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Accumulated research has shown considerable heterogeneity in mental health

treatment response. Precision mental health approaches aim to leverage this

heterogeneity to tailor treatment selection to individual needs. The goals of this

manuscript are to 1) present theoretical rationale for the potential usefulness of

the Hierarchical Taxonomy of Psychopathology (HiTOP) to optimize treatment

selection and 2) conduct a scoping review of the role of individual

psychopathology components that map onto HiTOP on differential

psychotherapy response, both as a proof-of-concept analysis, as well as to

identify gaps and concrete recommendations for future application. We focus

our review on treatment for internalizing disorders as a candidate class of

disorders, and on Cognitive-Behavioral Therapies given their empirical support

for this disorder class. Overall, the reviewed literature provides preliminary

evidence about the potential usefulness of HiTOP dimensions of differing

levels of specificity for personalized treatment selection that can guide future

research. Gaps and limitations were identified, including limited research in

several HiTOP domains, strict inclusion/exclusion criteria shrinking individual

heterogeneity, large variability in HiTOP dimension measurement, risk of Type I

and Type II error, and other methodological limitations for assessing

personalized treatment response. The translation of this research to clinical

decision making has a long way to go. Nonetheless, we view the application of

HiTOP-relevant dimensions to personalizedmental health approaches as a viable

and exciting direction that offers many avenues for research for the improvement

of patient outcomes.
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1 Introduction

Consider a 35-year-old client presenting to an outpatient

clinical setting with complaints of increasingly depressed mood,

anxiety, and fatigue. Various evidence-based treatments, including

second- and third-wave cognitive behavioral therapies (CBTs),

interpersonal psychotherapy (IPT), and psychiatric overseeing for

medication, are available in this setting. How should clinicians build

the treatment plan based on the available options? The gold

standard is to utilize the diagnostic label (e.g., based on the

Diagnostic and Statistical Manual of Mental Disorders 5th ed.;

DSM–5; 1) to guide clinical decision making about treatment

selection. However, decades of research show that, on average,

there is little systematic difference among validated mental health

treatments for a given diagnosis (e.g., 2–4). Some have argued that

this means all treatments are equally effective, lack specificity with

respect to treatment outcome, and exert an effect through common

factors shared among psychotherapies (5–7). If all treatments are

equally effective for everyone, treatment selection would be a

straightforward process mainly based on clinician training and

skills and on client preferences. However, research on behavioral

and pharmacological interventions often yields small to medium

effects (8–11). One reason for the small to moderate magnitude of

treatment effects may be that the effects correspond to the average

individual and, thus, do not consider individual variability in

treatment response (12). Thus, treatments may be equally

effective on average, but not for each person.

Individual clients respond differently to a given treatment (13–

16). For example, within a population, some experience substantial

benefits, others experience no benefits, and others experience a

worsening of symptoms in response to treatment. Therefore, the

average treatment effect, which is the main outcome of interest in

most clinical trials (17), is too crude to describe the suitability and

superiority of an intervention for a given individual. The average

treatment effect provides little information for practitioners to make

optimal personalized treatment choices. To address this issue,

precision medicine (or precision mental health, as applied in

mental health research) approaches have started to gain ground,

aiming to leverage individual heterogeneity affecting treatment

response in order to tailor treatment selection to individual needs

and to maximize treatment benefits for individuals (12, 18). In this

approach, the question is not which treatment is best, but rather,

which treatment is best for which individuals. This field is growing

rapidly, and methodology to address precision mental health

questions is an area of open investigation (19). However, to

realize the promise of precision mental health approaches, one

important question is central: Which variables account for the

heterogeneity in treatment response and should be considered for

personalized treatment selection? In this paper, we present a

theoretical rationale concerning the utility of individual

psychopathology dimensions organized by the Hierarchical

Taxonomy of Psychopathology (HiTOP; see 20) framework to

capture relevant heterogeneity in treatment response. HiTOP

proposes an empirically driven dimensional hierarchical structure

of psychopathology with dimensions of increasing levels of
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generality (from groupings of symptoms into groupings of highly

related syndromes, i.e., spectra) that are theorized to reflect

underlying mechanisms of clinical presentations more accurately

and more reliably.

Thus, the goal of this manuscript is two-fold:
1. To present a theoretical justification about the potential

usefulness of the HiTOP framework for personalized

treatment selection. We seek to build the rationale for the

hypothesis that using the HiTOP framework and

measuring different specificity levels of psychopathology

components across different spectra simultaneously will

optimize psychotherapy selection.

2. To conduct a scoping review on the role of individual

psychopathology components that map onto HiTOP on

differential treatment response, both as a proof-of-concept

analysis, as well as to identify gaps and concrete

recommendations for future application. Given the

recency of the proposed HiTOP framework, there are few

studies directly testing this hypothesis. Thus, we present

evidence from a scoping review of studies that examined

one or more HiTOP-relevant moderators of differential

response to a set of psychotherapies.
1.1 From evidence-based treatment to
precision mental health

“What treatment, by whom, is most effective for this individual

with that specific problem, and under which set of circumstances?”

Gordon Paul (21) posed that question over 50 years ago, but the

“what works for whom” question continues to be as timely as ever

and may be finally within our reach, given recent advancements in

research design, technology, and statistical methodology allowing

empirical examination of this seemingly simple, yet complex

question. Implicit in this question is the recognition that no

single treatment is best for everyone and that a variety of

individual characteristics dictate the type of treatment that will be

more beneficial for a given individual at a given time.

Initial attempts to answer this question were rooted in evidence-

based practice and the identification of empirically supported

treatments, incorporating evidence from randomized clinical trials

that test the efficacy of a given treatment for a specific DSM-defined

disorder compared to other control or treatment conditions (22).

The primary focus of such trials is the identification of the best

treatment for a given disorder by looking at the average treatment

effect, with any heterogeneity in treatment response that could

come from client characteristics being viewed as a nuisance or error

variance (19). Therefore, although the goal in evidence-based

practice is to take such characteristics into account in clinical

decision making, underlying evidence-based research gives limited

direct empirical support for how to do this because individual

differences are disregarded and averaged. Thus, clinical decisions

have often been left to clinical judgment, patient preference, and to
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practical considerations, such as availability and cost of a treatment

(23). Precision mental health aims to individualize the healthcare

process to the uniquely evolving needs of each client through

leveraging individual heterogeneity (i.e., variability in an array of

characteristics that make a person unique) (12), rather than treating

it as nuisance variance.
1.2 Personalized mental health treatment
selection

Precision medicine and precision mental health research

encompass various areas of open investigation that can ultimately

contribute to the individualization of health care: risk factors,

prognostic factors, and treatment selection. The first two areas

focus on the identification of biomarkers and other factors shared

within subpopulations of individuals that make them differentially

susceptible to a given medical or mental health condition or to a

specific prognosis for that condition (24, 25). For example,

sequencing of lung adenocarcinomas led to the identification of

more than 15 different gene mutations (e.g., KRAS or EGFR

mutation) related to lung cancer (26). Research in this area

enables personalized diagnosis and can be particularly important

for the development of novel treatments addressing specific risk

and/or prognostic factors. In contrast, personalized treatment

selection involves considering available treatment options and

optimizing their allocation to the individuals that will be most

benefited based on a variety of individual characteristics (12, 24).

