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Postoperative sleep disturbance (PSD) is a common complication following

surgery. Numerous factors can contribute to PSD, including personal factors,

intraoperative factors, postoperative complications and environmental factors.

PSD can lead to a range of adverse outcomes, severely impairing patients’

postoperative recovery and long-term prognosis. Esketamine, a non-

competitive N-methyl-D-aspartate (NMDA) receptor antagonist and the

dextrorotatory isomer of ketamine, which has stronger receptor affinity, more

significant analgesic effects and better safety than ketamine. In recent years, in

addition to the proven sedative, analgesic and antidepressant properties,

emerging evidence highlights that esketamine may improve PSD through a

variety of mechanisms, but the existing research results are still controversial.

This article reviews the latest research progress of esketamine in improving PSD,

and discusses its clinical efficacy and potential mechanism of action, in order to

provide theoretical basis and practical guidance for optimizing perioperative

anesthesia management and promoting postoperative rehabilitation of patients.
KEYWORDS

postoperative sleep disturbance, sleep quality, esketamine, ketamine, NMDA
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1 Introduction

Adequate sleep is essential for sustaining various physiological processes, particularly

for preserving optimal brain function. Normal sleep pattern is typically categorized into

two primary states: non-rapid eye movement (NREM) and rapid eye movement (REM)

sleep. The NREM phase is further subdivided into three distinct stages, namely N1, N2, and

N3, which account for approximately 5%-10%, 45%-55%, and 15%-25% of the total sleep

duration in adults, respectively (1, 2). Notably, the N3 stage is characterized by delta wave

activity and is frequently termed slow-wave sleep (SWS) or deep sleep. During the N3 stage,

the body’s immune function is enhanced, and cognitive function is supported by clearing

waste from the brain (such as b-amyloid (Ab)) (1, 3). In adults, the REM stage typically

represents approximately 20%-25% of the overall sleep duration. REM sleep is involved in
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the development of the nervous system and the establishment of

synaptic connections, and it plays a crucial role in memory

consolidation and emotion regulation (4, 5).

Normal sleep consists of multiple periodic cycles, each of about

90 minutes. A typical sleep cycle progresses in sequence through the

following stages: N1→N2→N3→N2→REM sleep (2). The aging

process significantly influences sleep architecture, characterized by

a reduction in total sleep duration, diminished proportions of N3

and REM stages, increased sleep onset latency, higher frequency of

nocturnal awakenings, and increased duration of N1 and N2 stages

(6). Therefore, elderly patients are more likely to experience

sleep problems.

Postoperative sleep disturbance (PSD) is a common

complication among patients who undergo surgical procedures.

The clinical manifestations of PSD are highly diverse and typically

include difficulty falling asleep, early awakenings, increased

frequency of awakenings, abnormal dream experience, daytime

fatigue and other objective symptoms. Polysomnography (PSG)

monitoring showed characteristic changes: sleep fragmentation,

reduced total sleep time, and a significant decrease or even

complete absence of SWS and REM sleep, particularly on the first

night after surgery (7). It is worth noting that PSD is not merely a

manifestation of postoperative sleep-wake cycle disruption, but also

an important clinical indication of postoperative brain dysfunction.

Therefore, it is essential to improve the PSD of patients.

The prevention and treatment of PSD are multifaceted,

encompassing both non-pharmacological and pharmacological

interventions. Non-pharmacological strategies primarily include

environmental optimization (eg, the use of eye masks and

earplugs to reduce light and noise interference), psychological and

behavioral therapies (eg, relaxation training and music therapy),

and traditional Chinese medicine (eg, acupoint stimulation) (8–10).

Pharmacological interventions are important for improving PSD,

with commonly used medications including melatonin (regulating

circadian rhythm), zolpidem (short-acting sedative hypnotic), and

dexmedetomidine (selective a2 adrenergic receptor agonist) (11–

13). Recently, emerging evidence has highlighted the potential

benefits of perioperative ketamine and its dextrorotatory isomer,

esketamine, in reducing the incidence of PSD and improving

postoperative sleep quality (14, 15). Ketamine, especially

esketamine, has become the new focus of PSD intervention

research due to its multiple targets of action, which can exert

analgesic, antidepressant, anti-inflammatory effects and regulation

of circadian rhythm.

