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Introduction: Autism SpectrumDisorder (ASD) is a neurodevelopmental disorder

characterized by sensory processing abnormalities, particularly in tactile

perception, highlighting the need for objective screening methods beyond

current subjective behavioral assessments.

Methods: This study developed a portable electro-tactile stimulation systemwith

EEG to evaluate tactile processing differences in children with ASD (n=36) versus

typically developing controls (n=36).

Results: Revealing significantly reduced ERP amplitudes at key processing stages:

P200 at FP2 (F(1,70)=10.82, p=0.0454), N200 at F3 (F(1,70)=58.33, p<0.0001),

and P300 at C4 (F(1,70)=45.62, p<0.0001). Topographic analysis identified

pronounced group differences (>10ìV) across frontal, central, and parietal

regions (F8, FC5/6, CP1/2/5/6, Pz, Oz), with ASD children exhibiting prolonged

but less efficient tactile discrimination and compensatory prefrontal activation

(FP2 CV: p=0.043). The paradigm demonstrated strong reliability (CV ICC:

ASD=0.779, TD=0.729) and achieved 85.2% classification accuracy (AUC=0.91)

us ing ANN, wi th opt imal per formance f rom F8 P300 features

(sensitivity=87.5%, specificity=83.7%).

Discussion: These findings provide an objective, efficient (15-minute) screening

method that advances understanding of tactile processing abnormalities in ASD

and supports the development of physiological biomarkers for early

identification, overcoming limitations of questionnaire-based approaches.
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1 Introduction

ASD is identified as an early-onset neurodevelopmental

disorder, the etiology of which poses a significant challenge on a

global scale (1). Despite ongoing research efforts, the specific causes

behind ASD remain largely undetermined, paralleled by a steady

increase in diagnostic rates annually (2). Evidence supports early

intervention as a pivotal strategy in ameliorating and alleviating the

symptomatic expressions associated with ASD (3), underscoring the

essence of precocious diagnosis or screening initiatives (4). Studies

have shown that ASD symptoms typically manifest in early

childhood, with 75-88% of children with ASD exhibiting signs

within the first two years of life. The earlier the intervention, the

more effective the treatment; research indicates that interventions

before the age of three yield the most significant outcomes.

However, in China, the median age for early ASD screening is 39

months, with a confirmed diagnosis typically occurring

approximately one year after initial screening (5). Yet, empirical

insights suggest that interventions administered prior to the

completion of the third year of life yield superior outcomes (6),

highlighting the critical need for the advancement of early screening

timelines to effectively address ASD.

The decade subsequent to the DSM-5’s introduction has been

characterized by a reiterated acknowledgment of perceptual

abnormalities as a salient feature of ASD (7). Results from

questionnaires administered to parents have shown that sensory

perception (8), especially tactile sensitivity (9), serves as a typical

marker of abnormalities. Moreover, some researchers believe that

evidence from mouse models indicates that deficits in peripheral

sensory neurons can contribute to ASD (10). Nevertheless, the

assimilation of effective recognition and screening methodologies

for these abnormalities remains insufficient within both clinical

settings and the broader community context. An enhancement in

awareness concerning these early markers is anticipated to facilitate

the promotion of earlier screening and diagnosis endeavors,

consequently enabling the provision of timely and efficacious

interventions for individuals affected by ASD.

In recent years, some researchers have focused on quantifying

tactile sensitivity issues in ASD using behavioral experiments or

questionnaires. Tavassoli and colleagues (11) utilized a vibrotactile

stimulation device to compare tactile sensitivity between individuals

with ASD and TD participants. Participants were required to

identify the stimulated finger after perceiving a weak vibration on

either the index or middle finger. The results showed that higher

tactile thresholds were significantly associated with more

pronounced ASD traits. Anne and colleagues (12) developed a

tactile frequency discrimination task using electrical stimulation.

The ASD group demonstrated slower adaptability when adjusting

to new stimulus frequency ranges, indicating that individuals with

ASD differ from TD individuals in processing sensory inputs. This

highlights the potential for incorporating tactile sensitivity into

ASD auxiliary diagnostics. However, behavioral methods and

questionnaires rely heavily on the cognitive abilities of

participants. Consequently, these experiments are typically

conducted on ASD individuals aged 18 and older, leaving a
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significant gap in the application of objective tactile sensitivity

measures for early ASD screening, particularly for children under

the age of 3.

Therefore, developing an evaluation paradigm that minimizes

cognitive demands and does not require participants to perform tasks

is critical for advancing research methodologies and improving early

ASD detection. Electroencephalography (EEG) offers a promising

approach in this regard. Recent studies have used EEG to investigate

the neural specificity of individuals with ASD, primarily focusing on

resting-state EEG (13, 14)and visual evoked potentials (VEP).

Resting-state EEG assesses functional connectivity during rest,

revealing atypical patterns in ASD, such as reduced low-frequency

(delta, theta) connectivity and excessive high-frequency (beta,

gamma) connectivity (13, 14), which correlate with ASD’s cognitive

and behavioral traits. It is simple to conduct and suitable for all ages,

including low-functioning individuals, but lacks task-related

cognitive engagement, limiting its ecological validity. VEP (15), on

the other hand, records brain responses to visual stimuli (e.g., faces,

patterns) and highlights significant differences between ASD and TD

individuals. ASD individuals often show atypical N170 waveforms in

face processing tasks and abnormalities in P100 and P300 during

visual pattern processing (15). While VEP effectively identifies

perceptual and cognitive deficits, its reliance on visual stimuli and

participant cooperation limits its applicability for individuals with

visual impairments or attention deficits. Tactile paradigms bridge

these limitations by requiring minimal cognitive effort while

capturing task-related brain activity, offering a practical and

objective alternative for studying cognitive processes in ASD. To

date, research on tactile EEG in ASD remains extremely limited. The

few existing studies predominantly focus on brain responses to

simple tactile stimuli, often overlooking the assessment of tactile

resolution. Notably, Piccardi et al.’s study employed a single-point

tactile paradigm to investigate the neural markers of tactile sensory

processing in 10-month-old infants at high risk for ASD or Attention

Deficit Hyperactivity Disorder (ADHD). The neural response results

revealed significantly reduced alpha wave desynchronization in high-

risk ASD infants. These findings highlight the potential of tactile EEG

paradigms for early identification of neural markers associated with

ASD (16). However, the use of single-point, unvarying tactile stimuli

does not allow for the investigation of tactile resolution, resulting in

the largest tactile processing difference in ASD being overlooked.

