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Shijiazhuang, China, 2Department of Psychiatric and Psychological, Hebei Provincial Hospital of
Traditional Chinese Medicine, Shijiazhuang, China
Background: Individuals with bipolar disorder (BD) exhibit a significantly

increased risk of cardiovascular disease, yet the specific mechanisms linking

heart failure (HF) and BD remain poorly understood. This study aimed to identify

common potential diagnostic biomarkers associated with both conditions.

Methods: Differentially expressed genes (DEGs) were analyzed separately in HF

(GSE57338) and BD (GSE5389) datasets. Key module genes for each condition

were identified through co-expression network analysis and intersected with

DEGs to pinpoint candidate genes. Subsequently, a protein-protein interaction

(PPI) network, receiver operating characteristic (ROC) analysis, and expression

validation were employed to identify potential diagnostic biomarkers. Gene set

enrichment analysis (GSEA) and drug predictions were also conducted. Clinical

validation of biomarker expression was performed via quantitative polymerase

chain reaction (qPCR).

Results: A total of 44 candidate genes were identified as being associated with

both HF and BD. Six potential diagnostic biomarkers (UBE2E3, FZD2, EXT1,

DCHS1, BMP4, and ALDH1A2) were selected. These biomarkers were

predominantly linked to the “cytokine-cytokine receptor interaction” and “ECM

receptor interaction” pathways. Additionally, four potential drugs—

VANTICTUMAB, RETINOL, HYDROCHLOROTHIAZIDE, and ATENOLOL—were

identified as targets for these biomarkers. Expression trends of FZD2, DCHS1,

BMP4, and ALDH1A2 validated by qPCR were consistent with dataset findings.

Conclusion: This study preliminarily explored the common molecular

mechanisms between HF and BD, and identified 6 potential biomarkers for

early detection, providing a solid theoretical basis for future research on HF

and BD.
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1 Introduction

Bipolar disorder (BD) is a severe mental disorder that typically

first appears in adolescence or young adulthood (1). Studies have

shown that the incidence rate of BD ranges from 1% to 3% (2, 3). The

disease is mainly characterized by significant mood swings,

neuropsychological deficits, and major changes in the physiological

and immune systems. These changes may lead to dysfunction and are

accompanied by a higher mortality rate (4, 5). BD includes three main

phases: depressive phase, manic phase, and hypomanic phase. Patients

experience recurrent episodes between these phases, going through

periodic mood swings (6). Concurrently, societal advances, shifts in

lifestyle, and an aging population have contributed to a significant rise

in heart failure (HF) cases, placing considerable strain on public health

(7, 8). Notably, research has demonstrated that individuals with severe

mental illnesses, such as BD, schizophrenia, and major depression,

carry a disproportionate cardiovascular disease (CVD) burden

compared to the general population, resulting in a life expectancy

reduction of approximately 20 years for these individuals (9, 10).

These findings underscore the urgent need for targeted interventions

to prevent cardiovascular mortality in these high-risk groups.

The heightened cardiovascular risk in BD can be attributed to

several factors, including lifestyle choices, adverse effects of

psychotropic medications, and shared genetic predispositions

between severe psychiatric disorders and CVD (11, 12).

Furthermore, patients with BD often exhibit autonomic nervous

system dysfunction, leading to reduced heart rate variability

compared to healthy individuals, which further elevates the risk

of cardiovascular events (12). Psychological stressors, such as

emotional fluctuations and heightened anxiety, are common

among patients with BD and may exacerbate cardiac dysfunction

through neuroendocrine pathways, intensifying HF symptoms (13).

Recent studies have highlighted the significance of the heart-brain

axis in regulating cardiac function, particularly in patients with HF.

This bidirectional feedback system can lead to both acute and

chronic functional impairments (14). Studies have shown that

excessive activation of the sympathetic nerve in patients with

heart failure (HF) may lead to myocardial remodeling, while

abnormal processing of stress signals in the prefrontal cortex of

patients with bipolar disorder (BD) may exacerbate their mood

swings (15). Additionally, cytokines such as TNF-a and IL-6 play

key roles in myocardial fibrosis in HF and neuroinflammation in

mental disorders (16, 17). However, effective biomarkers and

therapeutic strategies are currently lacking to address the complex

pathology of such patients. Against this backdrop, this study aims to

identify potential biomarkers associated with HF and BD through
Abbreviations: BD, bipolar disorder; HF, heart failure; DEGs, differentially

expressed genes; GSEA, gene set enrichment analysis; qPCR, quantitative PCR;

CVD, cardiovascular disease; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes; PPI, protein-protein interaction; DCHS1, dachsous

cadherin-related 1; BMP4, bone morphogenetic protein 4 ; FZD2, Frizzled-2;

ALDH1A2, Aldehyde Dehydrogenase 1, Family Member A2.
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bioinformatics approaches, providing theoretical support for the

development of more precise treatment regimens.