Esketamine, as a dextrorotatory isomer of ketamine, has

stronger receptor affinity, more significant analgesic effects and

better safety than ketamine. This study was conducted as a narrative

review of the existing literature, aiming to evaluate the efficacy of

esketamine in treating PSD and explore its potential underlying

mechanisms, in order to provide theoretical basis for clinical

anesthesia management and postoperative rehabilitation. Given

the rapid expansion of esketamine research in recent years, we

employed a systematic approach to identify and select relevant

publications. The detailed methodology content is illustrated in

Supplementary File S1.docx.
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2 Risk factors and adverse outcomes
of postoperative sleep disturbance

The occurrence of PSD involves multiple factors, mainly

including: (1) Patient factors: gender, age and other demographic

characteristics, preoperative anxiety, depression and pre-existing

sleep problems; (2) Intraoperative factors: degree of surgical

trauma, intensity of stress response, type and duration of

anesthesia; (3) Postoperative complications: pain, postoperative

nausea and vomiting (PONV) and ward environment (noise/light

interference) (2, 7, 15, 16). These multifactorial etiologies contribute

to the high incidence of perioperative sleep problems, with

preoperative sleep disturbance affecting up to 60% of surgical

patients (17) and PSD occurring in more than 70% of individuals

undergoing noncardiac procedures (16).

Notably, the impact of anesthetic drugs on sleep is particularly

unique. General anesthesia produces a reversible, controllable state

through drug induction, including unconsciousness, amnesia,

analgesia, and immobility. Contemporary neuroscience indicates

that, although both general anesthesia and natural sleep involve

reversible loss of consciousness, there are both overlaps and

significant disparities between general anesthesia and physiological

sleep in terms of neural circuits and electroencephalogram (EEG)

manifestations. Natural sleep is an active, rhythmic and cyclical

process dominated by circadian rhythm and homeostasis regulation,

which can promote memory formation and consolidation. In contrast,

general anesthetics induce unconsciousness by acting simultaneously

on multiple cortical and subcortical neural circuits, partially relying on

sleep-like oscillations (eg, slow-delta oscillations). Moreover, they

directly inhibit cortical neurons and subcortical arousal-promoting

neurons, thereby synergistically suppressing arousal. Conversely,

activation of these arousal-promoting neurons can facilitate

anesthesia emergence. Although some anesthetics can induce slow-

delta oscillations similar to NREM sleep, each class of drugs exhibits

unique dose-dependent property (18).

PSD can cause a series of adverse outcomes, significantly

impairing patients’ postoperative recovery and long-term

prognosis. PSD can exacerbate postoperative pain perception (19),

increase the risk of cardiovascular and cerebrovascular events (20–

22), and is also a risk factor for postoperative delirium (POD) and

postoperative cognitive dysfunction (POCD) (23). Additionally,

PSD may lead to postoperative fatigue syndrome (POFS) (24)

(see Figure 1). These pathophysiological changes not only delay

recovery but also prolong hospital stays and increase the health

care burden.
3 Pharmacological properties of
esketamine

Ketamine, a non-competitive N-methyl-D-aspartate (NMDA)

receptor antagonist, is a racemic compound comprising equal

proportions of R (-)-ketamine and S (+)-ketamine enantiomers. It

is primarily used as a narcotic analgesic in clinical practice. The
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drug exhibits unique physicochemical properties, being both

water-soluble and lipid-soluble, which enable its administration

via multiple routes, including intravenous, intramuscular,

intraosseous, oral and intranasal pathways. Its pharmacokinetic

characteristics showed that the elimination rate and distribution

volume are mainly influenced by hepatic perfusion (25). Notably,

Berman et al. firstly identified that ketamine also has significant

antidepressant effects (26), a finding that has greatly expanded its

clinical application prospects. Nevertheless, the clinical application

of ketamine is constrained by its propensity to induce

psychotomimetic adverse effects, such as hallucination, nightmare

and restlessness.

Esketamine, the S (+)-enantiomer of racemic ketamine, exerts

its pharmacological effects through multiple molecular targets (see

Figure 2). The optimal administration method of esketamine for

anesthesia and analgesia is intravenous injection, the effect is dose-

dependent (27). And the main mechanism by which it produces

anesthetic and analgesic effects is its non-competitive antagonism of

NMDA receptors. Although esketamine shares similar

pharmacodynamic characteristics with ketamine, it exhibits

approximately twice the binding affinity for the NMDA receptors

compared to the racemate. Consequently, esketamine requires only
Frontiers in Psychiatry 03
half the dose of ketamine to achieve comparable anesthetic and

analgesic effects.

