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Introduction: While clinical scales for impulsivity assessment in psychiatric

settings are widely used, evidence linking laboratory biomarkers to impulsivity

remains limited. This study evaluated the prognostic value of routinely collected

biomarkers for future impulsivity risk and developed a machine learning–based

prediction model.

Methods: We analyzed data from 1,496 first-admission schizophrenia (SCZ)

patients across four specialized psychiatric hospitals (2016–2023). A total of 99

features, including 91 routinely tested biomarker measurements, four treatment-

related indicators, and four demographic or psychometric variables, were

evaluated. Impulsivity was assessed using the Impulsive Behavior Risk

Assessment Scale within one week of admission. Five machine learning models

were trained with 10-fold cross-validation (n=993) and externally validated in an

independent cohort (n=503). Model performance was assessed using the area

under the receiver operating characteristic curve (AUROC), and biomarker

importance was evaluated using SHapley Additive exPlanations (SHAP).

Results: Of 1,496 SCZ patients, 882 (59.0%) exhibited high impulsivity. CatBoost

outperformed other models, achieving an AUROC of 0.749 in cross-validation

and 0.719 in external testing. SHAP values identified key biomarkers, revealing

heterogeneous response patterns for uric acid (UA), globulin (GLO),

apolipoprotein E (APOE), and others. Combining biomarkers with clinical data

improved prediction, increasing AUROC from 0.652 to 0.749 in cross-validation

and from 0.655 to 0.721 in external testing. Subgroup analyses revealed sex-
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specific patterns, with exploratory analysis suggesting sex-modified relationships

between UA and impulsivity.

Discussion: These findings highlight the utility of routine biomarkers for early

identification of high-risk individuals with SCZ and suggest the importance of

incorporating sex-specific factors in predictive modeling.
KEYWORDS
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Introduction

Impulsivity is a core feature of multiple psychiatric disorders

and represents a major public health challenge (1). Among them,

schizophrenia (SCZ) exhibits the most severe and disruptive forms,

marked by sudden, uncontrolled acts of violence or self-harm.

Individuals with SCZ not only show elevated levels of impulsivity

but are also at increased risk of victimization (2, 3). Epidemiological

studies report a 49–68% higher risk of violent behavior in this

population compared to the general public, underscoring the

clinical relevance of impulsivity in SCZ (4, 5). This heightened

impulsivity contributes to poorer clinical outcomes, prolonged

hospitalization, and substantial healthcare burden. In psychiatric

inpatient settings, it also poses a persistent threat to both staff and

patients (6). Traditional interventions have shown limited efficacy

in preventing impulsivity in SCZ (7). As a result, early identification

and targeted prevention of impulsivity are paramount, representing

not only a critical step toward improving clinical outcomes but also

an urgent public health priority.

In China, the Impulsive Behavior Risk Assessment Scale (IBRAS)

(8), a composite of the Modified Overt Aggression Scale and

Impulsivity Screening-10, is widely used to screen hospitalized

patients with SCZ. While it facilitates risk identification, its

reliance on self-report and observer ratings may limit early

proactive intervention (9). While tools like the IBRAS are widely

adopted and clinically useful, they are primarily designed for

contemporaneous risk monitoring during hospitalization, often

failing to capture biological signals that precede overt behavioral

escalation (10, 11). Developing a robust, data-driven prognostic

model could overcome these limitations and support early,

individualized intervention. However, most existing studies have

focused on cross-sectional associations with current impulsivity (12,

13), rather than longitudinal prediction of future risk. Moreover,

many are limited by small sample sizes, single-center designs (14), or

insufficient control of confounding factors (15). Additionally, the

association between sex and impulsivity in SCZ remains

controversial, with studies reporting inconsistent findings (16, 17).