The precise mechanisms underlying the co-occurrence of BD

and HF remain unclear, and key molecular factors linking the two

conditions have yet to be thoroughly explored. Furthermore, the

absence of comprehensive information regarding the risk factors for

HF in patients with BD hampers the development of effective

management strategies aimed at reducing mortality. To address

this critical gap, our study aims to identify potential common

potential diagnostic biomarkers for BD and HF through

bioinformatics approaches, evaluate their diagnostic value, and

predict potential therapeutic targets for these biomarkers, with

the goal of uncovering novel treatment strategies for BD

individuals with HF.
2 Materials and methods

2.1 Data acquisition

The GEOquery package was used to download the expression

matrix data and GPL platform annotation files for HF and BD-related

datasets from the GEO database (https://www.ncbi.nlm.nih.gov/geo/),

and the expression matrix and sample metadata were extracted. The

distinct function was used to remove duplicate genes, avoiding

biases caused by gene repetition. Gene names were standardized to

ensure consistency in gene identification. The expression values

were log2 transformed to make the data conform more closely to

the normal distribution assumption, while outliers (values less than

or equal to 0) were handled for subsequent statistical analysis. The

GSE57338 dataset included 136 normal heart tissue samples and

177 HF samples, while the GSE5389 dataset comprised 11 normal

brain tissue samples and 10 BD samples. The GSE16499 dataset (15

ischemic heart failure samples and 15 age- and sex-matched control

heart samples) and the GSE18312 dataset (9 BD samples and 8

controls samples) were used as validation sets.
2.2 Construction of co-expression
networks

For the GSE57338 dataset, hierarchical clustering (complete

linkage method) was employed to compute Euclidean distances

between samples. Outliers were identified based on a cutting height

(cutHeight = 110), and any identified outlier samples were removed.

A co-expression network was then constructed using weighted gene

co-expression network analysis (WGCNA) (2), selecting an

appropriate soft threshold to ensure an R2 value exceeding 0.85

and connectivity tending to 0. Dynamic tree cutting was applied to

classify genes into distinct modules. Pearson correlation was

calculated between HF and the modules, with the modules

showing the strongest positive and negative correlations selected

as the key modules (P-value < 0.05). The genes within these

modules were defined as key module genes (18, 19). The same

approach was applied to identify key module genes related to BD.
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fpsyt.2025.1627105
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zhang and Li 10.3389/fpsyt.2025.1627105
2.3 Differential and enrichment analysis

Differentially expressed genes (DEGs) in the HF (GSE57338)

and BD (GSE5389) datasets were identified using the ‘limma’

package (version 3.9) (20), applying thresholds of P < 0.05 and |

log2Fold Change (FC)| > 0 (21). DEGs were visualized through

volcano plots and heatmaps generated using the ‘ggplot2’ package

(22). A Venn diagram was used to identify common DEGs (either

upregulated or downregulated) between HF and BD. These

common DEGs were further overlapped with BD-ModuleGenes

and HF-ModuleGenes to pinpoint candidate genes. Enrichment

analysis was performed on these candidate genes using the

‘clusterProfiler’ package (23), covering Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (P-

value < 0.05).
2.4 Protein-protein interaction network
and ROC analysis

To explore the protein-level interactions of candidate genes, a

PPI network was constructed using the STRING database (https://

STRING-db.org/) with a confidence score threshold of > 0.15 (24).

The interaction types included weighted integration of experimental

validation evidence, database inclusion evidence, predictive

interaction evidence, and cross-species conservation evidence

(25). The Degree algorithm within the CytoHubba plugin was

used to calculate the Degree values of each gene in the network,

with the top 10 genes ranked by Degree identified as hub genes.