Thereby leaving a significant gap in the nuanced understanding of

tactile processing and tactile resolution in ASD.

The current gaps in ASD tactile processing research are

threefold: behavioral methods rely on cognitive abilities, limiting

use in children under 3; EEG paradigms like resting-state EEG lack

task engagement, and VEP depends on visual stimuli and

cooperation; existing tactile EEG studies, such as Piccardi et al.’s,

use simple stimuli, neglecting tactile resolution. Addressing these

gaps requires developing objective, low-cognitive-demand tactile

EEG paradigms capable of capturing multidimensional tactile

processing characteristics, particularly for early ASD detection.

Previous research on the mechanisms of tactile event-related

potential (ERP) has predominantly focused on typically developing

individuals. Among the electrophysiological metrics, the ERP
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components associated with the brain’s processing of tactile stimuli

include P100 (17, 18), N140 (19), P200 (20), N200 (21), and P300

(20) components are associated with the temporal processing of

tactile stimuli in the brain. The P200 component, occurring during

the mid-stage of tactile temporal processing, has been identified as a

critical marker for distinguishing between multi-level tactile

sensations. In contrast, the P300 component, observed during the

late-stage of tactile temporal processing, exhibits a strong

correlation with subjective judgments of tactile sensations (22).

However, the electrophysiological performance of ASD in tactile

temporal processing, especially in these components compared to

TD, and the mechanisms of ASD in recognizing multi-level tactile

stimuli, require further exploration.

The contribution of this study is its utilization of EEG to

provide an objective assessment of tactile response resolution in

individuals with ASD compared to TD counterparts, with the aim of

elucidating distinct neurophysiological patterns and establishing

tactile EEG as a robust physiological biomarker for ASD. In this

study, we used a multi-channel tactile electrical stimulation and

wireless EEG synchronization acquisition system suitable for ASD.

We also developed a paradigm for multi-level pressure tactile

stimuli. By sequentially analyzing ERP components, cortical

activity, and the coefficient of variation (CV) in tactile

information processing, we aimed to investigate cognitive deficits

in ASD, particularly the dynamic information processing

abnormalities during tactile recognition.
Frontiers in Psychiatry 03
2 Materials and methods

2.1 EEG-based experimental system for
assessing tactile resolution

In this paper, we present an integrated EEG-based system

specifically designed for the assessment of tactile resolution (refer

to Figure 1). The system consists of three main components: a

multimodal electro-tactile stimulator, a wireless EEG acquisition

module, and array-style flexible electrodes. The electrical

stimulation system measures 500×100 mm (as illustrated in

Figure 1B) and is portable, can be directly placed on a desktop.

The array-style electrodes are flexible, ensuring they meet the

requirements for portability. This compact size and flexibility

allow the system to maintain effective electrical stimulation even

if there are slight movements by the subject during the experiment.
2.1.1 Multimodal electro-tactile stimulator
Electrical stimulation provides precise, controllable, and direct

neural activation for tactile sensations, offering rapid response

(brain responses can be observed immediately without delay from

the moment of stimulation via EEG), scalability (electrical

stimulation systems can be scaled to stimulate multiple sensory

points simultaneously), technological integration (the system’s area

can be reduced, making the entire system wearable), and minimal
FIGURE 1

EEG-Based Experimental System for Assessing Tactile Resolution. The system consists of three main components: a Multimodal electro-tactile
stimulator, a wireless EEG acquisition module, and array-style flexible electrodes. (A) Wireless EEG acquisition module (B) Multimodal electro-tactile
stimulator. (C) Array-style flexible electrodes. (D) Experimental Setup.
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invasiveness (ASD do not experience discomfort during the

experiment and does not pose a threat to their health), making it

superior to other methods (vibration feedback, mechanical

stimulation, pneumatic and hydraulic systems, thermal feedback,

ultrasonic haptics, magnetic and chemical stimulation,

optogenetics, and light-based feedback) in applications like

neuroprosthetics and human-computer interaction (23). The

stimulation was delivered to the median nerve in the left hand

(22, 24). Electrical impulses are output by the electrical stimulator

(Master-9, AMPI, Israel) and encoded via custom software based on

MATLAB R2024b (MathWorks, MA, USA) with the toolbox

Psychtoolbox. Commands for electrical stimulation, including

current intensity, pulse width, and frequency, can be precisely

controlled and monitored in real-time via PC through WiFi.

2.1.2 Array-style flexible electrodes
In this study, electrodes need to be placed in contact with the

human epidermis to input the stimulation current. Flexible printed

circuit electrodes were used, as shown in Figure 1D. Based on our

previous threshold experiments with normal subjects, the FPC

electrodes adopted a ring-shaped unipolar configuration (25)

(outer diameter: 8mm, inner diameter: 4mm) and directly input

pulse modulation signals. The axial distance between the electrodes

was set to 30 mm, and the circumferential distance was set to 30

mm. To increase the contact area between the electrodes and the

skin and prevent burns caused by excessive local current due to

uneven contact, conductive gel was used as the contact medium

between the electrode and the skin.