The concept of personalized treatment selection has been

loosely defined in many ways to directly or indirectly improve

treatment selection. For the purposes of this paper, we define

personalized treatment selection as a methodological approach

that directly estimates a data-driven set of decision rules, resulting

in a recommendation of the optimal treatment choice (from a set of

treatment options) for an individual that maximizes a clinical

outcome. These decision rules (also known as personalized

treatment rules) can involve a single decision point (e.g., prescribe

CBT vs. Acceptance and Commitment Therapy [ACT]) or multiple

decision points (i.e., sequence of rules based not only on the baseline

values of individual characteristics but also on their change over

time along with ongoing performance of the interventions (also

called dynamic treatment regimes or adaptive interventions) (19,

27, 28)). Available treatment options that can be considered range

from different types of behavioral and pharmacological

interventions, various modes of delivery (e.g., individual vs. group

format, in person vs. online), combinations of intervention (e.g.,

motivational interviewing + CBT + anti-depressant medication vs.

motivational interviewing + CBT vs. CBT only), or different

intervention timelines (e.g., start with behavioral activation and if

effective move to cognitive restructuring vs. start with

cognitive restructuring).

Personalized treatment rules are estimated based on

characteristics that differentially influence treatment response and

indicate which treatment is estimated to be best for whom at a given
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decision point (see 29, 30 for examples of personalized treatment

rule estimation for treatment prescription). Such characteristics are

often referred to as treatment moderators. Moderators can be either

predictive (e.g., Treatment A is always better than Treatment B, but

the difference is greater at higher levels of anxiety; we would still

prescribe Treatment A regardless of anxiety) or prescriptive (e.g., at

high levels of anxiety Treatment A is better than Treatment B and at

low levels of anxiety Treatment B is better than Treatment A; at

high levels of anxiety we would prescribe Treatment A whereas at

low levels of anxiety we would prescribe Treatment B). This

distinction is important for personalized treatment selection

because prescriptive moderators reflect differential superiority of a

treatment depending on levels of the moderator, whereas predictive

moderators do not. Prescriptive moderators are also known as

treatment prescriptive variables or tailoring variables (27).

Treatment moderators have traditionally been studied by

examining the interaction effect between the putative moderator

and treatment condition in a standard regression analysis (23). A

significant interaction effect is often followed by post hoc probing,

which examines the treatment effect at different levels of the

moderator (e.g., mean, at 1 standard deviation (SD) above and

below the mean for a continuous moderator or for each group of a

categorical moderator) (31). Although this approach has

advantages, such as familiarity and ease of use, it only indirectly

gives information about optimal treatment selection. In other

words, it does not produce a specific decision rule that can be

applied for a new client seeking treatment with specific

demographics and/or scores on their assessment measures (e.g.,

Beck Depression Inventory = 25 and Beck Anxiety Inventory = 5,

and Alcohol Use Disorders Identification Test = 30) and their

individual demographics. Other more sophisticated approaches

based on prescriptive algorithms that generate data-driven rules

for optimal treatment recommendations, referred to in the rest of

the review as personalized treatment rules, have started to appear

in the literature (for a review of personalized treatment selection

methods currently used in mental health research, see 12; 23).

Such approaches enable inserting the new client’s scores in the

algorithm, with output being the recommendation of the

treatment from a set of previously studied treatments that

would benefit them the most. Research has shown that

treatment assignment based on such rules outperforms that of

clinician judgment, which is naturally influenced by multiple types

of bias (e.g., confirmation bias; 32). Although there is still a lot to

be learned before the dissemination in practice, this evidence

shows the promise of such approaches for the individualization of

clinical decision making.

Optimal personalized treatment selection is a sophisticated

endeavor, and, as such, optimal study designs, rigorous statistical

method development, and inference are active areas of investigation

(19, 33, 34). The same holds true for the variables that would be

useful to tailor treatment selection. Such prescriptive variables can

vary from demographic characteristics, genetic, epigenetic,

neurobiological, and cognitive variables, environmental

influences, social context, cultural background, family history, as

well as psychopathology presentation.
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1.3 Hierarchical taxonomy of
psychopathology and personalized
treatment response

Psychopathology presentation is formally captured in

diagnostic systems. Diagnostic systems were developed to

facilitate research on the etiology of mental illness and the

development of interventions that effectively address underlying

mechanisms of mental illness for groups of individuals that share

similar characteristics. Thus, a reliable, valid, and clinically useful

diagnostic system is a cornerstone of treatment planning and

clinical decision making (35). Although traditional diagnostic

systems may be useful for testing overall effectiveness of

treatment, they fall short in facilitating personalized treatment

selection because they do not sufficiently capture the inherent

heterogeneity of psychopathology. Instead, they yield a diagnostic

categorical label (with some specifiers) assigned to multiple patients

with potentially very different presentations. For example, a study

found that 1,500 patients with DSM-IV major depressive disorder

(MDD) diagnosis met symptom criteria in 170 different ways (36).

Two people sharing only one clinical symptom could be given the

same diagnosis of MDD - meaning that there is very little overlap in

their underlying characteristics. Additionally, traditional diagnostic

systems also result in large overlap between diagnoses. For example,

MDD and generalized anxiety disorder (GAD) diagnoses share four

overlapping clinical criteria, creating more similarity than

differences between these diagnoses. This is also reflected in the

high rates of comorbidity among these disorders 45.7%–75.0% (37–

39). These limitations make categorical diagnoses less useful in

capturing individual heterogeneity that may uniquely explain

variability in treatment response.

Alternative frameworks of psychopathology, such as HiTOP

or the Research Domain Criteria (RDoC), seek to address the

limitations of traditional diagnostic systems by incorporating

dimensional data-driven constructs that are theorized to reflect

underlying mechanisms of clinical presentations more accurately

(35; 40–42). RDoC focuses on domains of psychological

functioning (i.e., negative valence, positive valence, cognitive

systems, systems for social process, arousal/regulatory systems,

sensorimotor systems and neural circuits that underlie these

dimensions (measured by behavioral performance, self-reports,

physiology; 40, 41). Although the RDoC system holds promise for

uncovering the biological basis of psychopathology, it does not

cover clinical phenomena with sufficient detail, and research

attempting to map biology on to clinical phenotypes is in its

infancy, leading to some concluding that it has limited usefulness

in clinical practice, at least for the time being (20). Additionally,

although the biological information relevant to RDoC may be

highly important for predicting and explaining personalized

treatment response, it is expensive to assess and rarely accessible

to clinical practitioners offering behavioral interventions. Thus,

there is a clear need to investigate behavioral characteristics that

potentially have biological underpinnings and can be easily and
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routinely assessed in clinical practice as potential determinants of

heterogeneous treatment response.