Diagnostic potential was assessed using the ‘pROC’ package (26),

with genes that demonstrated diagnostic value (AUC > 0.7) and

consistent expression patterns in the BD and HF training sets

defined as potential diagnostic biomarkers. Additionally, further

validation of biomarkers was conducted using the GSE16499

dataset related to HF and the GSE18312 dataset related to BD.
2.5 Gene set enrichment analysis

In the GSE57338 and GSE5389 datasets, disease samples were

categorized into high- and low-expression groups based on the median

expression levels of the potential diagnostic biomarkers. Differential

expression analysis was then performed, and genes were ranked

according to their log2FC values. To explore the potential KEGG

pathways associated with the potential diagnostic biomarkers, GSEA

was applied using the ‘clusterProfiler’ package (27), with an adjusted P-

value threshold of < 0.05 for pathway selection.
2.6 Molecular network

To investigate the transcriptional regulation mechanisms of

potential diagnostic biomarkers, the miRNet database was used to

predict the transcription factors (TFs) and microRNAs (miRNAs)

targeting these biomarkers. The ‘miRNA-mRNA-TF’ regulatory

network was subsequently constructed using Cytoscape (version

3.9.1) software (28).
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2.7 Potential drug prediction

Potential therapeutic drugs targeting the potential diagnostic

biomarkers were identified through the DGIdb database (https://

dgidb.org/). A gene-drug interaction network was then visualized

using Cytoscape software.
2.8 Quantitative PCR

For experimental validation, total RNA was isolated from 10

pairs of frozen whole blood samples (10 HF samples vs. 10 control

samples) using Trizol reagent (Ambion, Inc., A Thermo Fisher

Scientific Company). cDNA synthesis was performed using the

Reverse Transcription PrimeScript 1st Strand cDNA Synthesis Kit

(Clontech Laboratories, Inc., A Takara Bio Company), and

quantitative PCR was carried out with SYBR PremixExTaq™

(Clontech Laboratories, Inc., A Takara Bio Company). mRNA

expression was measured using the CFX 96 system. The following

primer sequences were employed for the PCR (Table 1).

The PCR conditions were as follows: pre-denaturation at 95°C for

5 minutes, denaturation at 95°C for 15 seconds, annealing at 62°C for

30 seconds for 40 cycles, and final extension at 72°C for 30 seconds.

qPCR data analysis was performed using the 2-DDCt method.
2.9 Statistical analysis

All statistical analyses were conducted using R software (version

4.2.2) (R Core Team (2021). R: A language and environment for

statistical computing. R Foundation for Statistical Computing,

Vienna, Austria. https://www.R-project.org/). The Wilcoxon rank-

sum test was used for comparing differences between the two

groups in the bioinformatics analysis, and Pearson correlation

was applied for correlation analysis. For RT-qPCR, the t-test was

used to compare differences between groups. A P-value < 0.05 was

considered statistically significant, and the significance threshold

for the GSEA was set at an adjusted P-value < 0.05.
TABLE 1 Primer information.

Primer Sequence

FZD2
GCGAAGCCCTCATGAACAAG;
TCCGTCCTCGGAGTGGTTCT.

EXT1
GAGGACGTGGGGTTTGACAT;
CAAAAACCCCCTCTCCCCTC.

DCHS1
GAGTCTTTGCCACTGACCGA;
TCAAGCACTGCAACATGCAC.

BMP4
ACTTCGAGGCGACACTTCTG;
TCTGCTCTTCCTCCTCCTCC.

ALDH1A2
GCCTCTTCCTCTCTAACAGGC;
GACGTCCCCTTTCTGAAGCA.

GAPDH
CGAAGGTGGAGTCAACGGATTT;
ATGGGTGGAATCATATTGGAAC.
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3 Results

3.1 Identification of differential and module
genes for HF

A total of 11,665 DEGs were identified in the GSE57338

dataset for HF, including 6,347 downregulated and 5,318

upregulated genes (Figures 1A, B). Following clustering, two
Frontiers in Psychiatry 04
outlier samples were excluded (Supplementary Figure S1). A soft