Currently, the product labeling for esketamine still refers to the

pharmacokinetic data of racemic ketamine. However, a clinical

study conducted in Chinese patients undergoing painless

gastroscopy demonstrated that the onset time and the duration of

action did not differ significantly between esketamine and ketamine,

but the total dose of esketamine required to reach the specified

blood concentration is only 65% of ketamine. The mean elimination

half-life of esketamine was approximately 4 hours. Notably,

esketamine displayed higher clearance rate and shorter recovery

time compared to ketamine. Esketamine is metabolized primarily

by hepatic microsomal enzymes, yielding S-norketamine as its

major active metabolite, which has a mean elimination half-life of

approximately 6–10 hours (28). An important pharmacological

characteristic of esketamine is that the plasma concentration

required for its analgesic effect is significantly lower than that

needed for the loss of consciousness (29, 30). This implies that

even after the anesthetic effect subsides and the patients regain

consciousness, the analgesic effect may still persist for a certain

period. This is highly beneficial for postoperative analgesia, as it can

provide a certain degree of continuous analgesic effect and reduce
FIGURE 1

Risk factors and adverse outcomes of postoperative sleep disturbance.
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the need for other analgesic medications. Furthermore, it may lead

to subsequent effects such as potential neuroprotection and

antidepressant effects (31).

Although esketamine offers advantages such as stronger affinity,

higher clearance rate, and shorter recovery time compared to ketamine,

the potential adverse effects after esketamine administration warrant

consideration, especially the psychomimetic symptoms. According to a

literature review covering the period from 1980 to 2022, esketamine is

not devoid of psychomimetic side effects. Esketamine is also associated

with dose-dependent psychomimetic adverse effects, such as

hallucinations, thought disorganization, depersonalization,

derealization, and abnormal dreams. Even at subanesthetic (≤0.5 mg/

kg) or low doses (≤0.2 mg/kg), these neuropsychiatric manifestations

may occur, though they are generally mild and transient. At higher

doses, sedation gradually occurs until loss of consciousness. Compared

with racemic ketamine, the psychomimetic effects of esketamine are

milder, and the cognitive impairment during recovery is less severe and

milder (32).

The mechanism underlying the psychotomimetic adverse effects

of esketamine stems from its core pharmacological action as a

NMDA receptor antagonist. By blocking NMDA receptors on
Frontiers in Psychiatry 04
g-aminobutyric acid (GABA) inhibitory interneurons, esketamine

suppresses the activity of these neurons, leading to the disinhibition

and abnormal excitation of downstream glutamatergic pyramidal

neurons. This results in a sharp increase in glutamatergic signaling in

brain regions such as the prefrontal cortex (PFC) (33). This

widespread excitatory disorder further disrupts the dynamic

balance between large-scale brain networks, particularly causing

disconnections within the default mode network (DMN) and its

connections with the salience network (SN) and the executive control

network (ECN). This is closely related to abnormal self-perception

and the sense of reality disintegration (34). Concurrently, esketamine

significantly interferes with the function of the temporoparietal

junction (TPJ), a brain region responsible for integrating visual,

vestibular, and proprioceptive information. Its dysfunction leads to

failure inmultisensory integration, directly causing symptoms such as

hallucinations, perceptual distortions, and out-of-body experiences

(35). Therefore, the psychotomimetic adverse effects of esketamine

are not caused by a single mechanism but are the collective result of a

series of cascading reactions triggered by its NMDA receptor

antagonism, ultimately leading to the dysfunction of multiple

brain networks.
FIGURE 2

Targets of action of esketamine.
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4 Esketamine in clinical practice for
pain

Building upon its unique pharmacological profile, esketamine

has been investigated for several clinical applications beyond

anesthesia. An increasing number of clinical studies have

confirmed that esketamine not only provides significant analgesic

effects (36), but also effectively alleviates negative emotions (31),

while significantly enhancing patients’ postoperative recovery

quality (37).

The foremost advantage of esketamine is its potent analgesic

and opioid-sparing effects. Multiple studies have consistently

demonstrated that low-dose esketamine, either as an adjuvant

during anesthesia or in patient-controlled intravenous analgesia

(PCIA) pumps, significantly reduces postoperative pain scores and

reduces the consumption of opioids, especially in cesarean section.

Moreover, some studies have shown that perioperative esketamine

administration markedly decreases the incidence of PONV (38–40).

This beneficial effect may be associated with diminished

perioperative opioid utilization and enhanced maintenance of

hemodynamic stability.

