in discrimination between different
groups. For three methods, WEKA outputs are a ranked list of
attributes; however, to determine the priority of features using
PrincipalComponents, we follow these steps: 1- Computing the
correlation matrix; 2- Obtaining the eigenvalues and eigenvectors;
3- Sorting eigenvalues; eigenvalues represent the amount of
variance explained by each principal component. Higher
eigenvalues indicate more important principal components. 4-
Selecting first principal components; 5- Determining feature
importance; The coefficients within the eigenvectors indicate the
importance of the original features in the respective principal
component. Larger coefficients suggest higher importance (34).

2.8 Classification

Finally, supervised machine-learning classification using a
Support Vector Machine (SVM) (35), MLPClassifier (Trains a
multilayer perceptron with one hidden layer) and Multilayer
Perceptron (A classifier that uses backpropagation to learn a
multi-layer perceptron) were employed for feature selection. The
calculations were done using WEKA default parameters.
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2.9 Statistical analysis of features

A parallel analysis of machine learning (ML) was conducted to
assess the statistical significance of Higuchi features using
appropriate statistical methods. The objective was to identify
which channels exhibited significantly different complexities
between different groups. Firstly, the Kolmogorov-Smirnov test
was employed to assess the normality of the data, revealing that
the data satisfied the normality assumption (P > 0.05).
Subsequently, the One-way ANOVA test was utilized to compare
the four groups across 38 Higuchi variables. Tukey’s test is a single-
step multiple comparison procedure and statistical test. It can be
used to find means that are significantly different from each other. it
compares all possible pairs of means and applies simultaneously to
the set of all pairwise comparisons.

The same method was used to analyze the results of
psychological assessments of participants. Here, we take together
all participants who had undergone treatment (second and
third groups).

3 Results

During the preprocessing steps, some records were detected as
being corrupted or disturbed; therefore, the final numbers of
analyzed participants of different groups were displayed in Table 1.

3.1 Psychological tests

The results of the psychological assessments of participants are
presented in Table 2 and Supplementary Table S1. Here, we take
together all participants who had undergone treatment (second and
third groups).

For more details on the psychological assessments of the
participants, please refer to Supplementary File 2.

3.2 Classification

In this study, we utilized HFD algorithms to convert the series
of EEG data into scalar values, generating a set of features specific to
each participant. The HFD algorithms processed the signals from
each EEG channel, resulting in a total of 38 features for every
participant. These features were derived from EEG channels, with
pairs like Higu_1 and Higu_2 originating from channel 1, and the
third and fourth Higuchi features originating from channel 2.

Initially, the machine learning methods struggled to distinguish
between different classes without applying the fuzzy approach. To
improve classification performance, we utilized the Partition
Membership method in WEKA to filter and combine the
extracted features. We then conducted classification experiments
on both the raw (unprocessed) and filtered feature sets using three
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TABLE 1 The final numbers of analyzed participants.

EEG recording Number of Number of EEG data
state participants after preprocessing
Eye close 19 19 405 £ 7.9 100%
Addict
Eye open 19 19 405+79 100%
Eye close 24 48 355+ 6.6 100%
First Group
Eye open 24 24 355+ 6.6 100%
Eye close 23 46 38.£92 100%
Second Group
Eye open 23 23 38.£92 100%
Eye close 20 36 37.1+38 100%
Normal
Eye open 20 18 37.1+3.8 100%

TABLE 2 Results of the psychological assessments of the participants. Here, we take together all participants who had undergone treatment (second
and third groups).