threshold of 5 was selected to construct the co-expression network

(Figure 1C). The network was partitioned into eight distinct

modules (Figure 1D), with the black and green modules

showing significant associations with HF, making them key

modules (Figure 1E). The number of genes in each module is

shown in Table 2. A total of 1,691 genes were identified as key

module genes related to HF.
FIGURE 1

Analysis of DEGs and co-expression modules in the GSE57338 dataset. (A) Volcano plot displaying the distribution of DEGs in the GSE57338 dataset.
A total of 11,665 DEGs were identified. Each point represents a gene: red indicates upregulated genes, blue indicates downregulated genes, and gray
represents genes with no significant differential expression. (B) Heatmap illustrating the distribution of DEGs in the GSE57338 dataset. Gene
expression levels are color-coded: red represents high expression, blue represents low expression, with the intensity of color reflecting the
magnitude of gene expression. (C) Soft threshold screening. The scale-free fit index (left) and mean connectivity (right) are shown. A soft threshold
of 5 was chosen for the network construction. (D) Hierarchical clustering tree of co-expression modules, with distinct colors representing different
modules. A total of eight modules were identified. (E) Heatmap of module-trait correlations. Positive correlations are shown in red, while negative
correlations are shown in blue. The horizontal axis represents traits, and the vertical axis represents the modules. Correlation coefficients are
displayed in each grid, with larger absolute values indicating stronger correlations. Significance P-values are provided in parentheses, with smaller
P-values indicating more statistically significant results.
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3.2 Identification of differential and module
genes for BD

In the GSE5389 dataset for BD, 2,549 DEGs were identified,

including 1,073 downregulated and 1,476 upregulated genes

(Figures 2A, B). No outlier samples were detected after clustering

the data (Supplementary Figure S2). A soft threshold of 9 was

selected for constructing the co-expression network (Figure 2C),

resulting in the identification of seven modules (Figure 2D). The

number of genes in each module is shown in Table 3. Among these,

the turquoise and green modules showed significant associations

with BD (Figure 2E), with 3,935 genes identified as key module

genes associated with BD.
3.3 Biomarkers screening in HF and BD

A total of 572 common DEGs were identified through the

intersection of DEGs in HF and BD, comprising 279 upregulated

genes (Figure 3A) and 293 downregulated genes (Figure 3B).

Additionally, 572 common DEGs, 1,691 module genes strongly

associated with HF in the GSE57338 dataset, and 3,967 module

genes associated with BD in the GSE5389 dataset were intersected,

resulting in 44 candidate genes (Figure 3C). To explore the potential

mechanisms of the 44 candidate genes, functional enrichment

analysis was performed. The top five GO terms indicated a

predominant association with ‘neural tube development’

(Figure 3D). The top eight KEGG pathways highlighted strong

involvement in the ‘RIG-I-like receptor signaling pathway’ and the

‘cAMP signaling pathway’ (Figure 3E). Furthermore, a PPI network

encompassing 31 nodes and 44 edges was constructed for the

candidate genes (Figure 3F). Ten hub genes (UBE2E3, FZD2,

GLI3, EXT1, DCHS1, MYH11, BMP4, LOX, LFNG , and

ALDH1A2) were identified using the Degree algorithm (Figure 3G).
3.4 Potential diagnostic biomarkers
screening in HF and BD

The diagnostic accuracy of the hub genes for HF and BD was

assessed using ROC curves (Figures 4A, B). The analysis revealed
Frontiers in Psychiatry 05
that six genes (UBE2E3, FZD2, EXT1, DCHS1, BMP4, and

ALDH1A2) exhibited strong diagnostic performance for both HF

and BD (AUC > 0.7). Additionally, increased expression of FZD2,

EXT1, DCHS1, BMP4, and ALDH1A2 was observed in the disease

group (HF and BD), whereas UBE2E3 showed low expression

(Figures 5A, B). Consequently, these six genes were defined as

potential diagnostic biomarkers for HF and BD. In the validation set

GSE16499, the diagnostic performance of UBE2E3, EXT1, DCHS1,

BMP4, and ALDH1A2 was relatively good (AUC > 0.6), while the

diagnostic performance of FZD2 was relatively low (Supplementary

Figure 1). In the validation set GSE18312, UBE2E3, EXT1, DCHS1,

and FZD2 demonstrated relatively good diagnostic performance

(AUC > 0.6), while the diagnostic performance of BMP4 and

ALDH1A2 was relatively low (Supplementary Figure 2).
3.5 GSEA of potential diagnostic
biomarkers

To explore the potential roles of the six potential diagnostic

biomarkers, single-gene GSEA was performed ALDH1A2 was

primarily associated with ‘cytokine-cytokine receptor interaction’

in HF and ‘ubiquitin-mediated proteolysis’ in BD (Figures 6A, 7A).

BMP4 was predominantly involved in ‘ribosome’ and ‘cytokine-

cytokine receptor interaction’ pathways in HF and BD, respectively

(Figures 6B, 7B). DCHS1 was chiefly linked to ‘cytokine-cytokine

receptor interaction’ in BD and ‘ECM receptor interaction’ in HF

(Figures 6C, 7C). EXT1 was enriched in ‘ECM receptor interaction’

in HF and ‘calcium signaling pathway’ in BD (Figures 6D, 7D).