The HiTOP system (Figure D.1) is a hierarchical alternative to

traditional diagnostic systems that conceptualizes psychopathology as

a set of homogeneous dimensions organized into increasingly broad,

transdiagnostic dimensions that account for comorbidities (20, 35,

43–45). It is based on a data-driven re-organization of DSM

symptoms and, as such, maximizes homogeneity within each

dimension and heterogeneity across different dimensions. The high

degree of granularity allows more effective capture of the inherent

heterogeneity within psychopathology. The HiTOP framework

enables the investigation of individual psychopathology profiles of

differing levels of specificity (20, 44), from fine grain symptom

components and traits (e.g., insomnia, anxiousness, emotional

lability) to general higher order transdiagnostic dimensions (e.g.,

the spectra and superspectrum). Specifically, this system enables the

measurement of a detailed profile of 1) higher-order general

predispositions to psychopathology that are thought to reflect

common genetic/biological underpinnings and 2) lower-order trait

and symptom components, the composition of which may differ

considerably across individuals. Different levels of dimension

specificity may partly explain the significant heterogeneity in

treatment response. This framework, in contrast to categorical

diagnoses, considers differences among individuals who share

subclinical or clinical levels of psychopathology. As such, each

dimension is relevant to all individuals. HiTOP reorganizes DSM

symptoms into hierarchical and homogeneous dimensions; thus, the

contents of this model, the granules, are not inherently novel. The

novelty and usefulness of this framework for personalization has to

do with the organization into a hierarchical structure and the

comprehensiveness it can provide in assessing symptom and trait

profiles in a systematic way, providing simultaneously a zoomed out

and zoomed in picture of clinical presentation that can be used as

input to estimate individualized clinical decision rules.
1.4 HiTOP dimensions as potential
prescriptive factors for personalized
treatment selection

HiTOP dimensions of differing levels of specificity show

promise to differentially predict treatment response (35, 46) and,

thus, inform personalized clinical decisions. This makes HiTOP a

prime candidate framework for personalized diagnosis and

treatment. For instance, a client whose elevated depression is

particularly driven by lethargy and irritability may benefit more

from a treatment incorporating behavioral activation than from one

focusing on problematic interpersonal relationships. The opposite

may be true for someone with higher detachment level, who may

benefit more from a treatment focusing on improving interpersonal

functioning rather than one focused on behavioral activation.

Additionally, a general disposition towards antagonistic

externalizing is linked with relationship dissatisfaction and
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conflict (47), which may lead to interference with therapeutic

alliance and the clinician’s efforts to build rapport. Thus, a client

with this disposition might benefit from the addition of

motivational interviewing to improve treatment adherence (48).

Thus, understanding one’s individual characteristics from a HiTOP

perspective can inform numerous clinical decisions and, in theory,

may lead to more optimal treatment selection.

Traditionally, heterogeneity in psychopathology has been

considered an inconvenience that, at best, makes the work of

researchers and clinicians more difficult. However, if evidence is

provided that psychopathology heterogeneity can improve, instead

of hinder, clinical decision making, it will encourage researchers to

develop more reliable approaches for personalized treatment

selection, taking into account individual psychopathology profiles

along with other important baseline characteristics. Insights from

modern precision medicine approaches can be used to provide

parsimonious personalized treatment rules to tailor interventions to

the individual’s unique profile, which can be used readily by the

clinician (see Figure E.1 for an example of what such an algorithm

based on HiTOP dimensions could look like in practice). To

approach this goal, research needs to directly study whether and,

if so how, HiTOP dimensions could be combined to develop

personalized treatment rules that improve treatment outcomes.

However, such research is in its infancy.
2 Scoping review of HiTOP-related
moderators of differential treatment
response

The goals of this scoping review are to 1) provide a proof-of-

concept analysis for the usefulness of HiTOP dimensions in predicting

differential treatment response, 2) identify gaps and limitations of

existing research that prevent applying HiTOP to personalized mental

health treatment selection, and 3) formulate directions for future

research in personalized mental health treatment selection.

As a starting point, we focused our review on two areas: First, a

focus was placed on treatment for disorders fitting into the

internalizing spectrum (e.g., MDD, GAD, eating disorders) as a

candidate class of disorders to test personalized treatment response

based on HiTOP moderators, because there is more research

available with a variety of HiTOP moderators tested that would

allow us to examine our question. The internalizing spectrum

consists of symptoms/traits and disorders that share common

features related to emotional dysfunction and/or behavioral

avoidance (49). Second, a focus was placed on CBTs as the

primary treatment of interest because CBTs are well validated and

widely used psychotherapy approaches proven to be effective for

internalizing disorders (e.g., 50). However, there is still variability in

response to CBTs for this disorder class, which means that

identification of viable prescriptive factors would improve optimal

assignment to CBTs versus other psychotherapies (or among CBT

variations) for more effective treatment.
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2.1 Search terms and strategy

Articles were identified by searching PsycINFO and PubMed

databases. Search terms included were HiTOP-related dimensions,

psychotherapy-related terms, and moderator analysis and precision

medicine/mental health-related terms (a full list of the search terms

can be found in Appendix A. Only empirical peer-reviewed studies

in English were included in the review. Treatment response to CBT

versus other behavioral treatment or across different CBTs was

explored. Third wave CBTs with moderate/strong evidence of

efficacy/effectiveness (51), including Acceptance and Commitment

Therapy (ACT), Dialectical Behavior Therapy (DBT), Behavioral

Activation, and Mindfulness-based Cognitive Therapy (MBCT)

were also included in the review. Thus, to be included, studies

had to examine the effect of CBT 1) compared to at least one active

behavioral treatment (this could be a different variation of CBT,

treatment as usual based on behavioral interventions, other

behavioral treatment) on clinical outcomes and 2) for an

internalizing disorder as defined by HiTOP (e.g., mood disorders,

anxiety disorders, eating disorders, sexual dysfunctions). Studies

examining prevention interventions were excluded. To be included,

studies had to quantitatively assess clinical outcomes directly

relevant to mental health improvement both pre- and post-

treatment and/or at follow-up time points.