Leveraging a large, multicenter real-world dataset, we employed

propensity score matching (PSM) to control for confounding and
02
reduce selection bias. This study aimed to elucidate the association

between sex and future impulsivity in SCZ, evaluate the predictive

value of routine biomarkers, and develop a clinically applicable risk

model using machine learning. Early identification of impulsivity risk

during the initial days of hospitalization can inform individualized

treatment planning, proactive ward management, and preventive

interventions (18). Such early warning systems may complement

weekly clinical assessments (e.g., IBRAS) by identifying high-risk

individuals prior to routine evaluations, offering timely insights that

bridge the critical period immediately following admission, thereby

potentially improving patient outcomes and ward safety (19).
Methods

Ethics

We first examined the association between routinely collected

biomarkers and impulsivity. Subsequently, we applied machine

learning algorithms to evaluate their predictive performance and

develop a clinically applicable risk model. This study was approved

by the Ethics Committee of Shanghai Putuo District Mental Health

Center (approval number: M202409) and conducted in accordance

with the principles of the Declaration of Helsinki. Reporting

followed the Strengthening the Reporting of Observational

Studies in Epidemiology (STROBE) guidelines (20).
Data sources

Data were obtained from four psychiatric institutions in

Shanghai: Putuo District Mental Health Center, Tongji University

Mental Health Center, Changning District Mental Health Center,

and the Shanghai Mental Health Center, which is one of China’s four

National Medical Centers for Mental Diseases. The dataset comprises

comprehensive real-world electronic health records, including

admission details, diagnostic codes, psychometric assessments,

medical prescriptions, laboratory results, and structured risk

evaluations from both inpatient and outpatient settings. This
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multicenter design enhances the generalizability of findings and

reflects the clinical profile of psychiatric inpatients across China.
Study participants

This retrospective cohort study included detailed and

comprehensive medical records of psychiatric patients hospitalized

from January 2016 to March 2023. The eligibility criteria included (a)

18–70 years old, (b) diagnosis on admission was SCZ based on ICD-

10, (c) patients needed to have a baseline Positive and Negative

Syndrome Scale (PANSS) total score of 80 points or higher, along

with a minimum score of 5 on one positive symptom item or a

minimum score of 4 on two positive symptom items (21), (d) first

hospitalization, (e) resident in China. Exclusion criteria included (a)

loss of demographic information, (b) excessive loss of hospital

records (more than 20% of included features), (c) length of

hospitalization is less than seven days, (d) accompanied with

mental retardation, personality disorder or brain organic disease,

(e) accompanied with severe somatic disease, (f) long-term history of

psychotropic drug use, and (g) pregnancy or lactation. In addition,

patients who were assessed as being at high risk at the time of

admission were also excluded. The overall patients’ inclusion process

is presented in Figure 1. The analysis was carried out between

October 2023 and December 2024.
Frontiers in Psychiatry 03
Temporal procedures

Each patient was assigned a unique hospitalization identifier,

enabling longitudinal tracking across admissions. The first traceable

admission was designated as the index hospitalization, from which

demographic information was extracted. Medication records and

electroconvulsive therapy (ECT) data were obtained from electronic

medical orders. Laboratory and auxiliary examinations included

complete blood count, urinalysis, liver and renal function panels,

immune markers, and other routinely assessed clinical indicators.

In total, 99 features were assessed, including 91 biomarkers.

Detailed definitions and variable descriptions are provided in

Supplementary Table S1.

Laboratory and clinical examination data were obtained on the

day of admission or within the preceding week, as some patients

may have completed these assessments in outpatient settings

prior to hospitalization. Given the delayed onset of psychiatric

medication efficacy, medication and ECT records were extracted

from one month prior to admission up to the day of admission. To

account for cross-institutional treatment, prescription data were

retrieved across all participating hospitals within this window.

In addition, for patients who exhibited impulsivity during

hospitalization, biomarker data within one week following the

escalated impulsivity event were collected to enable time

trend analysis.
FIGURE 1

Procedure. SCZ, schizophrenia; PSM, propensity score matching.
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Grouping criteria

After meeting the inclusion criteria, patients were classified into

two groups based on their IBRAS assessments within the first seven

days of hospitalization. The impulsivity group included those with a

maximum IBRAS total score ≥ 5 during this period, indicating high

risk (22). The control group comprised patients who had IBRAS

total scores < 5 at all available assessments within the same

timeframe and did not exhibit any escalation in risk thereafter.