While numerous studies report significant reductions in pain

scores and opioid requirements, others show neutral or negative

findings (41, 42). Firstly, this discrepancy can be attributed to

several factors, including varying surgical models (major

abdominal or superficial surgery), divergent dosing regimens

(bolus or continuous infusion), and differences in the timing of

administration (pre-incision or intraoperative). Secondly, while

esketamine may demonstrate benefits in acute pain control, its

long-term effects on preventing chronic postsurgical pain (CPSP)

remain inadequately explored (43, 44). Additionally, the

concomitant use of other analgesics in multimodal strategies can

also obscure its specific contribution (45). Lastly, the contribution of

active metabolites like S-norketamine, with its longer half-life and

distinct pharmacological activity, to the overall analgesic is often

not accounted for in clinical studies (46).

While esketamine holds considerable promise as a multimodal

analgesic adjuvant, its application is not without challenges. Future

research must prioritize the standardization of dosing, the

identification of patient subgroups most likely to benefit, and the

rigorous assessment of long-term outcomes to fully define its role in

enhanced recovery protocols.
5 Clinical evidence that esketamine
improves postoperative sleep
disturbance

In recent years, a number of clinical studies have investigated

the effects of esketamine on postoperative sleep quality. The

results are somewhat inconsistent, but generally indicate that

esketamine may improve postoperative sleep quality through

multiple mechanisms.
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5.1 Effect of esketamine on subjective
sleep quality

Accumulating evidence demonstrates that perioperative

administration of esketamine significantly reduces the incidence

of PSD and enhances patients’ self-reported sleep quality. For

instance, Qiu et al. found that in patients undergoing

gynecological laparoscopic surgery, intraoperative intravenous

infusion of esketamine (0.3 mg/kg/h) significantly lowered the

incidence of PSD on the first and third postoperative days, from

44.0% to 22.8% and from 19.8% to 7.6%, respectively (15). In

another study involving laparoscopic gastric carcinoma resection, a

combined regimen of intravenous esketamine (0.5 mg/kg) after

induction and PCIA containing esketamine (1 mg/kg) effectively

alleviated postoperative pain, enhanced sleep quality, reduced

fatigue, and accelerated patient recovery (47). Research on elderly

patients undergoing laparoscopic gastrointestinal tumor surgery

revealed that intravenous esketamine (0.25 mg/kg) after

induction, combined with continuous intraoperative infusion (0.1

mg/kg/h) improved sleep quality from postoperative day 1 through

day 3 (48). Additionally, esketamine has proven effective in

enhancing sleep quality for patients undergoing video-assisted

thoracoscopic surgery (VATS), whether administered as a single

pre-induction intravenous dose (0.5 mg/kg) or as a 24-hour

postoperative infusion (1.5 mcg/ml sufentanil combined with 0.75

mcg/ml esketamine) (43, 49). It is worth noting that these studies

employed subjective sleep assessment scales, which consistently

demonstrating that perioperative administration of esketamine

positively impacts patients’ postoperative sleep quality.
5.2 Effect of esketamine on sleep structure

Previous electrophysiological study in rats has shown that

intraperitoneal ketamine injection selectively increases slow-wave

activity (SWA) in the EEG during NREM sleep and modulates the

expression of brain-derived neurotrophic factor (BDNF) in central

brain regions (50). BDNF, a neuropeptide abundant in the CNS, is

critical for neuroplasticity. In patients with treatment-resistant

major depressive disorder (MDD), ketamine infusion has been

observed to significantly influence sleep architecture, as indicated

by increased total sleep duration, SWS, and REM sleep compared to

the baseline. Furthermore, reductions in N1, N2, REM sleep latency,

and wake time were noted on the day following ketamine

administration (51). A randomized controlled trial (RCT)

involving patients undergoing open abdominal gynecological

surgery revealed that intraoperative intravenous infusion of

esketamine (0.2 mg/kg/h) combined with an additional

esketamine (50 mg) added to PCIA significantly increased the

proportion of N3 sleep on the first postoperative night, from 8.9%

to 15.6%. However, no significant differences were observed

between the intervention and control groups in subjective sleep

quality scores or other sleep architecture components, including

N1, N2, and REM sleep (52).
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5.3 Controversy

Although most studies support the positive effect of esketamine

on improving postoperative sleep, some studies still yield negative

results. For example, one study observed that repeated low-dose

intravenous esketamine administration did not enhance sleep

quality in elderly patients undergoing total hip or knee

arthroplasty (53). Similarly, Sun et al. found that intraoperative

esketamine administration failed to improve sleep outcomes in

patients undergoing laparoscopic radical resection for colorectal

cancer (54).