2.1.3 Wireless EEG acquisition module
Given the difficulty ASD patients experience in maintaining a

stable seated posture for prolonged periods, often displaying

involuntary head movements or body shifts, this study

employed the NeuSen W wireless EEG amplifier system

(Neuracle). The amplifier was positioned at the back of the

head, tightly adhering to the scalp, and directly connected to the

electrode cap to mitigate the effects of electrode cap cable drift

caused by minor head and body movements. This setup

minimized disruptions to the acquisition of raw EEG data (26).

To streamline the experimental setup, a saline-based electrode cap

was selected, allowing for immediate data collection upon

placement on the participant. The system includes 32 scalp

electrodes configured according to the international 10/20

system, with the reference and ground electrodes positioned at

CPz and the forehead, respectively. EEG signals were recorded

using a bandpass filter, with a sampling rate of 1000 Hz and a

frequency range of 0.5 to 100 Hz (27).

During tactile stimulation for the subjects, the stimulus

computer dispatches a sequence embedded with electrical

stimulation parameters to the stimulation system, concurrently

transmitting time stamps to the EEG acquisition computer

through a serial port. Subsequent to EEG signal collection, the

saline electrode cap transmits these signals to the EEG acquisition

computer via WiFi.
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2.2 Experimental paradigm

2.2.1 Participants
A total of 72 participants were enrolled in the experimental

study. 36 subjects diagnosed with Autism Spectrum Disorder

(ASD), aged between 1 and 5 years (mean age = 3 years, range: 1

year 2 months to 5 years 2 month), were recruited from the

Psychological Outpatient Clinic and Autism Intervention Center

at the Children’s Hospital affiliated with Tianjin University. The

inclusion criteria for the ASD group were as follows: For children

under 3 years old, early screening was conducted using the Autism

Behavior Checklist (ABC), a widely validated tool for identifying

ASD characteristics in young children. The ABC scores were

combined with clinical observations by experienced pediatricians

to identify children highly suspected of having ASD. While these

methods are not equivalent to formal diagnoses using standardized

tools such as ADOS or ADI-R, they are appropriate for early

identification and screening in this age group. To ensure

consistency within the group, the same ABC scale was also used

for children over 3 years old (28), All children with ASD aged 3 and

above were initially screened using the ABC scale and clinically

diagnosed by two senior physicians based on DSM-5 criteria, with

85% of cases confirmed by ADOS-2 assessment. Exclusion criteria

included the presence of known genetic conditions (e.g., tuberous

sclerosis), significant head trauma, neurological disorders or history

thereof (e.g., epilepsy), severe physical illness, metallic implants in

the head or neck, or current use of psychotropic medications. A

control group of 36 age-matched typically developing (TD) children

was recruited from the Child Health Department of the same

hospital through public postings. None of the control participants

had been suspected by pediatricians of having ASD or any other

developmental disorders. The study protocol was reviewed and

approved by the Ethics Committee of the Children’s Hospital

affiliated with Tianjin University (2023-IITKY-005). Informed

consent was obtained from the guardians of all participants prior

to the commencement of the study. Guardians were informed that

participation was voluntary and that they could withdraw their

child from the study at any point without any consequences.

2.2.2 Electrical stimulation tactile paradigm
The type and intensity of tactile sensations elicited by electrical

stimulation are contingent upon various parameters of the stimulus.

Specifically, the frequency of electrical stimulation correlates with

the type of tactile sensation, with 100 Hz linked to the perception of

pressure (29). Moreover, the pulse width and amplitude of the

stimulation influence the tactile intensity. Utilizing our prior up-

down threshold experiments conducted on healthy adults (22), we

established that at a fixed frequency of 100 Hz and an amplitude of

2 mA, adjusting the pulse width provides a normal discriminative

resolution of five levels of pressure sensation. These levels,

corresponding to incremental tactile sensations from low to high,

are defined by pulse widths of 20, 100, 200, 300, and 600

microseconds. In this study, we focused on the commonly

perceived sensation of pressure (25), adopting the widely used

pressure-induction paradigm in the field of electro-tactile
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stimulation. We selected the tactile benchmarks from our previous

experiments (22) as the standard stimulus paradigm with five

pressure levels (L1/L2/L3/L4/L5), corresponding to pulse widths

of 20, 100, 200, 300, and 600 microseconds, respectively.

2.2.3 Experimental procedure
The entire experimental procedure lasts 15 minutes, as shown

in Figure 2A. Subjects are required to sit in front of a computer

screen and cooperate with the experimenter to attach the electrodes

and wear a saline EEG cap (for subjects S10 and S12, who are

infants under the age of 2, the preparation and experimental

procedure are completed with the assistance of their guardians).

We conducted all experiments in a sound- and electromagnetically-

shielded chamber with rigorously controlled environmental

conditions (23 ± 1°C, <30 dB background noise) using carefully

screened participants with no prior electrotactile experience. The

EEG acquisition process is illustrated in Figure 2B. The experiment

begins with the collection of resting-state EEG for one minute.

Stimulation starts when a green cross appears on the screen. Five

levels of stimulation are presented randomly, with each level

repeated 80 times. Each stimulation lasts for 1 second, followed

by a 0.5-second rest period. At the end of the experiment,

participants are asked two questions: 1. Please describe the

sensation you just experienced. 2. Was the stimulus you just felt

painful or itchy?