All participants

Control (actively who had
Healthy group addicted) grou undergone
Description group 9 P value
treatment
Mean + SD
Depression 4.18 £ 5.14 11.67 + 6.41 12.3 £ 5.93 0.001
Anxiety 3.76 + 3.36 9.29 £527 11.61 + 5.19 0.001
DASS Stress 6.53 £ 5.17 12.9 +£5.77 1465+ 7.3 0.001
Total 14.47 £ 12.07 33.86 + 16.33 38.48 + 16.14 0.001
Number 17 21 23 -
Physical 417 £2.6 4.76 £ 4.36 8.26 + 4.26 0.002
Sleep Anxiety 5.17 + 3.49 6.19 £ 3.5 9.3 +499 0.005
Social Interaction 7.17 £ 3.94 7 +4.99 8.57 £ 3.38 0.396
GHQ
Depression 3 +£2.09 6.71 £ 5.15 6.78 £ 4.9 0.013
Total 19.61 + 10.16 24.67 + 14.04 3291 + 13,51 0.006
Number 18 21 23 -
Craving For Consumption And 91507 1109 + 459 0.159
Mental Occupation Of Substances o o '
The Impact Of Drug Use On The 42443 691 + 2.61 0.003
Work And Life Of Consumers T T '
OCDUS Motlva.tlon .And Excitement Of 819 + 3.83 12.83 + 4.48 0.001
Violation Of Control
Resistance To Drug Use 4.05 +2.44 4.7 £2.22 0.362
Total B 25.1 +12.61 3591 £ 119 0.006
Number 21 23 -
Craving And Intention To Consume 13.67 + 5.79 17.13 £ 13.33 0.278
Negative Reinforcement 9.19 + 6.24 10.35 £ 7.29 0.576
DDQ Consumption Control 3.86 + 3.18 2.61 +1.53 0.1
Total 26.33 + 9.87 30.09 + 20.17 0.444
Number 21 23 -
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classification methods: MLPClassifier, LibSVM, and
MultilayerPerceptron. This comparison allowed us to evaluate
whether feature selection and transformation via Partition
Membership improved classification accuracy and model
robustness in differentiating addiction stages.

To evaluate the performance, we considered four distinct
groups and examined a total of 11 combinations. These
combinations included a category that encompassed all groups,
four categories representing each group, one category where a single
group was compared against a merged group of the remaining
three, and six categories involving pairwise comparisons between
groups. Before using the Partition Membership method in WEKA
without a fuzzy approach, the machine learning methods failed to
distinguish between different classes (data has been not shown). The
results obtained from fuzzy analyses are presented in Table 3.

It is noteworthy that the MultilayerPerceptron method yielded
the most favorable outcomes for the majority of categories when the
filtered attributes were utilized. However, in two categories, the
Partition Membership filter only produced one partition and failed
to effectively classify the participants. Additionally, in two categories,
the LibSVM method outperformed the MultilayerPerceptron
method. The results obtained from the MultilayerPerceptron
method are also provided for these two categories.

3.3 Feature priority

To evaluate the effectiveness of the feature processing, the
study assessed the output of four different feature selection
methods. CorrelationAttributeEval, Principal Components,
ChiSquaredAttributeEval, and SignificanceAttributeEval are the
employed methods. However, the last two methods did not find
any difference between the features except two; higu_29 for First vs
Others and higu_9 Normal vs Second; interestingly, these attributes
were also proposed by the CorrelationAttributeEva methods. For
the other two methods, we select the 5 high-ranked attributes and
present them in Supplementary Table S2. By analyzing the
eigenvalues and eigenvectors, you can identify the most
influential features in your dataset. Features with high coefficients
in the principal components associated with large eigenvalues
contribute significantly to the variability and can be considered
high-priority features. For more details on the Feature priority,
please refer to Supplementary File 2.

The statistical analysis revealed significant differences among
the four groups in terms of Higuchi variables. Specifically, the
variables higu_7, higu_9, higu_11, and higu_29 exhibited
statistically significant variations (P value < 0.05). These variables
were derived from channels 4, 5, 6, and 15, respectively. To further
investigate the differences within the groups, post hoc analysis was
performed using Tukey’s test. The results of the post hoc analysis are
summarized in Supplementary Table S3, which presents the
variables that showed a statistically significant difference between
at least two different groups.

