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Introduction: While clinical scales for impulsivity assessment in psychiatric
settings are widely used, evidence linking laboratory biomarkers to impulsivity
remains limited. This study evaluated the prognostic value of routinely collected
biomarkers for future impulsivity risk and developed a machine learning—based
prediction model.

Methods: We analyzed data from 1,496 first-admission schizophrenia (SCZ)
patients across four specialized psychiatric hospitals (2016-2023). A total of 99
features, including 91 routinely tested biomarker measurements, four treatment-
related indicators, and four demographic or psychometric variables, were
evaluated. Impulsivity was assessed using the Impulsive Behavior Risk
Assessment Scale within one week of admission. Five machine learning models
were trained with 10-fold cross-validation (n=993) and externally validated in an
independent cohort (n=503). Model performance was assessed using the area
under the receiver operating characteristic curve (AUROC), and biomarker
importance was evaluated using SHapley Additive exPlanations (SHAP).

Results: Of 1,496 SCZ patients, 882 (59.0%) exhibited high impulsivity. CatBoost
outperformed other models, achieving an AUROC of 0.749 in cross-validation
and 0.719 in external testing. SHAP values identified key biomarkers, revealing
heterogeneous response patterns for uric acid (UA), globulin (GLO),
apolipoprotein E (APOE), and others. Combining biomarkers with clinical data
improved prediction, increasing AUROC from 0.652 to 0.749 in cross-validation
and from 0.655 to 0.721 in external testing. Subgroup analyses revealed sex-
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specific patterns, with exploratory analysis suggesting sex-modified relationships
between UA and impulsivity.

Discussion: These findings highlight the utility of routine biomarkers for early
identification of high-risk individuals with SCZ and suggest the importance of
incorporating sex-specific factors in predictive modeling.

schizophrenia, impulsivity, machine learning, biomarkers, causal inference

Introduction

Impulsivity is a core feature of multiple psychiatric disorders
and represents a major public health challenge (1). Among them,
schizophrenia (SCZ) exhibits the most severe and disruptive forms,
marked by sudden, uncontrolled acts of violence or self-harm.
Individuals with SCZ not only show elevated levels of impulsivity
but are also at increased risk of victimization (2, 3). Epidemiological
studies report a 49-68% higher risk of violent behavior in this
population compared to the general public, underscoring the
clinical relevance of impulsivity in SCZ (4, 5). This heightened
impulsivity contributes to poorer clinical outcomes, prolonged
hospitalization, and substantial healthcare burden. In psychiatric
inpatient settings, it also poses a persistent threat to both staff and
patients (6). Traditional interventions have shown limited efficacy
in preventing impulsivity in SCZ (7). As a result, early identification
and targeted prevention of impulsivity are paramount, representing
not only a critical step toward improving clinical outcomes but also
an urgent public health priority.

In China, the Impulsive Behavior Risk Assessment Scale (IBRAS)
(8), a composite of the Modified Overt Aggression Scale and
Impulsivity Screening-10, is widely used to screen hospitalized
patients with SCZ. While it facilitates risk identification, its
reliance on self-report and observer ratings may limit early
proactive intervention (9). While tools like the IBRAS are widely
adopted and clinically useful, they are primarily designed for
contemporaneous risk monitoring during hospitalization, often
failing to capture biological signals that precede overt behavioral
escalation (10, 11). Developing a robust, data-driven prognostic
model could overcome these limitations and support early,
individualized intervention. However, most existing studies have
focused on cross-sectional associations with current impulsivity (12,
13), rather than longitudinal prediction of future risk. Moreover,
many are limited by small sample sizes, single-center designs (14), or
insufficient control of confounding factors (15). Additionally, the
association between sex and impulsivity in SCZ remains
controversial, with studies reporting inconsistent findings (16, 17).
Leveraging a large, multicenter real-world dataset, we employed
propensity score matching (PSM) to control for confounding and
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reduce selection bias. This study aimed to elucidate the association
between sex and future impulsivity in SCZ, evaluate the predictive
value of routine biomarkers, and develop a clinically applicable risk
model using machine learning. Early identification of impulsivity risk
during the initial days of hospitalization can inform individualized
treatment planning, proactive ward management, and preventive
interventions (18). Such early warning systems may complement
weekly clinical assessments (e.g., IBRAS) by identifying high-risk
individuals prior to routine evaluations, offering timely insights that
bridge the critical period immediately following admission, thereby
potentially improving patient outcomes and ward safety (19).

Methods
Ethics

We first examined the association between routinely collected
biomarkers and impulsivity. Subsequently, we applied machine
learning algorithms to evaluate their predictive performance and
develop a clinically applicable risk model. This study was approved
by the Ethics Committee of Shanghai Putuo District Mental Health
Center (approval number: M202409) and conducted in accordance
with the principles of the Declaration of Helsinki. Reporting
followed the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) guidelines (20).