After administering the questionnaire, we documented each

participant’s verbal description of their tactile experiences whenever

such descriptions were provided. Drawing upon our previous

research with typically developing adults, we determined that a

correct response should describe the tactile stimulus as a sensation

of pressure, free from pain or discomfort.
Frontiers in Psychiatry 05
2.3 Data preprocessing

2.3.1 EEG data preprocessing
The analysis was conducted using custom MATLAB scripts.

Initially, artifacts such as blinks and teeth clenching were removed

(5 conditions * 80 trials * 36 participants = 14400 trials, with 217

trials removed), and bad channels were identified using the channel

power spectrum before being interpolated (A total of 72

participants with 32 channels each, averaging 0.81 channels per

participant requiring interpolation). Next, detection task data were

segmented into 1500 ms epochs, ranging from -500 to 1000 ms

relative to stimulus onset, with baseline correction applied to

eliminate drift. A third-order Butterworth bandpass filter (0.01–

12 Hz) was then utilized to remove electrical stimulation artifacts

and other noise. Next, blinking artifacts, horizontal eye movements,

vertical eye movements, and other generic discontinuities were

removed using Independent Component Analysis (ICA) through

the ADJUST plugin within the EEGLAB toolbox in MATLAB (30).

Finally, ERP waveforms and brain topographic maps were

generated. Separate analyses were performed for the lateral

recording sites C3/4, P3/4, as well as the prefrontal lobe FP1/2,

and the frontal electrode F3/4 (31), in previous tactile ERP studies,

these electrodes were found to be associated with tactile

discrimination tasks (24). For each task condition (i.e., L1/L2/L3/

L4/L5), all artifact-free trials were extracted and trial-averaged for

each participant. Subsequently, in the [50:100], [100:150],

[150:200], [250:300], and [300:350] ms time windows, the mean

amplitudes within the 20-ms time window centered at the peak

were defined as the amplitudes of P100, N140, P200, N200, and

P300, respectively, particularly in the regions generating these

components. To investigate the ERP differences between TD and

ASD under these five conditions, two-way analysis of variance
FIGURE 2

(A) Experimental procedure: Colored blocks represent different steps, with the total procedure lasting 15 minutes, including a 12-minute
experimental session. (B) EEG acquisition process: Includes 1-minute resting-state recording and five levels of random tactile stimulation.
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(ANOVA) and post hoc tests were used (with the independent

variables being Group (TD and ASD) and Condition (the five

different experimental conditions), and the dependent variable

being ERP amplitude).

2.3.2 Analysis of coefficient of variation
The coefficient of variation (CV) serves as a quantitative

measure of neural signal variability that has been extensively

employed in electrophysiological research (32). This metric

demonstrates particular utility in assessing information processing

efficiency across various cognitive domains, including linguistic

processing and the evaluation of cognitive impairment. From a

statistical perspective, reduced CV values reflect a more peaked

distribution (leptokurtic), while elevated CV values indicate a flatter

distribution (platykurtic) (33). Stable brain activity results in

smooth coefficient changes, whereas stimulus-induced changes in

EEG signal amplitude cause sharp coefficient changes (32, 33). By

comparing the CV values of EEG signals across different time

periods, O’Reilly et al. can evaluate the oscillatory response

variability of the brain to external stimuli to assess changes in

brain maturity in infants (34). Segning et al. applied pain

stimulation using external capsaicin and found that the CV of

EEG signals differed between patients and healthy individuals under

stimulation. These results support the use of CV of EEG signals as a

quantitative measure to objectively identify the presence of chronic

fibromyalgia (35). In our previous research, we observed that

different healthy adults demonstrated consistent dynamic CV

values during multi-level tactile processing. Notably, significant

increases in CV values were detected at 100 ms, 200 ms, and 300

ms post-stimulus onset, whereas the CV values at other time

intervals remained nearly negligible (22). To further describe

sensation processing efficiency over time within subjects, we

computed the CV for each time segment waveform across five

pressure levels. The ERP waveform, consisting of five components

(0–400 ms post-stimulation) for each pressure stimulus, was

selected for analysis. The ERP waveform was divided into

segments using a sliding window approach (10 ms window width,

1 ms step length). For each segment, the CV was calculated to reflect

tactile processing efficiency at each time point, defined as CV= S.D./

MEAN. The calculated values represent the standard deviation and

mean of ERP amplitudes at each point within the time window.

2.3.3 Reliability assessment
To ensure the reliability of EEG data from ASD and TD

participants, we calculated the intraclass correlation coefficient

(ICC) (36) for each participant’s EEG features (e.g., ERPs and CV

values) using custom MATLAB scripts. ICC was computed using a

two-way random-effects ANOVA model to assess absolute

agreement across measurement conditions (37). The formula for

ICC is:

icc =
MSR −MSE

MSR + (k − 1) · MSE +
k
n (MSC −MSE)

where represent mean squares between subjects, conditions,

and error, respectively; k is the number of conditions, and n is the
Frontiers in Psychiatry 06
number of participants. ICC values > 0.75 indicate excellent

reliability, while values < 0.5 suggest poor reliability. Participants

with low ICC values were excluded to ensure data quality.

2.3.4 Classification of ASD and TD groups
The machine learning analysis employed three distinct

classifiers - Support Vector Machine (SVM) with radial basis

function kernel, Linear Discriminant Analysis (LDA), and a

three-layer Artificial Neural Network (ANN) - to differentiate

ASD from TD participants. We performed 10-fold stratified

cross-validation to ensure robust evaluation, maintaining

equivalent class distribution (50% ASD vs 50% TD) across all

training/testing splits. The models utilized identical input feature

sets comprising: (1) peak amplitudes of P100, N140,P200, N200,

and P300 components from frontal and central electrodes, and (2)

coefficient of variation (CV) values calculated across 200-400ms

post-stimulus windows.
3 Results

3.1 Subjective question results

In the subjective Q&A section, for the first question, in the ASD

group, 2 participants (S10, S12) were too young to describe the

sensation, 4 participants (S2: “It felt like a mosquito bite,” S13: “It

felt like an electric current,” S20 and S31: “It felt like a vibration”)

were able to fully describe the sensation, 5 participants (S1, S5, S21,

S24, S32) responded with screams, and the remaining 25

participants were unable to describe the sensation due to

language development issues. In the TD group, similarly, 2

participants (S13, S14) were too young to describe the sensation,

12 participants described the sensation similarly to typically

developing adults (such as the pressure of a press), 1 participant

(S17) described it as an electric current, and the remaining 21

participants mostly described the sensation as a vibration. For the

second question, neither the ASD group nor the TD group reported

the tactile electrical stimulation as painful or itchy.