Table 3 presents classification performance across the analyzed
groups. Each comparison is explicitly labeled, e.g., “First Group vs.
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Second Group,” to avoid ambiguity. The table is formatted in the
standard three-line style (top line, header-body separator, and
bottom line) for clarity. Key features contributing to group
differentiation are mapped to their corresponding EEG channels,
and anatomical regions (e.g., prefrontal cortex, limbic system) are
indicated. This allows linking changes in neural complexity to
cognitive processes associated with addiction, such as executive
control, decision-making, and reward processing.

4 Discussion

This study aims to propose a machine learning (ML) model based
on fuzzy logic for analyzing EEG data in order to enhance the
understanding of the biological mechanisms underlying opium
addiction and enable personalized diagnostics based on individual
neural activity patterns. We analyzed EEG data from four groups
based on their addiction status and treatment abstinence period by
using of extracted complexity features that serve as indicators of neural
dynamics in the brain. Classification experiments using different
methods and attribute sets showed that MultilayerPerceptron
function in combination with WEKA partition membership
preprocessing resulted in outstanding results. All participants in this
study were male and between 18-40 years of age. While this
demographic restriction limits the generalizability of our findings to
young adult male opioid users, it also provides an advantage in terms
of methodological rigor. By studying a relatively homogeneous group,
we were able to partially offset the limitations of a small sample size
and reduce the influence of confounding factors such as sex, age, and
ethnicity. This approach increases the internal validity of our findings,
although future studies with larger and more diverse populations will
be needed to confirm their broader applicability.

Table 2 and Supplementary Table S1 present the results of
psychological assessments that were conducted to evaluate the
mental health and addiction status of the participants.

The DASS questionnaire revealed that despite addiction
treatment, the depression factor remained unchanged and did not
differ between the control and addiction groups, but it decreased in
the healthy group. In terms of anxiety, there was no significant
difference between the recently quit group and the control group,
but both differed significantly from the healthy group. The stress
factor showed no significant difference between the recently quit
group and the control group, but both significantly differed from
the healthy group. Overall, the DASS questionnaire indicated that
distress levels were significantly different between the groups, and
even after quitting, the difference persisted.

Regarding the GHQ questionnaire, individuals who had
recently quit exhibited higher levels of physical symptoms, which
resolved immediately after quitting. The control group, who had
quit more recently, showed similarities to the healthy group. The
sleep factor also significantly differed between the recently quit
group and both the control and healthy groups. Social interaction
did not significantly differ between the three groups and did not
change after quitting. The depression factor in the GHQ
questionnaire aligned with the findings from the DASS
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TABLE 3 The obtained results from the classifiers.

Confusion
Groups Instances  Classifiers TP rate FPrate Precision Recall F-measure MCC ROC Area PRC area Class matrix
b
Milp 0.79 0.04 0.79 0.79 0.79 0.75 0.90 0.86 a = addict 15 1 2 1
0.90 0.05 0.87 0.90 0.88 0.84 0.93 0.78 b = Second 126 1 1
All 114 0.90 0.06 0.85 0.90 0.88 0.83 0.95 0.82 ¢ = first 2 0 28 1
0.83 0.04 091 0.83 0.87 0.81 0.95 0.84 d = normal 1 32 29
0.86 0.05 0.86 0.86 0.86 0.81 0.93 0.82 Weighted Avg
Mip 0.11 0.11 0.17 0.11 0.13 0.00 0.48 022 a = addict 217
Addict vs Others | 114 0.90 0.90 0.83 0.90 0.86 0.00 0.48 0.81 b = Others 10 | 85
076 0.76 0.72 0.76 0.74 0.00 0.48 071 Weighted Avg
Mlp 0.95 0.03 0.95 0.95 0.95 0.92 0.92 0.88 = addict 181
First vs Addict 50 0.97 0.05 0.97 0.97 0.97 0.92 0.92 0.90 b = first 1 30
0.96 0.05 0.96 0.96 0.96 0.92 0.92 0.89 Weighted Avg
Mlp 0.98 0.19 0.93 0.98 0.95 0.82 0.87 091 a = Others 81 | 2
First vs Others 114 0.81 0.02 093 0.81 0.86 0.82 0.87 0.76 b = first 6 25
0.93 0.15 0.93 093 0.93 0.82 0.87 0.87 Weighted Avg
Mlp 048 0.03 0.93 0.48 0.64 0.52 0.75 0.73 a = Second 14 15
First vs Second 60 0.97 0.52 0.67 0.97 0.79 0.52 0.75 0.72 b = first 1 30
0.73 028 0.80 0.73 0.72 0.52 0.75 0.73 Weighted Avg
Milp 1.00 0.14 0.79 1.00 0.88 0.82 0.95 0.90 a = addict 19 0
Normal vs
Addict 54 0.86 0.00 1.00 0.86 0.92 0.82 0.95 0.97 b = normal 5 30
091 0.05 0.93 091 091 0.82 0.95 0.95 Weighted Avg
LibSVM 0.84 0.06 093 0.84 0.88 0.79 0.89 0.86 a = first 2% | 5
Normal vs First 66 0.94 0.16 0.87 0.94 0.90 0.79 0.89 0.85 b = normal 2 33
0.89 0.11 0.90 0.89 0.89 0.79 0.89 0.85 Weighted Avg
Normal vs » Milp 0.99 0.03 0.99 0.99 0.99 0.96 0.98 0.99 a = others 78 1
Others 0.97 0.01 097 097 0.97 0.96 0.98 091 b = normal 1| 34
(Continued)
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TABLE 3 Continued