Patients with missing IBRAS data or ambiguous risk trajectories

were excluded to ensure diagnostic consistency. To ensure temporal

precedence, only impulsivity events that occurred after the baseline

biomarker collection (i.e., after admission) were included for model

training. This design ensures that predictors temporally precede the

outcome, supporting a prognostic modeling framework.
Statistical analyses

To enhance transparency and reproducibility, all code used for

data preprocessing, model development, and analysis has been made

publicly available at: https://github.com/huahaoXie/SCZ/tree/master.

Initial data curation was conducted using PostgreSQL 4.2, and all

statistical analyses were performed in R (v4.1.3). Continuous

variables were summarized as means with standardized deviations

(SDs), and categorical variables as counts and percentages (%).

Normality was assessed using the Anderson–Darling test.

Depending on distribution, continuous variables were compared

using the Welch t-test or Mann–Whitney U test; categorical

variables were analyzed using the c² test or Fisher’s exact test, as
appropriate. Multiple comparisons were corrected using the Holm–

Bonferroni method. All P values were two-sided, with significance

defined as P < 0.05. In the data cleaning process, to prevent sample

bias and ensure accurate results, data with missing values exceeding

30% were deleted. For data with missing values below 30%,

imputation using chained equations was performed separately on

training, testing, and independent cohorts. To mitigate potential

confounding arising from demographic and clinical differences,

PSM was performed to balance the impulsivity and control

groups on age, sex, and treatment exposure. High-risk patients

were matched 1:1 to controls using the nearest-neighbor algorithm,

ensuring equal group sizes and covariate balance in the matched

cohort. The effectiveness of matching was evaluated using inter-

group comparisons and standardized mean differences (SMDs).

Missing values were handled using multiple imputation by

chained equations, incorporating all available measurements and

participant-level characteristics (23). Feature selection using least

absolute shrinkage and selection operator (LASSO) logistic

regression, which penalizes less informative features by shrinking

their coefficients to zero, was performed exclusively within the cross-

validation cohort. This strategy was adopted to prevent data leakage

and to ensure an unbiased assessment of model performance. The

odds ratios (OR) were obtained using random effects logistic

regression models, in which the source hospital of the data was

treated as a random effect (24). Confidence intervals (CIs) for changes
Frontiers in Psychiatry 04
before and after the onset of impulsivity were estimated using paired

Welch’s t-test or Mann–Whitney U test for continuous variables, and

bootstrapping for categorical variables, as appropriate. Bootstrapping

was performed with 1,000 resamples, applying bias-corrected and

accelerated adjustments. Subgroup analyses by sex were performed

for both regression models and time trend evaluations. A post hoc

sample size calculation was conducted assuming a conservative

anticipated model R² of 0.10, an outcome prevalence of 49%, and

31 selected candidate predictors (25). The minimum required sample

size was estimated to be approximately 900 patients to ensure a

shrinkage factor ≥ 0.9 and optimism < 5%. Our final dataset included

1,496 patients, including 882 impulsivity events, which exceeds

this threshold and supports robust model development and

external validation.
Predictive modeling

To evaluate the predictive utility of biomarkers for future

impulsivity, we developed and compared a series of machine

learning and deep learning models. All models were implemented

in Python 3.8 using the following packages: XGBoost (v1.7.2),

CatBoost (v1.2.7), LightGBM (v3.3.3), and scikit-learn (v1.1.3).

Ten algorithms were applied: XGBoost, CatBoost, AdaBoost,

LightGBM, gradient boosting machine (GBM), random forest

(RF), multilayer perceptron (MLP), Bayesian network (BN),

support vector machine (SVM), and logistic regression (LR).

These approaches have been widely used in clinical prediction

and demonstrate reliable performance across diverse healthcare

applications (26, 27).