Clinical outcomes included, but were not limited to, reduction in

symptom severity, improvement in functioning, remission, and

recovery. Studies examining clinical outcomes not directly linked to

mental health improvement, such as treatment readmission, dropout,

and treatment length, were excluded. In addition, studies had to

examine at least one psychopathology dimension (measured

continuously) of any level of specificity – superspectrum, spectrum,

subfactor, syndrome, or symptom component/trait – as a treatment

moderator measured at baseline, prior to treatment initiation. The

HiTOP consortium recommends the use of a set of HiTOP-friendly

measures (52). However, due to limited research with these particular

measures in the context of our review we expanded our inclusion to

any dimensional measures assessing the above constructs. Dimensions

were selected based on terms used by the HiTOP consortium (20, 43).

These terms were supplemented by measures suggested by the HiTOP

consortium and the HiTOP clinical network to capture the proposed

dimensions (52). Symptom component dimensions from disorder-

specific symptommeasures were also included (e.g., focusing on eating

pathology), as they assess narrower aspects of nosology that have not

yet been officially included in the HiTOP hierarchy but are consistent

with the framework (20). Normative personality traits of the Five

Factor Model, the extremes of which have been conceptualized to

correspond to pathological personality traits, negative affectivity,

detachment, antagonism, and disinhibition (53), were also included

in the review as HiTOP-relevant moderators (spectrum-level

specificity). These normative, and their corresponding pathological,

personality traits were classified as spectrum-level moderators.

HiTOP-relevant moderators were categorized to the broader spectra

and the specificity levels based on the proposed HiTOP model.
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HiTOP-relevant moderators were assigned to a broader

spectrum domain (or General Psychopathology) – i .e.,

Internalizing, Disinhibited Externalizing, Antagonistic

Externalizing, or Detachment – and a specificity level – i.e.,

superspectrum, spectrum, subfactor, syndrome, or component/

trait. Given that the HiTOP system is a work in progress, the

classification of some components of the model to their

corresponding spectra was more certain than others based on

existing research. For this reason, the certainty of fit of each

moderator to a given spectrum was labeled as 1 = high vs. 0 =

low certainty. For example, research has consistently classified

depression and anxiety under the internalizing spectrum. Thus,

such components were assigned a value of high certainty of fit to

their assigned spectrum. On the other hand, there is mixed evidence

about the place of bipolar disorder, eating disorders, or obsessive-

compulsive disorder (OCD) and related components in the model,

as they have been found to load onto different spectra across studies

(54–56). Such components were assigned a value of low certainty of

fit to their assigned spectrum.

Each study was assigned a rating of low, high, or unclear

methodological risk of bias from two sources, i.e., selection bias

and detection bias (as indicated by whether studies used random

sequence generation, allocation concealment, and blinding of

outcome assessment), as study quality indicators based on the

Cochrane Handbook (57) and the guidelines of the Cochrane

Consumers and Communication Review Group (58). Variables for

sample size, method type, multiple comparison correction, and

examination of nonlinear moderating effects were also created. This

was done to qualitatively assess the statistical quality of the studies,

i.e., appropriateness of the analysis, Type I and Type II error in the

findings, and possibility of misspecification of the models (assuming

linearity in potentially nonlinear moderating effects). Descriptive

statistics were computed for mean sample size, age, sex (% female),

and race (% non-white). All identified articles were coded by the first

author, and 20% of these were coded by an independent coder, the

second author, to calculate inter-rater reliability which was 95.7%.
2.2 Scoping review results

Included studies (59–133) and general findings are presented in

Table B.1 (an inclusion flowchart is shown in Figure F.1). Seventy-

six studies met criteria for inclusion in this scoping review.

Characteristics of the included studies are presented in Table 1.

HiTOP-relevant dimensions have been evaluated as moderators

of differential response to treatment for internalizing disorders

classified into four disorder classes mapping onto the HiTOP

model: distress disorders, eating disorders, fear disorders, and a

general internalizing class combining one or more internalizing

disorders. Overall, all HiTOP specificity levels and spectra have

been evaluated as moderators of differential treatment response.

However, most areas were not well-researched. Almost half of the
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included studies examined treatment for distress-related disorders

(k = 36), and the vast majority of these studies examined depression

(k = 27). Treatment for eating (k = 14) and fear (k = 16) disorders

was less well represented in the review. Although there were many

distinct HiTOP-related moderators examined in the reviewed

studies, these were primarily relevant to the Internalizing

spectrum (e.g., syndrome level anxiety and depression, and a

variety of component-trait level moderators such as avoidance,

hostility, and affective lability). Other spectra –Somatoform,

Thought Disorder, Antagonistic and Disinhibited Externalizing,

and Detachment spectra – were much less explored. Additionally,

lower specificity moderators (i.e., higher-order factors) at the

superspectrum, spectrum, and subfactor-level were less well

studied than HiTOP dimensions of higher specificity (i.e., lower-

order factors).

Overall, 59.2% of the studies found at least one significant

HiTOP-relevant moderator of differential treatment response (see

Table 2). Table C.1 shows all the HiTOP-relevant moderators

examined in the included studies across disorder classes and

whether there is evidence of significance at least once. The

heatmaps in Figure G.1 depict the percentage of significant

moderating effects within spectra and across different specificity

levels in the four disorder classes. Of the studies examining distress

disorder (k = 36), fear disorders (k = 16), and more than one

internalizing disorder (k = 10), approximately half found significant

HiTOP-relevant moderators. Studies of eating disorder (k = 14)

found a higher proportion of at least one significant moderator

(71.4%). Although there was variability in the proportion of

significant effects for different levels of specificity, most consistent

moderators were found at the syndrome (44.68%) and component/

trait level (49.32%). Studies examining internalizing moderators

were the most likely to find significant moderating results across

spectra (47.76%).

Importantly, there was not a consistent pattern or direction of

moderating effects across therapies and disorders. This varied

across spectra and disorder classes. For example, in studies on

distress disorders, spectrum-level moderators were found

significant only at the Detachment (e.g., 59, 60) and Thought

Disorder level (e.g., 61). Within the Detachment spectrum,

component/trait-level moderators seemed to be less viable

compared to spectrum and syndrome level (e.g., 59, 60, 62, 63).

Additionally, component/trait level moderators of spectra outside

the Internalizing may be more viable compared to internalizing

moderators at that level, although few studies were conducted to

make definitive conclusions. Within Internalizing, syndrome-level

dimensions may be viable to moderate differential treatment

response for distress disorders (e.g., 59, 60, 64, 100). Within

Detachment, spectrum-level dimensions may be more viable (e.g.,

60). This may suggest that different components of the HiTOP

model play a unique role on treatment response that can be

leveraged for personalized treatment selection. However, given

that the amount of research is skewed towards Internalizing
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moderators, a fair comparison of evidence among spectra and

disorder classes cannot be made.
2.3 Scoping review discussion

Overall, the current scoping review found some preliminary

signal for the usefulness of HiTOP-dimensions in personalized

mental health treatment selection. Importantly, we purposefully
Frontiers in Psychiatry 07
restricted our review to internalizing disorders and CBTs, as

literature in this domain examining HiTOP-relevant moderators

is more robust than for other disorders and treatments. Even for

this set of disorders and treatments, the literature was limited; we

discuss these limitations more fully below and view them as prime

opportunities to advance research into personalized treatment

response and selection. Although we cannot make a firm

judgment about whether HiTOP-relevant moderators are

important for other disorders and treatments, these preliminary
TABLE 1 Characteristics of included studies.