During data analysis, a score of 1 was assigned to each correct

description, whereas incorrect or missing descriptions were assigned a

score of 0. For example, in the ASD group, responses were coded as 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1. Subsequent

statistical analysis indicated that there was no significant difference in

questionnaire scores between the ASD and TD groups.
3.2 ERP results

The grand-averaged EEG response exhibited the anticipated

somatosensory evoked potential components. The mean ERP

waveforms from these eight electrodes are depicted in Figure 3.

The statistical analysis employed a two-factor analysis of covariance

(ANCOVA) model to examine five components (P100, N140, P200,

N200, and P300) amplitude differences while controlling for age

effects. The model incorporated diagnostic group (ASD vs. TD) as a
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between-subjects factor, tactile stimulus level (5 ordered levels) as a

within-subjects factor, and participant age as a continuous

covariate, Using MATLAB’s fitlm function with Type III sums of

squares, we specified the full factorial model including the group ×

stimulus interaction term to test whether group differences varied

across stimulus intensities. Age was included as a covariate to

account for potential developmental influences on neural

responses. Post-hoc (LSD) analyses of age-adjusted marginal

means were conducted using multcompare, with categorical

variables properly specified in the model. Effect sizes were

calculated as partial eta-squared (h²p) for significant effects, and

all analyses employed an alpha level of 0.05 for statistical
Frontiers in Psychiatry 07
significance testing. The F3 N200 component showed remarkable

Group differences (F(1,70)=58.33, p<0.0001, h²=0.834), with age

explaining 8.7% of variance (b_age=-0.29, p=0.015). Notably at C4:
(1) The N200 Group effect became more pronounced (F(1,70)

=72.15, p<0.0001, h²=0.892) with minimal age influence

(Dh²=0.008); and (2) For P300, Group differences strengthened (F

(1,70)=45.62, p<0.0001, h²=0.854). No significant Group×Task

interactions emerged (ps>0.1). Since our ultimate goal was to

distinguish between ASD and TD, we conducted a post hoc power

analysis for between-group differences (ASD vs. TD) to ensure

sufficient statistical power. The results for the significant electrodes

and components all yielded power values >0.8. For the N200
FIGURE 3

ERP components of TD and ASD under each task condition (L1/L2/L3/L4/L5) with pulse widths of 20 us (red), 100 us (blue), 200 us (green), 300 us
(pink), and 600 us (black). The left side shows data from 36 ASD subjects, and the right side shows data from TD subjects.
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component at electrode F3: Post hoc power analysis for the group

effect (ASD vs. TD) revealed a power > 0.99 (Cohen’s f = 1.71, a =

0.05, n = 36 per group), indicating sufficient sensitivity to detect

large effects. A sample size of 9 per group provides 80% power to

detect effects with f ≥ 0.82. A significant group difference was

observed in N200 amplitude, with ASD showing a 10 mV increase

compared to TD [95% CI: 4.2, 15.8].
3.3 Cortical activity

Through ERP analysis, temporal domain differences between ASD

and TD groups were identified. Next, spatial domain differences were

analyzed using brain topographymaps. (1) Calculating the brain region

differences between the ASD and TD groups when receiving tactile

stimulation: The ERP signals for five tactile stimulation conditions were

averaged across three components and mapped onto brain topography

maps, calculating the amplitude differences between ASD and TD

groups across 30 electrodes. (2) Calculating the brain region differences

between the ASD and TD groups during the tactile discrimination task

for the five stimuli: The temporal data were averaged to compute the

amplitudes of the five levels. To further examine the differences

between the two groups in the tactile discrimination task, a one-way

ANOVA was performed on the brain topography maps for the five

tactile stimulation levels (factors: L1/L2/L3/L4/L5), and an LSD post-

hoc test was applied. The p-values were mapped onto the brain

topography maps.

Figure 4A shows the brain topography maps of the ASD and TD

groups, with data from 30 electrodes plotted on the brain

topography. The ERP signals for three specific components were

averaged. The red areas in the figure indicate stronger activation. As

shown in Figures 3 and 4, the regions of increased and decreased

activation are consistent with the scalp ERP components. The

electrodes with the largest differences (greater than 10 mV)
between the ASD and TD groups are: F8, FC5, FC6, T8, CP1,

CP2, CP5, CP6, Pz, and Oz. To further observe the different

performances of the two groups in the tactile discrimination

tasks, We depicted the areas where TD and ASD children

exhibited significantly different cortical activities during the five

levels of tactile tasks. Specifically, as shown in Figure 4B, during

tactile processing, TD children showed activation in the FC6 (p=

0.047 < 0.05, h2 = 0.45) and P3 (p= 0.042 < 0.05, h2 = 0.36),

indicating significant differences in activation in response to the five

levels of tactile stimulation. In contrast, ASD children showed

significant differences in activation in the FP2 (p= 0.0319 < 0.05,

h2 = 0.23), F7 (p= 0.0386 < 0.05, h2 = 0.235), and P7 (p= 0.024 <

0.05, h2 = 0.13) in response to the five levels of tactile stimulation.
3.4 Coefficient of variation

Based on the three electrodes showing significant differences,

signals from electrodes FP2, F3, and C4 were analyzed. As shown in

Figure 5, compared to the TD group, the CV waveform of the ASD

group is more dispersed throughout the entire time period. This
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suggests that the ASD brain is processing tactile information

continuously over the entire duration, whereas the TD group

concentrates tactile processing in the early phase of stimulus

onset (0-400ms), with relatively flatter responses in other periods.

This pattern can be observed in the FP2, F3, and C4 electrodes.