The Shanghai Mental Health Center was randomly designated as

the external testing cohort, with the remaining sites used for model

training and validation. The models were trained based on 10-fold

cross-validation repeated ten times in the training cohort for the best

replicability. Hyperparameter tuning was performed via randomized

search (n=100 iterations) during cross-validation. For tree-based

models (CatBoost, XGBoost, LightGBM, GBM, RF), we optimized

parameters such as maximum tree depth (range: 3–10), learning rate

(0.01–0.1), number of estimators (100–1000), L2 regularization (l =

0–10), and minimum child weight (1–10). In CatBoost, categorical

feature encoding was handled internally using ordered boosting to

mitigate overfitting. For SVM, radial basis function kernels were used,

with tuning of the regularization parameter C (0.1–10) and kernel

coefficient g (0.01–1). For LR, we tuned the inverse regularization

strength (C) over a log-uniform grid from 0.001 to 100 and selected

the optimal penalty (L1 vs. L2). For BN, we applied constraint-based

structure learning (PC algorithm) with significance thresholds

ranging from 0.01 to 0.2, followed by maximum likelihood

estimation of parameters. Network structure stability was evaluated

via repeated subsampling to ensure consistent edge selection. For the

MLP, we tested network architectures with 1–3 hidden layers and 64–

256 neurons per layer. ReLU activation, dropout (0.1–0.5), and L2

regularization (a = 1e–5 to 1e–3) were tuned jointly. Models were

trained using the Adam optimizer with early stopping based on

validation loss, using a patience of 10 epochs. Batch size was fixed at
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64, and the maximum number of epochs was set to 100. Class

imbalance was addressed using oversampling of the minority class

within the training data. All preprocessing was performed separately

within each cross-validation loop to avoid data leakage.

Model performance was primarily assessed using the area under

the receiver operating characteristic curve (AUROC), supplemented

by F1 score, area under the precision–recall curve (AUPRC),

sensitivity, and specificity to capture both discrimination and class-

specific performance. A blank model containing no predictors was

included as a reference. To evaluate the incremental predictive value of

biomarkers, model performance was compared with and without

biomarker features. Model performance metrics were compared using

Nadeau and Bengio’ s corrected resampled t-test (28), which accounts

for the statistical dependence introduced by repeated sampling.

Feature importance was quantified using gain-based (F1 score

improvement) metrics and visualized via SHAP values (29) to

facilitate model interpretability.
Results

Patients and matching

A total of 1,496 patients with first-time admission for

schizophrenia met the inclusion criteria. Specifically, participants

were enrolled from four centers as follows: Putuo District Mental

Health Center (n=230), Tongji University Mental Health Center

(n=540), Changning District Mental Health Center (n=223), and

the Shanghai Mental Health Center (n=503). The latter served as

the external validation cohort. Among them, 882 (59.0%) developed

high impulsivity within one week of hospitalization, while the

remaining 614 served as controls. Male patients were more likely

to exhibit high impulsivity compared with females (54.4% vs 45.6%;

P=0.001; Supplementary Figure S2).

After propensity score matching, 547 high-impulsivity patients

were matched 1:1 to controls. Post-matching, baseline characteristics

were balanced: the mean age was 46.3 ± 13.7 years in the impulsivity

group and 48.8 ± 14.0 years in controls, with male proportions of

54.7% and 51.0%, respectively. Covariate balance was evaluated using

inter-group comparisons and SMDs (Supplementary Table S2,

Supplementary Figure S1). Detailed patient characteristics are

presented in Supplementary Table S2.
Data imputation

In data preprocessing, three biomarkers with missingness >30%

were excluded. For the remaining 91 biomarkers, 13 had missing

values <30% and were retained for analysis. Missing values were

imputed using multiple imputation by chained equations. To avoid

data leakage, imputation was performed separately within the

training, internal testing, and external validation cohorts. In total,

16,473 (12.1%) of all biomarker feature datapoints were imputed.
Frontiers in Psychiatry 05
The association of biomarkers and future
impulsivity risk

LASSO regression was applied to 91 clinical biomarkers,

yielding 31 variables with non-zero coefficients as potential

predictors of impulsivity. Corresponding regression coefficients

are provided in Supplementary Table S3.

Subsequently, univariate and multivariate logistic regression

analyses were performed on the selected biomarkers, identifying

several with statistically significant associations with impulsivity

(Supplementary Table S4). The high-risk indicators identified by

ORs were mean platelet width (PDW), prealbumin (PALB), uric

acid (UA), hepatitis B virus surface antibody (HBsAb), natrium

(Na), urinary nitrite (NIT), fasting glucose (GLU), urine ketones

(KET) negative; While the low-risk indicators included mean

corpuscular hemoglobin concentration (MCHC), total bile acid

(TBA), globulin (GLO), kalium (K), tetraiodothyronine

(T4) (Figure 2).