Confusion
Instances  Classifiers FP rate Precision F-measure ROC Area PRC area AELIES

0.98 0.02 0.98 0.98 0.98 0.96 0.98 0.97 Weighted Avg

Mip 0.97 0.09 0.90 0.97 0.93 0.88 0.94 0.86 a = Second 28 1

IS\LZ";Z] ve 64 091 0.03 0.97 0.91 0.94 0.88 0.94 0.97 b = normal ERNE?)
0.94 0.06 0.94 0.94 0.94 0.88 0.94 0.92 Weighted Avg

LibSVM 0.90 0.07 0.90 0.90 0.90 0.83 091 0.84 a = addict 7| 2

Second vs Addict | 48 0.93 0.11 0.93 0.93 0.93 0.83 091 091 b = Second PRy
0.92 0.09 0.92 0.92 0.92 0.83 091 0.88 Weighted Avg

Mip 0.74 0.79 0.73 0.74 0.74 005 0.48 0.76 a = Others 62 23

Second vs Others | 114 0.21 0.26 0.21 0.21 0.21 -0.05 0.48 0.27 b = Second 21 8
0.61 0.66 0.60 0.61 0.60 -0.05 0.48 0.63 Weighted Avg

Mip 0.58 0.34 0.60 0.58 0.59 0.24 0.63 0.62 a = first 18 | 13

Normal vs First | 66 0.66 0.42 0.64 0.66 0.65 0.24 0.63 0.61 b = normal 12| 23
0.62 0.38 0.62 0.62 0.62 024 0.63 0.62 Weighted Avg

Mip 0.74 0.00 1.00 0.74 0.85 0.79 0.98 0.97 a = addict u | s

Second vs Addict | 48 1.00 0.26 0.85 1.00 092 0.79 0.98 0.99 b = Second 0 2
0.90 0.16 0.91 0.90 0.89 0.79 0.98 0.98 Weighted Avg
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questionnaire. In general, the total factors of the GHQ
questionnaire demonstrated that addicted individuals had lower
general health compared to healthy individuals. Treatment
improved general health but still posed challenges compared to
the healthy group.

Regarding the OCDUS questionnaire, cravings, and mental
preoccupation did not show significance or differences between
the recently quit group and the control group. However, the impact
of drug use on work and life significantly differed between the
recently quit group and the control group. Significant differences
were also found in motivation, excitement, and violation of control
between the recently quit group and the control group, indicating
that emotional experiences were more consciously regulated in
different situations. There was no significant difference in
resistance to drug use between the two groups. Overall, the
OCDUS questionnaire showed a significant difference in factors
between the two groups, indicating a decrease in the urge to
consume in the past week for both compared groups. However,
intention and desire to consume were not significant, and there was
high variability in dispersion and standard deviation.