Study characteristics Total Significant moderation
Nonsignificant
moderation

Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3)

Sample size 127 (80, 235) 126 (80, 220) 128 (99, 251)

Mean age 38.71 (35.15, 42.56) 36.80 (34.75, 40.30) 39.73 (35.72, 44.35)

% Female 66.90 (57.00, 75.36) 68.20 (49.58, 85.30) 66.20 (59.95, 72.90)

% Non-White* 21.36 (11.85, 31.05) 19.71 (11.17, 31.30) 24.00 (12.00, 30.30)

Total Significant moderation

N N %

Comparison treatment

CBT 31 21 67.74

Non-CBT 45 24 53.33

Design

Randomized trial 68 41 60.29

Non-randomized trial 3 1 33.33

Retrospective based on electronic health records 3 1 33.33

Mix of randomized and non-randomized datasets 1 1 100.00

Naturalistic study 1 1 100.00

Risk of bias

Random sequence generation

Low 44 25 56.82

High 9 5 55.56

Unclear 23 15 65.22

Allocation concealment

Low 27 14 51.85

High 13 9 69.23

Unclear 36 22 61.11

Blinding outcome assessment

Low 37 23 62.16

High 28 16 57.14

Unclear 11 6 54.55
* Missing in 42 studies.
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results suggest that viability to study HiTOP dimensions as

predictors of differential treatment response and optimal

treatment selection of CBTs for the treatment of internalizing

disorders and then to continue this research for other disorders

and treatments in the future.

We believe this review provides adequate proof-of-concept to

further study and test HiTOP-relevant dimensions for applications

to personalized treatment selection. However, exactly which factors,

and how to leverage them, and for which disorders and treatments,

cannot yet be determined by the existing literature. The literature

reviewed suggests that the full range of the HiTOP model should be

tested for personalized treatment prescription. Given heterogeneity

in directions of moderation effects, it is important that a

comprehensive selection of putative moderators relevant to the

examined set of treatments is made. If we consider them in

isolation, scores of a person in one dimension may indicate one

treatment and scores on another dimension may indicate another,

which would not be helpful in clinical practice (99, 100). Parsimony

of the personalized treatment rules is critical because it will help

clinicians personalize assessment batteries to measures that capture

only characteristics relevant to treatment selection. This will

improve assessment efficiency, reduce patient burden, and

optimize the treatment selection process.

Based on the reviewed studies, we propose that whether a

particular HiTOP dimension is useful may depend on several

factors. First, usefulness may depend on the specific patient
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population to which the treatment is addressed (i.e., condition

treated). For example, in studies on distress disorders, spectrum-

level moderators were found significant only at the Detachment

(e.g., 59, 60) and Thought Disorder level (e.g., 61). Second,

usefulness may depend on the spectrum to which it belongs (i.e.,

within or outside spectrum to which the outcome is classified). For

example, within the Internalizing spectrum, syndrome-level

dimensions may be viable to moderate differential treatment

response for distress disorders (e.g., 59, 60, 64, 100). Within the

Detachment spectrum, component/trait-level moderators seemed

to be less viable compared to spectrum and syndrome level (e.g., 59,

60, 62, 63). It is also worth noting that moderators that were very

similar or identical to the assessed outcome (e.g., depression level at

baseline as a moderator of the effect of treatment on depression

score at treatment completion) were more likely to significantly

moderate differential treatment response. This is reflective of the

potential importance of baseline severity for treatment selection,

which may be especially relevant for the selection of higher versus

lower intensity treatments (e.g., 60). However, no clear pattern was

observed as the moderators conceptually moved away from the

assessed outcome, regardless of whether it was a component within

the same spectrum or a construct from a different spectrum.

Third, usefulness of HiTOP dimensions for predicting

treatment response may depend on the specificity level of the

dimension and/or the specific set of treatment conditions

compared and the extent to which the dimension is relevant to
TABLE 2 Number and percentage of studies that found at least one HiTOP-relevant significant moderator.

HiTOP dimensions Total studies
Distress
disorders

Eating disorders Fear disorders
One or more
internalizing
disorders

Specificity Sig % Total Sig % Total Sig % Total Sig % Total Sig % Total

Superspectrum 3 25.00 12 3 37.50 8 0 0.00 1 0 0.00 1 0 0.00 2

Spectrum 4 28.57 14 4 50.00 8 0 0.00 1 0 0.00 2 0 0.00 3

Subfactor 3 42.86 7 0 0.00 1 3 50.00 6

Syndrome 21 44.68 47 9 37.50 24 2 33.33 6 7 70.00 10 3 42.86 7

Component/trait 26 48.15 54 12 46.15 26 8 72.73 11 2 20.00 10 4 57.14 7

Spectra

General psychopathology 3 25.00 12 3 37.50 8 0 0.00 1 0 0.00 1 0 0.00 2

Somatoform 1 25.00 4 1 33.33 3 0 0.00 1

Internalizing 36 49.32 73 14 40.00 35 10 71.43 14 8 53.33 15 4 44.44 9

Thought Disorder 4 40.00 10 3 37.50 8 1 50.00 2

Disinhibited EXT 5 31.25 16 2 22.22 9 1 33.33 3 1 50.00 2 1 50.00 2

Antagonistic EXT 4 30.77 13 3 30.00 10 1 100.00 1 0 0.00 2

Detachment 5 26.32 19 4 33.33 12 1 33.33 3 0 0.00 3 0 0.00 1

Total 45 59.21 76 21 58.33 36 10 71.43 14 9 56.25 16 5 50.00 10
fron
Sig = Number of studies finding at least one significant moderator, EXT = Externalizing. Shaded cells show results for moderators assessed in at least 3 studies. Cell color corresponds to the
strength of evidence as quantified by percentage size.
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them and can differentiate among them. For example, component/

trait level moderators of spectra outside the Internalizing spectrum

may be more viable compared to internalizing moderators at that

level, although few studies were available for making definite

conclusions. Additionally, HiTOP dimension spectrum and

specificity, as well as the condition treated may have district

contributions depending on the different sets of treatments

compared. The treatment conditions can be behavioral treatments

of different theoretical orientation (e.g., CBT vs. interpersonal

psychotherapy), high vs. low intensity (e.g., inpatient vs

outpatient), or the same treatment with different component

modifications designed to address a specific HiTOP dimension

(e.g., standard CBT for depression vs. CBT for depression

enhanced to specifically address weight and shape concerns).