Subgroup analyses revealed both overlapping and sex-specific

patterns. Several indicators, such as UA, GLO, Na, NIT, and

HBcAb, showed consistent associations across subgroups, aligning

with the overall trend. In male group, additional predictors included

basophil count (BAS), lipoprotein (LPA), free thyroxine (FT4), and

KET positivity (Figure 3A). In female group, MCHC, PALB,

HBsAb, K, and GLU emerged as significant (Figure 3B).

Furthermore, exploratory interaction analysis suggested a

potential modifying effect of sex on the relationship between UA

and impulsivity risk (P=0.012; Supplementary Table S4).

To explore the temporal dynamics of biomarkers associated

with impulsivity, we analyzed follow-up data from the impulsivity

group at seven days after risk escalation (Supplementary Table S5).

Several biomarkers previously identified as significant in the

regression analysis, including UA, PALB, TBA, Na, and K,

exhibited notable longitudinal changes (Figure 4). Additional

indicators with significant time trends included red blood cell

count (RBC), basophils (BAS), eosinophils (EOS), monocytes

(MON), lymphocytes (LYM), total bilirubin (TBIL), urea nitrogen

(UREA), triglycerides (TG), and apolipoprotein E (APOE).

Subgroup analyses revealed sex-specific trends: RBC and UREA

showed more pronounced changes in male group (Figure 5A),

whereas TBA and Na exhibited greater variability in female group

(Figure 5B). Several indicators, including MON, TBIL, PALB, UA,

TG, and K, demonstrated consistent time-dependent changes in

both sexes, further supporting their potential relevance in

risk monitoring.
Model performance and feature
importance

CatBoost outperformed other models in both the cross-

validation and external testing cohorts, achieving the highest

AUROC of 0.749 (95% CI 0.714–0.783) and 0.719 (95% CI
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0.664–0.767), respectively. It also showed superior F1 scores (0.794,

95% CI 0.768–0.824) and sensitivity (0.910, 95% CI 0.886–0.934),

demonstrating its robust predictive performance across cohorts

(Table 1, Figures 6B, C).

In the CatBoost model, the ten most important features, ranked

by average gain across the cross-validated cohort, included TBIL,

ALB, T4, UREA, RBC, APOE, K, HBsAb, GLO, and UA

(Supplementary Figure S3A). In the external testing cohort, SHAP
Frontiers in Psychiatry 06
analysis identified UA, GLO, K, APOE, RBC, BAS, TBIL, HBsAb,

ALB, and MON as the top contributors to model predictions

(Supplementary Figure S3B).

To capture group-level feature contributions while accounting for

potential interactions, individual SHAP values were clustered using the

K-means algorithm. The optimal number of clusters was determined to

be two based on the silhouette score (Supplementary Figure S4). The

clustered SHAP heatmap (Figure 6A) revealed heterogeneous response
FIGURE 2

Multivariate analysis forest plot. This forest plot shows multivariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for selected
biomarkers retained after LASSO feature selection. The analysis was conducted using logistic regression adjusted for study site as a random effect.
Biomarkers with OR > 1 were associated with increased impulsivity risk, while those with OR < 1 were associated with decreased risk.
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patterns for UA, GLO, APOE, RBC, TBIL, HBsAb and ALB in relation

to predicted impulsivity.
Added benefits of biomarkers

Integrating biomarkers with the baseline clinical data

significantly improved model performance. In the cross-validation

cohort, the combined model showed a higher AUROC (difference =

0.087; 95% CI, 0.047–0.126), F1, AUPRC, sensitivity, and specificity

compared to the model without biomarkers (P < 0.001; Figure 7A). In

the external testing cohort, the addition of biomarkers also led to a
Frontiers in Psychiatry 07
significant improvement in AUROC, F1 score, sensitivity, and

specificity (Figure 7B).