FZD2 was primarily associated with the ‘JAK-STAT signaling

pathway’ in HF and ‘cytokine-cytokine receptor interaction’ in

BD (Figures 6E, 7E). UBE2E3 was primarily enriched in the

‘ribosome’ pathway in HF and the ‘proteasome’ pathway in BD

(Figures 6F, 7F).
3.6 Analysis of regulatory relationships

To investigate the regulatorymechanisms of the potential diagnostic

biomarkers, a ‘miRNA-mRNA-TF’ network was constructed

(Figure 8A), comprising 52 nodes and 199 edges. Notably, hsa-miR-

1343-3p was linked to ALDH1A2, BMP4, and FZD2. Furthermore, four

drugs—VANTICTUMAB, RETINOL, HYDROCHLOROTHIAZIDE,

and ATENOLOL—were identified as potential therapeutics for

ALDH1A2 and FZD2 (Figure 8B; Supplementary Table 1).
3.7 Expression levels of FZD2, EXT1,
DCHS1, BMP4, and ALDH1A2

qPCR results validated that the expression patterns of FZD2,

EXT1, DCHS1, BMP4, and ALDH1A2 were consistent with the

dataset observations. In comparison to healthy controls, FZD2,

DCHS1, BMP4, and ALDH1A2 were significantly upregulated in HF

samples (P < 0.05, Figure 9).
TABLE 2. The number of genes in each module of GSE57338.

Modules Number of genes Significance

black 703 Significant

blue 2142 Significant

brown 2044 Significant

green 988 Significant

pink 655 Significant

turquoise 2683 Significant

yellow 1057 Significant

Red 970 Not significant
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4 Discussion

Research showed that patients with BD have a life expectancy of

8–12 years shorter than healthy individuals, possibly due to a higher

prevalence of diabetes, metabolic syndrome, and CVD (1, 11, 29).

CVD represents a significant mortality risk factor in manic BD, with

patients with BD suffering from CVD having an 8-fold higher

mortality rate than healthy individuals under 40 years of age (30).
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Previous studies have identified common risk factors for CVD

mortality in patients with mental illness, including smoking, poor

diet, inflammatory factors, and psychotropic drug use (31). Despite

being a prevalent CVD, the relationship between HF and BD

remains unclear. This study used bioinformatics methods to

analyze potential common diagnostic biomarkers between BD

and HF, aiming to provide a new theoretical basis for future

research on the common biological mechanism of HF and BD.
FIGURE 2

Integrated analysis of DEGs and co-expression modules in the GSE5389 dataset. (A) Volcano plot illustrating the distribution of DEGs in the GSE5389
dataset. A total of 2,549 DEGs were identified. Each point represents a gene: red indicates upregulated genes, blue indicates downregulated genes, and
gray represents genes with no significant differential expression. (B) Heatmap showing the distribution of DEGs in the GSE5389 dataset. The intensity of
the color represents the gene expression level, with red indicating high expression and blue indicating low expression. (C) Soft threshold screening. The
scale-free fit index (left) and mean connectivity (right) are shown. A soft threshold of 9 was selected for the network construction. (D) Hierarchical
clustering tree of co-expression modules, with distinct colors representing different modules. Seven modules were identified. (E) Heatmap of module-
trait correlations. Positive correlations are depicted in red, while negative correlations are shown in blue. The horizontal axis represents traits, and the
vertical axis represents the modules. Each grid shows the correlation coefficient values, with larger absolute values indicating stronger correlations. The
significance P-values are displayed in parentheses, with smaller P-values indicating more statistically significant results.
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A joint analysis of two datasets from the GEO database was

conducted to identify common DEGs in BD and HF. This analysis,

combined with WGCNA, allowed for the identification of module

genes associated with each disease. A total of 44 common

differential module genes were uncovered. These genes were

subjected to enrichment analysis, and a PPI network was

constructed using the STRING database to identify hub genes,

resulting in the identification of 10 hub genes. ROC analysis of

these hub genes led to the identification of six genes (UBE2E3,

FZD2, EXT1, DCHS1, BMP4, and ALDH1A2) with diagnostic

potential. Finally, qPCR validation of five upregulated genes

(FZD2, EXT1, DCHS1, BMP4, and ALDH1A2) in HF blood

samples confirmed that the expression trends of FZD2, DCHS1,

BMP4, and ALDH1A2 were consistent with those observed in the

GEO database.