For example, for higher levels on detachment-related

moderators (outside spectrum moderators), standard CBT/CT

may be associated with more improvement than interpersonal

psychotherapy for a distress disorder; 64, 65). One possible

explanation is that these patients might be more involved and

benefited by a treatment that is more directive and concrete than

one that focuses on interpersonal relationships. However, this

dimension might not be a significant moderator of treatment

when treatment conditions with similar levels of directiveness are

compared (e.g., 66). On the other hand, baseline severity (within

spectrum, syndrome-level moderator) may help differentiate

between high intensity standard CBT and low intensity brief

therapy (e.g., 60). This would be particularly important to

maximize benefits in resource-limited settings where high

intensity treatment cannot be administered to all treatment-

seeking individuals. Finally, whether depression is driven by

lassitude (within spectrum, higher specificity dimension) may

differentiate between a treatment incorporating behavioral

activation and a treatment that focuses on problematic

interpersonal relationships but may not moderate standard CBT

versus behavior therapy (both can include behavioral activation,

thus irrelevant to treatments).

Limitations of the current review should also be noted. First,

this review does not have immediate practical implications and was

not intended to provide practical recommendations; instead, it

focuses on general patterns of research and findings. This is due

to 1) the lack of studies examining multiple moderators of different

spectra and specificity levels simultaneously, that would make the

interaction directions and effect sizes found misleading for

personalized treatment selection purposes, and 2) lack of studies

examining the same moderators and set of treatments to assess

consistency of the findings. Second, the general pattern was

evaluated based on statistical significance of examined

moderations and did not meta-analyze these relationships, thus

precluding any conclusions regarding the overall size or direction of

these effects. Given the small sample size in many of the included

clinical trials, it is possible that some non-significant moderations

were due to reduced power. At the same time the examination of

multiple tests of moderation could lead to Type I error. Third, we
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focused our review to the HiTOP framework and relevant

dimensions that may affect treatment response. One criticism of

this framework is that it is not inherently novel, and it still involves

symptoms and syndromes similarly to the DSM, instead of focusing

to underlying mechanisms. Therefore, the HiTOP relevant

dimensions might not directly influence treatment response.

Other systems might prove to be more appropriate to predict

differential treatment response in the future. Until then, apart

from the DSM, HiTOP is one of the most comprehensive systems

covering the full range of psychopathology and psychopathology

covariation that cannot be disregarded when deciding what is more

beneficial treatment for a certain client. In addition, the longevity

and replicability of the empirical basis for the HiTOP structure

proves that it is fairly well established (100, 134–137). Based on this

evidence, structural components of the model may reflect, at least

partly, these common mechanisms that do directly impact

differential treatment response. Third, this review included only

studies with samples treated for an internalizing disorder. This

limits the generalizability of the findings to only internalizing

disorders. Finally, this review defined CBTs broadly to include a

wide range of CBTs including 3rd wave CBTs. We also included

articles comparing different formats of CBTs. Although this was

done to broaden the scope and review a variety of moderators, this

makes the synthesis of the results more complex. However, our goal

was not to aggregate effects across treatments but discuss what is

available and whether there is signal about the moderating effect of

HiTOP dimensions without trying to combine effects. We do

encourage readers to bear these limitations in mind as they

evaluate the presented results.
3 Discussion

3.1 Critical analysis of the literature
reviewed

Several methodological limitations in the literature were

identified in the literature that threaten the validity of

conclusions, hinder progress in HiTOP-relevant research, and

limit application to personalized treatment selection.
3.1.1 Strict eligibility criteria shrinking individual
heterogeneity

Generally, although a large number of distinct HiTOP-related

moderators were examined in the reviewed studies, they were

primarily relevant to the internalizing spectrum, resulting in

restricted variability and possibly non-significant moderation

effects. One possible reason is the often strict exclusion criteria

that limit researchers’ ability to examine them comprehensively, if

at all. In most of the included studies, individuals with severe

psychopathology (e.g., psychotic disorder) or substance use

disorders were excluded. For example, in a study where Thought
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Disorder dimensions were examined as potential moderators,

presence of psychotic symptoms was one of the exclusion criteria

for participation (59). Therefore, in these cases, the variability in the

putative moderators and treatment response is likely reduced.

Consequently, non-significant moderating effects found are not

surprising. Low heterogeneity in patient characteristics minimizes

the likelihood of finding useful prescriptive factors for personalized

treatment selection. In other words, in most clinical trials where the

goal is to assess average treatment effects, strict exclusion criteria are

set to reduce variability in treatment response. Although this may

be useful in finding one-size-fits-all approaches, it does not serve the

purpose of personalized treatment selection that seeks to leverage

individual heterogeneity to optimize treatment outcomes rather

than treating it as nuisance variance.

3.1.2 HiTOP dimension measurement
An important limitation that should be addressed in future

research is the measurement of the HiTOP-relevant dimensions. In

existing research, these dimensions were assessed with a multitude of

different measures and were frequently constrained to measures

related to the primary diagnosis of the sample (corresponding to

baseline severity). Thus, the full range of psychopathology was rarely

assessed comprehensively and simultaneously within a study.

Relatedly, many of the symptom-based measures used were at the

syndrome-level reflecting the dominance of the categorical systems

(DSM/International Classification of Diseases [ICD]) in this research.

This is in part due to the lack of awareness of the HiTOP model and

in part due to the lack of a comprehensive and validated HiTOP

measure that would enable consistency of measurement of HiTOP

constructs across studies. Additionally, measures that are supposed to

measure the same constructs across studies, even widely studied

dimensions, such as depression or anxiety, varied significantly in

content (e.g., placing different emphasis to emotional, cognitive,

physical or behavioral symptoms of depression or anxiety) (138).
3.1.3 Risk of type I and type II error and validity of
conclusions

A given moderator was rarely examined in multiple studies with

the same primary diagnosis and treatment conditions, preventing

examination of reproducibility of the identified moderating effects,

or lack thereof. In the few studies that examined the same

moderators, moderating effect findings were often not replicated.

This could be due several reasons. One is that the examined

moderators were evaluated in primarily small clinical trials that

most likely were not adequately powered for moderation analysis

(Median N = 126, IQR = 150). Thus, null moderating effects could

be a result of Type II error. The other is that many of these studies

were secondary analysis of clinical trials (e.g., 59, 62) or exploratory

in nature; thus, many moderating effects were often tested in

separate models without a priori hypotheses (e.g., 67). As it is

well known, multiple tests would have led to Type I error inflation.