Finally, the DDQ questionnaire did not yield any significant
differences between the two groups in all factors.

The fuzzy-rough feature selection method involves using fuzzy
logic to calculate the relevance of each feature and then using rough
set theory to select the most relevant features. The method was
shown to outperform other feature selection methods in terms of
accuracy and efficiency (36-38). However, here we used WEKA
partition membership as a filter based on fuzzy logic. It is clear from
Table 3 that Classification experiments using different methods and
attribute sets were conducted, revealing the varying performance of
the MultilayerPerceptron, LibSVM, and MLPClassifier methods
across different categories. In consistence with our previous
finding (21), the performance of MultilayerPerceptron function in
combination with WEKA partition membership preprocessing
shows outstanding results (Table 3).

The pattern of brain function in people who are using can be
different from those who are quitting and healthy people, also the
function of the brain can change under the influence of the type of
substance consumed (39) For example, by comparing the EEG of
alcoholics with the normal control group, an increase in beta power
and a decrease in alpha power, as well as a decrease in the ratio of
delta to theta, were confirmed (40). Marijuana consumption also
leads to instability of the alpha frequency band (41, 42). According
to the EEG recorded from people who have recently quit heroin a
decrease in alpha, an increase in beta and an increase in Delta and
Theta have been encountered in the central areas (43, 44). As a
result, the people in this research were divided into four groups, the
Addicted group included people who had just visited and the
treatment process had not yet started for them, in other words,
they were addicted, the First group included people who had less
than three days of treatment. The second group included people
who had been treated for more than two weeks, and finally the
Normal group, who were healthy people who had no history of drug
use. Using fuzzy logic techniques, the extracted features were
processed to develop an ML model. Thus, we employed HFD
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algorithms to convert EEG data into scalar values, resulting in a
set of features for each participant. These features were then filtered
and combined using the Partition Membership method.

To evaluate the ability of different Higuchi variables(features) in
discriminating different groups the output of four different feature
selection methods is presented in Supplementary Table S2.
Additionally, the study used a statistical analysis with the same
aim (Supplementary Table S3). According to these results, we find
out that different channels are responsible for the segregation of
different groups.

The comparison between the Addict group and the other
groups identified significant differences in Higuchi variables
across channels 2, 4, 6, 8, 9, 10, 12, 16, and 17. These channels
likely correspond to brain regions associated with addictive
behaviors and related cognitive processes. Addiction involves
complex interactions between several brain regions, including the
prefrontal cortex, limbic system, and reward pathways. The
observed differences in Higuchi variables within these channels
may reflect altered neurophysiological activity linked to
addictive tendencies.

The comparison of all groups against each other revealed
significant differences in Higuchi variables across channels 2, 4, 5,
8,9, 10, 16, 17, and 18. These channels potentially correspond to
brain regions involved in various neurocognitive functions shared
among the groups, such as attention, memory, and executive
control. The observed differences in Higuchi variables within
these channels suggest variations in the complexity of neural
activity, reflecting the diversity of cognitive processes exhibited
across the groups.

Comparisons of the First group with other groups revealed
distinct sets of EEG channels exhibiting significant differences in
Higuchi Fractal Dimension (HFD) variables, reflecting variations in
neural complexity. For instance, when comparing the First group
with the Addict group, channels 1, 4, 6, 9, 10, 15, 16, 17, and 19
showed significant differences, which may correspond to brain
regions implicated in substance use disorders and associated
cognitive impairments, such as executive control, reward
processing, and attention regulation (45). Similarly, comparisons
between the First group and the Other groups (channels 4, 5, 8, 9,
10, 15, 16, 17, and 19), and between the First and Second groups
(channels 2, 3, 4, 5, 6, 13, 16, 17, and 19) revealed significant HFD
differences, suggesting variations in neurophysiological activity that
may underlie the unique cognitive and behavioral profiles of the
First group (31).