Data sources

Data were obtained from four psychiatric institutions in
Shanghai: Putuo District Mental Health Center, Tongji University
Mental Health Center, Changning District Mental Health Center,
and the Shanghai Mental Health Center, which is one of China’s four
National Medical Centers for Mental Diseases. The dataset comprises
comprehensive real-world electronic health records, including
admission details, diagnostic codes, psychometric assessments,
medical prescriptions, laboratory results, and structured risk
evaluations from both inpatient and outpatient settings. This
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multicenter design enhances the generalizability of findings and
reflects the clinical profile of psychiatric inpatients across China.

Study participants

This retrospective cohort study included detailed and
comprehensive medical records of psychiatric patients hospitalized
from January 2016 to March 2023. The eligibility criteria included (a)
18-70 years old, (b) diagnosis on admission was SCZ based on ICD-
10, (c) patients needed to have a baseline Positive and Negative
Syndrome Scale (PANSS) total score of 80 points or higher, along
with a minimum score of 5 on one positive symptom item or a
minimum score of 4 on two positive symptom items (21), (d) first
hospitalization, (e) resident in China. Exclusion criteria included (a)
loss of demographic information, (b) excessive loss of hospital
records (more than 20% of included features), (c) length of
hospitalization is less than seven days, (d) accompanied with
mental retardation, personality disorder or brain organic disease,
(e) accompanied with severe somatic disease, (f) long-term history of
psychotropic drug use, and (g) pregnancy or lactation. In addition,
patients who were assessed as being at high risk at the time of
admission were also excluded. The overall patients’ inclusion process
is presented in Figure 1. The analysis was carried out between
October 2023 and December 2024.

1713 first hospitallized SCZ
patients diagnosed between
2016 and 2023 from mental
health institutions in Shanghai

A 4
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Temporal procedures

Each patient was assigned a unique hospitalization identifier,
enabling longitudinal tracking across admissions. The first traceable
admission was designated as the index hospitalization, from which
demographic information was extracted. Medication records and
electroconvulsive therapy (ECT) data were obtained from electronic
medical orders. Laboratory and auxiliary examinations included
complete blood count, urinalysis, liver and renal function panels,
immune markers, and other routinely assessed clinical indicators.
In total, 99 features were assessed, including 91 biomarkers.
Detailed definitions and variable descriptions are provided in
Supplementary Table S1.

Laboratory and clinical examination data were obtained on the
day of admission or within the preceding week, as some patients
may have completed these assessments in outpatient settings
prior to hospitalization. Given the delayed onset of psychiatric
medication efficacy, medication and ECT records were extracted
from one month prior to admission up to the day of admission. To
account for cross-institutional treatment, prescription data were
retrieved across all participating hospitals within this window.
In addition, for patients who exhibited impulsivity during
hospitalization, biomarker data within one week following the
escalated impulsivity event were collected to enable time
trend analysis.

1641 patients met eligibility criteria
(a)18-70 years old

SCZ according to ICD-10
(c)patients needed to have a baseline

of 4 on two positive symptom items
(d)first hospitalization

(b)primary diagnosis on admission was

Positive and Negative Syndrome Scale
(PANSS) total score of 80 points or higher
along with a minimum score of 5 on one
positive symptom item or a minimum score|

Exclusion(n=145)

(a)loss of demographic information
(b)excessive loss of hospital records (more
than 20%of included features)

(c)length of hospitalization is less than seven

days
»| (d)accompanied with mental retardation,

v

1496 first hospitalized SCZ
patients were included in further

analysis
I

personality disorder or brain organic disease
(e)accompanied with severe somatic disease
(f)long-term history of psychotropic drug use
(g)pregnancy or lactation

(h)patients who were assessed as being at
high risk at the time of admission

—

Conducting 1:1 PSM to
balance the impulsivity
group and control group

v

Subgroup analysis by sex

Analyses clinically significant

biomarkers for predicting

impulsivity risk and develop a
redictive model

r

|

993 patients included in 503 patients from an
the cross-validation cohort independent hospital

included in the external

FIGURE 1
Procedure. SCZ, schizophrenia; PSM, propensity score matching.
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Grouping criteria

After meeting the inclusion criteria, patients were classified into
two groups based on their IBRAS assessments within the first seven
days of hospitalization. The impulsivity group included those with a
maximum IBRAS total score > 5 during this period, indicating high
risk (22). The control group comprised patients who had IBRAS
total scores < 5 at all available assessments within the same
timeframe and did not exhibit any escalation in risk thereafter.
Patients with missing IBRAS data or ambiguous risk trajectories
were excluded to ensure diagnostic consistency. To ensure temporal
precedence, only impulsivity events that occurred after the baseline
biomarker collection (i.e., after admission) were included for model
training. This design ensures that predictors temporally precede the
outcome, supporting a prognostic modeling framework.