Existing studies have shown that the effects of perioperative

esketamine on postoperative sleep quality are heterogeneous, which

may be related to differences in study populations and different

dosing regimens (dose/timing). Comprehensive evidence showed

that the current clinical studies mainly used intravenous

administration, including: intraoperative single administration

(0.1-0.5 mg/kg); intraoperative continuous infusion (0.1-0.3 mg/

kg/h); postoperative continuous administration (50 mg or 0.5–1

mg/kg combined with opioids). Although the mechanism has not

been fully elucidated, existing evidence supports the positive

significance of perioperative intravenous esketamine in improving

postoperative sleep quality.

While the above clinical evidence suggests that esketamine may

be a promising agent for alleviating PSD, it is imperative to

acknowledge that the application of esketamine for PSD is strictly

off-label. Clinicians and researchers must exercise utmost caution

due to several inherent risks. First and most commonly, there are

mental related adverse reactions such as nightmares, dizziness,

hallucinations and mental confusion (32). Even though these

symptoms are mostly temporary, we need to conduct appropriate

monitoring to ensure the safety and comfort of the patients.

Secondly, esketamine can cause a dose-dependent increase in

blood pressure and heart rate (55), which warrants careful

consideration in postoperative patients, especially those with

cardiovascular instability. Thirdly, the long-term safety of

repeated esketamine administration for sleep modulation,

particularly in surgical populations, remains largely unexplored.

Finally, as a schedule-controlled substance, esketamine carries a risk

of misuse and dependence. Its use must be recorded in detail and be

restricted to use in supervised medical environments.
6 Possible mechanisms of esketamine
improving postoperative sleep quality

The lateral preoptic (LPO) hypothalamus is a core brain region

that generates and maintains sleep (including NREM and REM

sleep). The excitability of neurons in this brain region is highly

dependent on NMDA receptors (particularly the GluN1 subunit). A

experiment reported that specifically deleting NMDA receptors in

the LPO leads to severe insomnia, indicating that the normal

function of NMDA receptors is necessary for maintaining sleep

homeostasis (56). Furthermore, recent studies have confirmed that

the discharge patterns of dopaminergic neurons in the ventral
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tegmental area (VTA) play a crucial role in the transition between

sleep and wakefulness. One of the key mechanisms of the NMDA

receptor antagonist is its action on the GABAergic interneurons in

the VTA. Blocking the NMDA receptors on these inhibitory

neurons will relieve their inhibition on the dopaminergic neurons,

resulting in a sharp increase in dopamine release (57, 58). The surge

of dopamine will drive awakening (59). These give rise to a core

paradox: How can NMDA receptor antagonists improve sleep?

At present, the specific mechanisms of ketamine and

esketamine to improve sleep quality after surgery are unclear. The

regulation of sleep-wake states relies on the balance of complex

neural networks and neurotransmitter systems within the brain, in

which NMDA receptors are widely involved. Some studies indicate

that NMDA receptor antagonists can enhance SWA on EEG (60).

Esketamine may induce or enhance the recovery of deep sleep,

which is similar to physiological SWS in EEG, through its action on

NMDA receptors in the cortex and thalamus. In addition, ketamine

can also participate in a more extensive regulation of sleep-wake

cycle homeostasis by modulating key neuropeptides in the

hypothalamic endogenous sleep-wake regulatory system, such as

inhibiting the release of the wake-promoting neuropeptide orexin

(OX) and potentially promoting the activity of the sleep-promoting

neuropeptide melanin-concentrating hormone (MCH) (61).

The effect of esketamine in improving postoperative sleep is not

only achieved by directly regulating the sleep-wake center circuit,

but may also result from its multiple indirect mechanisms, such as

analgesia, anti-depression, anti-inflammation, and regulation of

circadian rhythm (see Figure 3).
6.1 Analgesia

Patients undergoing surgical treatment often experience varying

degrees of pain both before and after surgery. The bidirectional

relationship between pain and sleep has been widely acknowledged:

pain can disrupt sleep, resulting in prolonged sleep latency and

reduced total sleep time; conversely, sleep disturbance is an

important predictor of pain (62). Opioids are the most commonly

used analgesic drugs. However, long-term or irregular use of

opioids can produce related adverse reactions, among which sleep

disturbance is one of the adverse reactions of opioid use. Sleep

disturbance can lead to decreased pain tolerance and further

increase the use of opioids, presenting a vicious cycle (63). In a

study of intravenous morphine administration in healthy painless

young adults, it was found that intravenous morphine

administration at clinical doses altered sleep structure in healthy

painless subjects, with decreased SWS and REM sleep, and an

increase in N2 on PSG (64). A large amount of evidence indicates

that esketamine provides effective analgesic effects, although several

studies failed to reach statistical significance. Additionally, the study

has also found that intraoperative use of esketamine not only

improves postoperative sleep but also reduces postoperative

movement pain scores and analgesic drug consumption (15).