Additional group comparisons also demonstrated channel-
specific differences in HFD values: Normal vs. Addict (channels 2,
6,9,11, 12,13, 17, 18), Normal vs. First (channels 3, 4, 5, 9, 11, 15,
17, 19), Normal vs. Others (channels 4, 8, 9, 10, 11, 16, 17, 18),
Normal vs. Second (channels 2, 3, 4, 5, 8, 9, 11, 14, 18), Second vs.
Addict (channels 2, 3, 4, 5, 8, 9, 10, 12, 16, 17), and Second vs.
Others (channels 2, 3, 5, 8, 9, 10, 14, 16, 17, 18). These results
indicate group-specific variations in neural complexity, potentially
reflecting differential engagement of brain regions involved in
addiction-related cognitive processes, including decision-making,
inhibitory control, and reward sensitivity (46). Overall, these
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findings highlight the utility of HFD-based EEG analysis for
capturing subtle neurophysiological differences across addiction
stages and treatment groups.

The very high classification performance reported in Table 3
(e.g., Normal vs. Others, F1 = 0.98; Normal vs. Addict, F1 = 0.91)
should be interpreted with caution. Although we employed strict
10-fold cross-validation, evaluation on a held-out independent test
set, and dimensionality reduction via the Partition Membership
filter, the possibility of overfitting cannot be entirely excluded. One
potential risk is that the model may have captured non-neural
artifacts (e.g., head movements, muscle activity, or subtle recording
differences) that coincidentally distinguished the groups. At the
same time, the application of fuzzy logic to EEG feature processing
constitutes a key methodological innovation of this study. Unlike
traditional feature selection methods (e.g., correlation-based or chi-
square) that operate on binary inclusion—-exclusion rules, fuzzy logic
allows for partial membership of features to classes, offering a more
flexible and realistic way to address the inherent variability and
uncertainty of EEG data. This approach not only enhances
classification accuracy by retaining weak but informative signals
that would otherwise be discarded under strict thresholding, but
also improves interpretability: membership degrees provide an
intuitive measure of the relative importance of each feature for
group separation. Furthermore, the Partition Membership filter
generates sparse feature representations that effectively reduce
dimensionality while preserving subtle discriminative patterns,
thereby improving robustness to noise. Taken together, these
theoretical advantages (Supplementary Table S1 of Supplementary
File 1) highlight fuzzy logic as a promising framework for
uncovering latent neural patterns that may be overlooked by
conventional methods, while also underscoring the need for
careful validation to ensure that observed performance reflects
genuine brain signal differences rather than overfitting artifacts. It
is important to consider that the functional interpretations of these
EEG channels and their relationships with neurocognitive and
neurophysiological activities may require further investigation.
Incorporating additional techniques, such as neuroimaging and
comprehensive cognitive assessments, would contribute to a more
comprehensive understanding of the brain regions involved and the
specific neurocognitive and neurophysiological activities underlying
the observed differences in Higuchi variables across these EEG
channels. One of the main goals underlying this study is to focus on
and interpret the issue from various dimensions, as it is a social
problem that can expand to a large-scale social level. In this regard,
as is evident in the study, an interdisciplinary study has been carried
out by making use of both social sciences and engineering. As a
result of the study, it would be a good idea and useful if the artificial
intelligence-based model in this study could be connected to online
tools that can evaluate the effectiveness of addiction treatment
institutions and government spending. In this way, both public
and private institutions can be managed effectively, and more
accurate and rapid steps can be taken for patients. Therefore,
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policy development and implementation principles can be
presented on the public side. The findings of the study provide
important information for better understanding the
pathophysiology of opioid addiction and personalizing individual
diagnoses. This information can be used in the field of public
administration to develop programs to combat substance addiction
and to take and implement preventive measures. In particular, new
substance addiction policies can be developed to increase the
effectiveness of treatment programs and to take individual
differences into account in addiction treatment. In addition, this
study can make significant contributions for improving health
services in public administration, increasing social welfare and
security, and activating educational programs.