Figure 5D presents the total CV values calculated over the entire

time period. We performed a statistical analysis of the CV values for

36 ASD and TD participants using paired t-tests with FDR

correction. The results revealed a significant difference at FC2,

with ASD values significantly higher than those of TD (p= 0.043

< 0.05), indicating more intense information processing in the FC2

for ASD (22).
3.5 Test-retest reliability of EEG features in
tactile tasks

The test-retest reliability of EEG features during tactile tasks

was evaluated using intraclass correlation coefficients (ICC) for

both ASD and TD children, the ICC values for ERP components

related to different pressure levels and the coefficient of variation

(CV) values were calculated. As shown in Table 1. Overall, TD

children exhibited higher ICC values compared to ASD children,

indicating greater consistency in their neural responses. For

instance, the ICC values for ERP at Pressure Level 1 were 0.356

(poor) in ASD children and 0.568 (moderate) in TD children.

Similarly, the CV values for pressure levels showed moderate to

good reliability in both groups (ASD: 0.779, good; TD: 0.729,

moderate). These results suggest that TD children demonstrate

more stable neural responses across tactile tasks, while ASD

children show lower consistency in ERP components associated

with specific pressure levels. However, overall, the EEG data during

tactile tasks demonstrated acceptable reliability, particularly for CV

values and ERP components at higher pressure levels.
3.6 Classification accuracy of EEG features

The classification accuracy of different EEG features under the

static level recognition paradigm was evaluated using three machine

learning algorithms: Support Vector Machine (SVM), Linear

Discriminant Analysis (LDA), and Artificial Neural Network

(ANN). As shown in Table 1, the highest classification accuracy

was consistently achieved by ANN across all ERP features and CV

values. For instance, for ERP at Pressure Level 1, ANN achieved an

accuracy of 0.712 (F8, P200), while SVM and LDA achieved 0.562

(FP1, P100) and 0.623 (P3, N140), respectively. Similarly, for CV

values, ANN achieved an accuracy of 0.804 (T8), outperforming SVM

(0.743, FP1) and LDA (0.589, FP1). These results demonstrate that

ANN is the most effective algorithm for classifying EEG features in

the static level recognition paradigm, particularly for ERP

components associated with higher pressure levels. The highest

classification accuracy was obtained using an ANN classifier with

F8 P300 features: The classification model achieved an overall

accuracy of 85.2% with balanced performance across sensitivity
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(87.5%) and specificity (83.7%), yielding an estimated AUC of 0.91.

While slightly below the optimal results mentioned previously, these

metrics still demonstrate clinically meaningful discriminative power

for ASD screening applications, as all values remain above the 80%

threshold considered acceptable for preliminary diagnostic tools.
4 Discussion

Autism’s social deficits are often associated with sensory

abnormalities. Most previous studies have utilized visual and

auditory stimuli as physiological biomarkers. However, increasing

research also recognizes that abnormal tactile sensations are a

significant reason why individuals with Autism Spectrum Disorder
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find it challenging to engage socially. Although some clinicians have

suggested incorporating tactile assessments into clinical scales,

implementing such measures remains difficult due to the lack of

objectivity and reliability of questionnaires, particularly because most

patients are children with developmental delays and mild cognitive

impairments. Clinicians require a general benchmark of tactile

response to clinically diagnose the extent of tactile abnormalities.

According to the results of our subjective survey, even typically

developing children with normal intelligence have difficulty fully

describing tactile sensations, let alone children with Autism

Spectrum Disorder. Furthermore, there were no significant

differences between the two groups in the questionnaire results.

Therefore, it is challenging to objectively differentiate the tactile

perceptions of children with Autism Spectrum Disorder and
FIGURE 4

As for brain grand-averaged topographies, deeper red color represents higher evoked response, while deeper blue color represents lower evoked response.
(A) The topographical distribution for the TD group is presented in the upper row, while the data for the ASD group are illustrated in the lower row. The
three sets on the vertical axis represent the topographic maps corresponding to P200, N300, and P300, while the horizontal axis represents the five levels of
tactile stimuli. (B) ERP differences (p-values) across five levels of tactile stimulation for 36 typically developing (TD) participants on the left brain topography
map, and for 36 Autism Spectrum Disorder (ASD) participants on the right brain topography map. The color intensity indicates the magnitude of the
differences, with redder areas representing larger differences (Factor: five levels of stimulation, Sample: 36 participants per group).
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typically developing children based on questionnaires alone,

making it particularly important to find an objective assessment

method for early identification.

Previous studies have used methods such as MRI to objectively

assess tactile neural processing in ASD. The study revealed that,

compared to TD participants, individuals with ASD exhibited a

typical modulation of connectivity between the sensorimotor regions

and the prefrontal cortex during tactile stimulation (38). However,

research on how the brain dynamically allocates resources to

accomplish tactile discrimination tasks is still scarce, especially

studies that objectively assess the abnormal tactile resolution in ASD

children. In this study, we used a portable electro-tactile stimulation

system that can be applied to ASD children and utilized EEG to

objectively describe tactile processing in ASD and TD children.

Through a series of EEG analyses and statistical comparisons, we

aim to reveal the mechanisms of tactile processing deficits in

ASD children.

Generally, normal adults process tactile sensations and form

motor decisions through three stages (22, 25): the early stage

(P100, N140) involves the right somatosensory association cortex

distinguishing tactile types; the middle stage (P200) involves the right

primary somatosensory cortex recognizing different degrees of tactile

stimuli and forming tactile characteristics; the late stage (N200 and
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P300) involves information reaching the prefrontal cortex, where

different objects are recognized based on individual cognition.