By comparing the results of the cross-validation cohort and the

external testing cohort, we aim to enhance the assessment of the

model’s generalization performance. In the cross-validation cohort, the

ROC curve for the model without biomarkers (Figure 7C) showed an

AUROC of 0.652 (SD 0.018), which improved to 0.749 (SD 0.016)

when biomarkers were included (Figure 7D). In the external testing

cohort, the AUROC increased from 0.655 (SD 0.025) without

biomarkers (Figure 7E) to 0.721 (SD 0.024) with biomarkers

(Figure 7F). These results demonstrate that incorporating

biomarkers significantly enhances model performance in both cohorts.
FIGURE 3

Subgroup multivariate analysis forest plot. Forest plots show multivariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for selected
biomarkers in male (a) and female (b) patients. Logistic regression models were adjusted for study site as a random effect. Biomarkers with OR > 1
indicate increased risk; those with OR < 1 indicate protective associations.
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FIGURE 4

Overall time-trend analysis. Violin plots show longitudinal changes in the distribution of key biomarkers within the impulsivity group, comparing
levels within one week of admission (“before”) and 180 days after escalation (“after”). Statistical significance was determined using paired Welch’s t-
tests; *P < 0.05, **P < 0.01, ***P < 0.001. Box plots within violins represent the median and interquartile range.
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Discussion

Main findings

Our findings highlight that integrating biomarker measurements

with clinical data enables effective prediction of future impulsivity risk

(30). Univariate and multivariate logistic regression, along with time
Frontiers in Psychiatry 09
trend analyses, identified several biomarkers associated with impulsivity.

These biomarkers, when combined with clinical data, significantly

enhanced model performance, as demonstrated by a marked increase

in AUROC and other metrics. Notably, the model yielded similar

performance in both cross-validation and external cohorts, indicating

good generalizability across datasets (31). Furthermore, subgroup

analyses revealed a sex-specific interaction, with differences in the
FIGURE 5

Subgroup time-trend analysis. Violin plots illustrate longitudinal changes in biomarker levels from within one week of admission (“before”) to 180
days after impulsivity escalation (“after”), stratified by sex. (a) Male subgroup. Significant temporal changes were observed in red blood cell count
(RBC), monocytes (MON), total bilirubin (TBIL), prealbumin (PALB), uric acid (UA), triglycerides (TG), potassium (K), and urea (UREA). (b) Female
subgroup. Significant variation was found in MON, TBIL, total bile acid (TBA), PALB, UA, TG, sodium (Na), and K. Notably, MON, TBIL, PALB, UA, TG,
and K exhibited consistent time-dependent changes in both sexes. Statistical comparisons were conducted using paired Welch’s t-tests; *P < 0.05,
**P < 0.01, ***P < 0.001. Box plots indicate medians and interquartile ranges.
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expression levels of key biomarkers between males and females,

suggesting that sex may modulate the predictive value of these

biomarkers for impulsivity risk. Results interpretation is strengthened

by our study design, which ensured that biomarker and clinical data

were collected at admission, before any impulsivity escalation occurred.

By restricting outcomes to events within the first week post-admission,

the model captures prospective risk rather than concurrent

behavioral states.

Our study identifies several biomarkers that are significantly

associated with future impulsivity. While UA (32), GLO (33), K

(34), APOE (35), and MON (36) has been previously linked to

impulsivity, biomarkers such as RBC, BAS, TBIL, HBsAb, and ALB

have not been widely studied in this context. These biomarkers

likely reflect underlying physiological processes, including

metabolic (37) and immune system dysfunctions (38), which may

contribute to the development of impulsivity. The observed

temporal changes in biomarkers like UA, TBA, and K further
Frontiers in Psychiatry 10
suggest that impulsivity risk is dynamic and influenced by

ongoing biological alterations (39). These findings emphasize the

potential for biomarkers to serve as indicators of impulsivity risk

and highlight the need for further exploration of the mechanisms

linking these biomarkers to impulsivity.

CatBoost, the best-performing model, demonstrated the highest

AUROC in both the cross-validation and external testing cohorts.

The inclusion of biomarkers notably improved model performance,

further validating the importance of biomarkers in enhancing

predictive capabilities. Feature importance analysis, performed

using CatBoost and SHAP, identified biomarkers such as UA, as

the most influential predictors, confirming their critical role in the

prediction of impulsivity (40). The SHAP heatmap analysis revealed

complex, heterogeneous response patterns for biomarkers like UA,

GLO, APOE, RBC, TBIL, HBsAb, and ALB, highlighting that

feature interactions may be intricate and difficult to capture with

traditional methods. This underscores the advantage of using
TABLE 1 Model performance.