Dachsous cadherin-related 1 (DCHS1), a gene involved in tissue

development and organization, encodes a calcium-dependent cell-

adhesion protein. DCHS1 plays critical roles in regulating the

proliferation and differentiation of neuroprogenitor cells. It is also

essential for proper mitral valve morphogenesis in the heart,

regulating cell migration during valve formation (6, 32). Whole-

exome sequencing has identified 122 BD-related genes, including

DCHS1 (33). Moreover, abnormal neurodevelopment is considered

a potential cause of BD (34), in which DCHS1 plays a pivotal role.

As a key gene in cerebral cortex development, alterations in DCHS1

expression or function can lead to abnormalities in neuronal

migration, differentiation, and synaptic connections, increasing

the risk of BD (35). Additionally, DCHS1 is involved in regulating

the Hippo signaling pathway (36), which is crucial in cell

proliferation, apoptosis, and differentiation. Dysregulation of this

pathway can impact neuron survival and function, contributing to

the onset and progression of mental illnesses (37, 38). In our

dataset, DCHS1 expression was upregulated in both HF and BD,

suggesting its potential as a target gene for further study in BD

individuals with concurrent HF.

Bone morphogenetic protein 4 (BMP4), a member of the TGF-

beta superfamily, acts as a growth factor involved in several biological

processes, including vascular development and angiogenesis (39, 40).

Numerous studies have highlighted the critical role of BMP4 in the

pathogenesis of HF, identifying it as a key therapeutic target for
Frontiers in Psychiatry 07
intervention (41–43). In our dataset, BMP4 expression was

upregulated in both HF and BD, which aligns with findings from

Wu et al. (43), who observed elevated levels of BMP4 precursor

protein in mouse hearts 24 hours after infarction. Their study further

demonstrated that recombinant BMP4 had protective effects on

cultured cardiomyocytes. Additionally, Wen et al. showed

that BMP4 mediates various aspects of pathological cardiac

hypertrophy, including cardiac hypertrophy, apoptosis, fibrosis, and

ion channel remodeling (41). BMP4 also downregulates the activation

of naive CD4+ T cells and inhibits IFN-g production by these cells,

without increasing regulatory T cell numbers. Furthermore, BMP4

can influence T cell glycolysis and Hif1a expression (44), suggesting

that BMP4 may inhibit IFN-g production by CD4+ T cells in vivo,

potentially affecting immune responses and contributing to BD

development. However, no reports have yet linked BMP4 to

BD directly.

Frizzled-2 (FZD2) functions as a receptor for Wnt proteins, with

most frizzled receptors associated with the canonical beta-catenin

signaling pathway. This pathway involves the activation of disheveled

proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-

catenin, and subsequent activation of Wnt target genes (45). Research

suggests that FZD family members may act as predisposition genes

for schizophrenia (46, 47). Additionally, studies indicate that FZD2

prevents adult mouse cardiomyocytes from re-entering the cell cycle

by inhibiting Yes-associated protein (YAP), thus protecting the

myocardium after myocardial infarction by preventing excessive

cardiomyocyte proliferation and fibrosis. As a receptor for Wnt,

FZD2 may also influence neurodevelopment via the Wnt/b-catenin
pathway (48), suggesting its potential role in the development of BD.

Further investigation of FZD2’s mechanism in BD pathogenesis is

warranted. Aldehyde Dehydrogenase 1, Family Member A2

(ALDH1A2), which encodes retinal dehydrogenase 2, plays a

pivotal role in synthesizing retinoic acid from vitamin A during

early development and is strongly associated with heart disease (49,

50). ALDH1A2 is vital for cardiac development. Regulating its

expression can impact cardiac lesions, particularly in the context of

chronic inflammation and fibrosis in HF (51). Additionally,

ALDH1A2 is involved in retinoic acid synthesis, a critical

component of the retinoic acid signaling pathway, which is

essential for neurodevelopment (49, 51). Dysregulation of

ALDH1A2 may result in abnormal retinoic acid levels, which in

turn can affect the development, differentiation, and function of

neurons, thereby increasing the risk of developing BD. However,

no studies have yet explored the role of ALDH1A2 in BD.