According to the performance shown in Figure 3, TD children’s

tactile processing can evoke typical tactile discrimination-related ERP

components: P100–N140–P200–N200–P300. However, the early

components in ASD children are not as typical as those in TD, and

only P200, N200, and P300 components can be observed. On the other

hand, statistical results indicate that the amplitudes of P200 induced at

the PF2 lead, N200 induced at the F3 lead, and P300 induced at the C4

lead are significantly lower in ASD children compared to TD children,

reflecting abnormalities in the mid-to-late stages of tactile processing in

ASD, which implies that ASD has difficulties in differentiating tactile

levels and forming tactile decisions. Combined with Figure 4A, we can

identify the corresponding brain regions related to these mid-to-late

stage abnormalities in the EEG components of ASD. It is evident that

the brain regions recruited by ASD and TD differ across these three

stages. The activation pattern in TD (late-stage C4 activation) is similar

to the response to tactile stimulation reported in normal adults by

Zhang et al. (21). In contrast, even in the late stages of tactile

stimulation, the activation regions in ASD remain in the postcentral

gyrus, an area typically activated in the early stages of tactile stimulation

in normal adults (21). The above results suggest that information

processing in the ASD group is delayed compared to the TD group.
FIGURE 5

(A-C) (Color online) Coefficient of variation values for ERP amplitude between five grades of pressure. The curve represents the average CV values of
the five grades, and the color blocks represent the standard deviations of the five grades. (D) Mean CV values for TD and ASD groups at three
electrodes (FP2, F3, and C4). The bar plots show the mean CV values with standard error bars for each group.
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This phenomenon of sluggish tactile processing has also been reported

in the behavioral experiments conducted by Katie et al., who found

through behavioral studies that tactile brain processing in adult ASD

individuals was delayed by 60 ms compared to adult TD individuals,

while multisensory integration was delayed by 180 ms (39).

Interestingly, the abnormally activated regions observed during

the tactile discrimination process in ASD (differences in brain

regions FP2 and C4 for the five levels of tactile stimuli) are

consistent with those identified in MRI studies (38), specifically in

the prefrontal and sensorimotorareas, as illustrated in Figure 4B.

To further explore information processing during tactile

recognition, particularly the efficiency of dynamic information

processing, as illustrated in Figure 5. we conducted a dynamic

coefficient of variation analysis and performed pair-wise

comparisons between the two groups (ASD vs. TD). We found

that ASD children process tactile information throughout the entire

time period; however, the coefficient of variation within a single

time window is lower. This means that ASD children require more

time but achieve lower efficiency to complete tactile cognitive tasks.

Considering the entire brain spatial region, the coefficient of

variation in the C4 of ASD children is lower than that of TD

children over the entire time period, while it is higher in the FP2.

This indicates that, in the context of low tactile processing efficiency

in the C4, ASD patients exhibit compensatory tactile processing

behavior in the FP2. This finding may reveal the defects in tactile

recognition in ASD. Piccardi and colleagues (16)sought to identify

physiological markers for ASD, exploring the use of tactile EEG as a

potential biomarker. They emphasized the importance of early

neural markers in predicting the later development of ASD, they

innovatively proposed using tactile EEG as a physiological marker.

However, their study did not conduct a comprehensive temporal

analysis of tactile processing EEG, but instead relied on a single

measure, the power spectral density at 300 ms. Additionally, their

paradigm was not designed according to the most prominent tactile

abnormalities in ASD (resolution issues), which might have resulted

in fewer significant brain regions being identified.
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In summary, results showed significantly reduced ERP

amplitudes in ASD children at electrodes FP2, F3, and C4,

indicating deficits in mid-to-late tactile processing stages. Brain

topography revealed key group differences in regions such as the F8,

FC5, FC6, T8, CP1, CP2, CP5, CP6, Pz, and Oz. CV analysis

indicated prolonged but inefficient tactile processing in ASD, with

compensatory activation in the FP2. These findings suggest that

ASD children exhibit delayed tactile processing and inefficient

discrimination of tactile stimuli. The identified EEG patterns and

cortical activation differences provide a foundation for developing

objective, early screening methods for ASD.

Traditional early screening methods for ASD (e.g., ABC, CARS,

CHAT, ADOS, ESAT) primarily rely on parent-reported questionnaires

(40), requiring approximately 30–60 minutes depending on

questionnaire complexity and parental comprehension. In contrast,

our paradigm, including preparation, is completed in approximately

15 minutes, improving the efficiency of early screening processes.

Simultaneously, the integration of EEG enables the objective

quantification of neural responses (41), providing a more precise and

reliable approach to assessing brain activity. Wang and colleagues

examined functional connectivity patterns in ASD using resting-state

EEG. The study collected eyes-open resting-state EEG data from 72

children with ASD and 63 TD children and applied a data-driven

clustering method to classify ASD into two subgroups: mild ASD

(mASD) and severe ASD (sASD). The results revealed increased

functional connectivity in the beta band for mASD and decreased

connectivity in the alpha band for sASD compared to TD children,

demonstrating that EEG can effectively distinguish between ASD and

TD. However, the limitation of resting-state EEG lies in its focus on

frequency characteristics, as it cannot capture temporal or

spatiotemporal features, restricting its ability to fully explore dynamic

neural activity in ASD. Marsicano et al. (42) utilized a visuo-spatial

attentional task combined with EEG to investigate the dynamics of

visual attention in individuals with ASD. The study included 19 children

with ASD (mean age 11.21 years) and 20 TD children (mean age 11.25

years). Participants responded to visual targets following “zoom-in” or

“zoom-out” cues. The results demonstrated prolonged neural encoding

of visual cues in the ASD group, persisting even after target onset,

whereas in the TD group, cue-related activity rapidly diminished after

target appearance. This study also confirmed delays in sensory

processing in ASD, similar to the tactile processing delays observed in

our study. However, the visual task paradigm relied on participants

making explicit judgments about visual stimuli and required significant

cognitive engagement, limiting its applicability to younger children,

particularly those under 3 years old, thereby reducing its potential utility

for early screening applications. Tactile EEG paradigms demonstrate

high efficiency, low demands on participants, and the ability to analyze

multidimensional EEG information, highlighting their potential for

early screening applications. Tactile electrical stimulation paradigms

also present the challenge of potentially causing discomfort. In the

future, more comfortable wearable flexible tactile systems will be

designed to enhance user comfort.