The possible mechanisms of esketamine analgesia: (1) NMDA

receptors are crucial excitatory glutamate receptors in the central
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nervous system (CNS) and play a pivotal role in the transmission of

nociceptive signals (65). When a noxious stimulus occurs, the

presynaptic membrane releases the excitatory neurotransmitter

glutamate, which activates the NMDA receptors. This activation

triggers a voltage-dependent influx of sodium ions (Na+) and

calcium ions (Ca2+) and an efflux of potassium ions (K+),

ultimately leading to pain (66). As an NMDA receptor antagonist,

esketamine may attenuate glutamate-mediated nociceptive signal

transmission by binding to NMDA receptors, thereby preventing

glutamate from binding to its receptors and reducing the time and

frequency of receptor channel opening. This mechanism helps to

alleviate pain. (2) The nitric oxide (NO)/cyclic guanosine 3′,5′-
monophosphate (cGMP) signaling pathway has been identified as a

critical mediator in the pathogenesis of chronic pain, particularly in

inflammatory pain (67). NO is a biological mediator widely

involved in pain regulation. The brain is the primary source of

NO in the body, and the main stimulus for NO synthesis in the

brain is Ca2+ influx through NMDA glutamate receptors. Upon

NMDA receptor activation, Ca2+ enters the cell and binds to

calmodulin (CaM) to form a Ca2+-CaM complex. This complex

can activate neuronal nitric oxide synthase (nNOS) to promote NO

production (68). Given that esketamine acts as an NMDA receptor

antagonist, it may inhibit NMDA receptor activation, thereby

affecting the production of NO and inhibiting inflammatory pain.

(3) In addition, esketamine also has a certain binding affinity for
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opioid receptors (eg, m- and d-opioid receptors), which may

enhance its analgesic effects by regulating the activity of these

receptors (69).
6.2 Antidepressant

Sleep disturbance has long been recognized as a core symptom

of depression. However, emerging research has revealed that sleep

disturbance not only co-occurs with depressive disorders but also

serves as an independent risk factor for their onset. Long-term

persistent sleep disturbance can significantly increase the risk of

individuals suffering from mental illnesses. As one of the most

common mental illnesses, depression has a complex bidirectional

relationship with sleep disturbance (70). The antidepressant effects

of ketamine represent a major breakthrough in the field of mental

health. Unlike conventional antidepressants, ketamine exerts its

therapeutic effects within just a few hours and reduces suicidal

ideation in the short term (71, 72). Furthermore, clinical

investigation has demonstrated ketamine’s efficacy in alleviating

insomnia severity among patients with depressive disorders (73).

Notably, in 2019, United States Food and Drug Administration

(FDA) granted approval for esketamine as a therapeutic

intervention for treatment-resistant depression (TRD) (74). As a

novel antidepressant, the efficacy of esketamine has been verified
FIGURE 3

Indirect mechanisms of esketamine in improving postoperative sleep disturbance.
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across various surgical populations (31, 75–80). Recent research has

shown that a single low-dose administration of esketamine (0.2 mg/

kg) following childbirth can result in a 75% reduction in major

depressive episodes at 42 days postpartum among women

experiencing prenatal depression (81). The antidepressant

mechanisms of ketamine and esketamine have garnered

significant interest in recent years.

The possible antidepressant mechanisms of esketamine: (1) The

lateral habenula (LHb) nucleus is a small subcortical nucleus in the

brain, which inhibits the activity of reward-related dopaminergic

neurons and plays a crucial role in the regulation of negative

emotions. Research has shown that the burst-like firing activity of

the LHb is closely linked to the development of depression, and this

firing pattern is dependent on NMDA receptors. By blocking

NMDA receptors, esketamine inhibits the excessive activity of the

LHb and modulates its functional connectivity with brain regions

associated with the reward system and cognitive control, thereby

exerting its rapid antidepressant effects (82). (2) Several studies have

highlighted the pivotal involvement of NMDA receptors in the

underlying mechanisms of depression. NMDA receptors have

multiple subtypes and are widely expressed throughout the CNS.