GSEA results indicated that genes such as ALDH1A2, DCHS1, and

EXT1 were significantly enriched in pathways including cytokine-

cytokine receptor interaction and ECM-receptor interaction. The

Cytokine-Cytokine Receptor Interaction pathway plays a pivotal role

in the progression of HF. On one hand, this pathway promotes the

over-activation of pro-inflammatory cytokines, such as tumor necrosis

factor-alpha (TNF-a), exacerbating the inflammatory response,

inducing cardiomyocyte damage and apoptosis, reducing myocardial

contractility, and accelerating the deterioration of HF (52). On the
TABLE 3 The number of genes in each module of GSE5389.

Modules Number of genes Significance

green 1001 Significant

turquoise 2934 Significant

black 499 Not significant

blue 1539 Not significant

brown 1218 Not significant

grey 932 Not significant

red 880 Not significant
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other hand, interleukin 6 (IL-6) triggers downstream signaling

pathways that lead to myocardial remodeling, altering the heart’s

structure and decreasing its pumping function (53). The ECM-

receptor interaction pathway is pivotal in the pathogenesis of both

HF and BD, influencing each disease through different mechanisms. In

the context of HF, an imbalance in ECM-receptor interactions disrupts

the synthesis and degradation of extracellular matrix proteins, such as
Frontiers in Psychiatry 08
collagen (54, 55). Excessive ECM deposition increases myocardial

stiffness, impairing diastolic function and affecting the heart’s filling

capacity. Additionally, abnormal activation of ECM receptors, such as

integrins, promotes the activation and proliferation of cardiac

fibroblasts through downstream signaling pathways, accelerating

myocardial fibrosis and further reducing the heart’s compliance and

contractile function (56, 57). In BD, ECM-receptor interactions in the
FIGURE 3

Genomic analysis visualizations: Venn diagrams, intersection analysis, enrichment plots, and protein network. (A) Venn diagram depicting the
intersection of differentially upregulated genes across the two datasets. (B) Venn diagram depicting the intersection of differentially downregulated
genes across the two datasets. (C) Venn diagram for gene intersections of shared variance modules. (D, E) Bubble plots of GO and KEGG
enrichment analysis. The vertical axis represents pathway names, while the horizontal axis indicates the number of genes enriched in each pathway.
Larger bubbles correspond to a greater gene count. A color gradient from blue to red reflects increasing significance. (F) Protein interaction network
diagram. (G) Degree-based top 10 gene interaction network, with color changes from yellow to red denoting increasing Degree values.
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brain are also crucial. ECM receptors on neurons and glial cells

modulate the plasticity of nerve synapses by regulating intercellular

signaling (58, 59). Dysregulation of ECM receptor signaling may alter

neurotransmitter transmission and disrupt neuronal connections,

contributing to emotional regulation disorders, increasing the risk of

BD, or influencing its progression (60, 61). The involvement of these

pathways in both HF and BD offers valuable insights into the
Frontiers in Psychiatry 09
comorbidity mechanisms of these diseases and presents potential

targets for future therapeutic interventions.

Analysis of the regulatory network revealed that hsa-mir-1343-3p

simultaneously targets ALDH1A2, BMP4, and FZD2. hsa-mir-1343-3p

is a miRNA, a class of small non-coding RNA molecules that regulate

gene expression by binding to target mRNAs. These molecules play

pivotal roles in various physiological and pathological cellular processes
FIGURE 4

ROC analysis of hub genes (GSE57338 vs GSE5389). (A) ROC analysis for hub genes in GSE57338, where an AUC greater than 0.7 indicates relatively high
diagnostic accuracy for HF. (B) ROC analysis for hub genes in GSE5389, with an AUC greater than 0.7 suggesting high diagnostic accuracy for BD.
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(62). hsa-mir-1343-3p inhibits autophagy by targeting ATG7 (63), a

critical process for maintaining cardiomyocyte health, which is linked

to the onset and progression of HF (64). Consequently, the regulation

of autophagy by hsa-mir-1343-3p may influence cardiomyocyte

survival and function, thereby modulating HF progression.
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Furthermore, hsa-mir-1343-3p may regulate dopamine synthases,

transporters, and receptors, affecting the development of BD (65–67).

In conclusion, as a potential key regulatory molecule, hsa-mir-1343-3p

targets multiple critical genes and modulates autophagy- and

dopamine-related processes, may playing a significant role in the
FIGURE 5

Expression analysis of hub genes (GSE57338 vs GSE5389). (A) Expression analysis of hub genes in GSE57338. (B) Expression analysis of hub genes
in GSE5389.
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pathogenesis of both HF and BD and offering valuable insights for the

exploration of these diseases’ mechanisms and the development of

novel therapeutic strategies.