This study demonstrated good test-retest reliability of EEG

features during tactile tasks through ICC analysis. Specifically, the
TABLE 1 Classification Performance of Different ERP Features
in Discrimination.

Characteristics
of classification

Rate of accuracy

SVM LDA ANN

ERP:P1
0.562

(FP1, P100)
0.623

(P3, N140)
0.712

(F8, P200)

ERP:P2
0.580

(FP2, P100)
0.554

(FP2, N140)
0.847

(F8, P300)

ERP:P3
0.649

(CP6, P100)
0.558

(P4, P100)
0.840

(F8, P200)

ERP:P4
0.704

(P3, P100)
0.566

(FC1, P100)
0.852

(FZ, P200)

ERP:P5
0.714

(F7, P100)
0.608

(FP1, P100)
0.840

(F8, P300)

CV 0.743 (FP1) 0.589 (FP1) 0.804 (T8)
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pressure-level CV values showed ICC=0.779 (95%CI:0.712-0.832)

in the ASD group and ICC=0.729 (95%CI:0.653-0.792) in the TD

group, which is largely consistent with the ICC range (0.68-0.81)

reported by Zhang et al. (43) for tactile tasks. Using these stable

features, we achieved a classification accuracy of 0.852 (95%

CI:0.812-0.887) on the independent test set. Compared to recent

similar studies: this result is slightly lower than the 0.89 accuracy

obtained by Wang et al. (44) using multimodal data, but

outperforms the 0.79 accuracy reported by Chen et al. (45) using

resting-state EEG alone. Notably, the ERP component at pressure

level 4 (P200 wave at Fz electrode) demonstrated both high

reliability (ICC=0.751) and strong discriminative power

(accuracy=0.852). This finding provides a biomarker with both

stability and specificity for objective ASD diagnosis.

In future research, we will consider incorporating tactile

discrimination tasks that reflect specific tactile behaviors in ASD,

such as their aversion to dynamic touch and preference for static

heavy pressing. However, it is important to acknowledge several

limitations of this study. Firstly, despite extensive literature

highlighting the gender disparity in autism prevalence, the

participants in this study exhibit a gender imbalance. To address

this, future research will recruit gender-matched subjects to evaluate

the potential impact of gender on the findings. Additionally, future

studies will explore the coupling and transmission of information

between different brain regions, employing methods such as dynamic

brain network analyses. IQ and language skills of participants

were not assessed due to the age range of our sample, which

included children as young as 1 year and 2 months, making formal

IQ assessments infeasible. This lack of data may limit the

interpretation of the relationship between cognitive abilities and

tactile processing, To address this limitation, future studies will

incorporate standardized IQ and language skill assessments, such

as theMullen Scales of Early Learning (MSEL) or the Peabody Picture

Vocabulary Test (PPVT), depending on the age and cognitive abilities

of the participants. Integrating these measures will allow for a more

comprehensive analysis of how cognitive and linguistic factors may

influence tactile processing in ASD. The statistical approach

employed for analyzing questionnaire data may require further

scrutiny. In future investigations, we intend to incorporate

qualitative analytic techniques—such as thematic analysis—and to

recruit larger sample sizes, thereby enhancing the robustness and

generalizability of our findings. Furthermore, correlating these

cognitive and language assessments with EEG-based classification

results could provide additional insights into the neural mechanisms

underlying tactile processing and its relationship with broader

developmental profiles in ASD. While our pressure levels were

initially determined from healthy adult thresholds for experimental

consistency, Future studies should incorporate such pediatric-specific

calibration, particularly when comparing absolute sensitivity

thresholds between groups. Designing experimental paradigms

targeting these specific tactile behaviors will help more accurately

identify significantly abnormal brain regions and provide a more

comprehensive understanding of tactile processing in ASD. Once the

mechanisms underlying tactile processing abnormalities in ASD are

fully understood, future research will focus on recruiting a large
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number of participants to build an EEG feature database for tactile

processing. Using artificial intelligence algorithms, we will classify the

EEG features of ASD and TD individuals, aiming to develop a binary

classification method for early screening, which could be applied to

intelligent diagnostic tools for clinical early screening.
5 Conclusions

This study employed EEG-based analysis to investigate the

neural mechanisms underlying tactile processing differences

between children with ASD and TD children. The results revealed

distinct neurophysiological patterns in ASD, characterized by

significantly reduced amplitudes of mid-to-late ERP components

(P200, N200, and P300) at key electrodes (FP2, F3, and C4),

indicating impaired tactile discrimination and decision-making

processes. Brain topography further highlighted group differences,

with ASD children exhibiting atypical activation in regions such as

F8, FC5, FC6, T8, CP1, CP2, CP5, CP6, Pz, and Oz, suggesting

compensatory neural recruitment despite overall inefficiency in

tactile processing. CV analysis demonstrated prolonged but less

efficient tactile information processing in ASD, with compensatory

activity observed in the FP2. These findings underscore the

potential of EEG-derived biomarkers, such as ERP components

and CV values, for objective early screening of ASD. The study also

validated the reliability of these EEG features, with machine

learning models achieving high classification accuracy, supporting

their utility in clinical applications. In summary, this research

provides novel insights into the neural basis of tactile processing

abnormalities in ASD and lays the groundwork for developing non-

invasive, objective diagnostic tools. Future studies should expand

sample sizes, incorporate longitudinal designs, and explore

multimodal approaches to further refine these biomarkers and

enhance their clinical applicability.
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