Statistical analyses

To enhance transparency and reproducibility, all code used for
data preprocessing, model development, and analysis has been made
publicly available at: https:/github.com/huahaoXie/SCZ/tree/master.
Initial data curation was conducted using PostgreSQL 4.2, and all
statistical analyses were performed in R (v4.1.3). Continuous
variables were summarized as means with standardized deviations
(SDs), and categorical variables as counts and percentages (%).
Normality was assessed using the Anderson-Darling test.
Depending on distribution, continuous variables were compared
using the Welch t-test or Mann-Whitney U test; categorical
variables were analyzed using the y test or Fisher’s exact test, as
appropriate. Multiple comparisons were corrected using the Holm-
Bonferroni method. All P values were two-sided, with significance
defined as P < 0.05. In the data cleaning process, to prevent sample
bias and ensure accurate results, data with missing values exceeding
30% were deleted. For data with missing values below 30%,
imputation using chained equations was performed separately on
training, testing, and independent cohorts. To mitigate potential
confounding arising from demographic and clinical differences,
PSM was performed to balance the impulsivity and control
groups on age, sex, and treatment exposure. High-risk patients
were matched 1:1 to controls using the nearest-neighbor algorithm,
ensuring equal group sizes and covariate balance in the matched
cohort. The effectiveness of matching was evaluated using inter-
group comparisons and standardized mean differences (SMDs).

Missing values were handled using multiple imputation by
chained equations, incorporating all available measurements and
participant-level characteristics (23). Feature selection using least
absolute shrinkage and selection operator (LASSO) logistic
regression, which penalizes less informative features by shrinking
their coefficients to zero, was performed exclusively within the cross-
validation cohort. This strategy was adopted to prevent data leakage
and to ensure an unbiased assessment of model performance. The
odds ratios (OR) were obtained using random effects logistic
regression models, in which the source hospital of the data was
treated as a random effect (24). Confidence intervals (CIs) for changes
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before and after the onset of impulsivity were estimated using paired
Welch’s t-test or Mann-Whitney U test for continuous variables, and
bootstrapping for categorical variables, as appropriate. Bootstrapping
was performed with 1,000 resamples, applying bias-corrected and
accelerated adjustments. Subgroup analyses by sex were performed
for both regression models and time trend evaluations. A post hoc
sample size calculation was conducted assuming a conservative
anticipated model R* of 0.10, an outcome prevalence of 49%, and
31 selected candidate predictors (25). The minimum required sample
size was estimated to be approximately 900 patients to ensure a
shrinkage factor > 0.9 and optimism < 5%. Our final dataset included
1,496 patients, including 882 impulsivity events, which exceeds
this threshold and supports robust model development and
external validation.

Predictive modeling

To evaluate the predictive utility of biomarkers for future
impulsivity, we developed and compared a series of machine
learning and deep learning models. All models were implemented
in Python 3.8 using the following packages: XGBoost (v1.7.2),
CatBoost (v1.2.7), LightGBM (v3.3.3), and scikit-learn (v1.1.3).
Ten algorithms were applied: XGBoost, CatBoost, AdaBoost,
LightGBM, gradient boosting machine (GBM), random forest
(RF), multilayer perceptron (MLP), Bayesian network (BN),
support vector machine (SVM), and logistic regression (LR).
These approaches have been widely used in clinical prediction
and demonstrate reliable performance across diverse healthcare
applications (26, 27).

The Shanghai Mental Health Center was randomly designated as
the external testing cohort, with the remaining sites used for model
training and validation. The models were trained based on 10-fold
cross-validation repeated ten times in the training cohort for the best
replicability. Hyperparameter tuning was performed via randomized
search (n=100 iterations) during cross-validation. For tree-based
models (CatBoost, XGBoost, LightGBM, GBM, RF), we optimized
parameters such as maximum tree depth (range: 3-10), learning rate
(0.01-0.1), number of estimators (100-1000), L2 regularization (A =
0-10), and minimum child weight (1-10). In CatBoost, categorical
feature encoding was handled internally using ordered boosting to
mitigate overfitting. For SVM, radial basis function kernels were used,
with tuning of the regularization parameter C (0.1-10) and kernel
coefficient y (0.01-1). For LR, we tuned the inverse regularization
strength (C) over a log-uniform grid from 0.001 to 100 and selected
the optimal penalty (L1 vs. L2). For BN, we applied constraint-based
structure learning (PC algorithm) with significance thresholds
ranging from 0.01 to 0.2, followed by maximum likelihood
estimation of parameters. Network structure stability was evaluated
via repeated subsampling to ensure consistent edge selection. For the
MLP, we tested network architectures with 1-3 hidden layers and 64-
256 neurons per layer. ReLU activation, dropout (0.1-0.5), and L2
regularization (ot = le-5 to le-3) were tuned jointly. Models were
trained using the Adam optimizer with early stopping based on
validation loss, using a patience of 10 epochs. Batch size was fixed at
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64, and the maximum number of epochs was set to 100. Class
imbalance was addressed using oversampling of the minority class
within the training data. All preprocessing was performed separately
within each cross-validation loop to avoid data leakage.