This study identified four drugs with potential therapeutic effects

on ALDH1A2 and FZD2, including VANTICTUMAB, RETINOL,

HYDROCHLOROTHIAZIDE, and ATENOLOL, which may prove

beneficial for treating BD individuals with HF. The study results

showed that patients treated with ATENOLOL demonstrated

significant improvements in aggravated heart failure and death

events (68). Another study indicated that a combination pill

containing ATENOLOL and HYDROCHLOROTHIAZIDE

significantly reduced low-density lipoprotein cholesterol and systolic

blood pressure, with a lower incidence of cardiovascular events

compared to the placebo group, effectively decreasing the incidence

of cardiovascular events in individuals with higher cardiovascular risk
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(69). Studies have shown that when hydrochlorothiazide is used in

combination with Dapagliflozin, it can synergistically improve

hemodynamics and ejection fraction in early intervention, and

reduce plasma B-type natriuretic peptide concentration. Moreover,

hydrochlorothiazide enhances the inhibitory effect of Dapagliflozin on

NHE activity by inhibiting the expression of NHE1, thereby further

improving cardiac function (70). These medications may improve the

cardiovascular status of BD patients by stabilizing their blood pressure.

This finding provides new therapeutic insights for BD patients with

comorbid hypertension and HF. However, considering the potential

and limitations of these medications in clinical application, their

efficacy in BD patients with comorbid HF cannot be fully proven.

Although these medications may affect relevant disease pathways by

acting on diagnostic genes, their actual efficacy in BD andHF still needs

to be validated by further experimental and clinical studies.
FIGURE 6

GSEA results for ALDH1A2 (A), BMP4 (B), DCHS1 (C), EXT1 (D), FZD2 (E), and UBE2E3 (F) in GSE57338. Each sub-Figure is composed of three
components: the top section displays an enrichment score line graph, with each line representing a distinct pathway. The second section highlights
the genes within the gene set using lines, while the third section illustrates the distribution of rank values for all genes.
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FIGURE 7

GSEA results for ALDH1A2 (A), BMP4 (B), DCHS1 (C), EXT1 (D), FZD2 (E), and UBE2E3 (F) in GSE5389.
FIGURE 8

Integrated regulatory network and gene-drug interaction in diagnostics. (A) Diagram of the miRNA-mRNA-TF regulatory network, with red
representing diagnostic markers, orange indicating TFs, and green representing miRNAs. (B) Diagnostic gene-drug interaction network, with red for
diagnostic markers and purple for drugs.
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The six diagnostic genes identified in this study hold significant

potential and can serve as a foundation for future research. To date,

no conjoint analysis of BD and HF has been reported. By leveraging

public databases and bioinformatics methods, this study preliminarily

explored the shared pathogenesis of BD and HF, revealing a potential

common underlying mechanism and offering new opportunities for

diagnosing and treating patients affected by both conditions.

However, the study still has some limitations. First, relying on

existing databases and the small sample sizes of BD datasets and

qPCR validation may increase the risk of overfitting and false-positive

module detection, which may affect the generalizability and accuracy

of the results. Second, although some findings were validated by

qPCR, we recognize that the BD dataset was derived from brain tissue

and the HF dataset from heart tissue, and current validation was only

performed in HF samples. Tissue differences may affect the

universality of the results. In future studies, we plan to seek samples

from individuals with both BD and HF for more comprehensive
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analysis. Additionally, as this study is still in the preliminary

exploration stage, to capture more potential biological differences,

we used |log2FC| > 0 and uncorrected P-values as thresholds for

screening DEGs, as well as a slightly lower STRING confidence

threshold, which may include some biologically irrelevant changes.

In the future, we will combine stricter threshold criteria to optimize

the analysis process and ensure that the screened genes are more

consistent with the actual biological context. Finally, future research

will expand the sample size and introduce more brain-derived data,

including brain specimens or autopsy samples from BD patients, to

further confirm the performance of these genes in the brain.

Meanwhile, CRISPR-Cas9 technology will be used to knockout or

overexpress these genes, and through cell proliferation, apoptosis, and

metabolism experiments, the effects of these genes onmyocardial cells

and nerve cells will be evaluated to further clarify their roles in HF and

BD. In addition, more experiments will be needed in the future to

verify the specific common mechanisms between BD and HF.
FIGURE 9

Expression patterns of FZD2, DCHS1, BMP4, and ALDH1A2 in HF and control groups. ****indicates P < 0.0001, ***indicates P < 0.001, and
*indicates P < 0.05.
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