The second activity in the public administration dimension is
the efficient management of health services. With the right plans for
this, both the management of treatment centers and resource
allocation and planning will become easier. As the third activity,
education and awareness raising can be emphasized. In this regard,
public awareness programs can be organized about the causes,
effects, and treatment methods of addiction. The content of such
training programs can be updated and made more effective in light
of the findings of the study.

The last activity in public administration is social welfare and
security. This may be among the issues that politicians need to deal
with directly and put forward solutions. Of course, it may vary from
country to country. In this context, the relationship between
addiction and crime needs to be evaluated. Considering the
impact of substance abuse on crime rates, effective management
of addiction treatment can increase social safety. Public
administration can develop effective policies for the rehabilitation
and reintegration of individuals struggling with addiction. Social
services and support programs can be developed to ensure the
integration of individuals receiving addiction treatment into society.
In this context, the results of the study can be used to increase the
effectiveness of social service models used in the fight against
addiction. Also, dependent people will not be excluded.
Therefore, with these four basic activities in public
administration, important steps will be taken towards the United
Nations Sustainable Development Goals.

4.1 Limitation

The relatively small sample size of this study, particularly in
relation to the number of pairwise (up to 11) and four-group
comparisons, limits the statistical power to detect smaller effects.
This may increase the likelihood of false negatives and, conversely,
may also result in overestimation of significant effects. We also note
that our study was designed as a proof-of-concept exploratory
analysis to assess the feasibility of nonlinear EEG dynamics and
fuzzy logic-based machine learning in the context of opioid
addiction. We believe the promising preliminary results support

frontiersin.org


https://doi.org/10.3389/fpsyt.2025.1635933
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

DehAbadi et al.

further investigation in larger cohorts, and we have highlighted this
as an important future direction.

4.2 Future directions

In the present study, we restricted our analyses to closed-eye
resting-state EEG recordings. However, the nonlinear measures
applied here—including Higuchi’s fractal dimension, entropy, and
fuzzy entropy—have also been shown to be effective in task-based or
functional EEG paradigms, where they capture task-specific brain
dynamics and cognitive load (23, 47-51). This suggests that our
framework could be readily extended to functional EEG experiments,
such as during memory, attention, or decision-making tasks.
Consequently, we propose that the Partition Membership filtering
and fuzzy-based feature processing described in this work are suitable
for task-based EEG analyses and could be used in follow-up studies to
probe stimulus- or task-specific signatures of addiction. Exploring
this avenue in future work may help to clarify whether the observed
differences in brain complexity generalize beyond resting-state
conditions and provide richer insights into the neurophysiological
mechanisms under study.

In future studies, it would be valuable to extend our
methodology beyond eyes-closed resting-state EEG to include
task-related or stimulus-evoked EEG paradigms, and to examine
joint complexity with other physiological signals such as
electrocardiography (ECG) or respiration. Prior work has shown
that EEG and ECG complexity correlate via multiscale entropy (52)
and that complexity synchronization across organ systems may
reveal deeper insights into neurophysiological regulation (53).

5 Conclusion

This study presents a machine learning framework integrating
fuzzy logic to analyze EEG data, offering an objective tool for
assessing addiction severity and treatment progress. By extracting
Higuchi Fractal Dimension features, refining them with the
Partition Membership method, and applying classifiers, we
identified Multilayer Perceptron as the most effective model for
distinguishing addiction stages. Traditional addiction assessments
rely heavily on self-reported data, which can be incomplete, biased,
or unreliable. The challenge of obtaining accurate treatment
histories underscores the value of our approach: EEG-based
complexity measures combined with fuzzy logic provide an
objective and data-driven complement to traditional demographic
and clinical assessments, helping to reduce dependence on self-
explanation by addicted individuals. The findings highlight
persistent brain function disruptions even after treatment
initiation, emphasizing the need for objective, brain-based
biomarkers. Overall, this work demonstrates the potential of Al-
driven neurophysiological analysis to strengthen addiction research.
Future efforts should prioritize broader validation and explore real-
time monitoring applications, paving the way toward more
personalized and effective treatment strategies.
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