Model performance was primarily assessed using the area under
the receiver operating characteristic curve (AUROC), supplemented
by F1 score, area under the precision-recall curve (AUPRC),
sensitivity, and specificity to capture both discrimination and class-
specific performance. A blank model containing no predictors was
included as a reference. To evaluate the incremental predictive value of
biomarkers, model performance was compared with and without
biomarker features. Model performance metrics were compared using
Nadeau and Bengio’ s corrected resampled ¢-test (28), which accounts
for the statistical dependence introduced by repeated sampling.
Feature importance was quantified using gain-based (F1 score
improvement) metrics and visualized via SHAP values (29) to
facilitate model interpretability.

Results
Patients and matching

A total of 1,496 patients with first-time admission for
schizophrenia met the inclusion criteria. Specifically, participants
were enrolled from four centers as follows: Putuo District Mental
Health Center (n=230), Tongji University Mental Health Center
(n=540), Changning District Mental Health Center (n=223), and
the Shanghai Mental Health Center (n=503). The latter served as
the external validation cohort. Among them, 882 (59.0%) developed
high impulsivity within one week of hospitalization, while the
remaining 614 served as controls. Male patients were more likely
to exhibit high impulsivity compared with females (54.4% vs 45.6%;
P=0.001; Supplementary Figure S2).

After propensity score matching, 547 high-impulsivity patients
were matched 1:1 to controls. Post-matching, baseline characteristics
were balanced: the mean age was 46.3 + 13.7 years in the impulsivity
group and 48.8 + 14.0 years in controls, with male proportions of
54.7% and 51.0%, respectively. Covariate balance was evaluated using
inter-group comparisons and SMDs (Supplementary Table S2,
Supplementary Figure S1). Detailed patient characteristics are
presented in Supplementary Table S2.

Data imputation

In data preprocessing, three biomarkers with missingness >30%
were excluded. For the remaining 91 biomarkers, 13 had missing
values <30% and were retained for analysis. Missing values were
imputed using multiple imputation by chained equations. To avoid
data leakage, imputation was performed separately within the
training, internal testing, and external validation cohorts. In total,
16,473 (12.1%) of all biomarker feature datapoints were imputed.
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The association of biomarkers and future
impulsivity risk

LASSO regression was applied to 91 clinical biomarkers,
yielding 31 variables with non-zero coefficients as potential
predictors of impulsivity. Corresponding regression coefficients
are provided in Supplementary Table S3.

Subsequently, univariate and multivariate logistic regression
analyses were performed on the selected biomarkers, identifying
several with statistically significant associations with impulsivity
(Supplementary Table S4). The high-risk indicators identified by
ORs were mean platelet width (PDW), prealbumin (PALB), uric
acid (UA), hepatitis B virus surface antibody (HBsAb), natrium
(Na), urinary nitrite (NIT), fasting glucose (GLU), urine ketones
(KET) negative; While the low-risk indicators included mean
corpuscular hemoglobin concentration (MCHC), total bile acid
(TBA), globulin (GLO), kalium (K), tetraiodothyronine
(T4) (Figure 2).

Subgroup analyses revealed both overlapping and sex-specific
patterns. Several indicators, such as UA, GLO, Na, NIT, and
HBcADb, showed consistent associations across subgroups, aligning
with the overall trend. In male group, additional predictors included
basophil count (BAS), lipoprotein (LPA), free thyroxine (FT4), and
KET positivity (Figure 3A). In female group, MCHC, PALB,
HBsADb, K, and GLU emerged as significant (Figure 3B).
Furthermore, exploratory interaction analysis suggested a
potential modifying effect of sex on the relationship between UA
and impulsivity risk (P=0.012; Supplementary Table 54).

To explore the temporal dynamics of biomarkers associated
with impulsivity, we analyzed follow-up data from the impulsivity
group at seven days after risk escalation (Supplementary Table S5).
Several biomarkers previously identified as significant in the
regression analysis, including UA, PALB, TBA, Na, and K,
exhibited notable longitudinal changes (Figure 4). Additional
indicators with significant time trends included red blood cell
count (RBC), basophils (BAS), eosinophils (EOS), monocytes
(MON), lymphocytes (LYM), total bilirubin (TBIL), urea nitrogen
(UREA), triglycerides (TG), and apolipoprotein E (APOE).
Subgroup analyses revealed sex-specific trends: RBC and UREA
showed more pronounced changes in male group (Figure 5A),
whereas TBA and Na exhibited greater variability in female group
(Figure 5B). Several indicators, including MON, TBIL, PALB, UA,
TG, and K, demonstrated consistent time-dependent changes in
both sexes, further supporting their potential relevance in

risk monitoring.