Cross-validation cohort

Model AUROC F1 AUPRC Sensitivity Specificity

Logreg 0.722 (0.696–0.748) 0.753 (0.735–0.771) 0.751 (0.711–0.785) 0.803 (0.777–0.821) 0.680 (0.657–0.705)

RF 0.743 (0.711–0.780) 0.788 (0.762–0.814) 0.763 (0.720–0.810) 0.894 (0.865–0.921) 0.729 (0.697–0.765)

SVM 0.659 (0.614–0.693) 0.749 (0.720–0.774) 0.703 (0.647–0.753) 0.889 (0.863–0.915) 0.654 (0.616–0.694)

BN 0.654 (0.618–0.691) 0.622 (0.581–0.658) 0.708 (0.659–0.753) 0.550 (0.508–0.592) 0.615 (0.579–0.647)

GBM 0.738 (0.706–0.770) 0.775 (0.748–0.802) 0.765 (0.722–0.805) 0.874 (0.844–0.902) 0.708 (0.672–0.743)

LightGBM 0.747 (0.712–0.789) 0.775 (0.746–0.803) 0.776 (0.734–0.819) 0.844 (0.813–0.875) 0.708 (0.676–0.746)

AdaBoost 0.713 (0.677–0.750) 0.778 (0.749–0.805) 0.743 (0.698–0.787) 0.940 (0.922–0.964) 0.727 (0.686–0.768)

CatBoost 0.749 (0.714–0.783) 0.794 (0.768–0.824) 0.778 (0.736–0.819) 0.910 (0.886–0.934) 0.742 (0.711–0.775)

XGBoost 0.730 (0.691–0.766) 0.783 (0.756–0.798) 0.765 (0.717–0.814) 0.985 (0.976–0.997) 0.782 (0.753–0.814)

MLP 0.701 (0.659–0.734) 0.748 (0.719–0.776) 0.736 (0.688–0.782) 0.804 (0.770–0.832) 0.672 (0.637–0.707)

External testing cohort

Model AUROC F1 AUPRC Sensitivity Specificity

Logreg 0.675 (0.635–0.728) 0.734 (0.697–0.782) 0.706 (0.666–0.791) 0.782 (0.748–0.820) 0.662 (0.629–0.713)

RF 0.720 (0.668–0.769) 0.779 (0.738–0.816) 0.741 (0.679–0.803) 0.887 (0.843–0.925) 0.711 (0.659–0.764)

SVM 0.625 (0.570–0.679) 0.737 (0.693–0.775) 0.674 (0.597–0.736) 0.882 (0.840–0.918) 0.622 (0.556–0.684)

BN 0.659 (0.598–0.717) 0.685 (0.637–0.738) 0.715 (0.642–0.776) 0.650 (0.595–0.722) 0.643 (0.597–0.687)

GBM 0.697 (0.636–0.754) 0.758 (0.716–0.793) 0.734 (0.679–0.795) 0.869 (0.827–0.911) 0.673 (0.611–0.725)

LightGBM 0.708 (0.662–0.759) 0.766 (0.727–0.800) 0.746 (0.685–0.805) 0.843 (0.801–0.887) 0.692 (0.645–0.737)

AdaBoost 0.669 (0.604–0.728) 0.749 (0.706–0.787) 0.697 (0.626–0.765) 0.900 (0.856–0.939) 0.649 (0.580–0.710)

CatBoost 0.719 (0.664–0.767) 0.781 (0.740–0.812) 0.751 (0.687–0.807) 0.894 (0.854–0.924) 0.714 (0.663–0.756)

XGBoost 0.696 (0.646–0.750) 0.787 (0.745–0.822) 0.723 (0.663–0.790) 0.976 (0.956–0.992) 0.775 (0.714–0.816)