The presence of Type I and Type II errors may contribute to the

inconsistent results across studies.
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3.1.4 Statistical approach limitations for assessing
personalized treatment response

The statistical methods used varied considerably, and some

were more appropriate to assess personalized response than others.

For most of the reviewed studies, the goal was to address the

question of what treatment works best for whom to eventually

enable optimal personalized treatment selection based on baseline

characteristics including (but not exclusively) different

psychopathology dimensions. However, most of these studies

used unrealistically simplistic models to represent complex

psychopathology phenomena. For example, these studies assessed

treatment moderators using standard linear regression analysis (or

multilevel modeling) with only two-way interaction effects. These

models are often misspecified, and do not account for non-linear

effects (with few exceptions, e.g., 68; 69). However, the associations

of complex psychopathology phenomena with other variables are

frequently non-linear (e.g., inverse-U associations are not

uncommon), and the corresponding true moderating effects may

also be nonlinear and likely of higher order (e.g., three independent

variables, instead of two, may simultaneously interact with one

another to predict the outcome). In addition, moderators were often

separately examined in different regression models (e.g., 70, 71,

139), each of which is an overly simplistic representation of the

potentially complex interaction patterns. Such potential model

misspecifications are expected to produce bias, invalid

conclusions, and personalized treatment rules with suboptimal

performance (140). It is important to note, however, that some of

these issues are not specific to the reviewed research and are a result

of 1) the small sample sizes of the behavioral trials and 2) the

difficulty of implementing statistical methods that can address these

issues (19).

Different statistical methods used across studies also

contributed to the inconsistent results. For example, Wilson et al.

(70) used a linear model with depression as a single predictor in

interaction with treatment and did not find depression as a

significant moderator of differential response. However, using the

same sample, Sysko et al. (72) ran a latent class analysis on multiple

measures including depression and found that the class including

high levels of depression differentially predicted treatment response.

Even in cases where significant moderating effects were identified,

post-hoc probing was often not conducted or done for separate

treatment conditions instead of different levels of the HiTOP

dimension. As a result, it was not clear if the moderator was

predictive (e.g., one of the treatments was always better but the

effect may have been more pronounced at different levels of the

moderator) or prescriptive (favoring one treatment at a certain level

of the moderator and the other at another) (e.g., 141, 142).

A few of the reviewed studies addressed some of these issues

(12, 59, 62, 73) with more advanced methods that can generate

personalized treatment rules for optimal treatment selection. It

should be noted that the flexibility of the methods in the

reviewed articles varied widely. Several studies examined multiple

moderator-treatment interactions and generated personalized

treatment rules (62, 66, 141). However, because they were still
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based on standard linear regression approaches, they were likely

prone to model misspecification and overfitting given small sample

sizes. Some studies used machine learning approaches with no

model assumptions for their variable selection procedure only, but

these methods were almost always model-based in terms of the

outcome under study and thus have similar parametric assumptions

to linear regression (e.g., model-based recursive partitioning (73, 74,

100, 101, 143). Others combined multiple different variable

selection procedures with varying flexibility on model

assumptions (e.g., parametric linear methods and non-parametric

that allow for non-linearity and complex interaction structures) (59,

73, 101). For example, some studies combined tree-based

algorithms (e.g., random forest) with linear regression methods

and selected only moderators that were consistently identified

across both approaches. Others used spline smoothing that

enables discovering non-linear patterns but did not allow for

higher-order interactions (75). Most importantly, however, the

personalized treatment rules that utilized these somewhat flexibly

selected variables were, in most of these studies, generated based on

standard linear regression (59, 73, 74, 101). Estimating

individualized treatment rules based on such likely misspecified

models, is expected to lead to recommendations that are inferior to

the true optimal ones (140).
3.2 Recommendations for future research
directions

Our goal was to provide preliminary evidence for the potential

usefulness of HiTOP on differential treatment response to inform the

viability of and catalyze future research using HiTOP dimensions for

personalized treatment selection. Although the existing literature

reviewed provides evidence for the potential usefulness of HiTOP

dimensions of differing levels of specificity for personalized treatment

selection that can guide future research, the field is still in its infancy

and definite conclusions cannot be drawn. Also, the current state of

the literature does not allow for aggregation of the findings and

immediate use in clinical practice. The application of this line of work

in clinical decision making will require extensive research before it

can be properly translated and replicated. However, our review

provided an extended picture of the state of the literature on the

potential prescriptive role of HiTOP-relevant dimensions and

revealed important routes for future research that can advance the

field moving forward (for a summary of our recommendations, see

Table 3). Although these conclusions are based on our scoping

review, and thus are limited to internalizing disorders and CBTs,

we believe these recommendations may generalize to other disorders

and treatments as well and may serve as general research directions

and priorities that will move the field of HiTOP-based applications to

personalized treatment selection forward.

First, we recommend the use of consistent, valid, and reliable

measurement of HiTOP dimensions in future research. Until a

validated HiTOP measure becomes available, HiTOP-friendly

measures have been proposed by the consortium that can be used

in combination by researchers and clinicians (20, 144). This would
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increase considerably the reliability of HiTOP measurement across

studies and enable more consistent, and valid measurement of

homogenous HiTOP dimensions.

Second, we recommend measurement of the entire proposed

hierarchical structure of psychopathology, including dimensions of

multiple levels of specificity and spectrum belongingness. Only by

this comprehensive examination we can draw conclusions

concerning which specific parts of a psychopathology profile

(higher vs. lower specificity dimensions and spectra) are

important prescriptive factors for a given set of therapies and

conditions treated. Interaction effects for such complex

phenomena are expected to be of a quite complicated form. Any

individual moderating effects may be misleading because, after

accounting for the entire HiTOP structure, the direction of the

identified interactions or even the significance might change. Also,

some of the identified moderating effects of a given specificity level

might reflect the true moderating effect of a lower specificity

moderator that includes them (e.g., a shown significant

moderating effect of insomnia might reflect the moderating effect

of a general disposition to general psychopathology). Considering

the entire structure will allow researchers to disentangle these

relationships and potentially reveal personalized treatment rules

with a better performance.

Third, to leverage the heterogeneity in this hierarchical

psychopathology structure, we recommend using more diverse

samples without strict exclusion criteria that shrink variability in

psychopathology dimensions outside the spectrum of the sample’s
TABLE 3 Seven recommendations for advancing personalized mental
health treatment selection with HiTOP.

1.
Use consistent, valid, and reliable measurement of HiTOP – e.g.,
HiTOP-friendly measures that have been proposed by the consortium
until a validated HiTOP measure becomes available.

2.
Measure the entire or a large portion of the proposed hierarchical
structure of psychopathology, including dimensions of multiple levels
of specificity and spectrum belongingness.