Model performance and feature
importance

CatBoost outperformed other models in both the cross-
validation and external testing cohorts, achieving the highest
AUROC of 0.749 (95% CI 0.714-0.783) and 0.719 (95% CI
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Multivariate odds ratio (95% CI) P

MCHC [ ] 0.984 (0.973-0.996) 0.0079
RBC - 1.182 (0.874-1.598) 0.2782
RDW_SD [ ] 0.977 (0.937-1.020) 0.2869
BAS By 1.143 (0.938-1.391) 0.1833
EOS —a 0.816 (0.431-1.194) 0.8274
MON S S 1.678 (0.921-2.384) 0.0652
LYM - 0.711 (0.426-1.186) 0.1913
PDW - 1.207 (1.061-1.374) 0.0043
TBIL [ ] 1.017 (0.997-1.036) 0.0935
TBA C) 0.963 (0.932-0.994) 0.0210
GLO u 0.936 (0.902-0.970)  <0.001
ALB [ ] 1.007 (0.956-1.062) 0.7827
PALB [ ] 1.004 (1.002-1.006) 0.0014
UREA - 0.951 (0.882-1.026) 0.1919
UA [ 1.002 (1.000-1.003) 0.0127
TG - 0.792 (0.635-0.987) 0.0376
LPA [ ] 0.999 (0.999-1.000) 0.0736
HDL_C — 1.165 (0.703-1.932) 05533
APOE - 1.126 (0.983-1.291) 0.0871
HBsAb [ ] 1.001 (1.000-1.001) 0.0146
Na [ 1,057 (1.005-1.111) 0.0307
K - 0.547 (0.371-0.806) 0.0023
sG . 0.459 (0.237-0.703) 0.0110
NIT — 1.502 (1.100-2.133) 0.0170
ut - 0.549 (0.259-1.160) 0.1160
T4 [ ] 0.996 (0.993-0.999) 0.0020
6L - 1128 (1.054-1.208) <0001
BIL (++) S — 1.642 (0.880-2.349) 0.3258
BIL (+++) R 0.624 (0.110-1.150) 0.9701
KET (-) - 0.636 (0.446-0.907) 00125
KET (++++) - 0.426 (0.268-0.748) 0.0149
PRO (++) - 1.274 (0.878-1.600) 0.1045
PRO (+++) —. 0.675 (0.165-1.243) 04613

20 1.0 0.0 1.0 20 3.0 4.0 5.0 6.0

FIGURE 2

Multivariate analysis forest plot. This forest plot shows multivariate-adjusted odds ratios (ORs) and 95% confidence intervals (Cls) for selected
biomarkers retained after LASSO feature selection. The analysis was conducted using logistic regression adjusted for study site as a random effect.
Biomarkers with OR > 1 were associated with increased impulsivity risk, while those with OR < 1 were associated with decreased risk.

0.664-0.767), respectively. It also showed superior F1 scores (0.794,
95% CI 0.768-0.824) and sensitivity (0.910, 95% CI 0.886-0.934),
demonstrating its robust predictive performance across cohorts
(Table 1, Figures 6B, C).

In the CatBoost model, the ten most important features, ranked
by average gain across the cross-validated cohort, included TBIL,
ALB, T4, UREA, RBC, APOE, K, HBsAb, GLO, and UA
(Supplementary Figure S3A). In the external testing cohort, SHAP
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analysis identified UA, GLO, K, APOE, RBC, BAS, TBIL, HBsAbD,
ALB, and MON as the top contributors to model predictions
(Supplementary Figure S3B).

To capture group-level feature contributions while accounting for
potential interactions, individual SHAP values were clustered using the
K-means algorithm. The optimal number of clusters was determined to
be two based on the silhouette score (Supplementary Figure S4). The
clustered SHAP heatmap (Figure 6A) revealed heterogeneous response
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a b
Multivariate odds ratio (95% CI) P

RBC —. 1.269 (0.886-1.859) 02219
BAS - 1.229 (1.008-1.376) <0.001
EOS —. 0.625 (0.149-1.156) 0.2444
NEU . 1.183 (0.967-1.448) 0.1027
MON — e 0.647 (0.135-1.149) 0.3665
PDW - 1.131 (0.976-1.310) 0.1013
TBIL [ ] 1.018 (0.992-1.044) 0.1826
TBA [ 0.935 (0.891-0.981) 0.0057
GLO L] 0.629 (0.882-0.978) 0.0051
AB [ 3 1.007 (0.932-1.088) 0.8562 Multivarlate odds ratlo (35% CI) P
PALB u 1.003 (1.000-1.007) 0.0565