MLP 0.675 (0.625–0.725) 0.735 (0.695–0.778) 0.714 (0.641–0.780) 0.810 (0.760–0.854) 0.644 (0.596–0.693)
This table presents the performance metrics of different machine learning models across cross-validation and external testing sets. Reported values are point estimates and 95% confidence
intervals obtained using bootstrap with 1000 iterations. AUROC, Area Under the Receiver Operating Characteristic Curve; F1, F1 score; AUPRC, Area Under the Precision-Recall Curve; LogReg,
Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; BN, Bayesian Network; GBM, Gradient Boosting Machine; MLP, Multilayer Perceptron. Bolded font indicates the best
metric across models within the same set.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1620131
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Liu et al. 10.3389/fpsyt.2025.1620131
machine learning techniques, which are better equipped to

recognize and model such complex relationships in predictive

tasks (41).

Several biomarkers exhibited significant different responses

between male and female groups, and notable changes were

observed over time following the occurrence of impulsivity. These

differences may reflect underlying sex-specific physiological processes,

such as hormonal regulation (42) and metabolic pathways (43), which

could potentially modulate impulsivity risk and biomarker expression

over time. Furthermore, an interaction between sex and the biomarker

UA was identified, suggesting that the predictive value of UA for

impulsivity risk may vary between males and females. This finding

aligns with the previously discussed significant role of UA in

predicting impulsivity risk (37). These results underscore the
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importance of considering sex differences in predictive models and

suggest that further investigation into the underlying mechanisms of

these biomarkers, particularly UA, is warranted.

Notably, although the model predicts impulsivity within a short

time window, this prediction precedes routine clinical risk

assessments and behavioral escalation, and thus provides

clinically actionable information. In real-world psychiatric wards,

where IBRAS or similar scales are administered weekly, our model

can enable proactive identification of high-risk patients, allowing

for timely implementation of targeted interventions, staffing

adjustments, and personalized safety protocols. In this way, the

model complements, rather than replaces, existing clinical

assessments, and bridges a critical gap between admission and

routine risk detection.
FIGURE 6

Clustered SHAP values heatmap and the confusion matrix. (a) Clustered SHAP (Shapley Additive Explanations) heatmap showing distinct feature
attribution patterns across patient subgroups, based on top 10 biomarkers. Clustering was performed using K-means based on individual SHAP value
profiles. Color intensity reflects mean SHAP values per biomarker within each cluster, with red indicating increased predicted risk and blue indicating
reduced contribution. (b) Confusion matrix for the cross-validation cohort. (c) Confusion matrix for the external testing cohort. Confusion matrices
present true and predicted labels for impulsivity, with darker cells representing higher counts.
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FIGURE 7

Added benefits of biomarker measurements and the receiver operating characteristic curves (ROC). (a) Performance gain from incorporating
biomarker features in the cross-validation cohort, assessed using AUROC, F1 score, AUPRC, sensitivity, and specificity. (b) Performance gain in the
external testing cohort. Bars indicate absolute differences in model performance between models with and without biomarkers, with 95%
confidence intervals. P values were calculated using Nadeau and Bengio’s corrected resampled t-test; *P < 0.05, **P < 0.01, ***P < 0.001. (c–f),
Receiver operating characteristic (ROC) curves comparing models without (c, e) and with (d, f) biomarker inputs in the cross-validation cohort (c, d)
and external testing cohort (e, f). Inclusion of biomarkers substantially improved model discrimination, as indicated by increased AUROC values and
more favorable balance points.
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Strengths and limitations

This analysis is strengthened by the use of a well-characterized,

multicenter, and longitudinal real-world cohort, offering robust

evidence derived from a large sample size and a rigorous study

design. However, several limitations should be considered. The data

were exclusively from hospitalized patients in a single city, which

may limit the generalizability of the findings and introduce

potential selection bias. Furthermore, missing data could

introduce confounding factors, affecting the consistency and

reliability of the results.
Conclusions

This cohort study identifies a reproducible biomarker signature

that is significantly correlated with future impulsivity risk in SCZ

patients, enhancing the predictive accuracy and clinical utility of

models based on routinely accessible patient data. Furthermore, we

observed a significant correlation between sex and impulsivity risk,

suggesting that sex-specific factors may influence impulsivity, which

warrants further investigation into this potential relationship.
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