It is notable that the expression of GluN2A and GluN2B subtypes is

closely related to the occurrence of depression (83, 84). As NMDA

receptor antagonists, ketamine and esketamine may exert rapid

antidepressant effects by blocking these receptors. (3) The

antidepressant properties of ketamine and esketamine can be

explained not only by their direct antagonism of glutamatergic

NMDA receptors but also through their selective blockade of

NMDA receptors located on GABA inhibitory interneurons. This

blockade leads to the disinhibition of pyramidal neurons, enhancing

glutamate release. Subsequently, glutamate activates a-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors

and promotes the secretion of BDNF (85). It has been found that

ketamine affects the level of BDNF, and this change is associated

with SWS and mood regulation (51). (4) In addition, esketamine

exerts antidepressant effects by promoting the activation of the

mammalian target of rapamycin (mTOR) signaling pathway in the

PFC, increasing synaptic plasticity (86). (5) Moreover,

hydroxynorketamine (HNK), a metabolite of ketamine, is also

one of the important mechanisms underlying its antidepressant

effects (87). Esketamine has been found to have a 10% higher

demethylation rate than ketamine (88), which may contribute to its

potent antidepressant effects. The antidepressant effects of HNK do

not depend on the inhibition of NMDA receptors, but are achieved

by enhancing AMPA receptor function. This mechanism further

supports the critical position of AMPA receptors in the

antidepressant effects of ketamine and esketamine.
6.3 Anti-inflammatory

Surgical trauma, inflammatory response, and postoperative

pain are major factors affecting postoperative sleep quality (7).

Compared with patients undergoing minimally invasive procedures
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such as laparoscopic cholecystectomy, those who undergo major

abdominal surgery experience more severe circadian rhythm

disorders and worse subjective recovery parameters (89). The

inflammatory response is the body’s natural defense mechanism

against surgical trauma. Extensive surgical trauma or the presence

of other influencing factors can trigger a systemic inflammatory

response, leading to an imbalance in the level of inflammatory

factors. Scientific investigation has established interconnections

among inflammatory markers, sleep disruption, and depressive

states (90). Specific cytokines, including tumor necrosis factor

(TNF) and interleukins (91), which are involved in postoperative

inflammatory processes, may contribute to the development of

PSD. Experimental evidence indicates that administration of

exogenous TNF or interleukin-1 (IL-1) can trigger symptoms

similar to sleep deprivation (92, 93), such as excessive

somnolence, fatigue, cognitive impairment, and hyperalgesia.

These symptoms imply a potentially significant role of these

inflammatory mediators in the pathogenesis of PSD. We

hypothesized that reducing the release of inflammatory factors

could improve sleep disorders and alleviate depressive symptoms.

In elderly patients, anesthesia induction using propofol in

combination with esketamine demonstrated superior clinical

outcomes compared to propofol paired with sufentanil. This

approach enhances hemodynamic stability, mitigates surgical

stress and inflammatory reactions (as indicated by decreased

levels of C-reactive protein (CRP), procalcitonin (PCT), and

white blood cell (WBC) counts), reduces anesthesia duration, and

promotes the restoration of postoperative cognitive function (94).

These effects have been validated in several studies (31, 95–98),

indicating that esketamine has potential clinical benefits for its anti-

inflammatory effects.

The possible anti-inflammatory mechanisms of esketamine: (1)

By inhibiting leukocyte activation, esketamine attenuates the

generation of pro-inflammatory cytokines, including tumor

necrosis factor-a (TNF-a), interleukin-6 (IL-6), and interleukin-8

(IL-8), while enhancing the release of anti-inflammatory cytokines,

such as interleukin-4 (IL-4) and interleukin-10 (IL-10). This

mechanism consequently reduces inflammation-induced neural

damage (99). (2) Lipopolysaccharide (LPS) is an endotoxin that

induces significant upregulation of inflammatory mediators,

including cytokine production and enhancement of enzyme

activity. This process involves several key molecular events, such

as the phosphorylation of nuclear factor-kB (NF-kB) and its nuclear
translocation, as well as the elevation of Ca2+ level and the