McHC 0.977 (0.961-0.983) 0.0081
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FIGURE 3

Subgroup multivariate analysis forest plot. Forest plots show multivariate-adjusted odds ratios (ORs) and 95% confidence intervals (Cls) for selected
biomarkers in male (a) and female (b) patients. Logistic regression models were adjusted for study site as a random effect. Biomarkers with OR > 1

indicate increased risk; those with OR < 1 indicate protective associations.

patterns for UA, GLO, APOE, RBC, TBIL, HBsAb and ALB in relation
to predicted impulsivity.

Added benefits of biomarkers

Integrating biomarkers with the baseline clinical data
significantly improved model performance. In the cross-validation
cohort, the combined model showed a higher AUROC (difference =
0.087; 95% CI, 0.047-0.126), F1, AUPRC, sensitivity, and specificity
compared to the model without biomarkers (P < 0.001; Figure 7A). In
the external testing cohort, the addition of biomarkers also led to a
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significant improvement in AUROC, F1 score, sensitivity, and
specificity (Figure 7B).

By comparing the results of the cross-validation cohort and the
external testing cohort, we aim to enhance the assessment of the
model’s generalization performance. In the cross-validation cohort, the
ROC curve for the model without biomarkers (Figure 7C) showed an
AUROC of 0.652 (SD 0.018), which improved to 0.749 (SD 0.016)
when biomarkers were included (Figure 7D). In the external testing
cohort, the AUROC increased from 0.655 (SD 0.025) without
biomarkers (Figure 7E) to 0.721 (SD 0.024) with biomarkers
(Figure 7F). These results demonstrate that incorporating
biomarkers significantly enhances model performance in both cohorts.

frontiersin.org


https://doi.org/10.3389/fpsyt.2025.1620131
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

Liu et al. 10.3389/fpsyt.2025.1620131

RBC MON LYM
© — 1.00 — 1
3
0.75
5
2
0.50
‘ I
1
0.25
Before After Before After Before After
TBIL TBA PALB
2 1 1 1
400
9
20 300
6
3 200
10
0
Before After Before After Before After
UREA UA TG
- - 3 -
e — 1 S —
8
600
6 2
400
) I I
1
200
2
Before After Before After Before After
Na K
150 : -

45

4.0 I

145

140

Before After Before After

FIGURE 4

Overall time-trend analysis. Violin plots show longitudinal changes in the distribution of key biomarkers within the impulsivity group, comparing
levels within one week of admission (“before”) and 180 days after escalation (“after”). Statistical significance was determined using paired Welch's t-
tests; *P < 0.05, **P < 0.01, ***P < 0.001. Box plots within violins represent the median and interquartile range.
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FIGURE 5

Subgroup time-trend analysis. Violin plots illustrate longitudinal changes in biomarker levels from within one week of admission ("before”) to 180
days after impulsivity escalation (“after”), stratified by sex. (@) Male subgroup. Significant temporal changes were observed in red blood cell count
(RBC), monocytes (MON), total bilirubin (TBIL), prealbumin (PALB), uric acid (UA), triglycerides (TG), potassium (K), and urea (UREA). (b) Female
subgroup. Significant variation was found in MON, TBIL, total bile acid (TBA), PALB, UA, TG, sodium (Na), and K. Notably, MON, TBIL, PALB, UA, TG,
and K exhibited consistent time-dependent changes in both sexes. Statistical comparisons were conducted using paired Welch's t-tests; *P < 0.05,
**P < (0.01, ***P < 0.001. Box plots indicate medians and interquartile ranges.

Discussion trend analyses, identified several biomarkers associated with impulsivity.
These biomarkers, when combined with clinical data, significantly
Main fi ndings enhanced model performance, as demonstrated by a marked increase

in AUROC and other metrics. Notably, the model yielded similar

Our findings highlight that integrating biomarker measurements  performance in both cross-validation and external cohorts, indicating
with clinical data enables effective prediction of future impulsivity risk ~ good generalizability across datasets (31). Furthermore, subgroup
(30). Univariate and multivariate logistic regression, along with time  analyses revealed a sex-specific interaction, with differences in the
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TABLE 1 Model performance.