3.
Use more diverse samples without strict exclusion criteria that shrink
variability in psychopathology dimensions outside the spectrum of the
primary diagnosis.

4.
Use smaller clinical trials as an intermediate step towards hypotheses-
driven personalized treatment selection approaches as opposed to
proposing guidelines for immediate use to clinical practice.

5.

Use statistical methods with minimal statistical assumptions based on
modern frameworks of machine learning and causal inference that can
address the issue of big data and can capture the complexity of
interactions of individual characteristics on treatment response.

6.

Use larger randomized clinical trials as they provide the most rigorous
evidence for personalized treatment rules because they protect against
unmeasured confounding and supplement these trials with pragmatic
trials and carefully designed, planned, and executed, large naturalistic
prospective intervention studies as they can provide strong evidence
about effectiveness in real life settings.

7.

Consider other individual characteristics (e.g., demographics, social
determinants of health), domains of human functioning (that are
relevant to psychopathology and can be relatively easily measured in
clinical practice), and process variables that may affect treatment
response in combination with psychopathology dimensions.
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primary diagnosis. This would result in higher variability in terms

of putative moderator scores, which will more closely reflect clinical

settings and can be leveraged to predict personalized response to

treatment that will more likely be generalizable to real

world settings.

Fourth, we caution against using results from traditional clinical

trials examining individual moderating effects to propose immediate

recommendations for clinical practice. The ability to capture the

heterogeneity in psychopathology and complex moderating effects on

treatment response is essential for precision mental health and the

construction of personalized treatment rules for treatment selection.

However, methodologically speaking, it comes at a cost. This

heterogeneity equals to a large amount of data (19). To truly

capture this heterogeneity, the ability to assess multiple moderators

simultaneously is required, as well as the examination of complex and

nonlinear relationships among the variables, and higher order

treatment-moderator interactions (99, 145). Behavioral trials using

traditional statistical approaches cannot handle this task because they

rarely have enough power to detect significant moderating effects,

and, even if they did, they cannot capture the complexity of these

relationships. Therefore, conclusions from these trials should be

considered preliminary regarding personalized treatment selection.

They should not be used to propose guidelines for clinical practice but

serve as an intermediate step towards hypotheses-driven personalized

treatment selection approaches. Clearly, multiple comparisons and

tests without correcting for Type I error often done in these trials

would hinder this goal.

Fifth, flexible statistical methods with minimal statistical

assumptions based on modern frameworks of machine learning

and causal inference (19, 140, 145–147) can address these issues.

For example, outcome weighted learning, residual weighted learning,

or reinforcement learning are some flexible and rigorous methods for

the estimation of personalized treatment rules (19, 148–150). These

are one-stage methods (in contrast to those most often used for

personalized mental health treatment selection), which offer a unified

approach for (i) variable selection or/and regularization of the

complexity of the rules, and (ii) derivation of model-free

personalized treatment rules. They directly estimate a personalized

treatment rule instead of imposing and estimating an often restrictive

(and thus unrealistic) model for the entire outcome (a significant

portion of which is not informative for precision medicine purposes).

Sixth, we recommend the use of large randomized clinical trials,

as they would provide richer information, as well as the most

rigorous evidence for personalized treatment rules, as they protect

against unmeasured confounding (19). Trials with specialized

designs developed to compare sequences of interventions

individualized to patient characteristics (e.g., sequential multiple

assignment randomized trial [SMART] designs) can be leveraged

for adaptive treatment over time (27). Such designs can help

identify which pathology could be addressed first and with which

treatment, taking into account the unique picture of their client’s

psychopathology and modifying recommendations over time based

on response to the given treatment. However, it is important to note

that given the strict exclusion criteria in clinical trials in general,
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samples are often highly specific and do not represent the entire

typical patient population that clinicians will encounter. As such

they give evidence about efficacy under ideal situations and to

specific populations. Carefully designed, planned, and executed,

large naturalistic prospective intervention studies or pragmatic

trials may have the advantage of providing strong evidence about

effectiveness in real life settings (19, 151).

Seventh, although it may be an important piece of information

for personalized treatment selection, the psychopathology

presentation is only part of the picture of a patient’s profile related

to treatment outcomes (31). This may be one reason for the relatively

small number of moderating effects identified in existing literature.

An important route for future research is the consideration of other

individual characteristics (e.g., sociodemographic factors), domains

of human functioning (that are relevant to psychopathology and can

be relatively easily measured in clinical practice), and process

variables that may affect treatment response in combination with

psychopathology dimensions. For example, “objective” behavioral

task performance has shown to influence treatment outcomes.

Similarly, psychotherapeutic process variables, such as therapeutic

alliance, have been found to interact with other personal

characteristics to influence response to treatment (152). Social

determinants of health, such as economic stability, access to quality

education and health care, and social/community context, are other

individual characteristics that may influence treatment response.

Such variables may interact with each other and psychopathology

dimensions to influence treatment response and may be particularly

important for adjusting ongoing treatment to the evolving needs of

the client. If supported by research, this information can be

incorporated in personalized treatment rules that can later be used

by clinicians to enhance their treatment decisions based on their

client’s profile and their evolving relationship. Finally, patient

preferences as well as feasibility of receiving certain treatments due

to health disparities and inequity in groups from diverse backgrounds

are critical to consider. For example, about 1 in 10 people in the

United States do not have health insurance (153), which limits access

especially to long-term treatments. Preferences and accessibility can

be taken into account in the constructed personalized treatment rule

by relevant statistical methods (154).
4 Conclusion

In summary, theory and the existing literature reviewed provide

evidence for the potential usefulness of HiTOP dimensions of

differing levels of specificity for personalized treatment selection

that can guide future research. We view the application of HiTOP-

relevant dimensions to personalized mental health approaches as a

viable and exciting direction in the field of mental health that offers

many avenues for research for the improvement of patient outcomes.

However, the field is still in its infancy and definite conclusions

cannot be drawn, especially as heterogeneity of effects was high.

Future work should address identified limitations in the field,

including limited research in several HiTOP domains, strict
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inclusion/exclusion criteria shrinking individual heterogeneity, large

variability in the measurement of HiTOP dimensions, potential risk

of Type I and Type II error, and other methodological limitations for

assessing personalized treatment response. Although the work to be

done is vast, the payoff has the potential to be large. Research has

begun using HiTOP-relevant dimensions to estimate personalized

treatment rules that can eventually assist clinical decision-making for

optimal treatment selection. These rules should next be tested using

advanced statistical methods to optimize selection among sets of

different treatment options, including different types of behavioral

and pharmacological interventions, various modes of delivery,

combinations of intervention, or different intervention timelines. If

the promise of such rules is substantiated, and such rules are easy to

apply clinically, they could optimize clinical decision making,

maximizing benefits and minimizing costs for the individual client

and the population as a whole.
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