phosphorylation of calmodulin-dependent protein kinase II

(CaMK II). These molecular events interact and work together to

drive the inflammatory process. Like ketamine, esketamine exhibits

potential anti-inflammatory properties through antagonism of

NMDA receptors, reduction of Ca2+ level, inhibition of CaMK II

phosphorylation, and inhibition of NF-kB phosphorylation and

nuclear translocation (100). (3) There is a mutually promoting

relationship between oxidative stress and inflammation. As a crucial

transcriptional regulator of the cellular oxidative stress response,

nuclear factor erythroid 2-related factor 2 (Nrf2) modulates the
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expression of genes responsible for antioxidant and anti-

inflammatory activities, playing a key role in safeguarding cells

against the detrimental impacts of oxidative stress and

inflammatory processes (101). Research has demonstrated that

esketamine induces rapid antidepressant effects in adolescent

mice exposed to LPS, an effect linked to the stimulation of Nrf2-

mediated anti-inflammatory signaling pathways (102).
6.4 Regulation of circadian rhythm

Sleep regulation is governed by two primary systems: the

circadian rhythm and homeostasis regulation (103). The circadian

rhythm represents the 24-hour cycle of physiological and behavioral

variations in organisms, controlled by the circadian clock within the

suprachiasmatic nucleus (SCN) of the hypothalamus. In humans,

the most prominent circadian rhythm is the alternation between

sleep and wakefulness. Circadian rhythm disturbance is closely

related to a variety of diseases, such as depression, sleep

disorders, and metabolic syndrome. In recent years, studies have

found that ketamine and esketamine not only possess analgesic and

rapid antidepressant effects but also play a role in regulating

circadian rhythm (104, 105).

The possible mechanisms by which esketamine regulates

circadian rhythm: (1) In mammals, the core circadian clock genes

include period genes (Per1, Per2, Per3), cryptochrome genes (Cry1,

Cry2), Bmal genes (Bmal1, Bmal2), and Clock genes (Clock,

NPAS2). The Clock: Bmal1 complex serves as a central

transcription factor in the mammalian circadian clock,

modulating the expression of various clock genes, including Per

and Cry. Ketamine has been found to time-dependently alter Clock:

Bmal1-mediated transcription, leading to alteration in the

expression of multiple clock genes and subsequent changes in

circadian rhythm (106). (2) Light signals are conveyed to the

SCN via a specialized neural pathway originating from retinal

ganglion cells, known as the retinohypothalamic tract (RHT).

This afferent pathway mediates the synaptic release of glutamate

within the SCN. Subsequent glutamatergic signaling induces

significant transcriptional activation of fundamental circadian

regulators, particularly the Per1 and Per2 genes, thereby playing a

critical role in regulating circadian rhythm (107). As NMDA

receptor antagonists, ketamine and esketamine inhibit the

transcription of these core clock genes in the SCN by blocking

glutamate receptors, ultimately leading to alteration in circadian

rhythm. (3) A study has found that the mTOR signaling pathway

plays an essential role in the light-mediated regulation of the SCN

circadian clock. mTOR affects the phase regulation of the circadian

clock and the expression of core clock genes by regulating light-

induced protein translation (108). As previously mentioned,

ketamine and esketamine activate the mTOR pathway, suggesting

that they may alter circadian rhythm by affecting mTOR signaling.
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directions

The decline in postoperative sleep quality is a common

complication following surgery, influenced by numerous factors,

and it significantly hinders patients’ recovery. Leveraging its unique

pharmacological properties, esketamine has demonstrated potential

in enhancing postoperative sleep quality, it not only achieves

through directly regulating the sleep-wake center circuit, but may

also be related to multiple indirect mechanisms such as analgesia,

anti-depression, anti-inflammation, and regulation of the

circadian rhythm.

In the future, before any potential widespread clinical adoption,

several key steps need to be completed. The first and most

important step is to conduct large-scale, multicenter RCTs, which

are crucial for clearly establishing the efficacy and safety. However,

it should be emphasized that the current use of esketamine for the

management of PSD is an off-label use. Therefore, clinicians must

act with caution, ensure a comprehensive risk-benefit assessment

when using it, and obtain full informed consent from patients

regarding its experimental nature in this indication. In addition,

standardized monitoring guidelines for adverse reactions need to

be developed.

Such research will provide a more robust foundation for

improving patients’ quality of life after surgery. Concurrently,

fundamental research is imperative to delineate the precise

molecular mechanisms of esketamine enhancing sleep, to explore

potential therapeutic targets, and to offer theoretical support for

targeted medication strategies.
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