10.3389/fpsyt.2025.1620131

Cross-validation cohort

F1 AUPRC Sensitivity Specificity
Logreg 0.722 (0.696-0.748) 0.753 (0.735-0.771) 0.751 (0.711-0.785) 0.803 (0.777-0.821) 0.680 (0.657-0.705)
RF 0.743 (0.711-0.780) 0.788 (0.762-0.814) 0.763 (0.720-0.810) 0.894 (0.865-0.921) 0.729 (0.697-0.765)
SVM 0.659 (0.614-0.693) 0.749 (0.720-0.774) 0.703 (0.647-0.753) 0.889 (0.863-0.915) 0.654 (0.616-0.694)
BN 0.654 (0.618-0.691) 0.622 (0.581-0.658) 0.708 (0.659-0.753) 0.550 (0.508-0.592) 0.615 (0.579-0.647)
GBM 0.738 (0.706-0.770) 0.775 (0.748-0.802) 0.765 (0.722-0.805) 0.874 (0.844-0.902) 0.708 (0.672-0.743)
LightGBM 0.747 (0.712-0.789) 0.775 (0.746-0.803) 0.776 (0.734-0.819) 0.844 (0.813-0.875) 0.708 (0.676-0.746)
AdaBoost 0.713 (0.677-0.750) 0.778 (0.749-0.805) 0.743 (0.698-0.787) 0.940 (0.922-0.964) 0.727 (0.686-0.768)
CatBoost 0.749 (0.714-0.783) 0.794 (0.768-0.824) 0.778 (0.736-0.819) 0.910 (0.886-0.934) 0.742 (0.711-0.775)
XGBoost 0.730 (0.691-0.766) 0.783 (0.756-0.798) 0.765 (0.717-0.814) 0.985 (0.976-0.997) 0.782 (0.753-0.814)
MLP 0.701 (0.659-0.734) 0.748 (0.719-0.776) 0.736 (0.688-0.782) 0.804 (0.770-0.832) 0.672 (0.637-0.707)

External testing cohort

F1 AUPRC Sensitivity Specificity
Logreg 0.675 (0.635-0.728) 0.734 (0.697-0.782) 0.706 (0.666-0.791) 0.782 (0.748-0.820) 0.662 (0.629-0.713)
RF 0.720 (0.668-0.769) 0.779 (0.738-0.816) 0.741 (0.679-0.803) 0.887 (0.843-0.925) 0.711 (0.659-0.764)
SVM 0.625 (0.570-0.679) 0.737 (0.693-0.775) 0.674 (0.597-0.736) 0.882 (0.840-0.918) 0.622 (0.556-0.684)
BN 0.659 (0.598-0.717) 0.685 (0.637-0.738) 0.715 (0.642-0.776) 0.650 (0.595-0.722) 0.643 (0.597-0.687)
GBM 0.697 (0.636-0.754) 0.758 (0.716-0.793) 0.734 (0.679-0.795) 0.869 (0.827-0.911) 0.673 (0.611-0.725)
LightGBM 0.708 (0.662-0.759) 0.766 (0.727-0.800) 0.746 (0.685-0.805) 0.843 (0.801-0.887) 0.692 (0.645-0.737)
AdaBoost 0.669 (0.604-0.728) 0.749 (0.706-0.787) 0.697 (0.626-0.765) 0.900 (0.856-0.939) 0.649 (0.580-0.710)
CatBoost 0.719 (0.664-0.767) 0.781 (0.740-0.812) 0.751 (0.687-0.807) 0.894 (0.854-0.924) 0.714 (0.663-0.756)
XGBoost 0.696 (0.646-0.750) 0.787 (0.745-0.822) 0.723 (0.663-0.790) 0.976 (0.956-0.992) 0.775 (0.714-0.816)
MLP 0.675 (0.625-0.725) 0.735 (0.695-0.778) 0.714 (0.641-0.780) 0.810 (0.760-0.854) 0.644 (0.596-0.693)

This table presents the performance metrics of different machine learning models across cross-validation and external testing sets. Reported values are point estimates and 95% confidence
intervals obtained using bootstrap with 1000 iterations. AUROC, Area Under the Receiver Operating Characteristic Curve; F1, F1 score; AUPRC, Area Under the Precision-Recall Curve; LogReg,
Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; BN, Bayesian Network; GBM, Gradient Boosting Machine; MLP, Multilayer Perceptron. Bolded font indicates the best

metric across models within the same set.

expression levels of key biomarkers between males and females,
suggesting that sex may modulate the predictive value of these
biomarkers for impulsivity risk. Results interpretation is strengthened
by our study design, which ensured that biomarker and clinical data
were collected at admission, before any impulsivity escalation occurred.
By restricting outcomes to events within the first week post-admission,
the model captures prospective risk rather than concurrent
behavioral states.

Our study identifies several biomarkers that are significantly
associated with future impulsivity. While UA (32), GLO (33), K
(34), APOE (35), and MON (36) has been previously linked to
impulsivity, biomarkers such as RBC, BAS, TBIL, HBsAb, and ALB
have not been widely studied in this context. These biomarkers
likely reflect underlying physiological processes, including
metabolic (37) and immune system dysfunctions (38), which may
contribute to the development of impulsivity. The observed
temporal changes in biomarkers like UA, TBA, and K further

Frontiers in Psychiatry

suggest that impulsivity risk is dynamic and influenced by
ongoing biological alterations (39). These findings emphasize the
potential for biomarkers to serve as indicators of impulsivity risk
and highlight the need for further exploration of the mechanisms
linking these biomarkers to impulsivity.

CatBoost, the best-performing model, demonstrated the highest
AUROC in both the cross-validation and external testing cohorts.
The inclusion of biomarkers notably improved model performance,
further validating the importance of biomarkers in enhancing
predictive capabilities. Feature importance analysis, performed
using CatBoost and SHAP, identified biomarkers such as UA, as
the most influential predictors, confirming their critical role in the
prediction of impulsivity (40). The SHAP heatmap analysis revealed
complex, heterogeneous response patterns for biomarkers like UA,
GLO, APOE, RBC, TBIL, HBsAb, and ALB, highlighting that
feature interactions may be intricate and difficult to capture with
traditional methods. This underscores the advantage of using

frontiersin.org


https://doi.org/10.3389/fpsyt.2025.1620131
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

Liu et al.

10.3389/fpsyt.2025.1620131

a
[}
o
go 022 008 022 012
@©
n
°
2
% 1 0.07 -0.09 -0.08 -0.17 -0.06
3
O
< o X w [$] 7] = o o z
=1 < < 1
0] 2 2 o = @ < 2
< I
Features
— | —
b c
1- 1-
c c
o o
8 05- 2 g5-
4 2
o [
0- 0-
No - 183 225 No - 88
3 3
8 8
2 2
F [
Yes - 52 533 Yes - 32
No Yes 0 05 1 No
Recall Predicted label Recall

Predicted label

FIGURE 6

Clustered SHAP values heatmap and the confusion matrix. (a) Clustered SHAP (Shapley Additive Explanations) heatmap showing distinct feature
attribution patterns across patient subgroups, based on top 10 biomarkers. Clustering was performed using K-means based on individual SHAP value
profiles. Color intensity reflects mean SHAP values per biomarker within each cluster, with red indicating increased predicted risk and blue indicating
reduced contribution. (b) Confusion matrix for the cross-validation cohort. (c) Confusion matrix for the external testing cohort. Confusion matrices
present true and predicted labels for impulsivity, with darker cells representing higher counts.

machine learning techniques, which are better equipped to
recognize and model such complex relationships in predictive
tasks (41).

Several biomarkers exhibited significant different responses
between male and female groups, and notable changes were
observed over time following the occurrence of impulsivity. These
differences may reflect underlying sex-specific physiological processes,
such as hormonal regulation (42) and metabolic pathways (43), which
could potentially modulate impulsivity risk and biomarker expression
over time. Furthermore, an interaction between sex and the biomarker
UA was identified, suggesting that the predictive value of UA for
impulsivity risk may vary between males and females. This finding
aligns with the previously discussed significant role of UA in
predicting impulsivity risk (37). These results underscore the
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importance of considering sex differences in predictive models and
suggest that further investigation into the underlying mechanisms of
these biomarkers, particularly UA, is warranted.

Notably, although the model predicts impulsivity within a short
time window, this prediction precedes routine clinical risk
assessments and behavioral escalation, and thus provides
clinically actionable information. In real-world psychiatric wards,
where IBRAS or similar scales are administered weekly, our model
can enable proactive identification of high-risk patients, allowing
for timely implementation of targeted interventions, staffing
adjustments, and personalized safety protocols. In this way, the
model complements, rather than replaces, existing clinical
assessments, and bridges a critical gap between admission and
routine risk detection.
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Frontiers in Psychiatry

12

frontiersin.org


https://doi.org/10.3389/fpsyt.2025.1620131
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

Liu et al.

Strengths and limitations

This analysis is strengthened by the use of a well-characterized,
multicenter, and longitudinal real-world cohort, offering robust
evidence derived from a large sample size and a rigorous study
design. However, several limitations should be considered. The data
were exclusively from hospitalized patients in a single city, which
may limit the generalizability of the findings and introduce
potential selection bias. Furthermore, missing data could
introduce confounding factors, affecting the consistency and
reliability of the results.

Conclusions

This cohort study identifies a reproducible biomarker signature
that is significantly correlated with future impulsivity risk in SCZ
patients, enhancing the predictive accuracy and clinical utility of
models based on routinely accessible patient data. Furthermore, we
observed a significant correlation between sex and impulsivity risk,
suggesting that sex-specific factors may influence impulsivity, which
warrants further investigation into this potential relationship.
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